Abstract

Precise tailoring of optical vector beams is demonstrated, shaping their focal electric fields and used to create complex laser micro-patterning on a metal surface. A Spatial Light Modulator (SLM) and a micro-structured S-waveplate were integrated with a picosecond laser system and employed to structure the vector fields into radial and azimuthal polarizations with and without a vortex phase wavefront as well as superposition states. Imprinting Laser Induced Periodic Surface Structures (LIPSS) elucidates the detailed vector fields around the focal region. In addition to clear azimuthal and radial plasmon surface structures, unique, variable logarithmic spiral micro-structures with a pitch Λ ∼1μm, not observed previously, were imprinted on the surface, confirming unambiguously the complex 2D focal electric fields. We show clearly also how the Orbital Angular Momentum(OAM) associated with a helical wavefront induces rotation of vector fields along the optic axis of a focusing lens and confirmed by the observed surface micro-structures.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dynamic modulation of spatially structured polarization fields for real-time control of ultrafast laser-material interactions

Y. Jin, O. J. Allegre, W. Perrie, K. Abrams, J. Ouyang, E. Fearon, S. P. Edwardson, and G. Dearden
Opt. Express 21(21) 25333-25343 (2013)

Complete wavefront and polarization control for ultrashort-pulse laser microprocessing

O J Allegre, Y Jin, W Perrie, J Ouyang, E Fearon, S P Edwardson, and G Dearden
Opt. Express 21(18) 21198-21207 (2013)

Tailoring optical orbital angular momentum spectrum with spiral complex field modulation

