Abstract

Fluorescence molecular tomography (FMT), an in vivo noninvasive imaging technology, can provide localization and quantification information for deep fluorophores. Light at wavelengths in the near-infrared (NIR-I) window from 650 nm to 950 nm has conventionally been chosen for FMT. In this study, we introduced longer NIR wavelengths within the 1100 nm to 1400 nm range, known as the “second NIR spectral window” (NIR-II). A singular-value analysis method was used to demonstrate the utility and advantages of using the NIR-II for FMT, and experiments showed an improvement in the spatial resolution in phantom studies.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
An adaptive support driven reweighted L1-regularization algorithm for fluorescence molecular tomography

Junwei Shi, Fei Liu, Huangsheng Pu, Simin Zuo, Jianwen Luo, and Jing Bai
Biomed. Opt. Express 5(11) 4039-4052 (2014)

Subsurface fluorescence molecular tomography with prior information

Wei He, Huangsheng Pu, Guanglei Zhang, Xu Cao, Bin Zhang, Fei Liu, Jianwen Luo, and Jing Bai
Appl. Opt. 53(3) 402-409 (2014)

Early-photon fluorescence tomography: spatial resolution improvements and noise stability considerations

Frederic Leblond, Hamid Dehghani, Dax Kepshire, and Brian W. Pogue
J. Opt. Soc. Am. A 26(6) 1444-1457 (2009)

References

  • View by:
  • |
  • |
  • |

  1. V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
    [Crossref] [PubMed]
  2. D. Doleschel, O. Mundigl, A. Wessner, F. Gremse, J. Bachmann, A. Rodriguez, U. Klingmüller, M. Jarsch, F. Kiessling, and W. Lederle, “Targeted near-infrared imaging of the erythropoietin receptor in human lung cancer xenografts,” J. Nucl. Med. 53(2), 304–311 (2012).
    [Crossref] [PubMed]
  3. V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101(33), 12294–12299 (2004).
    [Crossref] [PubMed]
  4. A. Ale, V. Ermolayev, N. C. Deliolanis, and V. Ntziachristos, “Fluorescence background subtraction technique for hybrid fluorescence molecular tomography/x-ray computed tomography imaging of a mouse model of early stage lung cancer,” J. Biomed. Opt. 18(5), 056006 (2013).
    [Crossref] [PubMed]
  5. C. T. Xu, P. Svenmarker, H. Liu, X. Wu, M. E. Messing, L. R. Wallenberg, and S. Andersson-Engels, “High-resolution fluorescence diffuse optical tomography developed with nonlinear upconverting nanoparticles,” ACS Nano 6(6), 4788–4795 (2012).
    [Crossref] [PubMed]
  6. R. Roy, A. B. Thompson, A. Godavarty, and E. M. Sevick-Muraca, “Tomographic fluorescence imaging in tissue phantoms: a novel reconstruction algorithm and imaging geometry,” IEEE Trans. Med. Imaging 24(2), 137–154 (2005).
    [Crossref] [PubMed]
  7. A. Ale, V. Ermolayev, E. Herzog, C. Cohrs, M. H. de Angelis, and V. Ntziachristos, “FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography,” Nat. Methods 9(6), 615–620 (2012).
    [Crossref] [PubMed]
  8. X. Yang, H. Gong, G. Quan, Y. Deng, and Q. Luo, “Combined system of fluorescence diffuse optical tomography and microcomputed tomography for small animal imaging,” Rev. Sci. Instrum. 81(5), 054304 (2010).
    [Crossref] [PubMed]
  9. M. T. Ghijsen, Y. Lin, O. Nalcioglu, and G. Gulsen, “Development of a hybrid MRI and fluorescence tomography system for small animal imaging,” Proc. SPIE 7892, 789212 (2011).
    [Crossref]
  10. D. Razansky and V. Ntziachristos, “Hybrid photoacoustic fluorescence molecular tomography using finite-element-based inversion,” Med. Phys. 34(11), 4293–4301 (2007).
    [Crossref] [PubMed]
  11. M. Freiberger, C. Clason, and H. Scharfetter, “Total variation regularization for nonlinear fluorescence tomography with an augmented Lagrangian splitting approach,” Appl. Opt. 49(19), 3741–3747 (2010).
    [Crossref] [PubMed]
  12. J. Dutta, S. Ahn, C. Li, S. R. Cherry, and R. M. Leahy, “Joint L1 and total variation regularization for fluorescence molecular tomography,” Phys. Med. Biol. 57(6), 1459–1476 (2012).
    [Crossref] [PubMed]
  13. M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A. 105(49), 19126–19131 (2008).
    [Crossref] [PubMed]
  14. P. Svenmarker, C. T. Xu, and S. Andersson-Engels, “Use of nonlinear upconverting nanoparticles provides increased spatial resolution in fluorescence diffuse imaging,” Opt. Lett. 35(16), 2789–2791 (2010).
    [Crossref] [PubMed]
  15. E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30(5), 901–911 (2003).
    [Crossref] [PubMed]
  16. E. E. Graves, J. P. Culver, J. Ripoll, R. Weissleder, and V. Ntziachristos, “Singular-value analysis and optimization of experimental parameters in fluorescence molecular tomography,” J. Opt. Soc. Am. A 21(2), 231–241 (2004).
    [Crossref] [PubMed]
  17. K. Welsher, S. P. Sherlock, and H. Dai, “Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window,” Proc. Natl. Acad. Sci. U.S.A. 108(22), 8943–8948 (2011).
    [Crossref] [PubMed]
  18. K. Welsher, Z. Liu, S. P. Sherlock, J. T. Robinson, Z. Chen, D. Daranciang, and H. Dai, “A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice,” Nat. Nanotechnol. 4(11), 773–780 (2009).
    [Crossref] [PubMed]
  19. G. Hong, J. C. Lee, J. T. Robinson, U. Raaz, L. Xie, N. F. Huang, J. P. Cooke, and H. Dai, “Multifunctional in vivo vascular imaging using near-infrared II fluorescence,” Nat. Med. 18(12), 1841–1846 (2012).
    [Crossref] [PubMed]
  20. J. T. Robinson, G. Hong, Y. Liang, B. Zhang, O. K. Yaghi, and H. Dai, “In vivo fluorescence imaging in the second near-infrared window with long circulating carbon nanotubes capable of ultrahigh tumor uptake,” J. Am. Chem. Soc. 134(25), 10664–10669 (2012).
    [Crossref] [PubMed]
  21. Y. Zhang, G. Hong, Y. Zhang, G. Chen, F. Li, H. Dai, and Q. Wang, “Ag2S quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window,” ACS Nano 6(5), 3695–3702 (2012).
    [Crossref] [PubMed]
  22. V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng. 8(1), 1–33 (2006).
    [Crossref] [PubMed]
  23. G. Quan, H. Gong, Y. Deng, J. Fu, and Q. Luo, “Monte Carlo-based fluorescence molecular tomography reconstruction method accelerated by a cluster of graphic processing units,” J. Biomed. Opt. 16(2), 026018 (2011).
    [Crossref] [PubMed]
  24. S. A. Prahl, M. J. van Gemert, and A. J. Welch, “Determining the optical properties of turbid mediaby using the adding-doubling method,” Appl. Opt. 32(4), 559–568 (1993).
    [Crossref] [PubMed]
  25. J. P. Culver, V. Ntziachristos, M. J. Holboke, and A. G. Yodh, “Optimization of optode arrangements for diffuse optical tomography: a singular-value analysis,” Opt. Lett. 26(10), 701–703 (2001).
    [Crossref] [PubMed]
  26. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971–1979 (1997).
    [Crossref] [PubMed]
  27. X. Yang, Y. Meng, Q. Luo, and H. Gong, “High resolution in vivo micro-CT with flat panel detector based on amorphous silicon,” J. XRay Sci. Technol. 18(4), 381–392 (2010).
    [PubMed]
  28. T. Lasser and V. Ntziachristos, “Optimization of 360 degrees projection fluorescence molecular tomography,” Med. Image Anal. 11(4), 389–399 (2007).
    [Crossref] [PubMed]
  29. J. Dutta, S. Ahn, A. A. Joshi, and R. M. Leahy, “Illumination pattern optimization for fluorescence tomography: theory and simulation studies,” Phys. Med. Biol. 55(10), 2961–2982 (2010).
    [Crossref] [PubMed]
  30. R. Barakat and E. Levin, “Application of apodization to increase two-point resolution by the Sparrow criterion. II. Incoherent illumination,” J. Opt. Soc. Am. 53(2), 274–282 (1963).
    [Crossref]
  31. M. Azimipour, R. Baumgartner, Y. Liu, S. L. Jacques, K. Eliceiri, and R. Pashaie, “Extraction of optical properties and prediction of light distribution in rat brain tissue,” J. Biomed. Opt. 19(7), 075001 (2014).
    [Crossref] [PubMed]
  32. R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express 16(8), 5907–5925 (2008).
    [Crossref] [PubMed]
  33. P. Jiang, C. N. Zhu, Z. L. Zhang, Z. Q. Tian, and D. W. Pang, “Water-soluble Ag2S quantum dots for near-infrared fluorescence imaging in vivo,” Biomaterials 33(20), 5130–5135 (2012).
    [Crossref] [PubMed]
  34. R. Guntupalli and R. Allen, “Evaluation of InGaAs camera for scientific near infrared imaging applications,” Proc. SPIE 6294, 629401 (2006).
    [Crossref]
  35. Princeton Instruments, “Introduction to scientific InGaAs FPA cameras”, http://www.princetoninstruments.com/Uploads/Princeton/Documents/TechNotes/PI_InGaAs_Tech_Note_revA0.pdf , accessed 4/24/15.
  36. D. Contini, H. Liszka, A. Sassaroli, and G. Zaccanti, “Imaging of highly turbid media by the absorption method,” Appl. Opt. 35(13), 2315–2324 (1996).
    [Crossref] [PubMed]

