Abstract

We consider an optical technique for performing tunable weighted addition using wavelength-division multiplexed (WDM) inputs, the enabling function of a recently proposed photonic spike processing architecture [J. Lightwave Technol., 32 (2014)]. WDM weighted addition provides important advantages to performance, integrability, and networking capability that were not possible in any past approaches to optical neurocomputing. In this letter, we report a WDM weighted addition prototype used to find the first principal component of a 1Gbps, 8-channel signal. Wideband, multivariate techniques have immediate relevance to modern radio systems, and photonic spike processing networks enabled by WDM could open new domains of information processing that bring unprecedented bandwidth and intelligence to problems in radio communications, ultrafast control, and scientific computing.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Recent progress in semiconductor excitable lasers for photonic spike processing

Paul R. Prucnal, Bhavin J. Shastri, Thomas Ferreira de Lima, Mitchell A. Nahmias, and Alexander N. Tait
Adv. Opt. Photon. 8(2) 228-299 (2016)

Multi-channel control for microring weight banks

Alexander N. Tait, Thomas Ferreira de Lima, Mitchell A. Nahmias, Bhavin J. Shastri, and Paul R. Prucnal
Opt. Express 24(8) 8895-8906 (2016)

Excitable laser processing network node in hybrid silicon: analysis and simulation

Mitchell A. Nahmias, Alexander N. Tait, Bhavin J. Shastri, Thomas Ferreira de Lima, and Paul R. Prucnal
Opt. Express 23(20) 26800-26813 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. N. Tait, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Broadcast and weight: an integrated network for scalable photonic spike processing,” J. Lightwave Technol. 32, 3427–3439 (2014).
    [Crossref]
  2. J. Hasler and H. B. Marr, “Finding a roadmap to achieve large neuromorphic hardware systems,” Frontiers in Neuroscience 7118 (2013).
    [Crossref] [PubMed]
  3. P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345, 668–673 (2014).
    [Crossref] [PubMed]
  4. S. Friedmann, N. Frémaux, J. Schemmel, W. Gerstner, and K. Meier, “Reward-based learning under hardware constraints - using a RISC processor embedded in a neuromorphic substrate,” Frontiers in Neuroscience 7160 (2013).
    [Crossref]
  5. D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials 3, 1782–1802 (2010).
    [Crossref]
  6. G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4, 751–779 (2010).
    [Crossref]
  7. D. A. B. Miller, “The role of optics in computing,” Nat. Photonics 4, 406 (2010).
    [Crossref]
  8. J. Misra and I. Saha, “Artificial neural networks in hardware: a survey of two decades of progress,” Neurocomputing 74, 239–255 (2010).
    [Crossref]
  9. K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, and P. Bienstman, “Experimental demonstration of reservoir computing on a silicon photonics chip,” Nat. Commun. 53541 (2014).
    [Crossref] [PubMed]
  10. D. Brunner, M. C. Soriano, C. R. Mirasso, and I. Fischer, “Parallel photonic information processing at gigabyte per second data rates using transient states,” Nat. Commun. 4, 1364 (2013).
    [Crossref] [PubMed]
  11. L. Appeltant, M. C. Soriano, G. Van der Sande, J. Danckaert, S. Massar, J. Dambre, B. Schrauwen, C. R. Mirasso, and I. Fischer, “Information processing using a single dynamical node as complex system,” Nat. Commun. 2, 468 (2011).
    [Crossref] [PubMed]
  12. M. A. Nahmias, B. J. Shastri, A. N. Tait, and P. R. Prucnal, “A leaky integrate-and-fire laser neuron for ultrafast cognitive computing,” IEEE J. Sel. Top. Quantum Electron. 191800212 (2013).
    [Crossref]
  13. F. Selmi, R. Braive, G. Beaudoin, I. Sagnes, R. Kuszelewicz, and S. Barbay, “Relative refractory period in an excitable semiconductor laser,” Phys. Rev. Lett. 112, 183902 (2014).
    [Crossref] [PubMed]
  14. B. J. Shastri, M. A. Nahmias, A. N. Tait, B. Wu, and P. R. Prucnal, “Simpel: circuit model for photonic spike processing laser neurons,” under review, Opt. Express. available  arXiv:14097030 (2014).
  15. M. C. Soriano, S. Ortín, D. Brunner, L. Larger, C. R. Mirasso, I. Fischer, and L. Pesquera, “Optoelectronic reservoir computing: tackling noise-induced performance degradation,” Opt. Express 21, 12–20 (2013).
    [Crossref] [PubMed]
  16. T. V. Vaerenbergh, M. Fiers, P. Mechet, T. Spuesens, R. Kumar, G. Morthier, B. Schrauwen, J. Dambre, and P. Bienstman, “Cascadable excitability in microrings,” Opt. Express 20, 20292–20308 (2012).
    [Crossref] [PubMed]
  17. D. Woods and T. J. Naughton, “Optical computing: photonic neural networks,” Nat. Phys. 8, 257–259 (2012).
    [Crossref]
  18. B. J. Shastri, M. A. Nahmias, A. N. Tait, Y. Tian, B. Wu, and P. R. Prucnal, “Graphene excitable laser for photonic spike processing,” in “Proc. IEEE Photonics Conf. (IPC),” (paper PD.4, Seattle, WA, USA, 2013), pp. 1–2.
  19. S. Furber, D. Lester, L. Plana, J. Garside, E. Painkras, S. Temple, and A. Brown, “Overview of the SpiNNaker system architecture,” IEEE Trans. Comput. 62, 2454–2467 (2013).
    [Crossref]
  20. J. Chang, J. Meister, and P. Prucnal, “Implementing a novel highly scalable adaptive photonic beamformer using ’blind’ guided accelerated random search,” J. Lightwave Technol. 32, 3623–3629 (2014).
    [Crossref]
  21. M. Chang, A. Tait, J. Chang, and P. Prucnal, “An integrated optical interference cancellation system,” in “Wireless and Optical Communication Conference (WOCC), 2014 23rd,” (2014), pp. 1–5.
  22. J. W. Goodman, “Fan-in and fan-out with optical interconnections,” Opt. Acta 32, 1489–1496 (1985).
    [Crossref]
  23. J. Schemmel, J. Fieres, and K. Meier, “Wafer-scale integration of analog neural networks,” in “Neural Networks, 2008. IJCNN 2008. IEEE International Joint Conference on,” (2008), pp. 431–438.
  24. B. J. Shastri, A. N. Tait, M. A. Nahmias, and P. R. Prucnal, “Photonic spike processing: ultrafast laser neurons and an integrated photonic network,” IEEE Pho. Soc. Newsletter 28, 4–11 (2014).
  25. A. N. Tait, M. A. Nahmias, Y. Tian, B. J. Shastri, and P. R. Prucnal, “Photonic neuromorphic signal processing and computing,” in “Nanophotonic Information Physics,” (Springer Berlin Heidelberg, 2014), pp. 183–222.
    [Crossref]
  26. K. P. Murphy, Machine Learning: A Probabilistic Perspective (MIT, 2012).
  27. S. Lloyd, M. Mohseni, and P. Rebentrost, “Quantum principal component analysis,” Nat. Phys. 10, 631–633 (2014).
    [Crossref]
  28. M.-E. Baylor, “Analog optoelectronic independent component analysis for radio frequency signals,” Ph.D. thesis, University of Colorado (2007).
  29. E. L. Bienenstock, L. N. Cooper, and P. W. Munro, “Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex,” J. Neurosci. 2, 32–48 (1982).
    [PubMed]
  30. E. Oja, “Simplified neuron model as a principal component analyzer,” J. Math. Biol. 15, 267–273 (1982).
    [Crossref]
  31. J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24, 201–229 (2006).
    [Crossref]
  32. J. Chang, M. Fok, R. Corey, J. Meister, and P. Prucnal, “Highly scalable adaptive photonic beamformer using a single mode to multimode optical combiner,” IEEE. Microwave Wireless Compon. Lett. 10, 563–565 (2013).
    [Crossref]

