Abstract

We report a high-energy picosecond optical parametric generator/amplifier (OPG/A) based on a MgO:PPLN crystal pumped by a fiber master-oscillator-power-amplifier (MOPA) employing direct amplification. An OPG tuning range of 1450-3615 nm is demonstrated with pulse energies as high as 2.6 μJ (signal) and 1.2 μJ (idler). When seeded with a ~100 MHz linewidth diode laser, damage-limited pulse energies of 3.1 μJ (signal) and 1.3 μJ (idler) have been achieved and the signal pulse time-bandwidth product is improved to ~2 times transform-limited. When seeded with a 0.3 nm-bandwidth filtered amplified spontaneous emission source, crystal damage is avoided and maximum pulse energies of 3.8 μJ (signal) and 1.7 μJ (idler) are obtained at an overall conversion efficiency of 45%.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Millijoule-level picosecond mid-infrared optical parametric amplifier based on MgO-doped periodically poled lithium niobate

Hongyan Xu, Feng Yang, Ying Chen, Ke Liu, Shifeng Du, Nan Zong, Jing Yang, Yong Bo, Qinjun Peng, Jingyuan Zhang, Dafu Cui, and Zuyan Xu
Appl. Opt. 54(9) 2489-2494 (2015)

Compact, high-pulse-energy, high-power, picosecond master oscillator power amplifier

Ho-Yin Chan, Shaif-ul Alam, Lin Xu, James Bateman, David J. Richardson, and David P. Shepherd
Opt. Express 22(18) 21938-21943 (2014)

Wavelength-tunable high-power picosecond pulses from a fiber-pumped diode-seeded high-gain parametric amplifier

P. E. Britton, N. G. R. Broderick, D. J. Richardson, P. G. R. Smith, G. W. Ross, and D. C. Hanna
Opt. Lett. 23(20) 1588-1590 (1998)

