Abstract

A compact silicon hybrid (de)multiplexer is designed and demonstrated by integrating a single bi-directional AWG with a polarization diversity circuit, which consists of an ultra-short polarization-beam splitter (PBS) based on a bent coupler and a polarization rotator (PR) based on a silicon-on-insulator nanowire with a cut corner. The present hybrid (de)multiplexer can operate for both TE- and TM- polarizations and thus is available for PDM-WDM systems. An 18-channel hybrid (de)multiplexer is realized with 9 wavelengths as an example. The wavelength-channel spacing is 400GHz (i.e., Δλch = 3.2nm) and the footprint of the device is about 530μm × 210μm. The channel crosstalk is about −13dB and the total excess loss is about 7dB. The excess loss increases by about 1~2dB due to the cascaded polarization diversity circuit in comparison with a single bi-directional AWG.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Compact SOI-based polarization diversity wavelength de-multiplexer circuit using two symmetric AWGs

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, and W. Bogaerts
Opt. Express 20(26) B493-B500 (2012)

Compact and broadband mode multiplexer and demultiplexer based on asymmetric plasmonic–dielectric coupling

Mei Yin, Qingzhong Deng, Yanping Li, Xingjun Wang, and Hongbin Li
Appl. Opt. 53(27) 6175-6180 (2014)

Low-loss Si3N4 arrayed-waveguide grating (de)multiplexer using nano-core optical waveguides

Daoxin Dai, Zhi Wang, Jared F. Bauters, M.-C. Tien, Martijn J. R. Heck, Daniel J. Blumenthal, and John E Bowers
Opt. Express 19(15) 14130-14136 (2011)