Chenhao Wan, Jian Chen, and Qiwen Zhan
Opt. Express 25(13) 15108-15117 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1(1), 1 (2009).
    [Crossref]
  2. A. Tovar, “Production and propagation of cylindrically polarized Laguerre–Gaussian laser beams,” J. Opt. Soc. Am. A 15(10), 2705 (1998).
    [Crossref]
  3. Y. Jin, O. J. Allegre, W. Perrie, K. Abrams, J. Ouyang, E. Fearon, S. P. Edwardson, and G. Dearden, “Dynamic modulation of spatially structured polarization fields for real-time control of ultrafast laser-material interactions,” Opt. Express 21(21), 25333–25343 (2013).
    [Crossref] [PubMed]
  4. M. Beresna, M. Gecevičius, P. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 201101 (2011).
    [Crossref]
  5. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
    [Crossref] [PubMed]
  6. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12(15), 3377–3382 (2004).
    [Crossref] [PubMed]
  7. C. Varin and M. Piché, “Acceleration of ultra-relativistic electrons using high-intensity TM01 laser beams,” Appl. Phys. B 74(S1), s83–s88 (2002).
    [Crossref]
  8. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
    [Crossref] [PubMed]
  9. Q. Zhan and J. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10(7), 324–331 (2002).
    [Crossref] [PubMed]
  10. C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing Local Field Structure of Focused Ultrashort Pulses,” Phys. Rev. Lett. 106(12), 123901 (2011).
    [Crossref] [PubMed]
  11. C. Hnatovsky, V. G. Shvedov, and W. Krolikowski, “The role of light-induced nanostructures in femtosecond laser micromachining with vector and scalar pulses,” Opt. Express 21(10), 12651–12656 (2013).
    [Crossref] [PubMed]
  12. I. Freund, “Optical Möbius strips, twisted ribbons, and the index theorem,” Opt. Lett. 36(23), 4506–4508 (2011).
    [Crossref] [PubMed]
  13. T. Bauer, P. Banzer, E. Karimi, S. Orlov, A. Rubano, L. Marrucci, E. Santamato, R. W. Boyd, and G. Leuchs, “Observation of optical polarization Möbius strips,” Science 347(6225), 964–966 (2015).
    [Crossref] [PubMed]
  14. K. Anoop, A. Rubano, R. Fittipaldi, X. Wang, D. Paparo, A. Vecchione, L. Marrucci, R. Bruzzese, and S. Amoruso, “Femtosecond laser surface structuring of silicon using optical vortex beams generated by a q-plate,” Appl. Phys. Lett. 104(24), 241604 (2014).
    [Crossref]
  15. J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon–modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
    [Crossref]
  16. K. Lou, S. X. Qian, X. L. Wang, Y. Li, B. Gu, C. Tu, and H. T. Wang, “Two-dimensional microstructures induced by femtosecond vector light fields on silicon,” Opt. Express 20(1), 120–127 (2012).
    [Crossref] [PubMed]
  17. K. Lou, S. Qian, Z. Ren, X. Wang, Y. Li, C. Tu, and H. Wang, “Self-formed two-dimensional near-wavelength microstructures on copper induced by multipulse femtosecond vector optical fields,” J. Opt. Soc. Am. B 29(9), 2282 (2012).
    [Crossref]
  18. Z. Guosheng, P. Fauchet, and A. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B 26(10), 5366–5381 (1982).
    [Crossref]
  19. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of Laser-Induced Near-Subwavelength Ripples: Interference between Surface Plasmons and Incident Laser,” ACS Nano 3(12), 4062–4070 (2009).
    [Crossref] [PubMed]
  20. H. Ringermacher and L. Mead, “A new formula describing the scaffold structure of spiral galaxies,” Mon. Not. R. Astron. Soc. 397(1), 164–171 (2009).
    [Crossref]
  21. F. Cardano, E. Karimi, L. Marrucci, C. de Lisio, and E. Santamato, “Generation and dynamics of optical beams with polarization singularities,” Opt. Express 21(7), 8815–8820 (2013).
    [Crossref] [PubMed]
  22. X. L. Wang, J. Ding, W. J. Ni, C. S. Guo, and H. T. Wang, “Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement,” Opt. Lett. 32(24), 3549–3551 (2007).
    [Crossref] [PubMed]
  23. G. Machavariani, Y. Lumer, I. Moshe, and S. Jackel, “Effect of the spiral phase element on the radial-polarization (0,1) LG beam,” Opt. Commun. 271(1), 190–196 (2007).
    [Crossref]
  24. Q. Z. Zhao, S. Malzer, and L. J. Wang, “Formation of subwavelength periodic structures on tungsten induced by ultrashort laser pulses,” Opt. Lett. 32(13), 1932–1934 (2007).
    [Crossref] [PubMed]
  25. U. Klug, J. Düsing, T. Sato, K. Washio, and R. Kling, “Polarization converted laser beams for micromachining applications,” Proc. SPIE 7590, 759006 (2010).
    [Crossref]
  26. O. J. Allegre, Y. Jin, W. Perrie, J. Ouyang, E. Fearon, S. P. Edwardson, and G. Dearden, “Complete wavefront and polarization control for ultrashort-pulse laser microprocessing,” Opt. Express 21(18), 21198–21207 (2013).
    [Crossref] [PubMed]
  27. F. Gori, “Polarization basis for vortex beams,” J. Opt. Soc. Am. A 18(7), 1612–1617 (2001).
    [Crossref] [PubMed]
  28. F. Intonti, N. Caselli, N. Lawrence, J. Trevino, D. Wiersma, and L. Dal Negro, “Near-field distribution and propagation of scattering resonances in Vogel spiral arrays of dielectric nanopillars,” New J. Phys. 15(8), 085023 (2013).
    [Crossref]

2015 (1)

T. Bauer, P. Banzer, E. Karimi, S. Orlov, A. Rubano, L. Marrucci, E. Santamato, R. W. Boyd, and G. Leuchs, “Observation of optical polarization Möbius strips,” Science 347(6225), 964–966 (2015).
[Crossref] [PubMed]

2014 (1)

K. Anoop, A. Rubano, R. Fittipaldi, X. Wang, D. Paparo, A. Vecchione, L. Marrucci, R. Bruzzese, and S. Amoruso, “Femtosecond laser surface structuring of silicon using optical vortex beams generated by a q-plate,” Appl. Phys. Lett. 104(24), 241604 (2014).
[Crossref]