References

  • View by:
  • |
  • |
  • |

  1. S. Woutersen, U. Emmerichs, and H. J. Bakker, “Femtosecond mid-IR pump-probe spectroscopy of liquid water: evidence for a two-component structure,” Science 278(5338), 658–660 (1997).
    [Crossref]
  2. M. R. Papantonakis and R. F. Haglund., “Picosecond pulsed laser deposition at high vibrational excitation density: the case of poly(tetrafluoroethylene),” Appl. Phys., A Mater. Sci. Process. 79(7), 1687–1694 (2004).
    [Crossref]
  3. H. Linnenbank and S. Linden, “High repetition rate femtosecond double pass optical parametric generator with more than 2 W tunable output in the NIR,” Opt. Express 22(15), 18072–18077 (2014).
    [Crossref] [PubMed]
  4. F. Seifert, V. Petrov, and F. Noack, “Sub-100-fs optical parametric generator pumped by a high-repetition-rate Ti:sapphire regenerative amplifier system,” Opt. Lett. 19(11), 837–839 (1994).
    [Crossref] [PubMed]
  5. J. Krauth, A. Steinmann, R. Hegenbarth, M. Conforti, and H. Giessen, “Broadly tunable femtosecond near- and mid-IR source by direct pumping of an OPA with a 41.7 MHz Yb:KGW oscillator,” Opt. Express 21(9), 11516–11522 (2013).
    [Crossref] [PubMed]
  6. V. Z. Kolev, M. W. Duering, B. Luther-Davies, and A. V. Rode, “Compact high-power optical source for resonant infrared pulsed laser ablation and deposition of polymer materials,” Opt. Express 14(25), 12302–12309 (2006).
    [Crossref] [PubMed]
  7. D. D. McAlevy Bubb and R. F. Haglund, “Resonant infrared pulsed laser ablation and deposition of thin polymer films,” in Pulsed Laser Deposition of Thin Films, R. Eason, ed. (John Wiley & Sons, Inc., 2006).
  8. R. Piccoli, F. Pirzio, A. Agnesi, V. Badikov, D. Badikov, G. Marchev, V. Panyutin, and V. Petrov, “Narrow bandwidth, picosecond, 1064 nm pumped optical parametric generator for the mid-IR based on HgGa₂S₄,” Opt. Lett. 39(16), 4895–4898 (2014).
    [Crossref] [PubMed]
  9. S. C. Kumar, M. Jelínek, M. Baudisch, K. T. Zawilski, P. G. Schunemann, V. Kubeček, J. Biegert, and M. Ebrahim-Zadeh, “Tunable, high-energy, mid-infrared, picosecond optical parametric generator based on CdSiP2.,” Opt. Express 20(14), 15703–15709 (2012).
    [Crossref] [PubMed]
  10. G. Marchev, F. Pirzio, R. Piccoli, A. Agnesi, G. Reali, P. G. Schunemann, K. T. Zawilski, A. Tyazhev, and V. Petrov, “Narrow-bandwidth, ~100 ps seeded optical parametric generation in CdSiP2 pumped by Raman-shifted pulses at 1198 nm,” Opt. Lett. 38(17), 3344–3346 (2013).
    [Crossref] [PubMed]
  11. T. V. Andersen, O. Schmidt, C. Bruchmann, J. Limpert, C. Aguergaray, E. Cormier, and A. Tünnermann, “High repetition rate tunable femtosecond pulses and broadband amplification from fiber laser pumped parametric amplifier,” Opt. Express 14(11), 4765–4773 (2006).
    [Crossref] [PubMed]
  12. F. Kienle, P. Siong Teh, S.-U. Alam, C. B. E. Gawith, D. C. Hanna, D. J. Richardson, and D. P. Shepherd, “Compact, high-pulse-energy, picosecond optical parametric oscillator,” Opt. Lett. 35(21), 3580–3582 (2010).
    [Crossref] [PubMed]
  13. H. Y. Chan, S. U. Alam, L. Xu, J. Bateman, D. J. Richardson, and D. P. Shepherd, “Compact, high-pulse-energy, high-power, picosecond master oscillator power amplifier,” Opt. Express 22(18), 21938–21943 (2014).
    [Crossref] [PubMed]
  14. O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
    [Crossref]
  15. A. V. Okishev and J. D. Zuegel, “Intracavity-pumped Raman laser action in a mid IR, continuous-wave (cw) MgO:PPLN optical parametric oscillator,” Opt. Express 14(25), 12169–12173 (2006).
    [Crossref] [PubMed]
  16. T. Traub, F. Ruebel, and J. A. L’huillier, “Efficient injection-seeded kHz picosecond LBO optical parametric generator,” Appl. Phys. B 102(1), 25–29 (2011).
    [Crossref]
  17. J. Prawiharjo, H. S. S. Hung, D. C. Hanna, and D. P. Shepherd, “Theoretical and numerical investigations of parametric transfer via difference-frequency generation for indirect mid-infrared pulse shaping,” J. Opt. Soc. Am. B 24(4), 895–905 (2007).
    [Crossref]
  18. Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
    [Crossref]
  19. B. Bourliaguet, V. Couderc, A. Barthélémy, G. W. Ross, P. G. R. Smith, D. C. Hanna, and C. De Angelis, “Observation of quadratic spatial solitons in periodically poled lithium niobate,” Opt. Lett. 24(20), 1410–1412 (1999).
    [Crossref] [PubMed]
  20. P. Di Trapani, A. Bramati, S. Minardi, W. Chinaglia, C. Conti, S. Trillo, J. Kilius, and G. Valiulis, “Focusing versus defocusing nonlinearities due to parametric wave mixing,” Phys. Rev. Lett. 87(18), 183902 (2001).
    [Crossref]

2014 (3)

2013 (2)

2012 (1)

2011 (1)

T. Traub, F. Ruebel, and J. A. L’huillier, “Efficient injection-seeded kHz picosecond LBO optical parametric generator,” Appl. Phys. B 102(1), 25–29 (2011).
[Crossref]

2010 (1)

2008 (1)

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
[Crossref]

2007 (1)

2006 (3)

2004 (1)