References

  • View by:
  • |
  • |
  • |

  1. D. Dai and J. E. Bowers, “Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects,” Nanophoton. 3(4–5), 283–311 (2014).
  2. J. Wang, S. Chen, and D. Dai, “Silicon hybrid demultiplexer with 64 channels for wavelength/mode-division multiplexed on-chip optical interconnects,” Opt. Lett. 39(24), 6993–6996 (2014).
    [Crossref] [PubMed]
  3. J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division- multiplexing,” Laser & Photon. Rev. 8(2), L18–L22 (2014).
    [Crossref]
  4. M. K. Smit and C. Van Dam, “Phasar-based WDM-devices: principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2(2), 236–250 (1996).
    [Crossref]
  5. W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express 15(4), 1567–1578 (2007).
    [Crossref] [PubMed]
  6. L. Chen, C. R. Doerr, and Y. Chen, “Polarization-diversified DWDM receiver on silicon free of polarization-dependent wavelength shift,” Optical Fiber Communication Conference. Optical Society of America, 2012: OW3G. 7.
    [Crossref]
  7. S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Compact SOI-based polarization diversity wavelength de-multiplexer circuit using two symmetric AWGs,” Opt. Express 20(26), B493–B500 (2012).
    [Crossref] [PubMed]
  8. T. Barwicz, M. R. Watts, M. A. Popović, P. T. Bakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
    [Crossref]
  9. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16(7), 4872–4880 (2008).
    [Crossref] [PubMed]
  10. J. Zhang, H. Zhang, S. Chen, M. Yu, G. Q. Lo, and D. L. Kwong, “A tunable polarization diversity silicon photonics filter,” Opt. Express 19(14), 13063–13072 (2011).
    [Crossref] [PubMed]
  11. Y. Ding, L. Liu, C. Peucheret, J. Xu, H. Ou, K. Yvind, X. Zhang, and D. Huang, “Towards polarization diversity on the SOI platform with simple fabrication process,” Photon. Technol. Lett. 23(23), 1808–1810 (2011).
    [Crossref]
  12. Y. Qin, Y. Yu, J. Zou, M. Ye, L. Xiang, and X. Zhang, “Silicon based polarization insensitive filter for WDM-PDM signal processing,” Opt. Express 21(22), 25727–25733 (2013).
    [Crossref] [PubMed]
  13. L. Chen, C. R. Doerr, and Y. K. Chen, “Compact polarization rotator on silicon for polarization-diversified circuits,” Opt. Lett. 36(4), 469–471 (2011).
    [Crossref] [PubMed]
  14. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
    [Crossref]
  15. W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
    [Crossref]
  16. K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70×60 μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41(14), 801–802 (2005).
    [Crossref]
  17. D. Dai, L. Liu, L. Wosinski, and S. He, “Design and fabrication of ultra-small overlapped AWG demultiplexer based on alpha-Si nanowire waveguides,” Electron. Lett. 42(7), 400–402 (2006).
    [Crossref]
  18. P. Dumon, W. Bogaerts, D. Van Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, and P. Jaenen, “Compact wavelength router based on a Silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array,” Opt. Express 14(2), 664–669 (2006).
    [Crossref] [PubMed]
  19. S. Cheung, T. Su, K. Okamoto, and S. J. B. Yoo, “Ultra-Compact Silicon Photonic 512×512 25 GHz Arrayed Waveguide Grating Router,” IEEE J. Sel. Top. Quantum Electron. 20(4), 310–316 (2014).
    [Crossref]
  20. J. Wang, Z. Sheng, L. Li, A. Pang, A. Wu, W. Li, X. Wang, S. Zou, M. Qi, and F. Gan, “Low-loss and low-crosstalk 8 × 8 silicon nanowire AWG routers fabricated with CMOS technology,” Opt. Express 22(8), 9395–9403 (2014).
    [Crossref] [PubMed]
  21. D. Dai, L. Liu, S. Gao, D. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photon. Rev. 7(3), 303–328 (2013).
    [Crossref]
  22. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Ultrasmall polarization splitter based on silicon wire waveguides,” Opt. Express 14(25), 12401–12408 (2006).
    [Crossref] [PubMed]
  23. D. Dai and J. E. Bowers, “Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler,” Opt. Express 19(19), 18614–18620 (2011).
    [Crossref] [PubMed]
  24. J. Wang, D. Liang, Y. Tang, D. Dai, and J. E. Bowers, “Realization of an ultra-short silicon polarization beam splitter with an asymmetrical bent directional coupler,” Opt. Lett. 38(1), 4–6 (2013).
    [Crossref] [PubMed]
  25. Z. Wang and D. Dai, “Ultrasmall Si-nanowire-based polarization rotator,” J. Opt. Soc. Am. B 25(5), 747–753 (2008).
    [Crossref]
  26. M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J. Fedeli, A. Håkansson, and P. Sanchis, “CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section,” IEEE Photon. Technol. Lett. 24(22), 2031–2034 (2012).
    [Crossref]
  27. S. Chen, X. Fu, J. Wang, Y. Shi, S. He, and D. Dai, “Compact dense wavelength division (de)multiplexer utilizing a bidirectional Arrayed-waveguide Grating integrated with a Mach-Zehnder Interferometer,” J. Lightwave Technol. 33(11), 2279–2285 (2015).
    [Crossref]
  28. D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29(23), 2749–2751 (2004).
    [Crossref] [PubMed]

2015 (1)

2014 (5)

J. Wang, Z. Sheng, L. Li, A. Pang, A. Wu, W. Li, X. Wang, S. Zou, M. Qi, and F. Gan, “Low-loss and low-crosstalk 8 × 8 silicon nanowire AWG routers fabricated with CMOS technology,” Opt. Express 22(8), 9395–9403 (2014).
[Crossref] [PubMed]

J. Wang, S. Chen, and D. Dai, “Silicon hybrid demultiplexer with 64 channels for wavelength/mode-division multiplexed on-chip optical interconnects,” Opt. Lett. 39(24), 6993–6996 (2014).
[Crossref] [PubMed]

J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division- multiplexing,” Laser & Photon. Rev. 8(2), L18–L22 (2014).
[Crossref]

D. Dai and J. E. Bowers, “Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects,” Nanophoton. 3(4–5), 283–311 (2014).