2014 (1)

M. Azimipour, R. Baumgartner, Y. Liu, S. L. Jacques, K. Eliceiri, and R. Pashaie, “Extraction of optical properties and prediction of light distribution in rat brain tissue,” J. Biomed. Opt. 19(7), 075001 (2014).
[Crossref] [PubMed]

2013 (1)

A. Ale, V. Ermolayev, N. C. Deliolanis, and V. Ntziachristos, “Fluorescence background subtraction technique for hybrid fluorescence molecular tomography/x-ray computed tomography imaging of a mouse model of early stage lung cancer,” J. Biomed. Opt. 18(5), 056006 (2013).
[Crossref] [PubMed]

2012 (8)

C. T. Xu, P. Svenmarker, H. Liu, X. Wu, M. E. Messing, L. R. Wallenberg, and S. Andersson-Engels, “High-resolution fluorescence diffuse optical tomography developed with nonlinear upconverting nanoparticles,” ACS Nano 6(6), 4788–4795 (2012).
[Crossref] [PubMed]

D. Doleschel, O. Mundigl, A. Wessner, F. Gremse, J. Bachmann, A. Rodriguez, U. Klingmüller, M. Jarsch, F. Kiessling, and W. Lederle, “Targeted near-infrared imaging of the erythropoietin receptor in human lung cancer xenografts,” J. Nucl. Med. 53(2), 304–311 (2012).
[Crossref] [PubMed]

A. Ale, V. Ermolayev, E. Herzog, C. Cohrs, M. H. de Angelis, and V. Ntziachristos, “FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography,” Nat. Methods 9(6), 615–620 (2012).
[Crossref] [PubMed]

J. Dutta, S. Ahn, C. Li, S. R. Cherry, and R. M. Leahy, “Joint L1 and total variation regularization for fluorescence molecular tomography,” Phys. Med. Biol. 57(6), 1459–1476 (2012).
[Crossref] [PubMed]

P. Jiang, C. N. Zhu, Z. L. Zhang, Z. Q. Tian, and D. W. Pang, “Water-soluble Ag2S quantum dots for near-infrared fluorescence imaging in vivo,” Biomaterials 33(20), 5130–5135 (2012).
[Crossref] [PubMed]

G. Hong, J. C. Lee, J. T. Robinson, U. Raaz, L. Xie, N. F. Huang, J. P. Cooke, and H. Dai, “Multifunctional in vivo vascular imaging using near-infrared II fluorescence,” Nat. Med. 18(12), 1841–1846 (2012).
[Crossref] [PubMed]

J. T. Robinson, G. Hong, Y. Liang, B. Zhang, O. K. Yaghi, and H. Dai, “In vivo fluorescence imaging in the second near-infrared window with long circulating carbon nanotubes capable of ultrahigh tumor uptake,” J. Am. Chem. Soc. 134(25), 10664–10669 (2012).
[Crossref] [PubMed]

Y. Zhang, G. Hong, Y. Zhang, G. Chen, F. Li, H. Dai, and Q. Wang, “Ag2S quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window,” ACS Nano 6(5), 3695–3702 (2012).
[Crossref] [PubMed]

2011 (3)

G. Quan, H. Gong, Y. Deng, J. Fu, and Q. Luo, “Monte Carlo-based fluorescence molecular tomography reconstruction method accelerated by a cluster of graphic processing units,” J. Biomed. Opt. 16(2), 026018 (2011).
[Crossref] [PubMed]

K. Welsher, S. P. Sherlock, and H. Dai, “Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window,” Proc. Natl. Acad. Sci. U.S.A. 108(22), 8943–8948 (2011).
[Crossref] [PubMed]

M. T. Ghijsen, Y. Lin, O. Nalcioglu, and G. Gulsen, “Development of a hybrid MRI and fluorescence tomography system for small animal imaging,” Proc. SPIE 7892, 789212 (2011).
[Crossref]

2010 (6)

X. Yang, H. Gong, G. Quan, Y. Deng, and Q. Luo, “Combined system of fluorescence diffuse optical tomography and microcomputed tomography for small animal imaging,” Rev. Sci. Instrum. 81(5), 054304 (2010).
[Crossref] [PubMed]

P. Svenmarker, C. T. Xu, and S. Andersson-Engels, “Use of nonlinear upconverting nanoparticles provides increased spatial resolution in fluorescence diffuse imaging,” Opt. Lett. 35(16), 2789–2791 (2010).
[Crossref] [PubMed]

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
[Crossref] [PubMed]

M. Freiberger, C. Clason, and H. Scharfetter, “Total variation regularization for nonlinear fluorescence tomography with an augmented Lagrangian splitting approach,” Appl. Opt. 49(19), 3741–3747 (2010).
[Crossref] [PubMed]

X. Yang, Y. Meng, Q. Luo, and H. Gong, “High resolution in vivo micro-CT with flat panel detector based on amorphous silicon,” J. XRay Sci. Technol. 18(4), 381–392 (2010).
[PubMed]

J. Dutta, S. Ahn, A. A. Joshi, and R. M. Leahy, “Illumination pattern optimization for fluorescence tomography: theory and simulation studies,” Phys. Med. Biol. 55(10), 2961–2982 (2010).
[Crossref] [PubMed]

2009 (1)

K. Welsher, Z. Liu, S. P. Sherlock, J. T. Robinson, Z. Chen, D. Daranciang, and H. Dai, “A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice,” Nat. Nanotechnol. 4(11), 773–780 (2009).
[Crossref] [PubMed]

2008 (2)

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A. 105(49), 19126–19131 (2008).
[Crossref] [PubMed]

R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express 16(8), 5907–5925 (2008).
[Crossref] [PubMed]

2007 (2)

T. Lasser and V. Ntziachristos, “Optimization of 360 degrees projection fluorescence molecular tomography,” Med. Image Anal. 11(4), 389–399 (2007).
[Crossref] [PubMed]