2014 (8)

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345, 668–673 (2014).
[Crossref] [PubMed]

K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, and P. Bienstman, “Experimental demonstration of reservoir computing on a silicon photonics chip,” Nat. Commun. 53541 (2014).
[Crossref] [PubMed]

F. Selmi, R. Braive, G. Beaudoin, I. Sagnes, R. Kuszelewicz, and S. Barbay, “Relative refractory period in an excitable semiconductor laser,” Phys. Rev. Lett. 112, 183902 (2014).
[Crossref] [PubMed]

B. J. Shastri, M. A. Nahmias, A. N. Tait, B. Wu, and P. R. Prucnal, “Simpel: circuit model for photonic spike processing laser neurons,” under review, Opt. Express. available  arXiv:14097030 (2014).

B. J. Shastri, A. N. Tait, M. A. Nahmias, and P. R. Prucnal, “Photonic spike processing: ultrafast laser neurons and an integrated photonic network,” IEEE Pho. Soc. Newsletter 28, 4–11 (2014).

S. Lloyd, M. Mohseni, and P. Rebentrost, “Quantum principal component analysis,” Nat. Phys. 10, 631–633 (2014).
[Crossref]

J. Chang, J. Meister, and P. Prucnal, “Implementing a novel highly scalable adaptive photonic beamformer using ’blind’ guided accelerated random search,” J. Lightwave Technol. 32, 3623–3629 (2014).
[Crossref]

A. N. Tait, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Broadcast and weight: an integrated network for scalable photonic spike processing,” J. Lightwave Technol. 32, 3427–3439 (2014).
[Crossref]

2013 (7)

J. Chang, M. Fok, R. Corey, J. Meister, and P. Prucnal, “Highly scalable adaptive photonic beamformer using a single mode to multimode optical combiner,” IEEE. Microwave Wireless Compon. Lett. 10, 563–565 (2013).
[Crossref]

M. C. Soriano, S. Ortín, D. Brunner, L. Larger, C. R. Mirasso, I. Fischer, and L. Pesquera, “Optoelectronic reservoir computing: tackling noise-induced performance degradation,” Opt. Express 21, 12–20 (2013).
[Crossref] [PubMed]

S. Furber, D. Lester, L. Plana, J. Garside, E. Painkras, S. Temple, and A. Brown, “Overview of the SpiNNaker system architecture,” IEEE Trans. Comput. 62, 2454–2467 (2013).
[Crossref]

D. Brunner, M. C. Soriano, C. R. Mirasso, and I. Fischer, “Parallel photonic information processing at gigabyte per second data rates using transient states,” Nat. Commun. 4, 1364 (2013).
[Crossref] [PubMed]

J. Hasler and H. B. Marr, “Finding a roadmap to achieve large neuromorphic hardware systems,” Frontiers in Neuroscience 7118 (2013).
[Crossref] [PubMed]

M. A. Nahmias, B. J. Shastri, A. N. Tait, and P. R. Prucnal, “A leaky integrate-and-fire laser neuron for ultrafast cognitive computing,” IEEE J. Sel. Top. Quantum Electron. 191800212 (2013).
[Crossref]

S. Friedmann, N. Frémaux, J. Schemmel, W. Gerstner, and K. Meier, “Reward-based learning under hardware constraints - using a RISC processor embedded in a neuromorphic substrate,” Frontiers in Neuroscience 7160 (2013).
[Crossref]

2012 (2)

2011 (1)

L. Appeltant, M. C. Soriano, G. Van der Sande, J. Danckaert, S. Massar, J. Dambre, B. Schrauwen, C. R. Mirasso, and I. Fischer, “Information processing using a single dynamical node as complex system,” Nat. Commun. 2, 468 (2011).
[Crossref] [PubMed]

2010 (4)

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials 3, 1782–1802 (2010).
[Crossref]

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4, 751–779 (2010).
[Crossref]

D. A. B. Miller, “The role of optics in computing,” Nat. Photonics 4, 406 (2010).
[Crossref]

J. Misra and I. Saha, “Artificial neural networks in hardware: a survey of two decades of progress,” Neurocomputing 74, 239–255 (2010).
[Crossref]

2006 (1)

1985 (1)

J. W. Goodman, “Fan-in and fan-out with optical interconnections,” Opt. Acta 32, 1489–1496 (1985).
[Crossref]

1982 (2)

E. L. Bienenstock, L. N. Cooper, and P. W. Munro, “Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex,” J. Neurosci. 2, 32–48 (1982).
[PubMed]

E. Oja, “Simplified neuron model as a principal component analyzer,” J. Math. Biol. 15, 267–273 (1982).
[Crossref]

Akopyan, F.

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345, 668–673 (2014).
[Crossref] [PubMed]

Alvarez-Icaza, R.

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345, 668–673 (2014).
[Crossref] [PubMed]

Amir, A.

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345, 668–673 (2014).
[Crossref] [PubMed]

Appeltant, L.