S. Cheung, T. Su, K. Okamoto, and S. J. B. Yoo, “Ultra-Compact Silicon Photonic 512×512 25 GHz Arrayed Waveguide Grating Router,” IEEE J. Sel. Top. Quantum Electron. 20(4), 310–316 (2014).
[Crossref]

2013 (3)

2012 (2)

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Compact SOI-based polarization diversity wavelength de-multiplexer circuit using two symmetric AWGs,” Opt. Express 20(26), B493–B500 (2012).
[Crossref] [PubMed]

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J. Fedeli, A. Håkansson, and P. Sanchis, “CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section,” IEEE Photon. Technol. Lett. 24(22), 2031–2034 (2012).
[Crossref]

2011 (4)

2008 (2)

2007 (2)

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Bakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express 15(4), 1567–1578 (2007).
[Crossref] [PubMed]

2006 (4)

D. Dai, L. Liu, L. Wosinski, and S. He, “Design and fabrication of ultra-small overlapped AWG demultiplexer based on alpha-Si nanowire waveguides,” Electron. Lett. 42(7), 400–402 (2006).
[Crossref]

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[Crossref]

P. Dumon, W. Bogaerts, D. Van Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, and P. Jaenen, “Compact wavelength router based on a Silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array,” Opt. Express 14(2), 664–669 (2006).
[Crossref] [PubMed]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Ultrasmall polarization splitter based on silicon wire waveguides,” Opt. Express 14(25), 12401–12408 (2006).
[Crossref] [PubMed]

2005 (2)

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70×60 μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41(14), 801–802 (2005).
[Crossref]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

2004 (1)

1996 (1)

M. K. Smit and C. Van Dam, “Phasar-based WDM-devices: principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2(2), 236–250 (1996).
[Crossref]

Aamer, M.

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J. Fedeli, A. Håkansson, and P. Sanchis, “CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section,” IEEE Photon. Technol. Lett. 24(22), 2031–2034 (2012).
[Crossref]

Baba, T.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70×60 μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41(14), 801–802 (2005).
[Crossref]

Baets, R.

Baets, R. G.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[Crossref]

Bakich, P. T.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Bakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Barwicz, T.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Bakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Beckx, S.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[Crossref]

P. Dumon, W. Bogaerts, D. Van Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, and P. Jaenen, “Compact wavelength router based on a Silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array,” Opt. Express 14(2), 664–669 (2006).
[Crossref] [PubMed]

Bienstman, P.

Bogaerts, W.

Bowers, J. E.

Brimont, A.

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J. Fedeli, A. Håkansson, and P. Sanchis, “CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section,” IEEE Photon. Technol. Lett. 24(22), 2031–2034 (2012).
[Crossref]

Chen, L.

Chen, S.

Chen, Y. K.

Cheung, S.

S. Cheung, T. Su, K. Okamoto, and S. J. B. Yoo, “Ultra-Compact Silicon Photonic 512×512 25 GHz Arrayed Waveguide Grating Router,” IEEE J. Sel. Top. Quantum Electron. 20(4), 310–316 (2014).
[Crossref]

Dai, D.

S. Chen, X. Fu, J. Wang, Y. Shi, S. He, and D. Dai, “Compact dense wavelength division (de)multiplexer utilizing a bidirectional Arrayed-waveguide Grating integrated with a Mach-Zehnder Interferometer,” J. Lightwave Technol. 33(11), 2279–2285 (2015).
[Crossref]

J. Wang, S. Chen, and D. Dai, “Silicon hybrid demultiplexer with 64 channels for wavelength/mode-division multiplexed on-chip optical interconnects,” Opt. Lett. 39(24), 6993–6996 (2014).
[Crossref] [PubMed]

D. Dai and J. E. Bowers, “Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects,” Nanophoton. 3(4–5), 283–311 (2014).