2013 (5)

2012 (2)

2011 (3)

I. Freund, “Optical Möbius strips, twisted ribbons, and the index theorem,” Opt. Lett. 36(23), 4506–4508 (2011).
[Crossref] [PubMed]

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing Local Field Structure of Focused Ultrashort Pulses,” Phys. Rev. Lett. 106(12), 123901 (2011).
[Crossref] [PubMed]

M. Beresna, M. Gecevičius, P. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 201101 (2011).
[Crossref]

2010 (1)

U. Klug, J. Düsing, T. Sato, K. Washio, and R. Kling, “Polarization converted laser beams for micromachining applications,” Proc. SPIE 7590, 759006 (2010).
[Crossref]

2009 (3)

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of Laser-Induced Near-Subwavelength Ripples: Interference between Surface Plasmons and Incident Laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

H. Ringermacher and L. Mead, “A new formula describing the scaffold structure of spiral galaxies,” Mon. Not. R. Astron. Soc. 397(1), 164–171 (2009).
[Crossref]

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1(1), 1 (2009).
[Crossref]

2007 (3)

2004 (1)

2003 (1)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

2002 (3)

C. Varin and M. Piché, “Acceleration of ultra-relativistic electrons using high-intensity TM01 laser beams,” Appl. Phys. B 74(S1), s83–s88 (2002).
[Crossref]

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon–modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
[Crossref]

Q. Zhan and J. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10(7), 324–331 (2002).
[Crossref] [PubMed]

2001 (2)

F. Gori, “Polarization basis for vortex beams,” J. Opt. Soc. Am. A 18(7), 1612–1617 (2001).
[Crossref] [PubMed]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

1998 (1)

1982 (1)

Z. Guosheng, P. Fauchet, and A. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B 26(10), 5366–5381 (1982).
[Crossref]

Abrams, K.

Allegre, O. J.

Amoruso, S.

K. Anoop, A. Rubano, R. Fittipaldi, X. Wang, D. Paparo, A. Vecchione, L. Marrucci, R. Bruzzese, and S. Amoruso, “Femtosecond laser surface structuring of silicon using optical vortex beams generated by a q-plate,” Appl. Phys. Lett. 104(24), 241604 (2014).
[Crossref]

Anoop, K.

K. Anoop, A. Rubano, R. Fittipaldi, X. Wang, D. Paparo, A. Vecchione, L. Marrucci, R. Bruzzese, and S. Amoruso, “Femtosecond laser surface structuring of silicon using optical vortex beams generated by a q-plate,” Appl. Phys. Lett. 104(24), 241604 (2014).
[Crossref]

Banzer, P.

T. Bauer, P. Banzer, E. Karimi, S. Orlov, A. Rubano, L. Marrucci, E. Santamato, R. W. Boyd, and G. Leuchs, “Observation of optical polarization Möbius strips,” Science 347(6225), 964–966 (2015).
[Crossref] [PubMed]

Baudach, S.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon–modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
[Crossref]

Bauer, T.

T. Bauer, P. Banzer, E. Karimi, S. Orlov, A. Rubano, L. Marrucci, E. Santamato, R. W. Boyd, and G. Leuchs, “Observation of optical polarization Möbius strips,” Science 347(6225), 964–966 (2015).
[Crossref] [PubMed]

Beresna, M.

M. Beresna, M. Gecevičius, P. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 201101 (2011).
[Crossref]

Beversluis, M. R.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

Bonse, J.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon–modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
[Crossref]

Boyd, R. W.

T. Bauer, P. Banzer, E. Karimi, S. Orlov, A. Rubano, L. Marrucci, E. Santamato, R. W. Boyd, and G. Leuchs, “Observation of optical polarization Möbius strips,” Science 347(6225), 964–966 (2015).
[Crossref] [PubMed]

Brown, T. G.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

Bruzzese, R.

