Abstract

We demonstrate an experimental technique to generate and measure arbitrary superpositions of core modes in a multi-core fiber. Two spatial light modulators couple the fundamental mode of a single-mode fiber with multiple-core modes of the MCF to constitute a Mach-Zehnder-type multi-path interferometer. The phase tunability of each path is verified by comparing two-, three-, and four-path interference patterns with the theory. Interference fringes in the wavelength domain estimates the inter-core group index differences with a resolution of 10−5 using a fiber length of 1 m.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Measurement and compensation of residual group delay in a multi-core fiber for lensless endoscopy

Esben Ravn Andresen, Siddharth Sivankutty, Géraud Bouwmans, Laurent Gallais, Serge Monneret, and Hervé Rigneault
J. Opt. Soc. Am. B 32(6) 1221-1228 (2015)

Longitudinal fiber parameter measurements of multi-core fiber using OTDR

Masaharu Ohashi, Yuji Miyoshi, Hirokazu Kubota, Ryo Maruyama, and Nobuo Kuwaki
Opt. Express 22(24) 30137-30147 (2014)

References

  • View by:
  • |
  • |
  • |

  1. W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, J. C. Knight, and P. S. J. Russell, “Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre,” Opt. Commun. 193, 97–104 (2001).
    [Crossref]
  2. G. M. H. Flockhart, W. N. MacPherson, J. S. Barton, J. D. C. Jones, L. Zhang, and I. Bennion, “Two-axis bend measurement with brgg gratings in multicore optical fiber,” Opt. Lett. 28, 387–389 (2003).
    [Crossref] [PubMed]
  3. J. Lhermite, E. Suran, V. Kermene, F. Louradour, A. Desfarges-Berthelemot, and A. Barthélémy, “Coherent combining of 49 laser beams from a multiple core optical fiber by a spatial light modulator,” Opt. Express 18, 4783–4789 (2010).
    [Crossref] [PubMed]
  4. J. E. Antonio-Lopez, Z. S. Eznaveh, P. LiKamWa, A. Schülzgen, and R. Amezcua-Correa, “Multicore fiber sensor for high-temperature applications up to 1000 °C,” Opt. Lett. 39, 4309–4312 (2014).
    [Crossref] [PubMed]
  5. L. Li, A. Schülzgen, S. Chen, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “Phase locking and in-phase supermode selection in monolithic multicore fiber lasers,” Opt. Lett. 31, 2577–2579 (2006).
    [Crossref] [PubMed]
  6. J. P. Moore and M. D. Rogge, “Shape sensing using multi-core fiber optic cable and parametric curve solutions,” Opt. Express 20, 2967–2973 (2012).
    [Crossref] [PubMed]
  7. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nature Photon. 7, 354–362 (2013).
    [Crossref]
  8. R. G. H. van Uden, R. AmezcuaCorrea, E. Antonio Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nature Photon. 8, 865–870 (2014).
    [Crossref]
  9. J. Sakaguchi, W. Klaus, J. M. DelgadoMendinueta, B. J. Puttnam, R. S. Luis, Y. Awaji, N. Wada, T. Hayashi, T. Nakanishi, T. Watanabe, Y. Kokubun, T. Takahata, and T. Kobayashi, “Realizing a 36-core, 3-mode fiber with 108 spatial channels,” in Optical Fiber Communication Conference Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5C.2.
    [Crossref]
  10. T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber,” Opt. Express 19, 16576–16592 (2011).
    [Crossref] [PubMed]
  11. K. Imamura, Y. Tsuchida, K. Mukasa, R. Sugizaki, K. Saitoh, and M. Koshiba, “Investigation on multi-core fibers with large Aeff and low micro bending loss,” Opt. Express 19, 10595–10603 (2011).
    [Crossref] [PubMed]
  12. B. Zhu, T. F. Taunay, M. F. Yan, J. M. Fishteyn, E. M. Monberg, and F. V. Dimarcello, “Seven-core multicore fiber transmissions for passive optical network,” Opt. Express 18, 11117–11122 (2010).
    [Crossref] [PubMed]
  13. K. S. Abedin, T. F. Taunay, M. Fishteyn, M. F. Yan, B. Zhu, J. M. Fini, E. M. Monberg, F. V. Dimarcello, and P. W. Wisk, “Amplification and noise properties of an erbium-doped multicore fiber amplifier,” Opt. Express 19, 16715–16721 (2011).
    [Crossref] [PubMed]
  14. J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express 16, 7233–7243 (2008).
    [Crossref] [PubMed]
  15. H. Otto, F. Jansen, F. Stutzki, C. Jauregui, J. Limpert, and A. Tunnermann, “Improved modal reconstruction for spatially and spectrally resolved imaging (S2),” J. Lightw. Technol. 31, 1295–1299 (2013).
    [Crossref]
  16. L. G. Cohen and C. Lin, “Pulse delay measurements in the zero material dispersion wavelength region for optical fibers,” Appl. Opt. 16, 3136–3139 (1977).
    [Crossref] [PubMed]
  17. T. Sakamoto, T. Mori, M. Wada, T. Yamamoto, T. Matsui, K. Nakajima, and F. Yamamoto, “Experimental and numerical evaluation of intercore differential mode delay characteristic of weakly-coupled multi-core fiber,” Opt. Express 22, 31966–31976 (2014).
    [Crossref]
  18. P. Hlubina, T. Martynkien, and W. Urbańczyk, “Dispersion of group and phase modal birefringence in elliptical-core fiber measured by white-light spectral interferometry,” Opt. Express 11, 2793–2798 (2003).
    [PubMed]
  19. D. J. DiGiovanni and A. J. Stentz, “Tapered fiber bundles for coupling light into and out of cladding-pumped fiber devices,” US Patent 5,864,644 (1999).
  20. H. Takara, Y. Ono, H. Abe, H. Masuda, K. Takenaga, S. Matsuo, H. Kubota, K. Shibahara, T. Kobayashi, and Y. Miyamoto, “1000-km 7-core fiber transmisson of 10 × 96 Gb/s PDM-16QAM using Raman amplification with 6.5 W per fiber,” Opt. Express 20, 10100–10105 (2012).
    [Crossref] [PubMed]
  21. L. Zhu and J. Wang, “Arbitrary manipulation of spatial amplitude and phase using phase-only spatial light modulators,” Sci. Rep. 4, 7441 (2014).
    [Crossref] [PubMed]