J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division- multiplexing,” Laser & Photon. Rev. 8(2), L18–L22 (2014).
[Crossref]

D. Dai, L. Liu, S. Gao, D. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photon. Rev. 7(3), 303–328 (2013).
[Crossref]

J. Wang, D. Liang, Y. Tang, D. Dai, and J. E. Bowers, “Realization of an ultra-short silicon polarization beam splitter with an asymmetrical bent directional coupler,” Opt. Lett. 38(1), 4–6 (2013).
[Crossref] [PubMed]

D. Dai and J. E. Bowers, “Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler,” Opt. Express 19(19), 18614–18620 (2011).
[Crossref] [PubMed]

Z. Wang and D. Dai, “Ultrasmall Si-nanowire-based polarization rotator,” J. Opt. Soc. Am. B 25(5), 747–753 (2008).
[Crossref]

D. Dai, L. Liu, L. Wosinski, and S. He, “Design and fabrication of ultra-small overlapped AWG demultiplexer based on alpha-Si nanowire waveguides,” Electron. Lett. 42(7), 400–402 (2006).
[Crossref]

Ding, Y.

Y. Ding, L. Liu, C. Peucheret, J. Xu, H. Ou, K. Yvind, X. Zhang, and D. Huang, “Towards polarization diversity on the SOI platform with simple fabrication process,” Photon. Technol. Lett. 23(23), 1808–1810 (2011).
[Crossref]

Doerr, C. R.

Dumon, P.

Fedeli, J.

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J. Fedeli, A. Håkansson, and P. Sanchis, “CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section,” IEEE Photon. Technol. Lett. 24(22), 2031–2034 (2012).
[Crossref]

Fu, X.

Fukuda, H.

Gan, F.

Gao, S.

D. Dai, L. Liu, S. Gao, D. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photon. Rev. 7(3), 303–328 (2013).
[Crossref]

Gutierrez, A. M.

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J. Fedeli, A. Håkansson, and P. Sanchis, “CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section,” IEEE Photon. Technol. Lett. 24(22), 2031–2034 (2012).
[Crossref]

Håkansson, A.

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J. Fedeli, A. Håkansson, and P. Sanchis, “CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section,” IEEE Photon. Technol. Lett. 24(22), 2031–2034 (2012).
[Crossref]

He, S.

S. Chen, X. Fu, J. Wang, Y. Shi, S. He, and D. Dai, “Compact dense wavelength division (de)multiplexer utilizing a bidirectional Arrayed-waveguide Grating integrated with a Mach-Zehnder Interferometer,” J. Lightwave Technol. 33(11), 2279–2285 (2015).
[Crossref]

J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division- multiplexing,” Laser & Photon. Rev. 8(2), L18–L22 (2014).
[Crossref]

D. Dai, L. Liu, S. Gao, D. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photon. Rev. 7(3), 303–328 (2013).
[Crossref]

D. Dai, L. Liu, L. Wosinski, and S. He, “Design and fabrication of ultra-small overlapped AWG demultiplexer based on alpha-Si nanowire waveguides,” Electron. Lett. 42(7), 400–402 (2006).
[Crossref]

Huang, D.

Y. Ding, L. Liu, C. Peucheret, J. Xu, H. Ou, K. Yvind, X. Zhang, and D. Huang, “Towards polarization diversity on the SOI platform with simple fabrication process,” Photon. Technol. Lett. 23(23), 1808–1810 (2011).
[Crossref]

Ippen, E. P.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Bakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Itabashi, S.

Jaenen, P.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[Crossref]

P. Dumon, W. Bogaerts, D. Van Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, and P. Jaenen, “Compact wavelength router based on a Silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array,” Opt. Express 14(2), 664–669 (2006).
[Crossref] [PubMed]

Kärtner, F. X.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Bakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Kwong, D. L.

Li, L.

Li, W.

Liang, D.

Liu, L.