D. Razansky and V. Ntziachristos, “Hybrid photoacoustic fluorescence molecular tomography using finite-element-based inversion,” Med. Phys. 34(11), 4293–4301 (2007).
[Crossref] [PubMed]

2006 (2)

R. Guntupalli and R. Allen, “Evaluation of InGaAs camera for scientific near infrared imaging applications,” Proc. SPIE 6294, 629401 (2006).
[Crossref]

V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng. 8(1), 1–33 (2006).
[Crossref] [PubMed]

2005 (1)

R. Roy, A. B. Thompson, A. Godavarty, and E. M. Sevick-Muraca, “Tomographic fluorescence imaging in tissue phantoms: a novel reconstruction algorithm and imaging geometry,” IEEE Trans. Med. Imaging 24(2), 137–154 (2005).
[Crossref] [PubMed]

2004 (2)

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101(33), 12294–12299 (2004).
[Crossref] [PubMed]

E. E. Graves, J. P. Culver, J. Ripoll, R. Weissleder, and V. Ntziachristos, “Singular-value analysis and optimization of experimental parameters in fluorescence molecular tomography,” J. Opt. Soc. Am. A 21(2), 231–241 (2004).
[Crossref] [PubMed]

2003 (1)

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30(5), 901–911 (2003).
[Crossref] [PubMed]

2001 (1)

1997 (1)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971–1979 (1997).
[Crossref] [PubMed]

1996 (1)

1993 (1)

1963 (1)

Ahn, S.

J. Dutta, S. Ahn, C. Li, S. R. Cherry, and R. M. Leahy, “Joint L1 and total variation regularization for fluorescence molecular tomography,” Phys. Med. Biol. 57(6), 1459–1476 (2012).
[Crossref] [PubMed]

J. Dutta, S. Ahn, A. A. Joshi, and R. M. Leahy, “Illumination pattern optimization for fluorescence tomography: theory and simulation studies,” Phys. Med. Biol. 55(10), 2961–2982 (2010).
[Crossref] [PubMed]

Aikawa, E.

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A. 105(49), 19126–19131 (2008).
[Crossref] [PubMed]

Ale, A.

A. Ale, V. Ermolayev, N. C. Deliolanis, and V. Ntziachristos, “Fluorescence background subtraction technique for hybrid fluorescence molecular tomography/x-ray computed tomography imaging of a mouse model of early stage lung cancer,” J. Biomed. Opt. 18(5), 056006 (2013).
[Crossref] [PubMed]

A. Ale, V. Ermolayev, E. Herzog, C. Cohrs, M. H. de Angelis, and V. Ntziachristos, “FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography,” Nat. Methods 9(6), 615–620 (2012).
[Crossref] [PubMed]

Allen, R.

R. Guntupalli and R. Allen, “Evaluation of InGaAs camera for scientific near infrared imaging applications,” Proc. SPIE 6294, 629401 (2006).
[Crossref]

Andersson-Engels, S.

C. T. Xu, P. Svenmarker, H. Liu, X. Wu, M. E. Messing, L. R. Wallenberg, and S. Andersson-Engels, “High-resolution fluorescence diffuse optical tomography developed with nonlinear upconverting nanoparticles,” ACS Nano 6(6), 4788–4795 (2012).
[Crossref] [PubMed]

P. Svenmarker, C. T. Xu, and S. Andersson-Engels, “Use of nonlinear upconverting nanoparticles provides increased spatial resolution in fluorescence diffuse imaging,” Opt. Lett. 35(16), 2789–2791 (2010).
[Crossref] [PubMed]

Azimipour, M.

M. Azimipour, R. Baumgartner, Y. Liu, S. L. Jacques, K. Eliceiri, and R. Pashaie, “Extraction of optical properties and prediction of light distribution in rat brain tissue,” J. Biomed. Opt. 19(7), 075001 (2014).
[Crossref] [PubMed]

Bachmann, J.

D. Doleschel, O. Mundigl, A. Wessner, F. Gremse, J. Bachmann, A. Rodriguez, U. Klingmüller, M. Jarsch, F. Kiessling, and W. Lederle, “Targeted near-infrared imaging of the erythropoietin receptor in human lung cancer xenografts,” J. Nucl. Med. 53(2), 304–311 (2012).
[Crossref] [PubMed]

Barakat, R.

Baumgartner, R.

M. Azimipour, R. Baumgartner, Y. Liu, S. L. Jacques, K. Eliceiri, and R. Pashaie, “Extraction of optical properties and prediction of light distribution in rat brain tissue,” J. Biomed. Opt. 19(7), 075001 (2014).
[Crossref] [PubMed]

Bogdanov, A.

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101(33), 12294–12299 (2004).
[Crossref] [PubMed]

Chen, G.

Y. Zhang, G. Hong, Y. Zhang, G. Chen, F. Li, H. Dai, and Q. Wang, “Ag2S quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window,” ACS Nano 6(5), 3695–3702 (2012).
[Crossref] [PubMed]

Chen, Z.

K. Welsher, Z. Liu, S. P. Sherlock, J. T. Robinson, Z. Chen, D. Daranciang, and H. Dai, “A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice,” Nat. Nanotechnol. 4(11), 773–780 (2009).
[Crossref] [PubMed]

Cherry, S. R.

J. Dutta, S. Ahn, C. Li, S. R. Cherry, and R. M. Leahy, “Joint L1 and total variation regularization for fluorescence molecular tomography,” Phys. Med. Biol. 57(6), 1459–1476 (2012).
[Crossref] [PubMed]

Clason, C.

Cohrs, C.

A. Ale, V. Ermolayev, E. Herzog, C. Cohrs, M. H. de Angelis, and V. Ntziachristos, “FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography,” Nat. Methods 9(6), 615–620 (2012).
[Crossref] [PubMed]

Contini, D.

Cooke, J. P.

G. Hong, J. C. Lee, J. T. Robinson, U. Raaz, L. Xie, N. F. Huang, J. P. Cooke, and H. Dai, “Multifunctional in vivo vascular imaging using near-infrared II fluorescence,” Nat. Med. 18(12), 1841–1846 (2012).
[Crossref] [PubMed]

Cubeddu, R.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971–1979 (1997).
[Crossref] [PubMed]

Culver, J. P.

Dai, H.

Y. Zhang, G. Hong, Y. Zhang, G. Chen, F. Li, H. Dai, and Q. Wang, “Ag2S quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window,” ACS Nano 6(5), 3695–3702 (2012).
[Crossref] [PubMed]

J. T. Robinson, G. Hong, Y. Liang, B. Zhang, O. K. Yaghi, and H. Dai, “In vivo fluorescence imaging in the second near-infrared window with long circulating carbon nanotubes capable of ultrahigh tumor uptake,” J. Am. Chem. Soc. 134(25), 10664–10669 (2012).
[Crossref] [PubMed]

G. Hong, J. C. Lee, J. T. Robinson, U. Raaz, L. Xie, N. F. Huang, J. P. Cooke, and H. Dai, “Multifunctional in vivo vascular imaging using near-infrared II fluorescence,” Nat. Med. 18(12), 1841–1846 (2012).
[Crossref] [PubMed]

K. Welsher, S. P. Sherlock, and H. Dai, “Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window,” Proc. Natl. Acad. Sci. U.S.A. 108(22), 8943–8948 (2011).
[Crossref] [PubMed]

K. Welsher, Z. Liu, S. P. Sherlock, J. T. Robinson, Z. Chen, D. Daranciang, and H. Dai, “A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice,” Nat. Nanotechnol. 4(11), 773–780 (2009).
[Crossref] [PubMed]

Daranciang, D.

K. Welsher, Z. Liu, S. P. Sherlock, J. T. Robinson, Z. Chen, D. Daranciang, and H. Dai, “A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice,” Nat. Nanotechnol. 4(11), 773–780 (2009).
[Crossref] [PubMed]

de Angelis, M. H.

A. Ale, V. Ermolayev, E. Herzog, C. Cohrs, M. H. de Angelis, and V. Ntziachristos, “FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography,” Nat. Methods 9(6), 615–620 (2012).
[Crossref] [PubMed]

de Kleine, R. H.