K. Anoop, A. Rubano, R. Fittipaldi, X. Wang, D. Paparo, A. Vecchione, L. Marrucci, R. Bruzzese, and S. Amoruso, “Femtosecond laser surface structuring of silicon using optical vortex beams generated by a q-plate,” Appl. Phys. Lett. 104(24), 241604 (2014).
[Crossref]

Cardano, F.

Caselli, N.

F. Intonti, N. Caselli, N. Lawrence, J. Trevino, D. Wiersma, and L. Dal Negro, “Near-field distribution and propagation of scattering resonances in Vogel spiral arrays of dielectric nanopillars,” New J. Phys. 15(8), 085023 (2013).
[Crossref]

Cheng, Y.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of Laser-Induced Near-Subwavelength Ripples: Interference between Surface Plasmons and Incident Laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Dal Negro, L.

F. Intonti, N. Caselli, N. Lawrence, J. Trevino, D. Wiersma, and L. Dal Negro, “Near-field distribution and propagation of scattering resonances in Vogel spiral arrays of dielectric nanopillars,” New J. Phys. 15(8), 085023 (2013).
[Crossref]

de Lisio, C.

Dearden, G.

Ding, J.

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Düsing, J.

U. Klug, J. Düsing, T. Sato, K. Washio, and R. Kling, “Polarization converted laser beams for micromachining applications,” Proc. SPIE 7590, 759006 (2010).
[Crossref]

Edwardson, S. P.

Fauchet, P.

Z. Guosheng, P. Fauchet, and A. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B 26(10), 5366–5381 (1982).
[Crossref]

Fearon, E.

Fittipaldi, R.

K. Anoop, A. Rubano, R. Fittipaldi, X. Wang, D. Paparo, A. Vecchione, L. Marrucci, R. Bruzzese, and S. Amoruso, “Femtosecond laser surface structuring of silicon using optical vortex beams generated by a q-plate,” Appl. Phys. Lett. 104(24), 241604 (2014).
[Crossref]

Freund, I.

Gecevicius, M.

M. Beresna, M. Gecevičius, P. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 201101 (2011).
[Crossref]

Gertus, T.

M. Beresna, M. Gecevičius, P. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 201101 (2011).
[Crossref]

Gori, F.

Gu, B.

Guo, C. S.

Guosheng, Z.

Z. Guosheng, P. Fauchet, and A. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B 26(10), 5366–5381 (1982).
[Crossref]

Hnatovsky, C.

C. Hnatovsky, V. G. Shvedov, and W. Krolikowski, “The role of light-induced nanostructures in femtosecond laser micromachining with vector and scalar pulses,” Opt. Express 21(10), 12651–12656 (2013).
[Crossref] [PubMed]

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing Local Field Structure of Focused Ultrashort Pulses,” Phys. Rev. Lett. 106(12), 123901 (2011).
[Crossref] [PubMed]

Huang, M.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of Laser-Induced Near-Subwavelength Ripples: Interference between Surface Plasmons and Incident Laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Intonti, F.

F. Intonti, N. Caselli, N. Lawrence, J. Trevino, D. Wiersma, and L. Dal Negro, “Near-field distribution and propagation of scattering resonances in Vogel spiral arrays of dielectric nanopillars,” New J. Phys. 15(8), 085023 (2013).
[Crossref]

Jackel, S.

G. Machavariani, Y. Lumer, I. Moshe, and S. Jackel, “Effect of the spiral phase element on the radial-polarization (0,1) LG beam,” Opt. Commun. 271(1), 190–196 (2007).
[Crossref]

Jin, Y.

Karimi, E.

T. Bauer, P. Banzer, E. Karimi, S. Orlov, A. Rubano, L. Marrucci, E. Santamato, R. W. Boyd, and G. Leuchs, “Observation of optical polarization Möbius strips,” Science 347(6225), 964–966 (2015).
[Crossref] [PubMed]

F. Cardano, E. Karimi, L. Marrucci, C. de Lisio, and E. Santamato, “Generation and dynamics of optical beams with polarization singularities,” Opt. Express 21(7), 8815–8820 (2013).
[Crossref] [PubMed]

Kautek, W.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon–modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
[Crossref]

Kazansky, P.

