Abstract

Sensing and manipulating targets hidden under scattering media are universal problems that take place in applications ranging from deep-tissue optical imaging to laser surgery. A major issue in these applications is the shallow light penetration caused by multiple scattering that reflects most of incident light. Although advances have been made to eliminate image distortion by a scattering medium, dealing with the light reflection has remained unchallenged. Here we present a method to minimize reflected intensity by finding and coupling light into the anti-reflection modes of a scattering medium. In doing so, we achieved more than a factor of 3 increase in light penetration. Our method of controlling reflected waves makes it readily applicable to in vivo applications in which detector sensors can only be positioned at the same side of illumination and will therefore lay the foundation of advancing the working depth of many existing optical imaging and treatment technologies.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Transmission matrix of a scattering medium and its applications in biophotonics

Moonseok Kim, Wonjun Choi, Youngwoon Choi, Changhyeong Yoon, and Wonshik Choi
Opt. Express 23(10) 12648-12668 (2015)

Relation between transmission eigenchannels and single-channel optimizing modes in a disordered medium

Moonseok Kim, Wonjun Choi, Changhyeong Yoon, Guang Hoon Kim, and Wonshik Choi
Opt. Lett. 38(16) 2994-2996 (2013)

Brewster effect in metafilms composed of bi-anisotropic split-ring resonators

Yasuhiro Tamayama
Opt. Lett. 40(7) 1382-1385 (2015)

References

  • View by:
  • |
  • |
  • |

  1. C. M. Moore, D. Pendse, and M. Emberton, “Photodynamic therapy for prostate cancer-a review of current status and future promise,” Nat. Clin. Pract. Urol. 6(1), 18–30 (2009).
    [Crossref] [PubMed]
  2. L. V. Wang and S. Hu, “Photoacoustic Tomography: In Vivo Imaging from Organelles to Organs,” Science 335(6075), 1458–1462 (2012).
    [Crossref] [PubMed]
  3. J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical Projection Tomography as a Tool for 3D Microscopy and Gene Expression Studies,” Science 296(5567), 541–545 (2002).
    [Crossref] [PubMed]
  4. T. Durduran, G. Yu, M. G. Burnett, J. A. Detre, J. H. Greenberg, J. Wang, C. Zhou, and A. G. Yodh, “Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation,” Opt. Lett. 29(15), 1766–1768 (2004).
    [Crossref] [PubMed]
  5. S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
    [Crossref] [PubMed]
  6. Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the Diffraction Limit Using Multiple Light Scattering in a Highly Disordered Medium,” Phys. Rev. Lett. 107(2), 023902 (2011).
    [Crossref] [PubMed]
  7. J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
    [Crossref] [PubMed]
  8. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media,” Phys. Rev. Lett. 104(10), 100601 (2010).
    [Crossref] [PubMed]
  9. I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
    [Crossref]
  10. I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett. 101(12), 120601 (2008).
    [Crossref] [PubMed]
  11. O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
    [Crossref]
  12. D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat. Commun. 2, 447 (2011).
    [Crossref] [PubMed]
  13. A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
    [Crossref]
  14. J. Wang and A. Z. Genack, “Transport through modes in random media,” Nature 471(7338), 345–348 (2011).
    [Crossref] [PubMed]
  15. M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6(9), 581–585 (2012).
    [Crossref]
  16. S. M. Popoff, A. Aubry, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Exploiting the Time-Reversal Operator for Adaptive Optics, Selective Focusing, and Scattering Pattern Analysis,” Phys. Rev. Lett. 107(26), 263901 (2011).
    [Crossref] [PubMed]
  17. T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
    [Crossref]
  18. K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation,” Nat. Photonics 6(10), 657–661 (2012).
    [Crossref] [PubMed]
  19. B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
    [Crossref] [PubMed]
  20. J. Bertolotti, S. Gottardo, D. S. Wiersma, M. Ghulinyan, and L. Pavesi, “Optical necklace states in Anderson localized 1D systems,” Phys. Rev. Lett. 94(11), 113903 (2005).
    [Crossref] [PubMed]
  21. Y. D. Chong and A. D. Stone, “Hidden Black: Coherent Enhancement of Absorption in Strongly Scattering Media,” Phys. Rev. Lett. 107(16), 163901 (2011).
    [Crossref] [PubMed]
  22. C. Prada and M. Fink, “Eigenmodes of the time reversal operator: A solution to selective focusing in multiple-target media,” Wave Motion 20(2), 151–163 (1994).
    [Crossref]
  23. A. Aubry and A. Derode, “Random matrix theory applied to acoustic backscattering and imaging in complex media,” Phys. Rev. Lett. 102(8), 084301 (2009).
    [Crossref] [PubMed]
  24. O. N. Dorokhov, “On the Coexistence of Localized and Extended Electronic States in the Metallic Phase,” Solid State Commun. 51(6), 381–384 (1984).
    [Crossref]
  25. J. B. Pendry, A. MacKinnon, and A. B. Pretre, “Maximal fluctuations — A new phenomenon in disordered systems,” Physica A Statistical Mechanics and its Applications 168(1), 400–407 (1990).
    [Crossref]
  26. J. B. Pendry, A. MacKinnon, and P. J. Roberts, “Universality Classes and Fluctuations in Disordered Systems,” Proc. R. Soc. Lond. A Math. Phys. Sci. 437(1899), 67–83 (1992).
    [Crossref]
  27. W. Choi, A. P. Mosk, Q. H. Park, and W. Choi, “Transmission eigenchannels in a disordered medium,” Phys. Rev. B 83(13), 134207 (2011).
    [Crossref]
  28. Z. Shi and A. Z. Genack, “Transmission Eigenvalues and the Bare Conductance in the Crossover to Anderson Localization,” Phys. Rev. Lett. 108(4), 043901 (2012).
    [Crossref] [PubMed]
  29. R. J. McNichols and G. L. Coté, “Optical glucose sensing in biological fluids: an overview,” J. Biomed. Opt. 5(1), 5–16 (2000).
    [Crossref] [PubMed]