M. R. Papantonakis and R. F. Haglund., “Picosecond pulsed laser deposition at high vibrational excitation density: the case of poly(tetrafluoroethylene),” Appl. Phys., A Mater. Sci. Process. 79(7), 1687–1694 (2004).
[Crossref]

2001 (2)

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[Crossref]

P. Di Trapani, A. Bramati, S. Minardi, W. Chinaglia, C. Conti, S. Trillo, J. Kilius, and G. Valiulis, “Focusing versus defocusing nonlinearities due to parametric wave mixing,” Phys. Rev. Lett. 87(18), 183902 (2001).
[Crossref]

1999 (1)

1997 (1)

S. Woutersen, U. Emmerichs, and H. J. Bakker, “Femtosecond mid-IR pump-probe spectroscopy of liquid water: evidence for a two-component structure,” Science 278(5338), 658–660 (1997).
[Crossref]

1994 (1)

Agnesi, A.

Aguergaray, C.

Alam, S. U.

Alam, S.-U.

Alexandrovski, A.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[Crossref]

Andersen, T. V.

Arie, A.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
[Crossref]

Badikov, D.

Badikov, V.

Bakker, H. J.

S. Woutersen, U. Emmerichs, and H. J. Bakker, “Femtosecond mid-IR pump-probe spectroscopy of liquid water: evidence for a two-component structure,” Science 278(5338), 658–660 (1997).
[Crossref]

Barthélémy, A.

Bateman, J.

Baudisch, M.

Biegert, J.

Bourliaguet, B.

Bramati, A.

P. Di Trapani, A. Bramati, S. Minardi, W. Chinaglia, C. Conti, S. Trillo, J. Kilius, and G. Valiulis, “Focusing versus defocusing nonlinearities due to parametric wave mixing,” Phys. Rev. Lett. 87(18), 183902 (2001).
[Crossref]

Bruchmann, C.

Chan, H. Y.

Chinaglia, W.

P. Di Trapani, A. Bramati, S. Minardi, W. Chinaglia, C. Conti, S. Trillo, J. Kilius, and G. Valiulis, “Focusing versus defocusing nonlinearities due to parametric wave mixing,” Phys. Rev. Lett. 87(18), 183902 (2001).
[Crossref]

Conforti, M.

Conti, C.

P. Di Trapani, A. Bramati, S. Minardi, W. Chinaglia, C. Conti, S. Trillo, J. Kilius, and G. Valiulis, “Focusing versus defocusing nonlinearities due to parametric wave mixing,” Phys. Rev. Lett. 87(18), 183902 (2001).
[Crossref]

Cormier, E.

Couderc, V.

De Angelis, C.

Di Trapani, P.

P. Di Trapani, A. Bramati, S. Minardi, W. Chinaglia, C. Conti, S. Trillo, J. Kilius, and G. Valiulis, “Focusing versus defocusing nonlinearities due to parametric wave mixing,” Phys. Rev. Lett. 87(18), 183902 (2001).
[Crossref]

Duering, M. W.

Ebrahim-Zadeh, M.

Emmerichs, U.

S. Woutersen, U. Emmerichs, and H. J. Bakker, “Femtosecond mid-IR pump-probe spectroscopy of liquid water: evidence for a two-component structure,” Science 278(5338), 658–660 (1997).
[Crossref]

Fejer, M. M.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[Crossref]

Foulon, G.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[Crossref]

Furukawa, Y.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[Crossref]

Galun, E.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
[Crossref]

Gawith, C. B. E.

Gayer, O.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
[Crossref]

Giessen, H.

Haglund, R. F.

M. R. Papantonakis and R. F. Haglund., “Picosecond pulsed laser deposition at high vibrational excitation density: the case of poly(tetrafluoroethylene),” Appl. Phys., A Mater. Sci. Process. 79(7), 1687–1694 (2004).
[Crossref]

Hanna, D. C.

Hegenbarth, R.

Hung, H. S. S.

Jelínek, M.

Kienle, F.

Kilius, J.