D. Dai, L. Liu, S. Gao, D. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photon. Rev. 7(3), 303–328 (2013).
[Crossref]

Y. Ding, L. Liu, C. Peucheret, J. Xu, H. Ou, K. Yvind, X. Zhang, and D. Huang, “Towards polarization diversity on the SOI platform with simple fabrication process,” Photon. Technol. Lett. 23(23), 1808–1810 (2011).
[Crossref]

D. Dai, L. Liu, L. Wosinski, and S. He, “Design and fabrication of ultra-small overlapped AWG demultiplexer based on alpha-Si nanowire waveguides,” Electron. Lett. 42(7), 400–402 (2006).
[Crossref]

Lo, G. Q.

Morita, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

Motegi, A.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70×60 μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41(14), 801–802 (2005).
[Crossref]

Ohno, F.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70×60 μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41(14), 801–802 (2005).
[Crossref]

Okamoto, K.

S. Cheung, T. Su, K. Okamoto, and S. J. B. Yoo, “Ultra-Compact Silicon Photonic 512×512 25 GHz Arrayed Waveguide Grating Router,” IEEE J. Sel. Top. Quantum Electron. 20(4), 310–316 (2014).
[Crossref]

Ou, H.

Y. Ding, L. Liu, C. Peucheret, J. Xu, H. Ou, K. Yvind, X. Zhang, and D. Huang, “Towards polarization diversity on the SOI platform with simple fabrication process,” Photon. Technol. Lett. 23(23), 1808–1810 (2011).
[Crossref]

Pang, A.

Pathak, S.

Peucheret, C.

Y. Ding, L. Liu, C. Peucheret, J. Xu, H. Ou, K. Yvind, X. Zhang, and D. Huang, “Towards polarization diversity on the SOI platform with simple fabrication process,” Photon. Technol. Lett. 23(23), 1808–1810 (2011).
[Crossref]

Pluk, E.

Popovic, M. A.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Bakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Qi, M.

Qin, Y.

Roelkens, G.

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J. Fedeli, A. Håkansson, and P. Sanchis, “CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section,” IEEE Photon. Technol. Lett. 24(22), 2031–2034 (2012).
[Crossref]

Sanchis, P.

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J. Fedeli, A. Håkansson, and P. Sanchis, “CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section,” IEEE Photon. Technol. Lett. 24(22), 2031–2034 (2012).
[Crossref]

Sasaki, K.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70×60 μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41(14), 801–802 (2005).
[Crossref]

Sheng, Z.

Shi, Y.

Shinojima, H.

Shoji, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

Smit, M. K.

M. K. Smit and C. Van Dam, “Phasar-based WDM-devices: principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2(2), 236–250 (1996).
[Crossref]

Smith, H. I.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Bakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Socci, L.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Bakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Su, T.

S. Cheung, T. Su, K. Okamoto, and S. J. B. Yoo, “Ultra-Compact Silicon Photonic 512×512 25 GHz Arrayed Waveguide Grating Router,” IEEE J. Sel. Top. Quantum Electron. 20(4), 310–316 (2014).
[Crossref]

Taillaert, D.

Takahashi, J.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

Takahashi, M.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

Tamechika, E.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

Tang, Y.

Thourhout, D. V.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[Crossref]

Tsuchizawa, T.

Van Dam, C.

M. K. Smit and C. Van Dam, “Phasar-based WDM-devices: principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2(2), 236–250 (1996).
[Crossref]

Van Thourhout, D.

Vanslembrouck, M.

Vermeulen, D.

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J. Fedeli, A. Håkansson, and P. Sanchis, “CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section,” IEEE Photon. Technol. Lett. 24(22), 2031–2034 (2012).
[Crossref]

Wang, J.

Wang, X.

Wang, Z.

Watanabe, T.

Watts, M. R.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Bakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Wiaux, V.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[Crossref]

Wosinski, L.