2013 (1)

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
[Crossref] [PubMed]

2012 (6)

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation,” Nat. Photonics 6(10), 657–661 (2012).
[Crossref] [PubMed]

Z. Shi and A. Z. Genack, “Transmission Eigenvalues and the Bare Conductance in the Crossover to Anderson Localization,” Phys. Rev. Lett. 108(4), 043901 (2012).
[Crossref] [PubMed]

L. V. Wang and S. Hu, “Photoacoustic Tomography: In Vivo Imaging from Organelles to Organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref] [PubMed]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6(9), 581–585 (2012).
[Crossref]

2011 (7)

S. M. Popoff, A. Aubry, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Exploiting the Time-Reversal Operator for Adaptive Optics, Selective Focusing, and Scattering Pattern Analysis,” Phys. Rev. Lett. 107(26), 263901 (2011).
[Crossref] [PubMed]

J. Wang and A. Z. Genack, “Transport through modes in random media,” Nature 471(7338), 345–348 (2011).
[Crossref] [PubMed]

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the Diffraction Limit Using Multiple Light Scattering in a Highly Disordered Medium,” Phys. Rev. Lett. 107(2), 023902 (2011).
[Crossref] [PubMed]

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[Crossref]

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat. Commun. 2, 447 (2011).
[Crossref] [PubMed]

W. Choi, A. P. Mosk, Q. H. Park, and W. Choi, “Transmission eigenchannels in a disordered medium,” Phys. Rev. B 83(13), 134207 (2011).
[Crossref]

Y. D. Chong and A. D. Stone, “Hidden Black: Coherent Enhancement of Absorption in Strongly Scattering Media,” Phys. Rev. Lett. 107(16), 163901 (2011).
[Crossref] [PubMed]

2010 (4)

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
[Crossref] [PubMed]

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[Crossref]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[Crossref]

2009 (2)

C. M. Moore, D. Pendse, and M. Emberton, “Photodynamic therapy for prostate cancer-a review of current status and future promise,” Nat. Clin. Pract. Urol. 6(1), 18–30 (2009).
[Crossref] [PubMed]

A. Aubry and A. Derode, “Random matrix theory applied to acoustic backscattering and imaging in complex media,” Phys. Rev. Lett. 102(8), 084301 (2009).
[Crossref] [PubMed]