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A. 105(49), 19126–19131 (2008).
[Crossref] [PubMed]

Deliolanis, N. C.

A. Ale, V. Ermolayev, N. C. Deliolanis, and V. Ntziachristos, “Fluorescence background subtraction technique for hybrid fluorescence molecular tomography/x-ray computed tomography imaging of a mouse model of early stage lung cancer,” J. Biomed. Opt. 18(5), 056006 (2013).
[Crossref] [PubMed]

Deng, Y.

G. Quan, H. Gong, Y. Deng, J. Fu, and Q. Luo, “Monte Carlo-based fluorescence molecular tomography reconstruction method accelerated by a cluster of graphic processing units,” J. Biomed. Opt. 16(2), 026018 (2011).
[Crossref] [PubMed]

X. Yang, H. Gong, G. Quan, Y. Deng, and Q. Luo, “Combined system of fluorescence diffuse optical tomography and microcomputed tomography for small animal imaging,” Rev. Sci. Instrum. 81(5), 054304 (2010).
[Crossref] [PubMed]

Doleschel, D.

D. Doleschel, O. Mundigl, A. Wessner, F. Gremse, J. Bachmann, A. Rodriguez, U. Klingmüller, M. Jarsch, F. Kiessling, and W. Lederle, “Targeted near-infrared imaging of the erythropoietin receptor in human lung cancer xenografts,” J. Nucl. Med. 53(2), 304–311 (2012).
[Crossref] [PubMed]

Dutta, J.

J. Dutta, S. Ahn, C. Li, S. R. Cherry, and R. M. Leahy, “Joint L1 and total variation regularization for fluorescence molecular tomography,” Phys. Med. Biol. 57(6), 1459–1476 (2012).
[Crossref] [PubMed]

J. Dutta, S. Ahn, A. A. Joshi, and R. M. Leahy, “Illumination pattern optimization for fluorescence tomography: theory and simulation studies,” Phys. Med. Biol. 55(10), 2961–2982 (2010).
[Crossref] [PubMed]

Eliceiri, K.

M. Azimipour, R. Baumgartner, Y. Liu, S. L. Jacques, K. Eliceiri, and R. Pashaie, “Extraction of optical properties and prediction of light distribution in rat brain tissue,” J. Biomed. Opt. 19(7), 075001 (2014).
[Crossref] [PubMed]

Ermolayev, V.

A. Ale, V. Ermolayev, N. C. Deliolanis, and V. Ntziachristos, “Fluorescence background subtraction technique for hybrid fluorescence molecular tomography/x-ray computed tomography imaging of a mouse model of early stage lung cancer,” J. Biomed. Opt. 18(5), 056006 (2013).
[Crossref] [PubMed]

A. Ale, V. Ermolayev, E. Herzog, C. Cohrs, M. H. de Angelis, and V. Ntziachristos, “FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography,” Nat. Methods 9(6), 615–620 (2012).
[Crossref] [PubMed]

Foschum, F.

Freiberger, M.

Fu, J.

G. Quan, H. Gong, Y. Deng, J. Fu, and Q. Luo, “Monte Carlo-based fluorescence molecular tomography reconstruction method accelerated by a cluster of graphic processing units,” J. Biomed. Opt. 16(2), 026018 (2011).
[Crossref] [PubMed]

Ghijsen, M. T.

M. T. Ghijsen, Y. Lin, O. Nalcioglu, and G. Gulsen, “Development of a hybrid MRI and fluorescence tomography system for small animal imaging,” Proc. SPIE 7892, 789212 (2011).
[Crossref]

Godavarty, A.

R. Roy, A. B. Thompson, A. Godavarty, and E. M. Sevick-Muraca, “Tomographic fluorescence imaging in tissue phantoms: a novel reconstruction algorithm and imaging geometry,” IEEE Trans. Med. Imaging 24(2), 137–154 (2005).
[Crossref] [PubMed]

Gong, H.

G. Quan, H. Gong, Y. Deng, J. Fu, and Q. Luo, “Monte Carlo-based fluorescence molecular tomography reconstruction method accelerated by a cluster of graphic processing units,” J. Biomed. Opt. 16(2), 026018 (2011).
[Crossref] [PubMed]

X. Yang, Y. Meng, Q. Luo, and H. Gong, “High resolution in vivo micro-CT with flat panel detector based on amorphous silicon,” J. XRay Sci. Technol. 18(4), 381–392 (2010).
[PubMed]

X. Yang, H. Gong, G. Quan, Y. Deng, and Q. Luo, “Combined system of fluorescence diffuse optical tomography and microcomputed tomography for small animal imaging,” Rev. Sci. Instrum. 81(5), 054304 (2010).
[Crossref] [PubMed]

Graves, E.

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101(33), 12294–12299 (2004).
[Crossref] [PubMed]

Graves, E. E.

E. E. Graves, J. P. Culver, J. Ripoll, R. Weissleder, and V. Ntziachristos, “Singular-value analysis and optimization of experimental parameters in fluorescence molecular tomography,” J. Opt. Soc. Am. A 21(2), 231–241 (2004).
[Crossref] [PubMed]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30(5), 901–911 (2003).
[Crossref] [PubMed]

Gremse, F.

D. Doleschel, O. Mundigl, A. Wessner, F. Gremse, J. Bachmann, A. Rodriguez, U. Klingmüller, M. Jarsch, F. Kiessling, and W. Lederle, “Targeted near-infrared imaging of the erythropoietin receptor in human lung cancer xenografts,” J. Nucl. Med. 53(2), 304–311 (2012).
[Crossref] [PubMed]

Gulsen, G.

M. T. Ghijsen, Y. Lin, O. Nalcioglu, and G. Gulsen, “Development of a hybrid MRI and fluorescence tomography system for small animal imaging,” Proc. SPIE 7892, 789212 (2011).
[Crossref]

Guntupalli, R.

R. Guntupalli and R. Allen, “Evaluation of InGaAs camera for scientific near infrared imaging applications,” Proc. SPIE 6294, 629401 (2006).
[Crossref]

Herzog, E.

A. Ale, V. Ermolayev, E. Herzog, C. Cohrs, M. H. de Angelis, and V. Ntziachristos, “FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography,” Nat. Methods 9(6), 615–620 (2012).
[Crossref] [PubMed]

Holboke, M. J.

Hong, G.

Y. Zhang, G. Hong, Y. Zhang, G. Chen, F. Li, H. Dai, and Q. Wang, “Ag2S quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window,” ACS Nano 6(5), 3695–3702 (2012).
[Crossref] [PubMed]

G. Hong, J. C. Lee, J. T. Robinson, U. Raaz, L. Xie, N. F. Huang, J. P. Cooke, and H. Dai, “Multifunctional in vivo vascular imaging using near-infrared II fluorescence,” Nat. Med. 18(12), 1841–1846 (2012).
[Crossref] [PubMed]

J. T. Robinson, G. Hong, Y. Liang, B. Zhang, O. K. Yaghi, and H. Dai, “In vivo fluorescence imaging in the second near-infrared window with long circulating carbon nanotubes capable of ultrahigh tumor uptake,” J. Am. Chem. Soc. 134(25), 10664–10669 (2012).
[Crossref] [PubMed]

Huang, N. F.

G. Hong, J. C. Lee, J. T. Robinson, U. Raaz, L. Xie, N. F. Huang, J. P. Cooke, and H. Dai, “Multifunctional in vivo vascular imaging using near-infrared II fluorescence,” Nat. Med. 18(12), 1841–1846 (2012).
[Crossref] [PubMed]

Jacques, S. L.

M. Azimipour, R. Baumgartner, Y. Liu, S. L. Jacques, K. Eliceiri, and R. Pashaie, “Extraction of optical properties and prediction of light distribution in rat brain tissue,” J. Biomed. Opt. 19(7), 075001 (2014).
[Crossref] [PubMed]

Jarsch, M.