M. Beresna, M. Gecevičius, P. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 201101 (2011).
[Crossref]

Kling, R.

U. Klug, J. Düsing, T. Sato, K. Washio, and R. Kling, “Polarization converted laser beams for micromachining applications,” Proc. SPIE 7590, 759006 (2010).
[Crossref]

Klug, U.

U. Klug, J. Düsing, T. Sato, K. Washio, and R. Kling, “Polarization converted laser beams for micromachining applications,” Proc. SPIE 7590, 759006 (2010).
[Crossref]

Krolikowski, W.

C. Hnatovsky, V. G. Shvedov, and W. Krolikowski, “The role of light-induced nanostructures in femtosecond laser micromachining with vector and scalar pulses,” Opt. Express 21(10), 12651–12656 (2013).
[Crossref] [PubMed]

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing Local Field Structure of Focused Ultrashort Pulses,” Phys. Rev. Lett. 106(12), 123901 (2011).
[Crossref] [PubMed]

Krüger, J.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon–modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
[Crossref]

Lawrence, N.

F. Intonti, N. Caselli, N. Lawrence, J. Trevino, D. Wiersma, and L. Dal Negro, “Near-field distribution and propagation of scattering resonances in Vogel spiral arrays of dielectric nanopillars,” New J. Phys. 15(8), 085023 (2013).
[Crossref]

Leger, J.

Lenzner, M.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon–modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
[Crossref]

Leuchs, G.

T. Bauer, P. Banzer, E. Karimi, S. Orlov, A. Rubano, L. Marrucci, E. Santamato, R. W. Boyd, and G. Leuchs, “Observation of optical polarization Möbius strips,” Science 347(6225), 964–966 (2015).
[Crossref] [PubMed]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Li, Y.

Lou, K.

Lumer, Y.

G. Machavariani, Y. Lumer, I. Moshe, and S. Jackel, “Effect of the spiral phase element on the radial-polarization (0,1) LG beam,” Opt. Commun. 271(1), 190–196 (2007).
[Crossref]

Machavariani, G.

G. Machavariani, Y. Lumer, I. Moshe, and S. Jackel, “Effect of the spiral phase element on the radial-polarization (0,1) LG beam,” Opt. Commun. 271(1), 190–196 (2007).
[Crossref]

Malzer, S.

Marrucci, L.

T. Bauer, P. Banzer, E. Karimi, S. Orlov, A. Rubano, L. Marrucci, E. Santamato, R. W. Boyd, and G. Leuchs, “Observation of optical polarization Möbius strips,” Science 347(6225), 964–966 (2015).
[Crossref] [PubMed]

K. Anoop, A. Rubano, R. Fittipaldi, X. Wang, D. Paparo, A. Vecchione, L. Marrucci, R. Bruzzese, and S. Amoruso, “Femtosecond laser surface structuring of silicon using optical vortex beams generated by a q-plate,” Appl. Phys. Lett. 104(24), 241604 (2014).
[Crossref]

F. Cardano, E. Karimi, L. Marrucci, C. de Lisio, and E. Santamato, “Generation and dynamics of optical beams with polarization singularities,” Opt. Express 21(7), 8815–8820 (2013).
[Crossref] [PubMed]

Mead, L.

H. Ringermacher and L. Mead, “A new formula describing the scaffold structure of spiral galaxies,” Mon. Not. R. Astron. Soc. 397(1), 164–171 (2009).
[Crossref]

Moshe, I.

G. Machavariani, Y. Lumer, I. Moshe, and S. Jackel, “Effect of the spiral phase element on the radial-polarization (0,1) LG beam,” Opt. Commun. 271(1), 190–196 (2007).
[Crossref]

Ni, W. J.

Novotny, L.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

Orlov, S.