2008 (1)

I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett. 101(12), 120601 (2008).
[Crossref] [PubMed]

2005 (1)

J. Bertolotti, S. Gottardo, D. S. Wiersma, M. Ghulinyan, and L. Pavesi, “Optical necklace states in Anderson localized 1D systems,” Phys. Rev. Lett. 94(11), 113903 (2005).
[Crossref] [PubMed]

2004 (1)

2002 (1)

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical Projection Tomography as a Tool for 3D Microscopy and Gene Expression Studies,” Science 296(5567), 541–545 (2002).
[Crossref] [PubMed]

2000 (1)

R. J. McNichols and G. L. Coté, “Optical glucose sensing in biological fluids: an overview,” J. Biomed. Opt. 5(1), 5–16 (2000).
[Crossref] [PubMed]

1994 (1)

C. Prada and M. Fink, “Eigenmodes of the time reversal operator: A solution to selective focusing in multiple-target media,” Wave Motion 20(2), 151–163 (1994).
[Crossref]

1992 (1)

J. B. Pendry, A. MacKinnon, and P. J. Roberts, “Universality Classes and Fluctuations in Disordered Systems,” Proc. R. Soc. Lond. A Math. Phys. Sci. 437(1899), 67–83 (1992).
[Crossref]

1990 (1)

J. B. Pendry, A. MacKinnon, and A. B. Pretre, “Maximal fluctuations — A new phenomenon in disordered systems,” Physica A Statistical Mechanics and its Applications 168(1), 400–407 (1990).
[Crossref]

1984 (1)

O. N. Dorokhov, “On the Coexistence of Localized and Extended Electronic States in the Metallic Phase,” Solid State Commun. 51(6), 381–384 (1984).
[Crossref]

Ahlgren, U.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical Projection Tomography as a Tool for 3D Microscopy and Gene Expression Studies,” Science 296(5567), 541–545 (2002).
[Crossref] [PubMed]

Aubry, A.

S. M. Popoff, A. Aubry, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Exploiting the Time-Reversal Operator for Adaptive Optics, Selective Focusing, and Scattering Pattern Analysis,” Phys. Rev. Lett. 107(26), 263901 (2011).
[Crossref] [PubMed]

A. Aubry and A. Derode, “Random matrix theory applied to acoustic backscattering and imaging in complex media,” Phys. Rev. Lett. 102(8), 084301 (2009).
[Crossref] [PubMed]

Austin, D. R.

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat. Commun. 2, 447 (2011).
[Crossref] [PubMed]

Baldock, R.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical Projection Tomography as a Tool for 3D Microscopy and Gene Expression Studies,” Science 296(5567), 541–545 (2002).
[Crossref] [PubMed]

Bertolotti, J.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref] [PubMed]

J. Bertolotti, S. Gottardo, D. S. Wiersma, M. Ghulinyan, and L. Pavesi, “Optical necklace states in Anderson localized 1D systems,” Phys. Rev. Lett. 94(11), 113903 (2005).
[Crossref] [PubMed]

Blum, C.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref] [PubMed]

Boccara, A. C.

S. M. Popoff, A. Aubry, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Exploiting the Time-Reversal Operator for Adaptive Optics, Selective Focusing, and Scattering Pattern Analysis,” Phys. Rev. Lett. 107(26), 263901 (2011).
[Crossref] [PubMed]

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
[Crossref] [PubMed]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Bondareff, P.

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat. Commun. 2, 447 (2011).
[Crossref] [PubMed]

Bromberg, Y.

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[Crossref]

Burnett, M. G.

Carminati, R.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Chatel, B.

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat. Commun. 2, 447 (2011).
[Crossref] [PubMed]

Choi, W.

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6(9), 581–585 (2012).
[Crossref]

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6(9), 581–585 (2012).
[Crossref]

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the Diffraction Limit Using Multiple Light Scattering in a Highly Disordered Medium,” Phys. Rev. Lett. 107(2), 023902 (2011).
[Crossref] [PubMed]

W. Choi, A. P. Mosk, Q. H. Park, and W. Choi, “Transmission eigenchannels in a disordered medium,” Phys. Rev. B 83(13), 134207 (2011).
[Crossref]

W. Choi, A. P. Mosk, Q. H. Park, and W. Choi, “Transmission eigenchannels in a disordered medium,” Phys. Rev. B 83(13), 134207 (2011).
[Crossref]

Choi, Y.