L. Appeltant, M. C. Soriano, G. Van der Sande, J. Danckaert, S. Massar, J. Dambre, B. Schrauwen, C. R. Mirasso, and I. Fischer, “Information processing using a single dynamical node as complex system,” Nat. Commun. 2, 468 (2011).
[Crossref] [PubMed]

Appuswamy, R.

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345, 668–673 (2014).
[Crossref] [PubMed]

Arthur, J. V.

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345, 668–673 (2014).
[Crossref] [PubMed]

Baets, R.

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials 3, 1782–1802 (2010).
[Crossref]

Barbay, S.

F. Selmi, R. Braive, G. Beaudoin, I. Sagnes, R. Kuszelewicz, and S. Barbay, “Relative refractory period in an excitable semiconductor laser,” Phys. Rev. Lett. 112, 183902 (2014).
[Crossref] [PubMed]

Baylor, M.-E.

M.-E. Baylor, “Analog optoelectronic independent component analysis for radio frequency signals,” Ph.D. thesis, University of Colorado (2007).

Beaudoin, G.

F. Selmi, R. Braive, G. Beaudoin, I. Sagnes, R. Kuszelewicz, and S. Barbay, “Relative refractory period in an excitable semiconductor laser,” Phys. Rev. Lett. 112, 183902 (2014).
[Crossref] [PubMed]

Bienenstock, E. L.

E. L. Bienenstock, L. N. Cooper, and P. W. Munro, “Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex,” J. Neurosci. 2, 32–48 (1982).
[PubMed]

Bienstman, P.

K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, and P. Bienstman, “Experimental demonstration of reservoir computing on a silicon photonics chip,” Nat. Commun. 53541 (2014).
[Crossref] [PubMed]

T. V. Vaerenbergh, M. Fiers, P. Mechet, T. Spuesens, R. Kumar, G. Morthier, B. Schrauwen, J. Dambre, and P. Bienstman, “Cascadable excitability in microrings,” Opt. Express 20, 20292–20308 (2012).
[Crossref] [PubMed]

Bowers, J.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4, 751–779 (2010).
[Crossref]

Bowers, J. E.

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials 3, 1782–1802 (2010).
[Crossref]

Braive, R.

F. Selmi, R. Braive, G. Beaudoin, I. Sagnes, R. Kuszelewicz, and S. Barbay, “Relative refractory period in an excitable semiconductor laser,” Phys. Rev. Lett. 112, 183902 (2014).
[Crossref] [PubMed]

Brezzo, B.

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345, 668–673 (2014).
[Crossref] [PubMed]

Brown, A.

S. Furber, D. Lester, L. Plana, J. Garside, E. Painkras, S. Temple, and A. Brown, “Overview of the SpiNNaker system architecture,” IEEE Trans. Comput. 62, 2454–2467 (2013).
[Crossref]

Brunner, D.

M. C. Soriano, S. Ortín, D. Brunner, L. Larger, C. R. Mirasso, I. Fischer, and L. Pesquera, “Optoelectronic reservoir computing: tackling noise-induced performance degradation,” Opt. Express 21, 12–20 (2013).
[Crossref] [PubMed]

D. Brunner, M. C. Soriano, C. R. Mirasso, and I. Fischer, “Parallel photonic information processing at gigabyte per second data rates using transient states,” Nat. Commun. 4, 1364 (2013).
[Crossref] [PubMed]

Capmany, J.

Cassidy, A. S.

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345, 668–673 (2014).
[Crossref] [PubMed]

Chang, J.

J. Chang, J. Meister, and P. Prucnal, “Implementing a novel highly scalable adaptive photonic beamformer using ’blind’ guided accelerated random search,” J. Lightwave Technol. 32, 3623–3629 (2014).
[Crossref]

J. Chang, M. Fok, R. Corey, J. Meister, and P. Prucnal, “Highly scalable adaptive photonic beamformer using a single mode to multimode optical combiner,” IEEE. Microwave Wireless Compon. Lett. 10, 563–565 (2013).
[Crossref]

M. Chang, A. Tait, J. Chang, and P. Prucnal, “An integrated optical interference cancellation system,” in “Wireless and Optical Communication Conference (WOCC), 2014 23rd,” (2014), pp. 1–5.

Chang, M.

M. Chang, A. Tait, J. Chang, and P. Prucnal, “An integrated optical interference cancellation system,” in “Wireless and Optical Communication Conference (WOCC), 2014 23rd,” (2014), pp. 1–5.

Cooper, L. N.

E. L. Bienenstock, L. N. Cooper, and P. W. Munro, “Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex,” J. Neurosci. 2, 32–48 (1982).
[PubMed]

Corey, R.

J. Chang, M. Fok, R. Corey, J. Meister, and P. Prucnal, “Highly scalable adaptive photonic beamformer using a single mode to multimode optical combiner,” IEEE. Microwave Wireless Compon. Lett. 10, 563–565 (2013).
[Crossref]

Dambre, J.

K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, and P. Bienstman, “Experimental demonstration of reservoir computing on a silicon photonics chip,” Nat. Commun. 53541 (2014).
[Crossref] [PubMed]

T. V. Vaerenbergh, M. Fiers, P. Mechet, T. Spuesens, R. Kumar, G. Morthier, B. Schrauwen, J. Dambre, and P. Bienstman, “Cascadable excitability in microrings,” Opt. Express 20, 20292–20308 (2012).
[Crossref] [PubMed]

L. Appeltant, M. C. Soriano, G. Van der Sande, J. Danckaert, S. Massar, J. Dambre, B. Schrauwen, C. R. Mirasso, and I. Fischer, “Information processing using a single dynamical node as complex system,” Nat. Commun. 2, 468 (2011).
[Crossref] [PubMed]

Danckaert, J.

L. Appeltant, M. C. Soriano, G. Van der Sande, J. Danckaert, S. Massar, J. Dambre, B. Schrauwen, C. R. Mirasso, and I. Fischer, “Information processing using a single dynamical node as complex system,” Nat. Commun. 2, 468 (2011).
[Crossref] [PubMed]

Esser, S. K.

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345, 668–673 (2014).
[Crossref] [PubMed]

Fang, A.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4, 751–779 (2010).
[Crossref]

Fieres, J.

J. Schemmel, J. Fieres, and K. Meier, “Wafer-scale integration of analog neural networks,” in “Neural Networks, 2008. IJCNN 2008. IEEE International Joint Conference on,” (2008), pp. 431–438.

Fiers, M.