T. Bauer, P. Banzer, E. Karimi, S. Orlov, A. Rubano, L. Marrucci, E. Santamato, R. W. Boyd, and G. Leuchs, “Observation of optical polarization Möbius strips,” Science 347(6225), 964–966 (2015).
[Crossref] [PubMed]

Ouyang, J.

Paparo, D.

K. Anoop, A. Rubano, R. Fittipaldi, X. Wang, D. Paparo, A. Vecchione, L. Marrucci, R. Bruzzese, and S. Amoruso, “Femtosecond laser surface structuring of silicon using optical vortex beams generated by a q-plate,” Appl. Phys. Lett. 104(24), 241604 (2014).
[Crossref]

Perrie, W.

Piché, M.

C. Varin and M. Piché, “Acceleration of ultra-relativistic electrons using high-intensity TM01 laser beams,” Appl. Phys. B 74(S1), s83–s88 (2002).
[Crossref]

Qian, S.

Qian, S. X.

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Ren, Z.

Ringermacher, H.

H. Ringermacher and L. Mead, “A new formula describing the scaffold structure of spiral galaxies,” Mon. Not. R. Astron. Soc. 397(1), 164–171 (2009).
[Crossref]

Rode, A.

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing Local Field Structure of Focused Ultrashort Pulses,” Phys. Rev. Lett. 106(12), 123901 (2011).
[Crossref] [PubMed]

Rubano, A.

T. Bauer, P. Banzer, E. Karimi, S. Orlov, A. Rubano, L. Marrucci, E. Santamato, R. W. Boyd, and G. Leuchs, “Observation of optical polarization Möbius strips,” Science 347(6225), 964–966 (2015).
[Crossref] [PubMed]

K. Anoop, A. Rubano, R. Fittipaldi, X. Wang, D. Paparo, A. Vecchione, L. Marrucci, R. Bruzzese, and S. Amoruso, “Femtosecond laser surface structuring of silicon using optical vortex beams generated by a q-plate,” Appl. Phys. Lett. 104(24), 241604 (2014).
[Crossref]

Santamato, E.

T. Bauer, P. Banzer, E. Karimi, S. Orlov, A. Rubano, L. Marrucci, E. Santamato, R. W. Boyd, and G. Leuchs, “Observation of optical polarization Möbius strips,” Science 347(6225), 964–966 (2015).
[Crossref] [PubMed]

F. Cardano, E. Karimi, L. Marrucci, C. de Lisio, and E. Santamato, “Generation and dynamics of optical beams with polarization singularities,” Opt. Express 21(7), 8815–8820 (2013).
[Crossref] [PubMed]

Sato, T.

U. Klug, J. Düsing, T. Sato, K. Washio, and R. Kling, “Polarization converted laser beams for micromachining applications,” Proc. SPIE 7590, 759006 (2010).
[Crossref]

Shvedov, V.

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing Local Field Structure of Focused Ultrashort Pulses,” Phys. Rev. Lett. 106(12), 123901 (2011).
[Crossref] [PubMed]

Shvedov, V. G.

Siegman, A.

Z. Guosheng, P. Fauchet, and A. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B 26(10), 5366–5381 (1982).
[Crossref]

Tovar, A.

Trevino, J.

F. Intonti, N. Caselli, N. Lawrence, J. Trevino, D. Wiersma, and L. Dal Negro, “Near-field distribution and propagation of scattering resonances in Vogel spiral arrays of dielectric nanopillars,” New J. Phys. 15(8), 085023 (2013).
[Crossref]

Tu, C.

Varin, C.

C. Varin and M. Piché, “Acceleration of ultra-relativistic electrons using high-intensity TM01 laser beams,” Appl. Phys. B 74(S1), s83–s88 (2002).
[Crossref]

Vecchione, A.

K. Anoop, A. Rubano, R. Fittipaldi, X. Wang, D. Paparo, A. Vecchione, L. Marrucci, R. Bruzzese, and S. Amoruso, “Femtosecond laser surface structuring of silicon using optical vortex beams generated by a q-plate,” Appl. Phys. Lett. 104(24), 241604 (2014).
[Crossref]

Wang, H.