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6(9), 581–585 (2012).
[Crossref]

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the Diffraction Limit Using Multiple Light Scattering in a Highly Disordered Medium,” Phys. Rev. Lett. 107(2), 023902 (2011).
[Crossref] [PubMed]

Chong, Y. D.

Y. D. Chong and A. D. Stone, “Hidden Black: Coherent Enhancement of Absorption in Strongly Scattering Media,” Phys. Rev. Lett. 107(16), 163901 (2011).
[Crossref] [PubMed]

Cižmár, T.

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[Crossref]

Coté, G. L.

R. J. McNichols and G. L. Coté, “Optical glucose sensing in biological fluids: an overview,” J. Biomed. Opt. 5(1), 5–16 (2000).
[Crossref] [PubMed]

Cui, M.

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation,” Nat. Photonics 6(10), 657–661 (2012).
[Crossref] [PubMed]

Dasari, R. R.

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the Diffraction Limit Using Multiple Light Scattering in a Highly Disordered Medium,” Phys. Rev. Lett. 107(2), 023902 (2011).
[Crossref] [PubMed]

Davidson, D.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical Projection Tomography as a Tool for 3D Microscopy and Gene Expression Studies,” Science 296(5567), 541–545 (2002).
[Crossref] [PubMed]

Derode, A.

A. Aubry and A. Derode, “Random matrix theory applied to acoustic backscattering and imaging in complex media,” Phys. Rev. Lett. 102(8), 084301 (2009).
[Crossref] [PubMed]

Detre, J. A.

Dholakia, K.

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[Crossref]

Dorokhov, O. N.

O. N. Dorokhov, “On the Coexistence of Localized and Extended Electronic States in the Metallic Phase,” Solid State Commun. 51(6), 381–384 (1984).
[Crossref]

Durduran, T.

Emberton, M.

C. M. Moore, D. Pendse, and M. Emberton, “Photodynamic therapy for prostate cancer-a review of current status and future promise,” Nat. Clin. Pract. Urol. 6(1), 18–30 (2009).
[Crossref] [PubMed]

Fang-Yen, C.

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the Diffraction Limit Using Multiple Light Scattering in a Highly Disordered Medium,” Phys. Rev. Lett. 107(2), 023902 (2011).
[Crossref] [PubMed]

Feld, M. S.

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the Diffraction Limit Using Multiple Light Scattering in a Highly Disordered Medium,” Phys. Rev. Lett. 107(2), 023902 (2011).
[Crossref] [PubMed]

Fink, M.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

S. M. Popoff, A. Aubry, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Exploiting the Time-Reversal Operator for Adaptive Optics, Selective Focusing, and Scattering Pattern Analysis,” Phys. Rev. Lett. 107(26), 263901 (2011).
[Crossref] [PubMed]

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
[Crossref] [PubMed]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

C. Prada and M. Fink, “Eigenmodes of the time reversal operator: A solution to selective focusing in multiple-target media,” Wave Motion 20(2), 151–163 (1994).
[Crossref]

Fiolka, R.

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation,” Nat. Photonics 6(10), 657–661 (2012).
[Crossref] [PubMed]

Genack, A. Z.

Z. Shi and A. Z. Genack, “Transmission Eigenvalues and the Bare Conductance in the Crossover to Anderson Localization,” Phys. Rev. Lett. 108(4), 043901 (2012).
[Crossref] [PubMed]

J. Wang and A. Z. Genack, “Transport through modes in random media,” Nature 471(7338), 345–348 (2011).
[Crossref] [PubMed]

Ghulinyan, M.

J. Bertolotti, S. Gottardo, D. S. Wiersma, M. Ghulinyan, and L. Pavesi, “Optical necklace states in Anderson localized 1D systems,” Phys. Rev. Lett. 94(11), 113903 (2005).
[Crossref] [PubMed]

Gigan, S.