D. Dai, L. Liu, L. Wosinski, and S. He, “Design and fabrication of ultra-small overlapped AWG demultiplexer based on alpha-Si nanowire waveguides,” Electron. Lett. 42(7), 400–402 (2006).
[Crossref]

Wouters, J.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[Crossref]

P. Dumon, W. Bogaerts, D. Van Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, and P. Jaenen, “Compact wavelength router based on a Silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array,” Opt. Express 14(2), 664–669 (2006).
[Crossref] [PubMed]

Wu, A.

Xiang, L.

Xu, D.

D. Dai, L. Liu, S. Gao, D. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photon. Rev. 7(3), 303–328 (2013).
[Crossref]

Xu, J.

Y. Ding, L. Liu, C. Peucheret, J. Xu, H. Ou, K. Yvind, X. Zhang, and D. Huang, “Towards polarization diversity on the SOI platform with simple fabrication process,” Photon. Technol. Lett. 23(23), 1808–1810 (2011).
[Crossref]

Yamada, K.

Ye, M.

Yoo, S. J. B.

S. Cheung, T. Su, K. Okamoto, and S. J. B. Yoo, “Ultra-Compact Silicon Photonic 512×512 25 GHz Arrayed Waveguide Grating Router,” IEEE J. Sel. Top. Quantum Electron. 20(4), 310–316 (2014).
[Crossref]

Yu, M.

Yu, Y.

Yvind, K.

Y. Ding, L. Liu, C. Peucheret, J. Xu, H. Ou, K. Yvind, X. Zhang, and D. Huang, “Towards polarization diversity on the SOI platform with simple fabrication process,” Photon. Technol. Lett. 23(23), 1808–1810 (2011).
[Crossref]

Zhang, H.

Zhang, J.

Zhang, X.

Y. Qin, Y. Yu, J. Zou, M. Ye, L. Xiang, and X. Zhang, “Silicon based polarization insensitive filter for WDM-PDM signal processing,” Opt. Express 21(22), 25727–25733 (2013).
[Crossref] [PubMed]

Y. Ding, L. Liu, C. Peucheret, J. Xu, H. Ou, K. Yvind, X. Zhang, and D. Huang, “Towards polarization diversity on the SOI platform with simple fabrication process,” Photon. Technol. Lett. 23(23), 1808–1810 (2011).
[Crossref]

Zou, J.

Zou, S.

Electron. Lett. (2)

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70×60 μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41(14), 801–802 (2005).
[Crossref]

D. Dai, L. Liu, L. Wosinski, and S. He, “Design and fabrication of ultra-small overlapped AWG demultiplexer based on alpha-Si nanowire waveguides,” Electron. Lett. 42(7), 400–402 (2006).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (4)

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[Crossref]

M. K. Smit and C. Van Dam, “Phasar-based WDM-devices: principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2(2), 236–250 (1996).
[Crossref]

S. Cheung, T. Su, K. Okamoto, and S. J. B. Yoo, “Ultra-Compact Silicon Photonic 512×512 25 GHz Arrayed Waveguide Grating Router,” IEEE J. Sel. Top. Quantum Electron. 20(4), 310–316 (2014).
[Crossref]

IEEE Photon. Technol. Lett. (1)

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J. Fedeli, A. Håkansson, and P. Sanchis, “CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section,” IEEE Photon. Technol. Lett. 24(22), 2031–2034 (2012).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Laser & Photon. Rev. (1)

J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division- multiplexing,” Laser & Photon. Rev. 8(2), L18–L22 (2014).
[Crossref]

Laser Photon. Rev. (1)

D. Dai, L. Liu, S. Gao, D. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photon. Rev. 7(3), 303–328 (2013).
[Crossref]

Nanophoton. (1)

D. Dai and J. E. Bowers, “Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects,” Nanophoton. 3(4–5), 283–311 (2014).