2014 (4)

J. E. Antonio-Lopez, Z. S. Eznaveh, P. LiKamWa, A. Schülzgen, and R. Amezcua-Correa, “Multicore fiber sensor for high-temperature applications up to 1000 °C,” Opt. Lett. 39, 4309–4312 (2014).
[Crossref] [PubMed]

R. G. H. van Uden, R. AmezcuaCorrea, E. Antonio Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nature Photon. 8, 865–870 (2014).
[Crossref]

T. Sakamoto, T. Mori, M. Wada, T. Yamamoto, T. Matsui, K. Nakajima, and F. Yamamoto, “Experimental and numerical evaluation of intercore differential mode delay characteristic of weakly-coupled multi-core fiber,” Opt. Express 22, 31966–31976 (2014).
[Crossref]

L. Zhu and J. Wang, “Arbitrary manipulation of spatial amplitude and phase using phase-only spatial light modulators,” Sci. Rep. 4, 7441 (2014).
[Crossref] [PubMed]

2013 (2)

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nature Photon. 7, 354–362 (2013).
[Crossref]

H. Otto, F. Jansen, F. Stutzki, C. Jauregui, J. Limpert, and A. Tunnermann, “Improved modal reconstruction for spatially and spectrally resolved imaging (S2),” J. Lightw. Technol. 31, 1295–1299 (2013).
[Crossref]

2012 (2)

2011 (3)

2010 (2)

2008 (1)

2006 (1)

2003 (2)

2001 (1)

W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, J. C. Knight, and P. S. J. Russell, “Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre,” Opt. Commun. 193, 97–104 (2001).
[Crossref]

1999 (1)

D. J. DiGiovanni and A. J. Stentz, “Tapered fiber bundles for coupling light into and out of cladding-pumped fiber devices,” US Patent 5,864,644 (1999).

1977 (1)

Abe, H.

Abedin, K. S.