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat. Commun. 2, 447 (2011).
[Crossref] [PubMed]

S. M. Popoff, A. Aubry, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Exploiting the Time-Reversal Operator for Adaptive Optics, Selective Focusing, and Scattering Pattern Analysis,” Phys. Rev. Lett. 107(26), 263901 (2011).
[Crossref] [PubMed]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
[Crossref] [PubMed]

Gottardo, S.

J. Bertolotti, S. Gottardo, D. S. Wiersma, M. Ghulinyan, and L. Pavesi, “Optical necklace states in Anderson localized 1D systems,” Phys. Rev. Lett. 94(11), 113903 (2005).
[Crossref] [PubMed]

Greenberg, J. H.

Hecksher-Sørensen, J.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical Projection Tomography as a Tool for 3D Microscopy and Gene Expression Studies,” Science 296(5567), 541–545 (2002).
[Crossref] [PubMed]

Hill, B.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical Projection Tomography as a Tool for 3D Microscopy and Gene Expression Studies,” Science 296(5567), 541–545 (2002).
[Crossref] [PubMed]

Horstmeyer, R.

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
[Crossref] [PubMed]

Hu, S.

L. V. Wang and S. Hu, “Photoacoustic Tomography: In Vivo Imaging from Organelles to Organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

Judkewitz, B.

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
[Crossref] [PubMed]

Kang, P.

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the Diffraction Limit Using Multiple Light Scattering in a Highly Disordered Medium,” Phys. Rev. Lett. 107(2), 023902 (2011).
[Crossref] [PubMed]

Katz, O.

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[Crossref]

Kim, J.

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6(9), 581–585 (2012).
[Crossref]

Kim, M.

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6(9), 581–585 (2012).
[Crossref]

Lagendijk, A.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref] [PubMed]

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[Crossref]

Lee, K. J.

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the Diffraction Limit Using Multiple Light Scattering in a Highly Disordered Medium,” Phys. Rev. Lett. 107(2), 023902 (2011).
[Crossref] [PubMed]

Lerosey, G.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

S. M. Popoff, A. Aubry, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Exploiting the Time-Reversal Operator for Adaptive Optics, Selective Focusing, and Scattering Pattern Analysis,” Phys. Rev. Lett. 107(26), 263901 (2011).
[Crossref] [PubMed]

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
[Crossref] [PubMed]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

MacKinnon, A.

J. B. Pendry, A. MacKinnon, and P. J. Roberts, “Universality Classes and Fluctuations in Disordered Systems,” Proc. R. Soc. Lond. A Math. Phys. Sci. 437(1899), 67–83 (1992).
[Crossref]

J. B. Pendry, A. MacKinnon, and A. B. Pretre, “Maximal fluctuations — A new phenomenon in disordered systems,” Physica A Statistical Mechanics and its Applications 168(1), 400–407 (1990).
[Crossref]

Mathy, A.

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
[Crossref] [PubMed]

Mazilu, M.

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[Crossref]

McCabe, D. J.

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat. Commun. 2, 447 (2011).
[Crossref] [PubMed]

McNichols, R. J.

R. J. McNichols and G. L. Coté, “Optical glucose sensing in biological fluids: an overview,” J. Biomed. Opt. 5(1), 5–16 (2000).
[Crossref] [PubMed]

Moore, C. M.

C. M. Moore, D. Pendse, and M. Emberton, “Photodynamic therapy for prostate cancer-a review of current status and future promise,” Nat. Clin. Pract. Urol. 6(1), 18–30 (2009).
[Crossref] [PubMed]

Mosk, A. P.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref] [PubMed]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

W. Choi, A. P. Mosk, Q. H. Park, and W. Choi, “Transmission eigenchannels in a disordered medium,” Phys. Rev. B 83(13), 134207 (2011).
[Crossref]

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[Crossref]

I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett. 101(12), 120601 (2008).
[Crossref] [PubMed]

Park, Q. H.

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6(9), 581–585 (2012).
[Crossref]

W. Choi, A. P. Mosk, Q. H. Park, and W. Choi, “Transmission eigenchannels in a disordered medium,” Phys. Rev. B 83(13), 134207 (2011).
[Crossref]

Pavesi, L.