P. Di Trapani, A. Bramati, S. Minardi, W. Chinaglia, C. Conti, S. Trillo, J. Kilius, and G. Valiulis, “Focusing versus defocusing nonlinearities due to parametric wave mixing,” Phys. Rev. Lett. 87(18), 183902 (2001).
[Crossref]

Kitamura, K.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[Crossref]

Kolev, V. Z.

Krauth, J.

Kubecek, V.

Kumar, S. C.

L’huillier, J. A.

T. Traub, F. Ruebel, and J. A. L’huillier, “Efficient injection-seeded kHz picosecond LBO optical parametric generator,” Appl. Phys. B 102(1), 25–29 (2011).
[Crossref]

Limpert, J.

Linden, S.

Linnenbank, H.

Luther-Davies, B.

Marchev, G.

Minardi, S.

P. Di Trapani, A. Bramati, S. Minardi, W. Chinaglia, C. Conti, S. Trillo, J. Kilius, and G. Valiulis, “Focusing versus defocusing nonlinearities due to parametric wave mixing,” Phys. Rev. Lett. 87(18), 183902 (2001).
[Crossref]

Noack, F.

Okishev, A. V.

Panyutin, V.

Papantonakis, M. R.

M. R. Papantonakis and R. F. Haglund., “Picosecond pulsed laser deposition at high vibrational excitation density: the case of poly(tetrafluoroethylene),” Appl. Phys., A Mater. Sci. Process. 79(7), 1687–1694 (2004).
[Crossref]

Petrov, V.

Piccoli, R.

Pirzio, F.

Prawiharjo, J.

Reali, G.

Richardson, D. J.

Rode, A. V.

Ross, G. W.

Route, R. K.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[Crossref]

Ruebel, F.

T. Traub, F. Ruebel, and J. A. L’huillier, “Efficient injection-seeded kHz picosecond LBO optical parametric generator,” Appl. Phys. B 102(1), 25–29 (2011).
[Crossref]

Sacks, Z.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
[Crossref]

Schmidt, O.

Schunemann, P. G.

Seifert, F.

Shepherd, D. P.

Siong Teh, P.

Smith, P. G. R.

Steinmann, A.

Traub, T.

T. Traub, F. Ruebel, and J. A. L’huillier, “Efficient injection-seeded kHz picosecond LBO optical parametric generator,” Appl. Phys. B 102(1), 25–29 (2011).
[Crossref]

Trillo, S.

P. Di Trapani, A. Bramati, S. Minardi, W. Chinaglia, C. Conti, S. Trillo, J. Kilius, and G. Valiulis, “Focusing versus defocusing nonlinearities due to parametric wave mixing,” Phys. Rev. Lett. 87(18), 183902 (2001).
[Crossref]

Tünnermann, A.

Tyazhev, A.

Valiulis, G.

P. Di Trapani, A. Bramati, S. Minardi, W. Chinaglia, C. Conti, S. Trillo, J. Kilius, and G. Valiulis, “Focusing versus defocusing nonlinearities due to parametric wave mixing,” Phys. Rev. Lett. 87(18), 183902 (2001).
[Crossref]

Woutersen, S.

S. Woutersen, U. Emmerichs, and H. J. Bakker, “Femtosecond mid-IR pump-probe spectroscopy of liquid water: evidence for a two-component structure,” Science 278(5338), 658–660 (1997).
[Crossref]

Xu, L.

Zawilski, K. T.

Zuegel, J. D.

Appl. Phys. B (2)

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
[Crossref]

T. Traub, F. Ruebel, and J. A. L’huillier, “Efficient injection-seeded kHz picosecond LBO optical parametric generator,” Appl. Phys. B 102(1), 25–29 (2011).
[Crossref]

Appl. Phys. Lett. (1)

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

M. R. Papantonakis and R. F. Haglund., “Picosecond pulsed laser deposition at high vibrational excitation density: the case of poly(tetrafluoroethylene),” Appl. Phys., A Mater. Sci. Process. 79(7), 1687–1694 (2004).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Express (7)