K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, and P. Bienstman, “Experimental demonstration of reservoir computing on a silicon photonics chip,” Nat. Commun. 53541 (2014).
[Crossref] [PubMed]

T. V. Vaerenbergh, M. Fiers, P. Mechet, T. Spuesens, R. Kumar, G. Morthier, B. Schrauwen, J. Dambre, and P. Bienstman, “Cascadable excitability in microrings,” Opt. Express 20, 20292–20308 (2012).
[Crossref] [PubMed]

Fischer, I.

M. C. Soriano, S. Ortín, D. Brunner, L. Larger, C. R. Mirasso, I. Fischer, and L. Pesquera, “Optoelectronic reservoir computing: tackling noise-induced performance degradation,” Opt. Express 21, 12–20 (2013).
[Crossref] [PubMed]

D. Brunner, M. C. Soriano, C. R. Mirasso, and I. Fischer, “Parallel photonic information processing at gigabyte per second data rates using transient states,” Nat. Commun. 4, 1364 (2013).
[Crossref] [PubMed]

L. Appeltant, M. C. Soriano, G. Van der Sande, J. Danckaert, S. Massar, J. Dambre, B. Schrauwen, C. R. Mirasso, and I. Fischer, “Information processing using a single dynamical node as complex system,” Nat. Commun. 2, 468 (2011).
[Crossref] [PubMed]

Flickner, M. D.

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345, 668–673 (2014).
[Crossref] [PubMed]

Fok, M.

J. Chang, M. Fok, R. Corey, J. Meister, and P. Prucnal, “Highly scalable adaptive photonic beamformer using a single mode to multimode optical combiner,” IEEE. Microwave Wireless Compon. Lett. 10, 563–565 (2013).
[Crossref]

Frémaux, N.

S. Friedmann, N. Frémaux, J. Schemmel, W. Gerstner, and K. Meier, “Reward-based learning under hardware constraints - using a RISC processor embedded in a neuromorphic substrate,” Frontiers in Neuroscience 7160 (2013).
[Crossref]

Friedmann, S.

S. Friedmann, N. Frémaux, J. Schemmel, W. Gerstner, and K. Meier, “Reward-based learning under hardware constraints - using a RISC processor embedded in a neuromorphic substrate,” Frontiers in Neuroscience 7160 (2013).
[Crossref]

Furber, S.

S. Furber, D. Lester, L. Plana, J. Garside, E. Painkras, S. Temple, and A. Brown, “Overview of the SpiNNaker system architecture,” IEEE Trans. Comput. 62, 2454–2467 (2013).
[Crossref]

Garside, J.

S. Furber, D. Lester, L. Plana, J. Garside, E. Painkras, S. Temple, and A. Brown, “Overview of the SpiNNaker system architecture,” IEEE Trans. Comput. 62, 2454–2467 (2013).
[Crossref]

Gerstner, W.

S. Friedmann, N. Frémaux, J. Schemmel, W. Gerstner, and K. Meier, “Reward-based learning under hardware constraints - using a RISC processor embedded in a neuromorphic substrate,” Frontiers in Neuroscience 7160 (2013).
[Crossref]

Goodman, J. W.

J. W. Goodman, “Fan-in and fan-out with optical interconnections,” Opt. Acta 32, 1489–1496 (1985).
[Crossref]

Guo, C.

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345, 668–673 (2014).
[Crossref] [PubMed]

Hasler, J.

J. Hasler and H. B. Marr, “Finding a roadmap to achieve large neuromorphic hardware systems,” Frontiers in Neuroscience 7118 (2013).
[Crossref] [PubMed]

Imam, N.

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345, 668–673 (2014).
[Crossref] [PubMed]

Jackson, B. L.

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345, 668–673 (2014).
[Crossref] [PubMed]

Jones, R.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4, 751–779 (2010).
[Crossref]

Koch, B.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4, 751–779 (2010).
[Crossref]

Kumar, R.

Kuszelewicz, R.

F. Selmi, R. Braive, G. Beaudoin, I. Sagnes, R. Kuszelewicz, and S. Barbay, “Relative refractory period in an excitable semiconductor laser,” Phys. Rev. Lett. 112, 183902 (2014).
[Crossref] [PubMed]

Larger, L.

Lester, D.

S. Furber, D. Lester, L. Plana, J. Garside, E. Painkras, S. Temple, and A. Brown, “Overview of the SpiNNaker system architecture,” IEEE Trans. Comput. 62, 2454–2467 (2013).
[Crossref]

Liang, D.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4, 751–779 (2010).
[Crossref]

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials 3, 1782–1802 (2010).
[Crossref]

Liu, L.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4, 751–779 (2010).
[Crossref]

Lloyd, S.

S. Lloyd, M. Mohseni, and P. Rebentrost, “Quantum principal component analysis,” Nat. Phys. 10, 631–633 (2014).
[Crossref]

Manohar, R.

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345, 668–673 (2014).
[Crossref] [PubMed]

Marr, H. B.

J. Hasler and H. B. Marr, “Finding a roadmap to achieve large neuromorphic hardware systems,” Frontiers in Neuroscience 7118 (2013).
[Crossref] [PubMed]

Massar, S.

L. Appeltant, M. C. Soriano, G. Van der Sande, J. Danckaert, S. Massar, J. Dambre, B. Schrauwen, C. R. Mirasso, and I. Fischer, “Information processing using a single dynamical node as complex system,” Nat. Commun. 2, 468 (2011).
[Crossref] [PubMed]

Mechet, P.

K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, and P. Bienstman, “Experimental demonstration of reservoir computing on a silicon photonics chip,” Nat. Commun. 53541 (2014).
[Crossref] [PubMed]

T. V. Vaerenbergh, M. Fiers, P. Mechet, T. Spuesens, R. Kumar, G. Morthier, B. Schrauwen, J. Dambre, and P. Bienstman, “Cascadable excitability in microrings,” Opt. Express 20, 20292–20308 (2012).
[Crossref] [PubMed]

Meier, K.

S. Friedmann, N. Frémaux, J. Schemmel, W. Gerstner, and K. Meier, “Reward-based learning under hardware constraints - using a RISC processor embedded in a neuromorphic substrate,” Frontiers in Neuroscience 7160 (2013).
[Crossref]

J. Schemmel, J. Fieres, and K. Meier, “Wafer-scale integration of analog neural networks,” in “Neural Networks, 2008. IJCNN 2008. IEEE International Joint Conference on,” (2008), pp. 431–438.

Meister, J.