AmezcuaCorrea, R.

R. G. H. van Uden, R. AmezcuaCorrea, E. Antonio Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nature Photon. 8, 865–870 (2014).
[Crossref]

Amezcua-Correa, R.

Antonio Lopez, E.

R. G. H. van Uden, R. AmezcuaCorrea, E. Antonio Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nature Photon. 8, 865–870 (2014).
[Crossref]

Antonio-Lopez, J. E.

Awaji, Y.

J. Sakaguchi, W. Klaus, J. M. DelgadoMendinueta, B. J. Puttnam, R. S. Luis, Y. Awaji, N. Wada, T. Hayashi, T. Nakanishi, T. Watanabe, Y. Kokubun, T. Takahata, and T. Kobayashi, “Realizing a 36-core, 3-mode fiber with 108 spatial channels,” in Optical Fiber Communication Conference Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5C.2.
[Crossref]

Barthélémy, A.

Barton, J. S.

Bennion, I.

Blanchard, P. M.

W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, J. C. Knight, and P. S. J. Russell, “Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre,” Opt. Commun. 193, 97–104 (2001).
[Crossref]

Burnett, J. G.

W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, J. C. Knight, and P. S. J. Russell, “Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre,” Opt. Commun. 193, 97–104 (2001).
[Crossref]

Chen, S.

Cohen, L. G.

de Waardt, H.

R. G. H. van Uden, R. AmezcuaCorrea, E. Antonio Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nature Photon. 8, 865–870 (2014).
[Crossref]

DelgadoMendinueta, J. M.

J. Sakaguchi, W. Klaus, J. M. DelgadoMendinueta, B. J. Puttnam, R. S. Luis, Y. Awaji, N. Wada, T. Hayashi, T. Nakanishi, T. Watanabe, Y. Kokubun, T. Takahata, and T. Kobayashi, “Realizing a 36-core, 3-mode fiber with 108 spatial channels,” in Optical Fiber Communication Conference Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5C.2.
[Crossref]

Desfarges-Berthelemot, A.

DiGiovanni, D. J.

D. J. DiGiovanni and A. J. Stentz, “Tapered fiber bundles for coupling light into and out of cladding-pumped fiber devices,” US Patent 5,864,644 (1999).

Dimarcello, F. V.

Eznaveh, Z. S.

Fini, J. M.

Fishteyn, J. M.

Fishteyn, M.

Flockhart, G. M. H.

Gander, M. J.

W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, J. C. Knight, and P. S. J. Russell, “Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre,” Opt. Commun. 193, 97–104 (2001).
[Crossref]

Ghalmi, S.

Greenaway, A. H.

W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, J. C. Knight, and P. S. J. Russell, “Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre,” Opt. Commun. 193, 97–104 (2001).
[Crossref]

Hayashi, T.

T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber,” Opt. Express 19, 16576–16592 (2011).
[Crossref] [PubMed]

J. Sakaguchi, W. Klaus, J. M. DelgadoMendinueta, B. J. Puttnam, R. S. Luis, Y. Awaji, N. Wada, T. Hayashi, T. Nakanishi, T. Watanabe, Y. Kokubun, T. Takahata, and T. Kobayashi, “Realizing a 36-core, 3-mode fiber with 108 spatial channels,” in Optical Fiber Communication Conference Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5C.2.
[Crossref]

Hlubina, P.

Huijskens, F. M.

R. G. H. van Uden, R. AmezcuaCorrea, E. Antonio Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nature Photon. 8, 865–870 (2014).
[Crossref]

Imamura, K.

Jansen, F.

H. Otto, F. Jansen, F. Stutzki, C. Jauregui, J. Limpert, and A. Tunnermann, “Improved modal reconstruction for spatially and spectrally resolved imaging (S2),” J. Lightw. Technol. 31, 1295–1299 (2013).
[Crossref]

Jauregui, C.

H. Otto, F. Jansen, F. Stutzki, C. Jauregui, J. Limpert, and A. Tunnermann, “Improved modal reconstruction for spatially and spectrally resolved imaging (S2),” J. Lightw. Technol. 31, 1295–1299 (2013).
[Crossref]

Jones, J. D. C.