D. Doleschel, O. Mundigl, A. Wessner, F. Gremse, J. Bachmann, A. Rodriguez, U. Klingmüller, M. Jarsch, F. Kiessling, and W. Lederle, “Targeted near-infrared imaging of the erythropoietin receptor in human lung cancer xenografts,” J. Nucl. Med. 53(2), 304–311 (2012).
[Crossref] [PubMed]

Jiang, P.

P. Jiang, C. N. Zhu, Z. L. Zhang, Z. Q. Tian, and D. W. Pang, “Water-soluble Ag2S quantum dots for near-infrared fluorescence imaging in vivo,” Biomaterials 33(20), 5130–5135 (2012).
[Crossref] [PubMed]

Josephson, L.

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101(33), 12294–12299 (2004).
[Crossref] [PubMed]

Joshi, A. A.

J. Dutta, S. Ahn, A. A. Joshi, and R. M. Leahy, “Illumination pattern optimization for fluorescence tomography: theory and simulation studies,” Phys. Med. Biol. 55(10), 2961–2982 (2010).
[Crossref] [PubMed]

Kienle, A.

Kiessling, F.

D. Doleschel, O. Mundigl, A. Wessner, F. Gremse, J. Bachmann, A. Rodriguez, U. Klingmüller, M. Jarsch, F. Kiessling, and W. Lederle, “Targeted near-infrared imaging of the erythropoietin receptor in human lung cancer xenografts,” J. Nucl. Med. 53(2), 304–311 (2012).
[Crossref] [PubMed]

Kirsch, D. G.

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A. 105(49), 19126–19131 (2008).
[Crossref] [PubMed]

Klingmüller, U.

D. Doleschel, O. Mundigl, A. Wessner, F. Gremse, J. Bachmann, A. Rodriguez, U. Klingmüller, M. Jarsch, F. Kiessling, and W. Lederle, “Targeted near-infrared imaging of the erythropoietin receptor in human lung cancer xenografts,” J. Nucl. Med. 53(2), 304–311 (2012).
[Crossref] [PubMed]

Lasser, T.

T. Lasser and V. Ntziachristos, “Optimization of 360 degrees projection fluorescence molecular tomography,” Med. Image Anal. 11(4), 389–399 (2007).
[Crossref] [PubMed]

Leahy, R. M.

J. Dutta, S. Ahn, C. Li, S. R. Cherry, and R. M. Leahy, “Joint L1 and total variation regularization for fluorescence molecular tomography,” Phys. Med. Biol. 57(6), 1459–1476 (2012).
[Crossref] [PubMed]

J. Dutta, S. Ahn, A. A. Joshi, and R. M. Leahy, “Illumination pattern optimization for fluorescence tomography: theory and simulation studies,” Phys. Med. Biol. 55(10), 2961–2982 (2010).
[Crossref] [PubMed]

Lederle, W.

D. Doleschel, O. Mundigl, A. Wessner, F. Gremse, J. Bachmann, A. Rodriguez, U. Klingmüller, M. Jarsch, F. Kiessling, and W. Lederle, “Targeted near-infrared imaging of the erythropoietin receptor in human lung cancer xenografts,” J. Nucl. Med. 53(2), 304–311 (2012).
[Crossref] [PubMed]

Lee, J. C.

G. Hong, J. C. Lee, J. T. Robinson, U. Raaz, L. Xie, N. F. Huang, J. P. Cooke, and H. Dai, “Multifunctional in vivo vascular imaging using near-infrared II fluorescence,” Nat. Med. 18(12), 1841–1846 (2012).
[Crossref] [PubMed]

Levin, E.

Li, C.

J. Dutta, S. Ahn, C. Li, S. R. Cherry, and R. M. Leahy, “Joint L1 and total variation regularization for fluorescence molecular tomography,” Phys. Med. Biol. 57(6), 1459–1476 (2012).
[Crossref] [PubMed]

Li, F.

Y. Zhang, G. Hong, Y. Zhang, G. Chen, F. Li, H. Dai, and Q. Wang, “Ag2S quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window,” ACS Nano 6(5), 3695–3702 (2012).
[Crossref] [PubMed]

Liang, Y.

J. T. Robinson, G. Hong, Y. Liang, B. Zhang, O. K. Yaghi, and H. Dai, “In vivo fluorescence imaging in the second near-infrared window with long circulating carbon nanotubes capable of ultrahigh tumor uptake,” J. Am. Chem. Soc. 134(25), 10664–10669 (2012).
[Crossref] [PubMed]

Lin, Y.

M. T. Ghijsen, Y. Lin, O. Nalcioglu, and G. Gulsen, “Development of a hybrid MRI and fluorescence tomography system for small animal imaging,” Proc. SPIE 7892, 789212 (2011).
[Crossref]

Liszka, H.

Liu, H.

C. T. Xu, P. Svenmarker, H. Liu, X. Wu, M. E. Messing, L. R. Wallenberg, and S. Andersson-Engels, “High-resolution fluorescence diffuse optical tomography developed with nonlinear upconverting nanoparticles,” ACS Nano 6(6), 4788–4795 (2012).
[Crossref] [PubMed]

Liu, Y.

M. Azimipour, R. Baumgartner, Y. Liu, S. L. Jacques, K. Eliceiri, and R. Pashaie, “Extraction of optical properties and prediction of light distribution in rat brain tissue,” J. Biomed. Opt. 19(7), 075001 (2014).
[Crossref] [PubMed]

Liu, Z.

K. Welsher, Z. Liu, S. P. Sherlock, J. T. Robinson, Z. Chen, D. Daranciang, and H. Dai, “A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice,” Nat. Nanotechnol. 4(11), 773–780 (2009).
[Crossref] [PubMed]

Luo, Q.

G. Quan, H. Gong, Y. Deng, J. Fu, and Q. Luo, “Monte Carlo-based fluorescence molecular tomography reconstruction method accelerated by a cluster of graphic processing units,” J. Biomed. Opt. 16(2), 026018 (2011).
[Crossref] [PubMed]

X. Yang, Y. Meng, Q. Luo, and H. Gong, “High resolution in vivo micro-CT with flat panel detector based on amorphous silicon,” J. XRay Sci. Technol. 18(4), 381–392 (2010).
[PubMed]

X. Yang, H. Gong, G. Quan, Y. Deng, and Q. Luo, “Combined system of fluorescence diffuse optical tomography and microcomputed tomography for small animal imaging,” Rev. Sci. Instrum. 81(5), 054304 (2010).
[Crossref] [PubMed]

Meng, Y.

X. Yang, Y. Meng, Q. Luo, and H. Gong, “High resolution in vivo micro-CT with flat panel detector based on amorphous silicon,” J. XRay Sci. Technol. 18(4), 381–392 (2010).
[PubMed]

Messing, M. E.

C. T. Xu, P. Svenmarker, H. Liu, X. Wu, M. E. Messing, L. R. Wallenberg, and S. Andersson-Engels, “High-resolution fluorescence diffuse optical tomography developed with nonlinear upconverting nanoparticles,” ACS Nano 6(6), 4788–4795 (2012).
[Crossref] [PubMed]

Michels, R.

Mundigl, O.

D. Doleschel, O. Mundigl, A. Wessner, F. Gremse, J. Bachmann, A. Rodriguez, U. Klingmüller, M. Jarsch, F. Kiessling, and W. Lederle, “Targeted near-infrared imaging of the erythropoietin receptor in human lung cancer xenografts,” J. Nucl. Med. 53(2), 304–311 (2012).
[Crossref] [PubMed]

Nalcioglu, O.

M. T. Ghijsen, Y. Lin, O. Nalcioglu, and G. Gulsen, “Development of a hybrid MRI and fluorescence tomography system for small animal imaging,” Proc. SPIE 7892, 789212 (2011).
[Crossref]

Niedre, M. J.

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A. 105(49), 19126–19131 (2008).
[Crossref] [PubMed]

Ntziachristos, V.