Nat. Photonics (1)

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Bakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Opt. Express (9)

Y. Qin, Y. Yu, J. Zou, M. Ye, L. Xiang, and X. Zhang, “Silicon based polarization insensitive filter for WDM-PDM signal processing,” Opt. Express 21(22), 25727–25733 (2013).
[Crossref] [PubMed]

J. Wang, Z. Sheng, L. Li, A. Pang, A. Wu, W. Li, X. Wang, S. Zou, M. Qi, and F. Gan, “Low-loss and low-crosstalk 8 × 8 silicon nanowire AWG routers fabricated with CMOS technology,” Opt. Express 22(8), 9395–9403 (2014).
[Crossref] [PubMed]

J. Zhang, H. Zhang, S. Chen, M. Yu, G. Q. Lo, and D. L. Kwong, “A tunable polarization diversity silicon photonics filter,” Opt. Express 19(14), 13063–13072 (2011).
[Crossref] [PubMed]

D. Dai and J. E. Bowers, “Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler,” Opt. Express 19(19), 18614–18620 (2011).
[Crossref] [PubMed]

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Compact SOI-based polarization diversity wavelength de-multiplexer circuit using two symmetric AWGs,” Opt. Express 20(26), B493–B500 (2012).
[Crossref] [PubMed]

P. Dumon, W. Bogaerts, D. Van Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, and P. Jaenen, “Compact wavelength router based on a Silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array,” Opt. Express 14(2), 664–669 (2006).
[Crossref] [PubMed]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Ultrasmall polarization splitter based on silicon wire waveguides,” Opt. Express 14(25), 12401–12408 (2006).
[Crossref] [PubMed]

W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express 15(4), 1567–1578 (2007).
[Crossref] [PubMed]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16(7), 4872–4880 (2008).
[Crossref] [PubMed]

Opt. Lett. (4)

Photon. Technol. Lett. (1)

Y. Ding, L. Liu, C. Peucheret, J. Xu, H. Ou, K. Yvind, X. Zhang, and D. Huang, “Towards polarization diversity on the SOI platform with simple fabrication process,” Photon. Technol. Lett. 23(23), 1808–1810 (2011).
[Crossref]

Other (1)

L. Chen, C. R. Doerr, and Y. Chen, “Polarization-diversified DWDM receiver on silicon free of polarization-dependent wavelength shift,” Optical Fiber Communication Conference. Optical Society of America, 2012: OW3G. 7.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Schematic configuration of the present hybrid (de)multiplexer consisting of a bi-directional AWG and a polarization diversity circuit; (b) the enlarged view for the polarization diversity circuit connecting with the two input waveguides of the bi-directional AWG.

Fig. 2
Fig. 2

Schematic configuration of the PBS based on a bent coupler.

Fig. 3
Fig. 3

Schematic configuration of the polarization rotator based on a SOI nanowire with a cut corner. Inset: the cross section of the waveguide at the rotation region.

Fig. 4
Fig. 4

Microscopic images of the fabricated structures to test the PBSs and PRs.

Fig. 5
Fig. 5

Normalized measurement results for the PBS when the input is (a) TE, (b) TM polarization modes.

Fig. 6
Fig. 6

(a) The fabricated PBSs with the grating couplers for TE polarization and the corresponding measured transmissions when the TE polarization mode is launched; (b) the fabricated PBSs with the grating couplers for TM polarization and the corresponding measured transmissions when the TM polarization mode is launched.

Fig. 7
Fig. 7

Normalized measurement results for the transmissions (TM→TE, and TM→TM) for the PR when TM polarization mode is input.

Fig. 8
Fig. 8

Microscopic image of the fabricated hybrid (de)multiplexer consisting of a bi-directional AWG and a polarization diversity circuit.

Fig. 9
Fig. 9

Measured results of the fabricated hybrid (de)multiplexer with a channel spacing of 400GHz, which are normalized by the transmission of a straight waveguide with grating couplers on the same chip. Dashed lines are for the channels originating from the TM polarization, while the solid lines are for the channels originating from the TE polarization.

Metrics