J. Chang, J. Meister, and P. Prucnal, “Implementing a novel highly scalable adaptive photonic beamformer using ’blind’ guided accelerated random search,” J. Lightwave Technol. 32, 3623–3629 (2014).
[Crossref]

J. Chang, M. Fok, R. Corey, J. Meister, and P. Prucnal, “Highly scalable adaptive photonic beamformer using a single mode to multimode optical combiner,” IEEE. Microwave Wireless Compon. Lett. 10, 563–565 (2013).
[Crossref]

Merolla, P. A.

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345, 668–673 (2014).
[Crossref] [PubMed]

Miller, D. A. B.

D. A. B. Miller, “The role of optics in computing,” Nat. Photonics 4, 406 (2010).
[Crossref]

Mirasso, C. R.

D. Brunner, M. C. Soriano, C. R. Mirasso, and I. Fischer, “Parallel photonic information processing at gigabyte per second data rates using transient states,” Nat. Commun. 4, 1364 (2013).
[Crossref] [PubMed]

M. C. Soriano, S. Ortín, D. Brunner, L. Larger, C. R. Mirasso, I. Fischer, and L. Pesquera, “Optoelectronic reservoir computing: tackling noise-induced performance degradation,” Opt. Express 21, 12–20 (2013).
[Crossref] [PubMed]

L. Appeltant, M. C. Soriano, G. Van der Sande, J. Danckaert, S. Massar, J. Dambre, B. Schrauwen, C. R. Mirasso, and I. Fischer, “Information processing using a single dynamical node as complex system,” Nat. Commun. 2, 468 (2011).
[Crossref] [PubMed]

Misra, J.

J. Misra and I. Saha, “Artificial neural networks in hardware: a survey of two decades of progress,” Neurocomputing 74, 239–255 (2010).
[Crossref]

Modha, D. S.

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345, 668–673 (2014).
[Crossref] [PubMed]

Mohseni, M.

S. Lloyd, M. Mohseni, and P. Rebentrost, “Quantum principal component analysis,” Nat. Phys. 10, 631–633 (2014).
[Crossref]

Morthier, G.

K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, and P. Bienstman, “Experimental demonstration of reservoir computing on a silicon photonics chip,” Nat. Commun. 53541 (2014).
[Crossref] [PubMed]

T. V. Vaerenbergh, M. Fiers, P. Mechet, T. Spuesens, R. Kumar, G. Morthier, B. Schrauwen, J. Dambre, and P. Bienstman, “Cascadable excitability in microrings,” Opt. Express 20, 20292–20308 (2012).
[Crossref] [PubMed]

Munro, P. W.

E. L. Bienenstock, L. N. Cooper, and P. W. Munro, “Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex,” J. Neurosci. 2, 32–48 (1982).
[PubMed]

Murphy, K. P.

K. P. Murphy, Machine Learning: A Probabilistic Perspective (MIT, 2012).

Nahmias, M. A.

B. J. Shastri, A. N. Tait, M. A. Nahmias, and P. R. Prucnal, “Photonic spike processing: ultrafast laser neurons and an integrated photonic network,” IEEE Pho. Soc. Newsletter 28, 4–11 (2014).

B. J. Shastri, M. A. Nahmias, A. N. Tait, B. Wu, and P. R. Prucnal, “Simpel: circuit model for photonic spike processing laser neurons,” under review, Opt. Express. available  arXiv:14097030 (2014).

A. N. Tait, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Broadcast and weight: an integrated network for scalable photonic spike processing,” J. Lightwave Technol. 32, 3427–3439 (2014).
[Crossref]

M. A. Nahmias, B. J. Shastri, A. N. Tait, and P. R. Prucnal, “A leaky integrate-and-fire laser neuron for ultrafast cognitive computing,” IEEE J. Sel. Top. Quantum Electron. 191800212 (2013).
[Crossref]

B. J. Shastri, M. A. Nahmias, A. N. Tait, Y. Tian, B. Wu, and P. R. Prucnal, “Graphene excitable laser for photonic spike processing,” in “Proc. IEEE Photonics Conf. (IPC),” (paper PD.4, Seattle, WA, USA, 2013), pp. 1–2.

A. N. Tait, M. A. Nahmias, Y. Tian, B. J. Shastri, and P. R. Prucnal, “Photonic neuromorphic signal processing and computing,” in “Nanophotonic Information Physics,” (Springer Berlin Heidelberg, 2014), pp. 183–222.
[Crossref]

Nakamura, Y.

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345, 668–673 (2014).
[Crossref] [PubMed]

Naughton, T. J.

D. Woods and T. J. Naughton, “Optical computing: photonic neural networks,” Nat. Phys. 8, 257–259 (2012).
[Crossref]

Oja, E.

E. Oja, “Simplified neuron model as a principal component analyzer,” J. Math. Biol. 15, 267–273 (1982).
[Crossref]

Ortega, B.

Ortín, S.

Painkras, E.

S. Furber, D. Lester, L. Plana, J. Garside, E. Painkras, S. Temple, and A. Brown, “Overview of the SpiNNaker system architecture,” IEEE Trans. Comput. 62, 2454–2467 (2013).
[Crossref]

Pastor, D.

Pesquera, L.

Plana, L.

S. Furber, D. Lester, L. Plana, J. Garside, E. Painkras, S. Temple, and A. Brown, “Overview of the SpiNNaker system architecture,” IEEE Trans. Comput. 62, 2454–2467 (2013).
[Crossref]

Prucnal, P.

J. Chang, J. Meister, and P. Prucnal, “Implementing a novel highly scalable adaptive photonic beamformer using ’blind’ guided accelerated random search,” J. Lightwave Technol. 32, 3623–3629 (2014).
[Crossref]

J. Chang, M. Fok, R. Corey, J. Meister, and P. Prucnal, “Highly scalable adaptive photonic beamformer using a single mode to multimode optical combiner,” IEEE. Microwave Wireless Compon. Lett. 10, 563–565 (2013).
[Crossref]

M. Chang, A. Tait, J. Chang, and P. Prucnal, “An integrated optical interference cancellation system,” in “Wireless and Optical Communication Conference (WOCC), 2014 23rd,” (2014), pp. 1–5.

Prucnal, P. R.

B. J. Shastri, A. N. Tait, M. A. Nahmias, and P. R. Prucnal, “Photonic spike processing: ultrafast laser neurons and an integrated photonic network,” IEEE Pho. Soc. Newsletter 28, 4–11 (2014).