A. Ale, V. Ermolayev, N. C. Deliolanis, and V. Ntziachristos, “Fluorescence background subtraction technique for hybrid fluorescence molecular tomography/x-ray computed tomography imaging of a mouse model of early stage lung cancer,” J. Biomed. Opt. 18(5), 056006 (2013).
[Crossref] [PubMed]

A. Ale, V. Ermolayev, E. Herzog, C. Cohrs, M. H. de Angelis, and V. Ntziachristos, “FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography,” Nat. Methods 9(6), 615–620 (2012).
[Crossref] [PubMed]

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
[Crossref] [PubMed]

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A. 105(49), 19126–19131 (2008).
[Crossref] [PubMed]

T. Lasser and V. Ntziachristos, “Optimization of 360 degrees projection fluorescence molecular tomography,” Med. Image Anal. 11(4), 389–399 (2007).
[Crossref] [PubMed]

D. Razansky and V. Ntziachristos, “Hybrid photoacoustic fluorescence molecular tomography using finite-element-based inversion,” Med. Phys. 34(11), 4293–4301 (2007).
[Crossref] [PubMed]

V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng. 8(1), 1–33 (2006).
[Crossref] [PubMed]

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101(33), 12294–12299 (2004).
[Crossref] [PubMed]

E. E. Graves, J. P. Culver, J. Ripoll, R. Weissleder, and V. Ntziachristos, “Singular-value analysis and optimization of experimental parameters in fluorescence molecular tomography,” J. Opt. Soc. Am. A 21(2), 231–241 (2004).
[Crossref] [PubMed]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30(5), 901–911 (2003).
[Crossref] [PubMed]

J. P. Culver, V. Ntziachristos, M. J. Holboke, and A. G. Yodh, “Optimization of optode arrangements for diffuse optical tomography: a singular-value analysis,” Opt. Lett. 26(10), 701–703 (2001).
[Crossref] [PubMed]

Pang, D. W.

P. Jiang, C. N. Zhu, Z. L. Zhang, Z. Q. Tian, and D. W. Pang, “Water-soluble Ag2S quantum dots for near-infrared fluorescence imaging in vivo,” Biomaterials 33(20), 5130–5135 (2012).
[Crossref] [PubMed]

Pashaie, R.

M. Azimipour, R. Baumgartner, Y. Liu, S. L. Jacques, K. Eliceiri, and R. Pashaie, “Extraction of optical properties and prediction of light distribution in rat brain tissue,” J. Biomed. Opt. 19(7), 075001 (2014).
[Crossref] [PubMed]

Pifferi, A.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971–1979 (1997).
[Crossref] [PubMed]

Prahl, S. A.

Quan, G.

G. Quan, H. Gong, Y. Deng, J. Fu, and Q. Luo, “Monte Carlo-based fluorescence molecular tomography reconstruction method accelerated by a cluster of graphic processing units,” J. Biomed. Opt. 16(2), 026018 (2011).
[Crossref] [PubMed]

X. Yang, H. Gong, G. Quan, Y. Deng, and Q. Luo, “Combined system of fluorescence diffuse optical tomography and microcomputed tomography for small animal imaging,” Rev. Sci. Instrum. 81(5), 054304 (2010).
[Crossref] [PubMed]

Raaz, U.

G. Hong, J. C. Lee, J. T. Robinson, U. Raaz, L. Xie, N. F. Huang, J. P. Cooke, and H. Dai, “Multifunctional in vivo vascular imaging using near-infrared II fluorescence,” Nat. Med. 18(12), 1841–1846 (2012).
[Crossref] [PubMed]

Razansky, D.

D. Razansky and V. Ntziachristos, “Hybrid photoacoustic fluorescence molecular tomography using finite-element-based inversion,” Med. Phys. 34(11), 4293–4301 (2007).
[Crossref] [PubMed]

Ripoll, J.

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101(33), 12294–12299 (2004).
[Crossref] [PubMed]

E. E. Graves, J. P. Culver, J. Ripoll, R. Weissleder, and V. Ntziachristos, “Singular-value analysis and optimization of experimental parameters in fluorescence molecular tomography,” J. Opt. Soc. Am. A 21(2), 231–241 (2004).
[Crossref] [PubMed]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30(5), 901–911 (2003).
[Crossref] [PubMed]

Robinson, J. T.

J. T. Robinson, G. Hong, Y. Liang, B. Zhang, O. K. Yaghi, and H. Dai, “In vivo fluorescence imaging in the second near-infrared window with long circulating carbon nanotubes capable of ultrahigh tumor uptake,” J. Am. Chem. Soc. 134(25), 10664–10669 (2012).
[Crossref] [PubMed]

G. Hong, J. C. Lee, J. T. Robinson, U. Raaz, L. Xie, N. F. Huang, J. P. Cooke, and H. Dai, “Multifunctional in vivo vascular imaging using near-infrared II fluorescence,” Nat. Med. 18(12), 1841–1846 (2012).
[Crossref] [PubMed]

K. Welsher, Z. Liu, S. P. Sherlock, J. T. Robinson, Z. Chen, D. Daranciang, and H. Dai, “A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice,” Nat. Nanotechnol. 4(11), 773–780 (2009).
[Crossref] [PubMed]

Rodriguez, A.

D. Doleschel, O. Mundigl, A. Wessner, F. Gremse, J. Bachmann, A. Rodriguez, U. Klingmüller, M. Jarsch, F. Kiessling, and W. Lederle, “Targeted near-infrared imaging of the erythropoietin receptor in human lung cancer xenografts,” J. Nucl. Med. 53(2), 304–311 (2012).
[Crossref] [PubMed]

Roy, R.

R. Roy, A. B. Thompson, A. Godavarty, and E. M. Sevick-Muraca, “Tomographic fluorescence imaging in tissue phantoms: a novel reconstruction algorithm and imaging geometry,” IEEE Trans. Med. Imaging 24(2), 137–154 (2005).
[Crossref] [PubMed]

Sassaroli, A.

Scharfetter, H.

Schellenberger, E. A.

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101(33), 12294–12299 (2004).
[Crossref] [PubMed]

Sevick-Muraca, E. M.

R. Roy, A. B. Thompson, A. Godavarty, and E. M. Sevick-Muraca, “Tomographic fluorescence imaging in tissue phantoms: a novel reconstruction algorithm and imaging geometry,” IEEE Trans. Med. Imaging 24(2), 137–154 (2005).
[Crossref] [PubMed]

Sherlock, S. P.

K. Welsher, S. P. Sherlock, and H. Dai, “Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window,” Proc. Natl. Acad. Sci. U.S.A. 108(22), 8943–8948 (2011).
[Crossref] [PubMed]

K. Welsher, Z. Liu, S. P. Sherlock, J. T. Robinson, Z. Chen, D. Daranciang, and H. Dai, “A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice,” Nat. Nanotechnol. 4(11), 773–780 (2009).
[Crossref] [PubMed]

Svenmarker, P.

C. T. Xu, P. Svenmarker, H. Liu, X. Wu, M. E. Messing, L. R. Wallenberg, and S. Andersson-Engels, “High-resolution fluorescence diffuse optical tomography developed with nonlinear upconverting nanoparticles,” ACS Nano 6(6), 4788–4795 (2012).
[Crossref] [PubMed]

P. Svenmarker, C. T. Xu, and S. Andersson-Engels, “Use of nonlinear upconverting nanoparticles provides increased spatial resolution in fluorescence diffuse imaging,” Opt. Lett. 35(16), 2789–2791 (2010).
[Crossref] [PubMed]

Taroni, P.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971–1979 (1997).
[Crossref] [PubMed]

Thompson, A. B.

R. Roy, A. B. Thompson, A. Godavarty, and E. M. Sevick-Muraca, “Tomographic fluorescence imaging in tissue phantoms: a novel reconstruction algorithm and imaging geometry,” IEEE Trans. Med. Imaging 24(2), 137–154 (2005).
[Crossref] [PubMed]

Tian, Z. Q.