G. M. H. Flockhart, W. N. MacPherson, J. S. Barton, J. D. C. Jones, L. Zhang, and I. Bennion, “Two-axis bend measurement with brgg gratings in multicore optical fiber,” Opt. Lett. 28, 387–389 (2003).
[Crossref] [PubMed]

W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, J. C. Knight, and P. S. J. Russell, “Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre,” Opt. Commun. 193, 97–104 (2001).
[Crossref]

Kermene, V.

Klaus, W.

J. Sakaguchi, W. Klaus, J. M. DelgadoMendinueta, B. J. Puttnam, R. S. Luis, Y. Awaji, N. Wada, T. Hayashi, T. Nakanishi, T. Watanabe, Y. Kokubun, T. Takahata, and T. Kobayashi, “Realizing a 36-core, 3-mode fiber with 108 spatial channels,” in Optical Fiber Communication Conference Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5C.2.
[Crossref]

Knight, J. C.

W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, J. C. Knight, and P. S. J. Russell, “Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre,” Opt. Commun. 193, 97–104 (2001).
[Crossref]

Kobayashi, T.

H. Takara, Y. Ono, H. Abe, H. Masuda, K. Takenaga, S. Matsuo, H. Kubota, K. Shibahara, T. Kobayashi, and Y. Miyamoto, “1000-km 7-core fiber transmisson of 10 × 96 Gb/s PDM-16QAM using Raman amplification with 6.5 W per fiber,” Opt. Express 20, 10100–10105 (2012).
[Crossref] [PubMed]

J. Sakaguchi, W. Klaus, J. M. DelgadoMendinueta, B. J. Puttnam, R. S. Luis, Y. Awaji, N. Wada, T. Hayashi, T. Nakanishi, T. Watanabe, Y. Kokubun, T. Takahata, and T. Kobayashi, “Realizing a 36-core, 3-mode fiber with 108 spatial channels,” in Optical Fiber Communication Conference Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5C.2.
[Crossref]

Kokubun, Y.

J. Sakaguchi, W. Klaus, J. M. DelgadoMendinueta, B. J. Puttnam, R. S. Luis, Y. Awaji, N. Wada, T. Hayashi, T. Nakanishi, T. Watanabe, Y. Kokubun, T. Takahata, and T. Kobayashi, “Realizing a 36-core, 3-mode fiber with 108 spatial channels,” in Optical Fiber Communication Conference Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5C.2.
[Crossref]

Koonen, A. M. J.

R. G. H. van Uden, R. AmezcuaCorrea, E. Antonio Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nature Photon. 8, 865–870 (2014).
[Crossref]

Koshiba, M.

Kubota, H.

Lhermite, J.

Li, G.

R. G. H. van Uden, R. AmezcuaCorrea, E. Antonio Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nature Photon. 8, 865–870 (2014).
[Crossref]

Li, L.

LiKamWa, P.

Limpert, J.

H. Otto, F. Jansen, F. Stutzki, C. Jauregui, J. Limpert, and A. Tunnermann, “Improved modal reconstruction for spatially and spectrally resolved imaging (S2),” J. Lightw. Technol. 31, 1295–1299 (2013).
[Crossref]

Lin, C.

Louradour, F.

Luis, R. S.

J. Sakaguchi, W. Klaus, J. M. DelgadoMendinueta, B. J. Puttnam, R. S. Luis, Y. Awaji, N. Wada, T. Hayashi, T. Nakanishi, T. Watanabe, Y. Kokubun, T. Takahata, and T. Kobayashi, “Realizing a 36-core, 3-mode fiber with 108 spatial channels,” in Optical Fiber Communication Conference Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5C.2.
[Crossref]

MacPherson, W. N.

G. M. H. Flockhart, W. N. MacPherson, J. S. Barton, J. D. C. Jones, L. Zhang, and I. Bennion, “Two-axis bend measurement with brgg gratings in multicore optical fiber,” Opt. Lett. 28, 387–389 (2003).
[Crossref] [PubMed]

W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, J. C. Knight, and P. S. J. Russell, “Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre,” Opt. Commun. 193, 97–104 (2001).
[Crossref]

Mangan, B.

W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, J. C. Knight, and P. S. J. Russell, “Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre,” Opt. Commun. 193, 97–104 (2001).
[Crossref]

Martynkien, T.