B. J. Shastri, M. A. Nahmias, A. N. Tait, B. Wu, and P. R. Prucnal, “Simpel: circuit model for photonic spike processing laser neurons,” under review, Opt. Express. available  arXiv:14097030 (2014).

A. N. Tait, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Broadcast and weight: an integrated network for scalable photonic spike processing,” J. Lightwave Technol. 32, 3427–3439 (2014).
[Crossref]

M. A. Nahmias, B. J. Shastri, A. N. Tait, and P. R. Prucnal, “A leaky integrate-and-fire laser neuron for ultrafast cognitive computing,” IEEE J. Sel. Top. Quantum Electron. 191800212 (2013).
[Crossref]

B. J. Shastri, M. A. Nahmias, A. N. Tait, Y. Tian, B. Wu, and P. R. Prucnal, “Graphene excitable laser for photonic spike processing,” in “Proc. IEEE Photonics Conf. (IPC),” (paper PD.4, Seattle, WA, USA, 2013), pp. 1–2.

A. N. Tait, M. A. Nahmias, Y. Tian, B. J. Shastri, and P. R. Prucnal, “Photonic neuromorphic signal processing and computing,” in “Nanophotonic Information Physics,” (Springer Berlin Heidelberg, 2014), pp. 183–222.
[Crossref]

Rebentrost, P.

S. Lloyd, M. Mohseni, and P. Rebentrost, “Quantum principal component analysis,” Nat. Phys. 10, 631–633 (2014).
[Crossref]

Risk, W. P.

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345, 668–673 (2014).
[Crossref] [PubMed]

Roelkens, G.

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials 3, 1782–1802 (2010).
[Crossref]

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4, 751–779 (2010).
[Crossref]

Sagnes, I.

F. Selmi, R. Braive, G. Beaudoin, I. Sagnes, R. Kuszelewicz, and S. Barbay, “Relative refractory period in an excitable semiconductor laser,” Phys. Rev. Lett. 112, 183902 (2014).
[Crossref] [PubMed]

Saha, I.

J. Misra and I. Saha, “Artificial neural networks in hardware: a survey of two decades of progress,” Neurocomputing 74, 239–255 (2010).
[Crossref]

Sawada, J.

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345, 668–673 (2014).
[Crossref] [PubMed]

Schemmel, J.

S. Friedmann, N. Frémaux, J. Schemmel, W. Gerstner, and K. Meier, “Reward-based learning under hardware constraints - using a RISC processor embedded in a neuromorphic substrate,” Frontiers in Neuroscience 7160 (2013).
[Crossref]

J. Schemmel, J. Fieres, and K. Meier, “Wafer-scale integration of analog neural networks,” in “Neural Networks, 2008. IJCNN 2008. IEEE International Joint Conference on,” (2008), pp. 431–438.

Schrauwen, B.

K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, and P. Bienstman, “Experimental demonstration of reservoir computing on a silicon photonics chip,” Nat. Commun. 53541 (2014).
[Crossref] [PubMed]

T. V. Vaerenbergh, M. Fiers, P. Mechet, T. Spuesens, R. Kumar, G. Morthier, B. Schrauwen, J. Dambre, and P. Bienstman, “Cascadable excitability in microrings,” Opt. Express 20, 20292–20308 (2012).
[Crossref] [PubMed]

L. Appeltant, M. C. Soriano, G. Van der Sande, J. Danckaert, S. Massar, J. Dambre, B. Schrauwen, C. R. Mirasso, and I. Fischer, “Information processing using a single dynamical node as complex system,” Nat. Commun. 2, 468 (2011).
[Crossref] [PubMed]

Selmi, F.

F. Selmi, R. Braive, G. Beaudoin, I. Sagnes, R. Kuszelewicz, and S. Barbay, “Relative refractory period in an excitable semiconductor laser,” Phys. Rev. Lett. 112, 183902 (2014).
[Crossref] [PubMed]

Shastri, B. J.

B. J. Shastri, A. N. Tait, M. A. Nahmias, and P. R. Prucnal, “Photonic spike processing: ultrafast laser neurons and an integrated photonic network,” IEEE Pho. Soc. Newsletter 28, 4–11 (2014).

B. J. Shastri, M. A. Nahmias, A. N. Tait, B. Wu, and P. R. Prucnal, “Simpel: circuit model for photonic spike processing laser neurons,” under review, Opt. Express. available  arXiv:14097030 (2014).

A. N. Tait, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Broadcast and weight: an integrated network for scalable photonic spike processing,” J. Lightwave Technol. 32, 3427–3439 (2014).
[Crossref]

M. A. Nahmias, B. J. Shastri, A. N. Tait, and P. R. Prucnal, “A leaky integrate-and-fire laser neuron for ultrafast cognitive computing,” IEEE J. Sel. Top. Quantum Electron. 191800212 (2013).
[Crossref]

B. J. Shastri, M. A. Nahmias, A. N. Tait, Y. Tian, B. Wu, and P. R. Prucnal, “Graphene excitable laser for photonic spike processing,” in “Proc. IEEE Photonics Conf. (IPC),” (paper PD.4, Seattle, WA, USA, 2013), pp. 1–2.

A. N. Tait, M. A. Nahmias, Y. Tian, B. J. Shastri, and P. R. Prucnal, “Photonic neuromorphic signal processing and computing,” in “Nanophotonic Information Physics,” (Springer Berlin Heidelberg, 2014), pp. 183–222.
[Crossref]

Soriano, M. C.

M. C. Soriano, S. Ortín, D. Brunner, L. Larger, C. R. Mirasso, I. Fischer, and L. Pesquera, “Optoelectronic reservoir computing: tackling noise-induced performance degradation,” Opt. Express 21, 12–20 (2013).
[Crossref] [PubMed]

D. Brunner, M. C. Soriano, C. R. Mirasso, and I. Fischer, “Parallel photonic information processing at gigabyte per second data rates using transient states,” Nat. Commun. 4, 1364 (2013).
[Crossref] [PubMed]

L. Appeltant, M. C. Soriano, G. Van der Sande, J. Danckaert, S. Massar, J. Dambre, B. Schrauwen, C. R. Mirasso, and I. Fischer, “Information processing using a single dynamical node as complex system,” Nat. Commun. 2, 468 (2011).
[Crossref] [PubMed]

Spuesens, T.

Taba, B.

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345, 668–673 (2014).
[Crossref] [PubMed]

Tait, A.

M. Chang, A. Tait, J. Chang, and P. Prucnal, “An integrated optical interference cancellation system,” in “Wireless and Optical Communication Conference (WOCC), 2014 23rd,” (2014), pp. 1–5.