P. Jiang, C. N. Zhu, Z. L. Zhang, Z. Q. Tian, and D. W. Pang, “Water-soluble Ag2S quantum dots for near-infrared fluorescence imaging in vivo,” Biomaterials 33(20), 5130–5135 (2012).
[Crossref] [PubMed]

Torricelli, A.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971–1979 (1997).
[Crossref] [PubMed]

Valentini, G.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971–1979 (1997).
[Crossref] [PubMed]

van Gemert, M. J.

Wallenberg, L. R.

C. T. Xu, P. Svenmarker, H. Liu, X. Wu, M. E. Messing, L. R. Wallenberg, and S. Andersson-Engels, “High-resolution fluorescence diffuse optical tomography developed with nonlinear upconverting nanoparticles,” ACS Nano 6(6), 4788–4795 (2012).
[Crossref] [PubMed]

Wang, Q.

Y. Zhang, G. Hong, Y. Zhang, G. Chen, F. Li, H. Dai, and Q. Wang, “Ag2S quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window,” ACS Nano 6(5), 3695–3702 (2012).
[Crossref] [PubMed]

Weissleder, R.

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A. 105(49), 19126–19131 (2008).
[Crossref] [PubMed]

E. E. Graves, J. P. Culver, J. Ripoll, R. Weissleder, and V. Ntziachristos, “Singular-value analysis and optimization of experimental parameters in fluorescence molecular tomography,” J. Opt. Soc. Am. A 21(2), 231–241 (2004).
[Crossref] [PubMed]

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101(33), 12294–12299 (2004).
[Crossref] [PubMed]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30(5), 901–911 (2003).
[Crossref] [PubMed]

Welch, A. J.

Welsher, K.

K. Welsher, S. P. Sherlock, and H. Dai, “Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window,” Proc. Natl. Acad. Sci. U.S.A. 108(22), 8943–8948 (2011).
[Crossref] [PubMed]

K. Welsher, Z. Liu, S. P. Sherlock, J. T. Robinson, Z. Chen, D. Daranciang, and H. Dai, “A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice,” Nat. Nanotechnol. 4(11), 773–780 (2009).
[Crossref] [PubMed]

Wessner, A.

D. Doleschel, O. Mundigl, A. Wessner, F. Gremse, J. Bachmann, A. Rodriguez, U. Klingmüller, M. Jarsch, F. Kiessling, and W. Lederle, “Targeted near-infrared imaging of the erythropoietin receptor in human lung cancer xenografts,” J. Nucl. Med. 53(2), 304–311 (2012).
[Crossref] [PubMed]

Wu, X.

C. T. Xu, P. Svenmarker, H. Liu, X. Wu, M. E. Messing, L. R. Wallenberg, and S. Andersson-Engels, “High-resolution fluorescence diffuse optical tomography developed with nonlinear upconverting nanoparticles,” ACS Nano 6(6), 4788–4795 (2012).
[Crossref] [PubMed]

Xie, L.

G. Hong, J. C. Lee, J. T. Robinson, U. Raaz, L. Xie, N. F. Huang, J. P. Cooke, and H. Dai, “Multifunctional in vivo vascular imaging using near-infrared II fluorescence,” Nat. Med. 18(12), 1841–1846 (2012).
[Crossref] [PubMed]

Xu, C. T.

C. T. Xu, P. Svenmarker, H. Liu, X. Wu, M. E. Messing, L. R. Wallenberg, and S. Andersson-Engels, “High-resolution fluorescence diffuse optical tomography developed with nonlinear upconverting nanoparticles,” ACS Nano 6(6), 4788–4795 (2012).
[Crossref] [PubMed]

P. Svenmarker, C. T. Xu, and S. Andersson-Engels, “Use of nonlinear upconverting nanoparticles provides increased spatial resolution in fluorescence diffuse imaging,” Opt. Lett. 35(16), 2789–2791 (2010).
[Crossref] [PubMed]

Yaghi, O. K.

J. T. Robinson, G. Hong, Y. Liang, B. Zhang, O. K. Yaghi, and H. Dai, “In vivo fluorescence imaging in the second near-infrared window with long circulating carbon nanotubes capable of ultrahigh tumor uptake,” J. Am. Chem. Soc. 134(25), 10664–10669 (2012).
[Crossref] [PubMed]

Yang, X.

X. Yang, Y. Meng, Q. Luo, and H. Gong, “High resolution in vivo micro-CT with flat panel detector based on amorphous silicon,” J. XRay Sci. Technol. 18(4), 381–392 (2010).
[PubMed]

X. Yang, H. Gong, G. Quan, Y. Deng, and Q. Luo, “Combined system of fluorescence diffuse optical tomography and microcomputed tomography for small animal imaging,” Rev. Sci. Instrum. 81(5), 054304 (2010).
[Crossref] [PubMed]

Yessayan, D.

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101(33), 12294–12299 (2004).
[Crossref] [PubMed]

Yodh, A. G.

Zaccanti, G.

Zhang, B.

J. T. Robinson, G. Hong, Y. Liang, B. Zhang, O. K. Yaghi, and H. Dai, “In vivo fluorescence imaging in the second near-infrared window with long circulating carbon nanotubes capable of ultrahigh tumor uptake,” J. Am. Chem. Soc. 134(25), 10664–10669 (2012).
[Crossref] [PubMed]

Zhang, Y.

Y. Zhang, G. Hong, Y. Zhang, G. Chen, F. Li, H. Dai, and Q. Wang, “Ag2S quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window,” ACS Nano 6(5), 3695–3702 (2012).
[Crossref] [PubMed]

Y. Zhang, G. Hong, Y. Zhang, G. Chen, F. Li, H. Dai, and Q. Wang, “Ag2S quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window,” ACS Nano 6(5), 3695–3702 (2012).
[Crossref] [PubMed]

Zhang, Z. L.

P. Jiang, C. N. Zhu, Z. L. Zhang, Z. Q. Tian, and D. W. Pang, “Water-soluble Ag2S quantum dots for near-infrared fluorescence imaging in vivo,” Biomaterials 33(20), 5130–5135 (2012).
[Crossref] [PubMed]

Zhu, C. N.

P. Jiang, C. N. Zhu, Z. L. Zhang, Z. Q. Tian, and D. W. Pang, “Water-soluble Ag2S quantum dots for near-infrared fluorescence imaging in vivo,” Biomaterials 33(20), 5130–5135 (2012).
[Crossref] [PubMed]

ACS Nano (2)

C. T. Xu, P. Svenmarker, H. Liu, X. Wu, M. E. Messing, L. R. Wallenberg, and S. Andersson-Engels, “High-resolution fluorescence diffuse optical tomography developed with nonlinear upconverting nanoparticles,” ACS Nano 6(6), 4788–4795 (2012).
[Crossref] [PubMed]

Y. Zhang, G. Hong, Y. Zhang, G. Chen, F. Li, H. Dai, and Q. Wang, “Ag2S quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window,” ACS Nano 6(5), 3695–3702 (2012).
[Crossref] [PubMed]

Annu. Rev. Biomed. Eng. (1)

V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng. 8(1), 1–33 (2006).
[Crossref] [PubMed]

Appl. Opt. (3)

Biomaterials (1)

P. Jiang, C. N. Zhu, Z. L. Zhang, Z. Q. Tian, and D. W. Pang, “Water-soluble Ag2S quantum dots for near-infrared fluorescence imaging in vivo,” Biomaterials 33(20), 5130–5135 (2012).
[Crossref] [PubMed]

IEEE Trans. Med. Imaging (1)

R. Roy, A. B. Thompson, A. Godavarty, and E. M. Sevick-Muraca, “Tomographic fluorescence imaging in tissue phantoms: a novel reconstruction algorithm and imaging geometry,” IEEE Trans. Med. Imaging 24(2), 137–154 (2005).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