J. Bertolotti, S. Gottardo, D. S. Wiersma, M. Ghulinyan, and L. Pavesi, “Optical necklace states in Anderson localized 1D systems,” Phys. Rev. Lett. 94(11), 113903 (2005).
[Crossref] [PubMed]

Pendry, J. B.

J. B. Pendry, A. MacKinnon, and P. J. Roberts, “Universality Classes and Fluctuations in Disordered Systems,” Proc. R. Soc. Lond. A Math. Phys. Sci. 437(1899), 67–83 (1992).
[Crossref]

J. B. Pendry, A. MacKinnon, and A. B. Pretre, “Maximal fluctuations — A new phenomenon in disordered systems,” Physica A Statistical Mechanics and its Applications 168(1), 400–407 (1990).
[Crossref]

Pendse, D.

C. M. Moore, D. Pendse, and M. Emberton, “Photodynamic therapy for prostate cancer-a review of current status and future promise,” Nat. Clin. Pract. Urol. 6(1), 18–30 (2009).
[Crossref] [PubMed]

Perry, P.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical Projection Tomography as a Tool for 3D Microscopy and Gene Expression Studies,” Science 296(5567), 541–545 (2002).
[Crossref] [PubMed]

Popoff, S.

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
[Crossref] [PubMed]

Popoff, S. M.

S. M. Popoff, A. Aubry, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Exploiting the Time-Reversal Operator for Adaptive Optics, Selective Focusing, and Scattering Pattern Analysis,” Phys. Rev. Lett. 107(26), 263901 (2011).
[Crossref] [PubMed]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Prada, C.

C. Prada and M. Fink, “Eigenmodes of the time reversal operator: A solution to selective focusing in multiple-target media,” Wave Motion 20(2), 151–163 (1994).
[Crossref]

Pretre, A. B.

J. B. Pendry, A. MacKinnon, and A. B. Pretre, “Maximal fluctuations — A new phenomenon in disordered systems,” Physica A Statistical Mechanics and its Applications 168(1), 400–407 (1990).
[Crossref]

Roberts, P. J.

J. B. Pendry, A. MacKinnon, and P. J. Roberts, “Universality Classes and Fluctuations in Disordered Systems,” Proc. R. Soc. Lond. A Math. Phys. Sci. 437(1899), 67–83 (1992).
[Crossref]

Ross, A.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical Projection Tomography as a Tool for 3D Microscopy and Gene Expression Studies,” Science 296(5567), 541–545 (2002).
[Crossref] [PubMed]

Sharpe, J.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical Projection Tomography as a Tool for 3D Microscopy and Gene Expression Studies,” Science 296(5567), 541–545 (2002).
[Crossref] [PubMed]

Shi, Z.

Z. Shi and A. Z. Genack, “Transmission Eigenvalues and the Bare Conductance in the Crossover to Anderson Localization,” Phys. Rev. Lett. 108(4), 043901 (2012).
[Crossref] [PubMed]

Si, K.

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation,” Nat. Photonics 6(10), 657–661 (2012).
[Crossref] [PubMed]

Silberberg, Y.

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[Crossref]

Small, E.

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[Crossref]

Stone, A. D.

Y. D. Chong and A. D. Stone, “Hidden Black: Coherent Enhancement of Absorption in Strongly Scattering Media,” Phys. Rev. Lett. 107(16), 163901 (2011).
[Crossref] [PubMed]

Tajalli, A.

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat. Commun. 2, 447 (2011).
[Crossref] [PubMed]

van Putten, E. G.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref] [PubMed]

Vellekoop, I. M.

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[Crossref]

I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett. 101(12), 120601 (2008).
[Crossref] [PubMed]

Vos, W. L.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref] [PubMed]

Walmsley, I. A.

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat. Commun. 2, 447 (2011).
[Crossref] [PubMed]

Wang, J.

Wang, L. V.

L. V. Wang and S. Hu, “Photoacoustic Tomography: In Vivo Imaging from Organelles to Organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

Wang, Y. M.

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
[Crossref] [PubMed]

Wiersma, D. S.