Tait, A. N.

B. J. Shastri, A. N. Tait, M. A. Nahmias, and P. R. Prucnal, “Photonic spike processing: ultrafast laser neurons and an integrated photonic network,” IEEE Pho. Soc. Newsletter 28, 4–11 (2014).

B. J. Shastri, M. A. Nahmias, A. N. Tait, B. Wu, and P. R. Prucnal, “Simpel: circuit model for photonic spike processing laser neurons,” under review, Opt. Express. available  arXiv:14097030 (2014).

A. N. Tait, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Broadcast and weight: an integrated network for scalable photonic spike processing,” J. Lightwave Technol. 32, 3427–3439 (2014).
[Crossref]

M. A. Nahmias, B. J. Shastri, A. N. Tait, and P. R. Prucnal, “A leaky integrate-and-fire laser neuron for ultrafast cognitive computing,” IEEE J. Sel. Top. Quantum Electron. 191800212 (2013).
[Crossref]

B. J. Shastri, M. A. Nahmias, A. N. Tait, Y. Tian, B. Wu, and P. R. Prucnal, “Graphene excitable laser for photonic spike processing,” in “Proc. IEEE Photonics Conf. (IPC),” (paper PD.4, Seattle, WA, USA, 2013), pp. 1–2.

A. N. Tait, M. A. Nahmias, Y. Tian, B. J. Shastri, and P. R. Prucnal, “Photonic neuromorphic signal processing and computing,” in “Nanophotonic Information Physics,” (Springer Berlin Heidelberg, 2014), pp. 183–222.
[Crossref]

Temple, S.

S. Furber, D. Lester, L. Plana, J. Garside, E. Painkras, S. Temple, and A. Brown, “Overview of the SpiNNaker system architecture,” IEEE Trans. Comput. 62, 2454–2467 (2013).
[Crossref]

Tian, Y.

B. J. Shastri, M. A. Nahmias, A. N. Tait, Y. Tian, B. Wu, and P. R. Prucnal, “Graphene excitable laser for photonic spike processing,” in “Proc. IEEE Photonics Conf. (IPC),” (paper PD.4, Seattle, WA, USA, 2013), pp. 1–2.

A. N. Tait, M. A. Nahmias, Y. Tian, B. J. Shastri, and P. R. Prucnal, “Photonic neuromorphic signal processing and computing,” in “Nanophotonic Information Physics,” (Springer Berlin Heidelberg, 2014), pp. 183–222.
[Crossref]

Vaerenbergh, T. V.

Van der Sande, G.

L. Appeltant, M. C. Soriano, G. Van der Sande, J. Danckaert, S. Massar, J. Dambre, B. Schrauwen, C. R. Mirasso, and I. Fischer, “Information processing using a single dynamical node as complex system,” Nat. Commun. 2, 468 (2011).
[Crossref] [PubMed]

Van Vaerenbergh, T.

K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, and P. Bienstman, “Experimental demonstration of reservoir computing on a silicon photonics chip,” Nat. Commun. 53541 (2014).
[Crossref] [PubMed]

Vandoorne, K.

K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, and P. Bienstman, “Experimental demonstration of reservoir computing on a silicon photonics chip,” Nat. Commun. 53541 (2014).
[Crossref] [PubMed]

Verstraeten, D.

K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, and P. Bienstman, “Experimental demonstration of reservoir computing on a silicon photonics chip,” Nat. Commun. 53541 (2014).
[Crossref] [PubMed]

Vo, I.

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345, 668–673 (2014).
[Crossref] [PubMed]

Woods, D.

D. Woods and T. J. Naughton, “Optical computing: photonic neural networks,” Nat. Phys. 8, 257–259 (2012).
[Crossref]

Wu, B.

B. J. Shastri, M. A. Nahmias, A. N. Tait, B. Wu, and P. R. Prucnal, “Simpel: circuit model for photonic spike processing laser neurons,” under review, Opt. Express. available  arXiv:14097030 (2014).

B. J. Shastri, M. A. Nahmias, A. N. Tait, Y. Tian, B. Wu, and P. R. Prucnal, “Graphene excitable laser for photonic spike processing,” in “Proc. IEEE Photonics Conf. (IPC),” (paper PD.4, Seattle, WA, USA, 2013), pp. 1–2.

Frontiers in Neuroscience (2)

J. Hasler and H. B. Marr, “Finding a roadmap to achieve large neuromorphic hardware systems,” Frontiers in Neuroscience 7118 (2013).
[Crossref] [PubMed]

S. Friedmann, N. Frémaux, J. Schemmel, W. Gerstner, and K. Meier, “Reward-based learning under hardware constraints - using a RISC processor embedded in a neuromorphic substrate,” Frontiers in Neuroscience 7160 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. A. Nahmias, B. J. Shastri, A. N. Tait, and P. R. Prucnal, “A leaky integrate-and-fire laser neuron for ultrafast cognitive computing,” IEEE J. Sel. Top. Quantum Electron. 191800212 (2013).
[Crossref]

IEEE Pho. Soc. Newsletter (1)

B. J. Shastri, A. N. Tait, M. A. Nahmias, and P. R. Prucnal, “Photonic spike processing: ultrafast laser neurons and an integrated photonic network,” IEEE Pho. Soc. Newsletter 28, 4–11 (2014).

IEEE Trans. Comput. (1)

S. Furber, D. Lester, L. Plana, J. Garside, E. Painkras, S. Temple, and A. Brown, “Overview of the SpiNNaker system architecture,” IEEE Trans. Comput. 62, 2454–2467 (2013).
[Crossref]

IEEE. Microwave Wireless Compon. Lett. (1)

J. Chang, M. Fok, R. Corey, J. Meister, and P. Prucnal, “Highly scalable adaptive photonic beamformer using a single mode to multimode optical combiner,” IEEE. Microwave Wireless Compon. Lett. 10, 563–565 (2013).
[Crossref]

J. Lightwave Technol. (3)

J. Math. Biol. (1)

E. Oja, “Simplified neuron model as a principal component analyzer,” J. Math. Biol. 15, 267–273 (1982).
[Crossref]

J. Neurosci. (1)

E. L. Bienenstock, L. N. Cooper, and P. W. Munro, “Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex,” J. Neurosci. 2, 32–48 (1982).
[PubMed]

Laser Photonics Rev. (1)

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4, 751–779 (2010).
[Crossref]

Materials (1)

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials 3, 1782–1802 (2010).
[Crossref]

Nat. Commun. (3)