Masuda, H.

Matsui, T.

Matsuo, S.

McBride, R.

W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, J. C. Knight, and P. S. J. Russell, “Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre,” Opt. Commun. 193, 97–104 (2001).
[Crossref]

Miyamoto, Y.

Moloney, J. V.

Monberg, E. M.

Moore, J. P.

Mori, T.

Mukasa, K.

Nakajima, K.

Nakanishi, T.

J. Sakaguchi, W. Klaus, J. M. DelgadoMendinueta, B. J. Puttnam, R. S. Luis, Y. Awaji, N. Wada, T. Hayashi, T. Nakanishi, T. Watanabe, Y. Kokubun, T. Takahata, and T. Kobayashi, “Realizing a 36-core, 3-mode fiber with 108 spatial channels,” in Optical Fiber Communication Conference Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5C.2.
[Crossref]

Nelson, L. E.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nature Photon. 7, 354–362 (2013).
[Crossref]

Nicholson, J. W.

Okonkwo, C. M.

R. G. H. van Uden, R. AmezcuaCorrea, E. Antonio Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nature Photon. 8, 865–870 (2014).
[Crossref]

Ono, Y.

Otto, H.

H. Otto, F. Jansen, F. Stutzki, C. Jauregui, J. Limpert, and A. Tunnermann, “Improved modal reconstruction for spatially and spectrally resolved imaging (S2),” J. Lightw. Technol. 31, 1295–1299 (2013).
[Crossref]

Peyghambarian, N.

Puttnam, B. J.

J. Sakaguchi, W. Klaus, J. M. DelgadoMendinueta, B. J. Puttnam, R. S. Luis, Y. Awaji, N. Wada, T. Hayashi, T. Nakanishi, T. Watanabe, Y. Kokubun, T. Takahata, and T. Kobayashi, “Realizing a 36-core, 3-mode fiber with 108 spatial channels,” in Optical Fiber Communication Conference Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5C.2.
[Crossref]

Ramachandran, S.

Richardson, D. J.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nature Photon. 7, 354–362 (2013).
[Crossref]

Rogge, M. D.

Russell, P. S. J.

W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, J. C. Knight, and P. S. J. Russell, “Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre,” Opt. Commun. 193, 97–104 (2001).
[Crossref]

Saitoh, K.

Sakaguchi, J.

J. Sakaguchi, W. Klaus, J. M. DelgadoMendinueta, B. J. Puttnam, R. S. Luis, Y. Awaji, N. Wada, T. Hayashi, T. Nakanishi, T. Watanabe, Y. Kokubun, T. Takahata, and T. Kobayashi, “Realizing a 36-core, 3-mode fiber with 108 spatial channels,” in Optical Fiber Communication Conference Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5C.2.
[Crossref]

Sakamoto, T.

Sasaki, T.

Sasaoka, E.

Schülzgen, A.

Shibahara, K.

Shimakawa, O.

Stentz, A. J.

D. J. DiGiovanni and A. J. Stentz, “Tapered fiber bundles for coupling light into and out of cladding-pumped fiber devices,” US Patent 5,864,644 (1999).

Stutzki, F.

H. Otto, F. Jansen, F. Stutzki, C. Jauregui, J. Limpert, and A. Tunnermann, “Improved modal reconstruction for spatially and spectrally resolved imaging (S2),” J. Lightw. Technol. 31, 1295–1299 (2013).
[Crossref]

Sugizaki, R.

Suran, E.

Takahata, T.

J. Sakaguchi, W. Klaus, J. M. DelgadoMendinueta, B. J. Puttnam, R. S. Luis, Y. Awaji, N. Wada, T. Hayashi, T. Nakanishi, T. Watanabe, Y. Kokubun, T. Takahata, and T. Kobayashi, “Realizing a 36-core, 3-mode fiber with 108 spatial channels,” in Optical Fiber Communication Conference Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5C.2.
[Crossref]

Takara, H.

Takenaga, K.

Taru, T.

Taunay, T. F.

Temyanko, V. L.

Tsuchida, Y.

Tunnermann, A.