Wang, H. T.

Wang, L. J.

Wang, X.

K. Anoop, A. Rubano, R. Fittipaldi, X. Wang, D. Paparo, A. Vecchione, L. Marrucci, R. Bruzzese, and S. Amoruso, “Femtosecond laser surface structuring of silicon using optical vortex beams generated by a q-plate,” Appl. Phys. Lett. 104(24), 241604 (2014).
[Crossref]

K. Lou, S. Qian, Z. Ren, X. Wang, Y. Li, C. Tu, and H. Wang, “Self-formed two-dimensional near-wavelength microstructures on copper induced by multipulse femtosecond vector optical fields,” J. Opt. Soc. Am. B 29(9), 2282 (2012).
[Crossref]

Wang, X. L.

Washio, K.

U. Klug, J. Düsing, T. Sato, K. Washio, and R. Kling, “Polarization converted laser beams for micromachining applications,” Proc. SPIE 7590, 759006 (2010).
[Crossref]

Wiersma, D.

F. Intonti, N. Caselli, N. Lawrence, J. Trevino, D. Wiersma, and L. Dal Negro, “Near-field distribution and propagation of scattering resonances in Vogel spiral arrays of dielectric nanopillars,” New J. Phys. 15(8), 085023 (2013).
[Crossref]

Xu, N.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of Laser-Induced Near-Subwavelength Ripples: Interference between Surface Plasmons and Incident Laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Xu, Z.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of Laser-Induced Near-Subwavelength Ripples: Interference between Surface Plasmons and Incident Laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Youngworth, K. S.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

Zhan, Q.

Zhao, F.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of Laser-Induced Near-Subwavelength Ripples: Interference between Surface Plasmons and Incident Laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Zhao, Q. Z.

ACS Nano (1)

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of Laser-Induced Near-Subwavelength Ripples: Interference between Surface Plasmons and Incident Laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Adv. Opt. Photon. (1)

Appl. Phys. B (1)

C. Varin and M. Piché, “Acceleration of ultra-relativistic electrons using high-intensity TM01 laser beams,” Appl. Phys. B 74(S1), s83–s88 (2002).
[Crossref]

Appl. Phys. Lett. (2)

M. Beresna, M. Gecevičius, P. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 201101 (2011).
[Crossref]

K. Anoop, A. Rubano, R. Fittipaldi, X. Wang, D. Paparo, A. Vecchione, L. Marrucci, R. Bruzzese, and S. Amoruso, “Femtosecond laser surface structuring of silicon using optical vortex beams generated by a q-plate,” Appl. Phys. Lett. 104(24), 241604 (2014).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon–modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

Mon. Not. R. Astron. Soc. (1)

H. Ringermacher and L. Mead, “A new formula describing the scaffold structure of spiral galaxies,” Mon. Not. R. Astron. Soc. 397(1), 164–171 (2009).
[Crossref]

New J. Phys. (1)

F. Intonti, N. Caselli, N. Lawrence, J. Trevino, D. Wiersma, and L. Dal Negro, “Near-field distribution and propagation of scattering resonances in Vogel spiral arrays of dielectric nanopillars,” New J. Phys. 15(8), 085023 (2013).
[Crossref]

Opt. Commun. (1)

G. Machavariani, Y. Lumer, I. Moshe, and S. Jackel, “Effect of the spiral phase element on the radial-polarization (0,1) LG beam,” Opt. Commun. 271(1), 190–196 (2007).
[Crossref]

Opt. Express (7)

Opt. Lett. (3)

Phys. Rev. B (1)

Z. Guosheng, P. Fauchet, and A. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B 26(10), 5366–5381 (1982).
[Crossref]

Phys. Rev. Lett. (3)

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing Local Field Structure of Focused Ultrashort Pulses,” Phys. Rev. Lett. 106(12), 123901 (2011).
[Crossref] [PubMed]

Proc. SPIE (1)