J. T. Robinson, G. Hong, Y. Liang, B. Zhang, O. K. Yaghi, and H. Dai, “In vivo fluorescence imaging in the second near-infrared window with long circulating carbon nanotubes capable of ultrahigh tumor uptake,” J. Am. Chem. Soc. 134(25), 10664–10669 (2012).
[Crossref] [PubMed]

J. Biomed. Opt. (3)

M. Azimipour, R. Baumgartner, Y. Liu, S. L. Jacques, K. Eliceiri, and R. Pashaie, “Extraction of optical properties and prediction of light distribution in rat brain tissue,” J. Biomed. Opt. 19(7), 075001 (2014).
[Crossref] [PubMed]

A. Ale, V. Ermolayev, N. C. Deliolanis, and V. Ntziachristos, “Fluorescence background subtraction technique for hybrid fluorescence molecular tomography/x-ray computed tomography imaging of a mouse model of early stage lung cancer,” J. Biomed. Opt. 18(5), 056006 (2013).
[Crossref] [PubMed]

G. Quan, H. Gong, Y. Deng, J. Fu, and Q. Luo, “Monte Carlo-based fluorescence molecular tomography reconstruction method accelerated by a cluster of graphic processing units,” J. Biomed. Opt. 16(2), 026018 (2011).
[Crossref] [PubMed]

J. Nucl. Med. (1)

D. Doleschel, O. Mundigl, A. Wessner, F. Gremse, J. Bachmann, A. Rodriguez, U. Klingmüller, M. Jarsch, F. Kiessling, and W. Lederle, “Targeted near-infrared imaging of the erythropoietin receptor in human lung cancer xenografts,” J. Nucl. Med. 53(2), 304–311 (2012).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. XRay Sci. Technol. (1)

X. Yang, Y. Meng, Q. Luo, and H. Gong, “High resolution in vivo micro-CT with flat panel detector based on amorphous silicon,” J. XRay Sci. Technol. 18(4), 381–392 (2010).
[PubMed]

Med. Image Anal. (1)

T. Lasser and V. Ntziachristos, “Optimization of 360 degrees projection fluorescence molecular tomography,” Med. Image Anal. 11(4), 389–399 (2007).
[Crossref] [PubMed]

Med. Phys. (2)

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30(5), 901–911 (2003).
[Crossref] [PubMed]

D. Razansky and V. Ntziachristos, “Hybrid photoacoustic fluorescence molecular tomography using finite-element-based inversion,” Med. Phys. 34(11), 4293–4301 (2007).
[Crossref] [PubMed]

Nat. Med. (1)

G. Hong, J. C. Lee, J. T. Robinson, U. Raaz, L. Xie, N. F. Huang, J. P. Cooke, and H. Dai, “Multifunctional in vivo vascular imaging using near-infrared II fluorescence,” Nat. Med. 18(12), 1841–1846 (2012).
[Crossref] [PubMed]

Nat. Methods (2)

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
[Crossref] [PubMed]

A. Ale, V. Ermolayev, E. Herzog, C. Cohrs, M. H. de Angelis, and V. Ntziachristos, “FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography,” Nat. Methods 9(6), 615–620 (2012).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

K. Welsher, Z. Liu, S. P. Sherlock, J. T. Robinson, Z. Chen, D. Daranciang, and H. Dai, “A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice,” Nat. Nanotechnol. 4(11), 773–780 (2009).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Phys. Med. Biol. (3)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971–1979 (1997).
[Crossref] [PubMed]

J. Dutta, S. Ahn, A. A. Joshi, and R. M. Leahy, “Illumination pattern optimization for fluorescence tomography: theory and simulation studies,” Phys. Med. Biol. 55(10), 2961–2982 (2010).
[Crossref] [PubMed]

J. Dutta, S. Ahn, C. Li, S. R. Cherry, and R. M. Leahy, “Joint L1 and total variation regularization for fluorescence molecular tomography,” Phys. Med. Biol. 57(6), 1459–1476 (2012).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (3)

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A. 105(49), 19126–19131 (2008).
[Crossref] [PubMed]

K. Welsher, S. P. Sherlock, and H. Dai, “Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window,” Proc. Natl. Acad. Sci. U.S.A. 108(22), 8943–8948 (2011).
[Crossref] [PubMed]

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101(33), 12294–12299 (2004).
[Crossref] [PubMed]

Proc. SPIE (2)

M. T. Ghijsen, Y. Lin, O. Nalcioglu, and G. Gulsen, “Development of a hybrid MRI and fluorescence tomography system for small animal imaging,” Proc. SPIE 7892, 789212 (2011).
[Crossref]

R. Guntupalli and R. Allen, “Evaluation of InGaAs camera for scientific near infrared imaging applications,” Proc. SPIE 6294, 629401 (2006).
[Crossref]

Rev. Sci. Instrum. (1)

X. Yang, H. Gong, G. Quan, Y. Deng, and Q. Luo, “Combined system of fluorescence diffuse optical tomography and microcomputed tomography for small animal imaging,” Rev. Sci. Instrum. 81(5), 054304 (2010).
[Crossref] [PubMed]

Other (1)

Princeton Instruments, “Introduction to scientific InGaAs FPA cameras”, http://www.princetoninstruments.com/Uploads/Princeton/Documents/TechNotes/PI_InGaAs_Tech_Note_revA0.pdf , accessed 4/24/15.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic of experimental setup used for FMT detection both in NIR-I and NIR-II using silicon and InGaAs cameras, respectively. An excitation beam scanned one side of the slab. A dichroic mirror separated the fluorescence in NIR-I and NIR-II. (b) Two fluorescence tubes, containing either DiR or Ag2S QDs, were placed in the slab-shaped phantom, 7 mm from the surface.
Fig. 2
Fig. 2 Singular-value analysis of different emission wavelengths. (a) Singular-value spectra for weight matrices representing setups with different emission wavelengths. (b) Plots of the number of useful singular values, extracted as shown in (a).
Fig. 3
Fig. 3 Projection images before reconstruction for NIR-I fluorophore (DiR) and NIR-II fluorophore (Ag2S QDs): (a) cross-section of projection image with one fluorescence tube. (b) cross-section of projection image with two fluorescence tubes, spaced 3 mm apart.
Fig. 4
Fig. 4 Rows (a) to (e) and (f) to (j) are FMT reconstructions with an NIR-I fluorophore (DiR) and NIR-II fluorophore (Ag2S QDs) as the contrast agents. Column (i) shows 3D views of the results. Column (ii) shows cross-sectional slices (two-dimensional plots) and their corresponding intensity profiles (line plots) for Column (i) in the Z = 6 mm plane. The true depth was z = 7 mm. The separation distances between the fluorescence tubes were varied from 1 to 5 mm (in steps of 1 mm) in both cases.
Fig. 5
Fig. 5 Comparison of reconstructed results of fluorophore distribution in mouse-shaped phantom. (a) Volume rendering image of mouse-shaped phantom obtained from micro-CT. Stereo (b) are the actual fluorescent objects inside the phantom. Stereo (c) and (d) are the reconstructed results obtained when using the NIR-I fluorophore (DiR) and NIR-II fluorophore (Ag2S QDs) as contrast agents. The outer shapes of the phantom in (b) to (d) were obtained by micro-CT.
Fig. 6
Fig. 6 (a) CT slice of actual location of fluorophore in two glass tubes. (b) FMT slice obtained from the data extracted from NIR-I. (c) FMT slice obtained from data extracted from NIR-II. The profile plots through the vertical and transverse dashed lines in (a) to (c) were shown in (d) and (e). The triangles in (e) correspond to Line 1 in (a) to (c), while the circles correspond to Line 2 in (a) to (c). The units in (e) and (f) were arbitrary, since all of the data was normalized according to the maximum values of the reconstruction results.

Tables (1)

Tables Icon

Table 1 Optical property parameters of slab-shaped phantom at multi-wavelengths

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

U nB ( r d , r s )= Θ U ex ( r d , r s ) U ex ( r, r s ) η( r ) D em G em ( r d ,r ) d 3 r
U nB =Wη
W=US V T

Metrics