H. Otto, F. Jansen, F. Stutzki, C. Jauregui, J. Limpert, and A. Tunnermann, “Improved modal reconstruction for spatially and spectrally resolved imaging (S2),” J. Lightw. Technol. 31, 1295–1299 (2013).
[Crossref]

Urbanczyk, W.

van Uden, R. G. H.

R. G. H. van Uden, R. AmezcuaCorrea, E. Antonio Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nature Photon. 8, 865–870 (2014).
[Crossref]

Wada, M.

Wada, N.

J. Sakaguchi, W. Klaus, J. M. DelgadoMendinueta, B. J. Puttnam, R. S. Luis, Y. Awaji, N. Wada, T. Hayashi, T. Nakanishi, T. Watanabe, Y. Kokubun, T. Takahata, and T. Kobayashi, “Realizing a 36-core, 3-mode fiber with 108 spatial channels,” in Optical Fiber Communication Conference Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5C.2.
[Crossref]

Wang, J.

L. Zhu and J. Wang, “Arbitrary manipulation of spatial amplitude and phase using phase-only spatial light modulators,” Sci. Rep. 4, 7441 (2014).
[Crossref] [PubMed]

Watanabe, T.

J. Sakaguchi, W. Klaus, J. M. DelgadoMendinueta, B. J. Puttnam, R. S. Luis, Y. Awaji, N. Wada, T. Hayashi, T. Nakanishi, T. Watanabe, Y. Kokubun, T. Takahata, and T. Kobayashi, “Realizing a 36-core, 3-mode fiber with 108 spatial channels,” in Optical Fiber Communication Conference Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5C.2.
[Crossref]

Wisk, P. W.

Xia, C.

R. G. H. van Uden, R. AmezcuaCorrea, E. Antonio Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nature Photon. 8, 865–870 (2014).
[Crossref]

Yablon, A. D.

Yamamoto, F.

Yamamoto, T.

Yan, M. F.

Zhang, L.

Zhu, B.

Zhu, L.

L. Zhu and J. Wang, “Arbitrary manipulation of spatial amplitude and phase using phase-only spatial light modulators,” Sci. Rep. 4, 7441 (2014).
[Crossref] [PubMed]

Appl. Opt. (1)

J. Lightw. Technol. (1)

H. Otto, F. Jansen, F. Stutzki, C. Jauregui, J. Limpert, and A. Tunnermann, “Improved modal reconstruction for spatially and spectrally resolved imaging (S2),” J. Lightw. Technol. 31, 1295–1299 (2013).
[Crossref]

Nature Photon. (2)

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nature Photon. 7, 354–362 (2013).
[Crossref]

R. G. H. van Uden, R. AmezcuaCorrea, E. Antonio Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nature Photon. 8, 865–870 (2014).
[Crossref]

Opt. Commun. (1)

W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, J. C. Knight, and P. S. J. Russell, “Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre,” Opt. Commun. 193, 97–104 (2001).
[Crossref]

Opt. Express (10)

J. Lhermite, E. Suran, V. Kermene, F. Louradour, A. Desfarges-Berthelemot, and A. Barthélémy, “Coherent combining of 49 laser beams from a multiple core optical fiber by a spatial light modulator,” Opt. Express 18, 4783–4789 (2010).
[Crossref] [PubMed]

T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber,” Opt. Express 19, 16576–16592 (2011).
[Crossref] [PubMed]

K. Imamura, Y. Tsuchida, K. Mukasa, R. Sugizaki, K. Saitoh, and M. Koshiba, “Investigation on multi-core fibers with large Aeff and low micro bending loss,” Opt. Express 19, 10595–10603 (2011).
[Crossref] [PubMed]

B. Zhu, T. F. Taunay, M. F. Yan, J. M. Fishteyn, E. M. Monberg, and F. V. Dimarcello, “Seven-core multicore fiber transmissions for passive optical network,” Opt. Express 18, 11117–11122 (2010).
[Crossref] [PubMed]

K. S. Abedin, T. F. Taunay, M. Fishteyn, M. F. Yan, B. Zhu, J. M. Fini, E. M. Monberg, F. V. Dimarcello, and P. W. Wisk, “Amplification and noise properties of an erbium-doped multicore fiber amplifier,” Opt. Express 19, 16715–16721 (2011).
[Crossref] [PubMed]