U. Klug, J. Düsing, T. Sato, K. Washio, and R. Kling, “Polarization converted laser beams for micromachining applications,” Proc. SPIE 7590, 759006 (2010).
[Crossref]

Science (1)

T. Bauer, P. Banzer, E. Karimi, S. Orlov, A. Rubano, L. Marrucci, E. Santamato, R. W. Boyd, and G. Leuchs, “Observation of optical polarization Möbius strips,” Science 347(6225), 964–966 (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Experimental set up. The linearly polarized laser output is expanded x3, then passes through an attenuator (λ/2 plate and Glan-laser polarizer with transmission axis horizontal), reflected from the SLM then directed to the S-waveplate. A 4f system re-images the complex field after reflection from SLM to the Galvo input aperture for surface micro-structuring while the introduction of a flip mirror re-directs the focused beam instead to the polarization analyzer (45° B/S) and Spiricon camera.
Fig. 2
Fig. 2 Reflected intensity distributions measured when polarization analyzer was translated near lens through focal plane, (a) RP (θ = 0°), (b) AP (θ = 90°), (c) IP (θ = + 45°), (d) RPAOM, (e) APAOM, (f) IPOAM. Note the rotation of the vector fields with addition of OAM and the non-zero intensity at the centre.
Fig. 3
Fig. 3 More detailed polarization analysis along optic axis within ± 40mm of the far field, with (a) RP, (b) AP, (c) IP, (d) RPOAM, (e) APOAM and (f) IPOAM. The beams without OAM have stationary vector fields with z, but the vector fields with OAM show a non-zero intensity on axis and vector field rotation due to the spiral phase.
Fig. 4
Fig. 4 (a) LG(0,1)* radial polarized intensity distribution 2D, (b) 2D double lobe intensity distribution calculated from Eq. (6) when a radially polarized beam is reflected from a linear polariser (transmission axis horizontal), (c) 3D intensity representation of (b).
Fig. 5
Fig. 5 SEM images of stationary LIPSS patterns structured with RP and AP beams when substrate translated through the focal plane (a) RP 0.5mm above focal plane, (b) at the focal lane and (c) 0.5mm below the focal plane, (d) AP 0.5mm above focal plane, (e) at the focal plane and (f) 0.5mm below the focal plane.
Fig. 6
Fig. 6 LIPSS formation with the RPOAM and APOAM beams when substrate translated through the focal plane (a) RPOAM 0.5mm above focal plane, (b) at the focal lane and (c) 0.5mm below the focal plane, (d) APOAM 0.5mm above focal plane, (e) at the focal plane and (f) 0.5mm below the focal plane. The spiral structures reverse direction above and below the Fourier plane consistent with polarization observations.
Fig. 7
Fig. 7 SEM images of spiral plasmons from superposition states generated by altering S-waveplate axis θ (a) −67.5°, (b) −45°, (c) −22.5°, (d) 0° (radial), (e) + 22.5°, (f) + 45°, (g) + 67.5° and (h) + 90° (azimuthal).
Fig. 8
Fig. 8 Detail of SEM images at (a) θ = 22.5° and (b) θ = 45° with the fits to logarithmic spirals where a = 0.57 and k = 0.414 and 1.0 respectively, (c) a simple geometric superposition of radial and azimuthal field components (with equal amplitude) at θ = 45°, generating a spiral electrical field distribution whose field direction is orthogonal to the plasmon spirals at every location in (b).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E(r,ϕ)= E 0 ρ e ρ/2 e ±iϕ
E x (r,ϕ)= E 0 ρ e ρ/2 cos(ϕ)
E y (r,ϕ)= E 0 ρ e ρ/2 sin(ϕ)
E(r,ϕ)= E 0 ρ e ρ/2 cosϕ e x + E 0 ρ e ρ/2 sinϕ e y
E(r,ϕ)= E 0 ρ e ρ/2 cosϕ e x e x ( e x e y =0)
I(r,ϕ)= E * E= I 0 ρ e ρ cos 2 ϕ

Metrics