J. Bertolotti, S. Gottardo, D. S. Wiersma, M. Ghulinyan, and L. Pavesi, “Optical necklace states in Anderson localized 1D systems,” Phys. Rev. Lett. 94(11), 113903 (2005).
[Crossref] [PubMed]

Yang, C.

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
[Crossref] [PubMed]

Yang, T. D.

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the Diffraction Limit Using Multiple Light Scattering in a Highly Disordered Medium,” Phys. Rev. Lett. 107(2), 023902 (2011).
[Crossref] [PubMed]

Yodh, A. G.

Yoon, C.

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6(9), 581–585 (2012).
[Crossref]

Yu, G.

Zhou, C.

J. Biomed. Opt. (1)

R. J. McNichols and G. L. Coté, “Optical glucose sensing in biological fluids: an overview,” J. Biomed. Opt. 5(1), 5–16 (2000).
[Crossref] [PubMed]

Nat. Clin. Pract. Urol. (1)

C. M. Moore, D. Pendse, and M. Emberton, “Photodynamic therapy for prostate cancer-a review of current status and future promise,” Nat. Clin. Pract. Urol. 6(1), 18–30 (2009).
[Crossref] [PubMed]

Nat. Commun. (2)

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
[Crossref] [PubMed]

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat. Commun. 2, 447 (2011).
[Crossref] [PubMed]

Nat. Photonics (7)

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[Crossref]

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[Crossref]

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation,” Nat. Photonics 6(10), 657–661 (2012).
[Crossref] [PubMed]

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
[Crossref] [PubMed]

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[Crossref]

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6(9), 581–585 (2012).
[Crossref]

Nature (2)

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref] [PubMed]

J. Wang and A. Z. Genack, “Transport through modes in random media,” Nature 471(7338), 345–348 (2011).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Rev. B (1)

W. Choi, A. P. Mosk, Q. H. Park, and W. Choi, “Transmission eigenchannels in a disordered medium,” Phys. Rev. B 83(13), 134207 (2011).
[Crossref]

Phys. Rev. Lett. (8)

Z. Shi and A. Z. Genack, “Transmission Eigenvalues and the Bare Conductance in the Crossover to Anderson Localization,” Phys. Rev. Lett. 108(4), 043901 (2012).
[Crossref] [PubMed]

S. M. Popoff, A. Aubry, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Exploiting the Time-Reversal Operator for Adaptive Optics, Selective Focusing, and Scattering Pattern Analysis,” Phys. Rev. Lett. 107(26), 263901 (2011).
[Crossref] [PubMed]

A. Aubry and A. Derode, “Random matrix theory applied to acoustic backscattering and imaging in complex media,” Phys. Rev. Lett. 102(8), 084301 (2009).
[Crossref] [PubMed]

J. Bertolotti, S. Gottardo, D. S. Wiersma, M. Ghulinyan, and L. Pavesi, “Optical necklace states in Anderson localized 1D systems,” Phys. Rev. Lett. 94(11), 113903 (2005).
[Crossref] [PubMed]

Y. D. Chong and A. D. Stone, “Hidden Black: Coherent Enhancement of Absorption in Strongly Scattering Media,” Phys. Rev. Lett. 107(16), 163901 (2011).
[Crossref] [PubMed]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett. 101(12), 120601 (2008).
[Crossref] [PubMed]

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the Diffraction Limit Using Multiple Light Scattering in a Highly Disordered Medium,” Phys. Rev. Lett. 107(2), 023902 (2011).
[Crossref] [PubMed]

Physica A Statistical Mechanics and its Applications (1)

J. B. Pendry, A. MacKinnon, and A. B. Pretre, “Maximal fluctuations — A new phenomenon in disordered systems,” Physica A Statistical Mechanics and its Applications 168(1), 400–407 (1990).
[Crossref]

Proc. R. Soc. Lond. A Math. Phys. Sci. (1)

J. B. Pendry, A. MacKinnon, and P. J. Roberts, “Universality Classes and Fluctuations in Disordered Systems,” Proc. R. Soc. Lond. A Math. Phys. Sci. 437(1899), 67–83 (1992).
[Crossref]

Science (2)