K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, and P. Bienstman, “Experimental demonstration of reservoir computing on a silicon photonics chip,” Nat. Commun. 53541 (2014).
[Crossref] [PubMed]

D. Brunner, M. C. Soriano, C. R. Mirasso, and I. Fischer, “Parallel photonic information processing at gigabyte per second data rates using transient states,” Nat. Commun. 4, 1364 (2013).
[Crossref] [PubMed]

L. Appeltant, M. C. Soriano, G. Van der Sande, J. Danckaert, S. Massar, J. Dambre, B. Schrauwen, C. R. Mirasso, and I. Fischer, “Information processing using a single dynamical node as complex system,” Nat. Commun. 2, 468 (2011).
[Crossref] [PubMed]

Nat. Photonics (1)

D. A. B. Miller, “The role of optics in computing,” Nat. Photonics 4, 406 (2010).
[Crossref]

Nat. Phys. (2)

D. Woods and T. J. Naughton, “Optical computing: photonic neural networks,” Nat. Phys. 8, 257–259 (2012).
[Crossref]

S. Lloyd, M. Mohseni, and P. Rebentrost, “Quantum principal component analysis,” Nat. Phys. 10, 631–633 (2014).
[Crossref]

Neurocomputing (1)

J. Misra and I. Saha, “Artificial neural networks in hardware: a survey of two decades of progress,” Neurocomputing 74, 239–255 (2010).
[Crossref]

Opt. Acta (1)

J. W. Goodman, “Fan-in and fan-out with optical interconnections,” Opt. Acta 32, 1489–1496 (1985).
[Crossref]

Opt. Express (2)

Opt. Express. (1)

B. J. Shastri, M. A. Nahmias, A. N. Tait, B. Wu, and P. R. Prucnal, “Simpel: circuit model for photonic spike processing laser neurons,” under review, Opt. Express. available  arXiv:14097030 (2014).

Phys. Rev. Lett. (1)

F. Selmi, R. Braive, G. Beaudoin, I. Sagnes, R. Kuszelewicz, and S. Barbay, “Relative refractory period in an excitable semiconductor laser,” Phys. Rev. Lett. 112, 183902 (2014).
[Crossref] [PubMed]

Science (1)

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345, 668–673 (2014).
[Crossref] [PubMed]

Other (6)

B. J. Shastri, M. A. Nahmias, A. N. Tait, Y. Tian, B. Wu, and P. R. Prucnal, “Graphene excitable laser for photonic spike processing,” in “Proc. IEEE Photonics Conf. (IPC),” (paper PD.4, Seattle, WA, USA, 2013), pp. 1–2.

J. Schemmel, J. Fieres, and K. Meier, “Wafer-scale integration of analog neural networks,” in “Neural Networks, 2008. IJCNN 2008. IEEE International Joint Conference on,” (2008), pp. 431–438.

M. Chang, A. Tait, J. Chang, and P. Prucnal, “An integrated optical interference cancellation system,” in “Wireless and Optical Communication Conference (WOCC), 2014 23rd,” (2014), pp. 1–5.

M.-E. Baylor, “Analog optoelectronic independent component analysis for radio frequency signals,” Ph.D. thesis, University of Colorado (2007).

A. N. Tait, M. A. Nahmias, Y. Tian, B. J. Shastri, and P. R. Prucnal, “Photonic neuromorphic signal processing and computing,” in “Nanophotonic Information Physics,” (Springer Berlin Heidelberg, 2014), pp. 183–222.
[Crossref]

K. P. Murphy, Machine Learning: A Probabilistic Perspective (MIT, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 WDM weighted addition in a broadcast-and-weight spike processing network, from [1]. Weighted addition is a central function in neural networks. The optical WDM version consists of a tunable spectral weight bank and power detector.
Fig. 2
Fig. 2 Measured individual transmission spectra of the WDM weight bank [W1…16(λ)], where each weight is tuned to maximum transmission, with all others minimized. Inter-channel cross-talk is less than 20dB. Filters for (+) channels (blue-green) and those for (−) channels (red-yellow) are labeled as such because they act on complementarily modulated pairs of signals.
Fig. 3
Fig. 3 Experimental setup. (a) Input generator, where DFB: distributed feedback laser; AWG: arrayed-waveguide grating multiplexer; PPG: pulse pattern generator; MZM: Mach-Zehnder modulator; FBG: fiber Bragg grating. (b) WDM weighted addition where circles are variable optical attenuators, and PD: photodiode, and (c) PCA algorithm, where ADC: analog-digital converter; CPU: central processor; DAC: digital-analog converter. Illustrations show signals at various points in the circuit: ① RF input to the system that exhibits temporal autocorrelation, ② Modulated WDM optical signals – complementary modulations are provided by the MZM, ③ λ-dependent delays transform initial temporal correlation into instantaneous spatial correlations, ④ electrical output of the PD representing the weighted sum of correlated channels.
Fig. 4
Fig. 4 (a–b) A 100ns time window of a typical epoch. (a) 4 positive and 4 negative inputs with channel-dependent delays. The generating pattern is a Markov sequence (length 213 − 1) with transition parameter α = +0.3. (b) First principal component output as calculated by a software matrix decomposition-based PCA (red) compared to the measured output after convergence of the iterative algorithm, Eq. (2a), (blue). Both calculated and measured PCA algorithms are applied to the measured inputs. (c–f) Statistical analysis of performance over a range of generating Markov parameters. (c) Probability density plots of input channel (i) vs. adjacent channel (i+1), and (d) corresponding correlation values, showing repeatable, proportional dependence of inter-channel correlation on the Markov parameter α. (e) Probability density plots of measured vs. calculated PC outputs, and (f) corresponding correlation values, indicating the converged accuracy of WDM weighted addition. Error bars in (d) and (f) represent standard deviation over 10 different sequences generated with the same transition parameters.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

H ( λ , μ ) = i = 1 d | μ i | W k [ i ] ( λ )
k [ i ] = { i , if μ i 0 2 d + 1 i , if μ i < 0
Δ μ i ( n ) = γ x i ( t ) m ( t , n ) t
μ i * ( n ) = μ i ( n ) + Δ μ i ( n )
μ i ( n + 1 ) = μ i * ( n ) j = 1 d μ i * ( n ) 2
μ 1 ( n + 1 ) = μ 1 * μ 1 *
μ k ( n + 1 ) = μ k * h = 1 k 1 Pr μ h ( μ k * ) μ k * h = 1 k 1 Pr μ h ( μ k * )

Metrics