T. V. Andersen, O. Schmidt, C. Bruchmann, J. Limpert, C. Aguergaray, E. Cormier, and A. Tünnermann, “High repetition rate tunable femtosecond pulses and broadband amplification from fiber laser pumped parametric amplifier,” Opt. Express 14(11), 4765–4773 (2006).
[Crossref] [PubMed]

A. V. Okishev and J. D. Zuegel, “Intracavity-pumped Raman laser action in a mid IR, continuous-wave (cw) MgO:PPLN optical parametric oscillator,” Opt. Express 14(25), 12169–12173 (2006).
[Crossref] [PubMed]

V. Z. Kolev, M. W. Duering, B. Luther-Davies, and A. V. Rode, “Compact high-power optical source for resonant infrared pulsed laser ablation and deposition of polymer materials,” Opt. Express 14(25), 12302–12309 (2006).
[Crossref] [PubMed]

S. C. Kumar, M. Jelínek, M. Baudisch, K. T. Zawilski, P. G. Schunemann, V. Kubeček, J. Biegert, and M. Ebrahim-Zadeh, “Tunable, high-energy, mid-infrared, picosecond optical parametric generator based on CdSiP2.,” Opt. Express 20(14), 15703–15709 (2012).
[Crossref] [PubMed]

J. Krauth, A. Steinmann, R. Hegenbarth, M. Conforti, and H. Giessen, “Broadly tunable femtosecond near- and mid-IR source by direct pumping of an OPA with a 41.7 MHz Yb:KGW oscillator,” Opt. Express 21(9), 11516–11522 (2013).
[Crossref] [PubMed]

H. Linnenbank and S. Linden, “High repetition rate femtosecond double pass optical parametric generator with more than 2 W tunable output in the NIR,” Opt. Express 22(15), 18072–18077 (2014).
[Crossref] [PubMed]

H. Y. Chan, S. U. Alam, L. Xu, J. Bateman, D. J. Richardson, and D. P. Shepherd, “Compact, high-pulse-energy, high-power, picosecond master oscillator power amplifier,” Opt. Express 22(18), 21938–21943 (2014).
[Crossref] [PubMed]

Opt. Lett. (5)

Phys. Rev. Lett. (1)

P. Di Trapani, A. Bramati, S. Minardi, W. Chinaglia, C. Conti, S. Trillo, J. Kilius, and G. Valiulis, “Focusing versus defocusing nonlinearities due to parametric wave mixing,” Phys. Rev. Lett. 87(18), 183902 (2001).
[Crossref]

Science (1)

S. Woutersen, U. Emmerichs, and H. J. Bakker, “Femtosecond mid-IR pump-probe spectroscopy of liquid water: evidence for a two-component structure,” Science 278(5338), 658–660 (1997).
[Crossref]

Other (1)

D. D. McAlevy Bubb and R. F. Haglund, “Resonant infrared pulsed laser ablation and deposition of thin polymer films,” in Pulsed Laser Deposition of Thin Films, R. Eason, ed. (John Wiley & Sons, Inc., 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup of the OPG (unseeded) and OPA (seeded). HWP, half-wave plate; PBS, polarizing beam splitter; DM, dichroic mirror; LPF, long-pass filter.

Fig. 2
Fig. 2

Signal and idler output power as a function of pump power in OPG operation. The circles are measured data points and the solid lines are linear fits. Inset, the generated signal and idler wavelengths for different PPLN grating periods. The circles represent measured data points and the solid curve is calculated based on Sellmeier data.

Fig. 3
Fig. 3

(a) Spectral measured for signal (below) and idler (on top) in both OPG and OPA operation regime. (b) Signal pulses in OPG and OPA.

Fig. 4
Fig. 4

(a) Signal output power and Gain as a function of different seeding power in OPA. (b) Comparison of measured beam quality (M2) for OPG and OPA.

Fig. 5
Fig. 5

(Left) Signal and idler output power as a function of pump power in OPA operation with a filtered ASE seed. Circles are measured data points and the solid lines are linear fits. (Right) Total power conversion efficiency versus pump power. The solid line is purely to guide the eye.

Metrics