L. V. Wang and S. Hu, “Photoacoustic Tomography: In Vivo Imaging from Organelles to Organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical Projection Tomography as a Tool for 3D Microscopy and Gene Expression Studies,” Science 296(5567), 541–545 (2002).
[Crossref] [PubMed]

Solid State Commun. (1)

O. N. Dorokhov, “On the Coexistence of Localized and Extended Electronic States in the Metallic Phase,” Solid State Commun. 51(6), 381–384 (1984).
[Crossref]

Wave Motion (1)

C. Prada and M. Fink, “Eigenmodes of the time reversal operator: A solution to selective focusing in multiple-target media,” Wave Motion 20(2), 151–163 (1994).
[Crossref]

Supplementary Material (2)

» Media 1: AVI (6090 KB)     
» Media 2: AVI (6090 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental schematic for the recording of a reflection matrix and implementation of reflection eigenchannels. WP1, 2: waveplates, BS1-6: beam splitters, SLM I, II: spatial light modulators, PBS1, 2: polarizing beam splitters, C: condenser lens (Nikon, 1.4 NA), OL: objective lens (Olympus, UPLSAPO, 100XO, 1.4 NA), S: scattering sample, BB1, 2: beam blocks.

Fig. 2
Fig. 2

Shaping incident wave into reflection eigenchannels. (a), (b) and (c): Intensity maps of experimentally shaped incident waves for the first eigenchannel, 1280th eigenchannel and normally incident plane wave, respectively. They correspond to the highest, lowest, and average reflectance modes, respectively. The H and V polarization components were superposed at the incident plane. (d), (e) and (f): Experimentally recorded intensity maps of reflected waves for the cases of (a), (b) and (c), respectively. (g), (h) and (i): Measured intensity maps of transmitted waves for the case of (a), (b) and (c), respectively. Scale bar, 5 μm. The color bar next to (c) indicates intensity in an arbitrary unit and applies also to (a) and (b). The other two color bars follow the same rule.

Fig. 3
Fig. 3

Reflectance and transmittance of various reflection eigenchannels. (a) Reflectance of experimentally implemented reflection eigenchannels (blue circular dots) and those predicted from the eigenvalues of the measured reflection matrix (green square dots). Black dots indicate mean reflectance of the medium. (b) Transmittance of the same reflection eigenchannels (red circular dots) implemented in (a). Black dots indicate mean transmittance of the medium. (Media 1: On the left are the individual incident eigenchannels experimentally generated by the two spatial light modulators. For each incident eigenchannels, we measured reflected images (middle) and their transmitted images (right). The size of each image is 32 × 32 μm2. The number at the top of each image is the eigenchannel index.) (c) Relation between reflection and transmission eigenchannels. Reflection and transmission matrices were measured for the same disordered medium, and their respective eigenchannels were obtained by performing the singular value decomposition. Shown here is the absolute square of normalized cross-correlation between the first reflection eigenchannel and all the transmission eigenchannels.

Fig. 4
Fig. 4

Experimentally recorded reflection matrix of a disordered medium. a, Amplitude part of the reflection matrix. Column indices correspond to input coordinates, and were assigned with an ascending order of the azimuthal angle for H polarization and then the same order of angle for V polarization. Row indices indicate spatial coordinate (x,y) for both polarization states of reflected waves. Color bar indicates amplitude in an arbitrary unit. b, The phase part of the reflection matrix. Color bar indicates phase in radians. Yellow and black dashed lines were drawn for visual guidance.

Fig. 5
Fig. 5

Representative reflection eigenchannels incident to and reflected from the disordered medium. Scale bar, 5 μm. Color bars indicate intensity in arbitrary units.

Fig. 6
Fig. 6

Reflection a, and transmission b, matrices calculated by RMT. c, Blue square dots indicate reflection eigenvalues obtained from the reduced reflection matrix. Black dots indicate the mean reflectance of the medium. d, Red circular dots indicate the expected transmittance for the reflection eigenchannels obtained in (c). Black dots indicate the mean transmittance of the medium.

Fig. 7
Fig. 7

Experimentally measured transmission matrix and its eigenvalue distribution. a, The amplitude part and b, the phase part of the transmission matrix. c, Blue square dots represent the transmission eigenvalues. Black dots indicate the mean transmittance of the medium

Metrics