J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express 16, 7233–7243 (2008).
[Crossref] [PubMed]

J. P. Moore and M. D. Rogge, “Shape sensing using multi-core fiber optic cable and parametric curve solutions,” Opt. Express 20, 2967–2973 (2012).
[Crossref] [PubMed]

T. Sakamoto, T. Mori, M. Wada, T. Yamamoto, T. Matsui, K. Nakajima, and F. Yamamoto, “Experimental and numerical evaluation of intercore differential mode delay characteristic of weakly-coupled multi-core fiber,” Opt. Express 22, 31966–31976 (2014).
[Crossref]

P. Hlubina, T. Martynkien, and W. Urbańczyk, “Dispersion of group and phase modal birefringence in elliptical-core fiber measured by white-light spectral interferometry,” Opt. Express 11, 2793–2798 (2003).
[PubMed]

H. Takara, Y. Ono, H. Abe, H. Masuda, K. Takenaga, S. Matsuo, H. Kubota, K. Shibahara, T. Kobayashi, and Y. Miyamoto, “1000-km 7-core fiber transmisson of 10 × 96 Gb/s PDM-16QAM using Raman amplification with 6.5 W per fiber,” Opt. Express 20, 10100–10105 (2012).
[Crossref] [PubMed]

Opt. Lett. (3)

Sci. Rep. (1)

L. Zhu and J. Wang, “Arbitrary manipulation of spatial amplitude and phase using phase-only spatial light modulators,” Sci. Rep. 4, 7441 (2014).
[Crossref] [PubMed]

US Patent (1)

D. J. DiGiovanni and A. J. Stentz, “Tapered fiber bundles for coupling light into and out of cladding-pumped fiber devices,” US Patent 5,864,644 (1999).

Other (1)

J. Sakaguchi, W. Klaus, J. M. DelgadoMendinueta, B. J. Puttnam, R. S. Luis, Y. Awaji, N. Wada, T. Hayashi, T. Nakanishi, T. Watanabe, Y. Kokubun, T. Takahata, and T. Kobayashi, “Realizing a 36-core, 3-mode fiber with 108 spatial channels,” in Optical Fiber Communication Conference Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5C.2.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the interferometry through a multi-core fiber. Inset: the fiber cross-section. Q: quarter-wave plate, H: half wave plate, PBS: polarizing beam splitter, M: mirror, SLM: spatial light modulator, L: lens with focal length 15 mm, SMF: single-mode fiber.
Fig. 2
Fig. 2 Phase patterns loaded on the SLM1 surface to couple the input beam into (a) one, (b) two, (c) three, and (d) four cores of the MCF. (e)–(h): Measured near-field intensity profiles at the output face of the MCF with the SLM patterns (a)–(d).
Fig. 3
Fig. 3 Output power of the Mach-Zehnder interferometer with three pairs of cores in the MCF. The phase difference Δφ is adjusted by the phase offset of one interfering beam by SLM2.
Fig. 4
Fig. 4 Results of the three-beam interferometry. (a) Experiment; (b) Theory. Δφ1 and Δφ2 are the relative phases of core 2 and core 3 with respect to core 1, respectively.
Fig. 5
Fig. 5 Four-beam interferometry. (a) Schematic of a conventional four-slit diffraction experiment; (b) Results of the four-core interferometry emulating the four-slit experiment in the time domain.
Fig. 6
Fig. 6 Six wavelength-domain interference fringes between two of the four cores. The excited cores are shown as yellow circles in the insets.

Tables (1)

Tables Icon

Table 1 Measured relative group indices of the core modes.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I t o t a l ( 1 3 + 2 9 cos Δ ϕ 1 + 2 9 cos Δ ϕ 2 + 2 9 cos ( Δ ϕ 2 Δ ϕ 1 ) ) .
E t o t a l = A 1 + A 2 e i Δ ϕ 1 + A 3 e 2 i Δ ϕ 1 + A 4 e 3 i Δ ϕ 1 ,
d Δ ϕ d λ = 2 π Δ n g L λ 2 ± 2 π Δ λ 2 π ,

Metrics