Abstract

The chromaticity of unique white viewed in illumination mode and under dark adapted conditions was investigated for 3 luminance levels (200, 1000 and 2000 cd/m2) using a unique white setting method. Unique white was found to encompass a rather large region in color space located slightly below the blackbody locus and centered around a CCT of 6600 K. Luminance level was found to have no significant effect on the mean unique white chromaticity. The high and low end points of the CIE class A and B white regions respectively under- and overestimate the chromaticity region perceived as white. Agreement along the Duv direction was quite good. However, another Duv related limit associated with white lighting (|Duv|≤5.4e-3) was found to be on the small side, especially for chromaticity values below the blackbody locus. The results for unique white viewed in illumination mode were compared to those reported for object mode presentation. Overall they were very comparable, although a statistical analysis does show a (just) significant effect of stimulus presentation mode for high (il)luminance levels. However, no such effect could be established at the individual observer level. Therefore, it was concluded that unique white chromaticity is essentially the same for both illumination and object mode stimulus presentation, at least under dark adapted viewing conditions.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Chromaticity of unique white in object mode

Kevin A. G. Smet, Geert Deconinck, and Peter Hanselaer
Opt. Express 22(21) 25830-25841 (2014)

Assessment of white for displays under dark- and chromatic-adapted conditions

Kyungah Choi and Hyeon-Jeong Suk
Opt. Express 24(25) 28945-28957 (2016)

Effects of adapting luminance and CCT on appearance of white and degree of chromatic adaptation

Minchen Wei and Siyuan Chen
Opt. Express 27(6) 9276-9286 (2019)

References

  • View by:
  • |
  • |
  • |

  1. L. M. Hurvich and D. Jameson, “A psychophysical study of white. i. neutral adaptation,” J. Opt. Soc. Am. 41(8), 521–527 (1951).
    [Crossref] [PubMed]
  2. A. G. Kevin, D. Geert, and H. Peter, “Chromaticity of unique white in object mode,” Opt. Express 22(21), 25830–25841 (2014).
    [Crossref] [PubMed]
  3. C. Cuttle, Lighting by Design (Architectural Press, 2003).
  4. M. D. Fairchild, “Color Appearance Models,” (John Wiley & Sons, 2005).
  5. M. S. Rea and J. P. Freyssinier, “White lighting,” Color Res. Appl. 38(2), 82–92 (2013).
    [Crossref]
  6. Y. Ohno and M. Fein, “Vision experiment on white light chromaticity for lighting,” in CIE/USA-CNC/CIE Biennial Joint Meeting (Davis, USA, 2013).
  7. L. Whitehead, “Interpretation concerns regarding white light,” Color Res. Appl. 38(2), 93–95 (2013).
    [Crossref]
  8. CIES004/E-2001, “Colours of Light Signals,” (CIE, Vienna, 2001).
  9. M. A. Webster and D. Leonard, “Adaptation and perceptual norms in color vision,” J. Opt. Soc. Am. A 25(11), 2817–2825 (2008).
    [Crossref] [PubMed]
  10. K. Honjyo and M. Nonaka, “Perception of white in a 10° field,” J. Opt. Soc. Am. 60(12), 1690–1694 (1970).
    [Crossref] [PubMed]
  11. A. Valberg, “A method for the precise determination of achromatic colours including white,” Vision Res. 11(2), 157–160 (1971).
    [Crossref] [PubMed]
  12. T. Chauhan, E. Perales, K. Xiao, E. Hird, D. Karatzas, and S. Wuerger, “The achromatic locus: effect of navigation direction in color space,” J. Vis. 14(1), 25 (2014).
    [Crossref] [PubMed]
  13. J. Walraven and J. S. Werner, “The invariance of unique white; a possible implication for normalizing cone action spectra,” Vision Res. 31(12), 2185–2193 (1991).
    [Crossref] [PubMed]
  14. I. Kuriki, “The loci of achromatic points in a real environment under various illuminant chromaticities,” Vision Res. 46(19), 3055–3066 (2006).
    [Crossref] [PubMed]
  15. I. G. Priest, “The spectral distribution of energy required to evoke the gray sensation,” Scientific Papers of the United States Bureau of Standards 17(), 231–265 (1921).
    [Crossref]
  16. K. V. Mardia, “Applications of some measures of multivariate skewness and kurtosis in testing normality and robustness studies,” Sankhyā: The Indian Journal of Statistics Series B, 36, 115–128 (1974).
  17. M. H. Kim, T. Weyrich, and J. Kautz, Modeling Human Color Perception under Extended Luminance Levels,” TOG - ACM Transactions on Graphics (Proc. SIGGRAPH) 28, 27:21–29 (2009).

2014 (2)

T. Chauhan, E. Perales, K. Xiao, E. Hird, D. Karatzas, and S. Wuerger, “The achromatic locus: effect of navigation direction in color space,” J. Vis. 14(1), 25 (2014).
[Crossref] [PubMed]

A. G. Kevin, D. Geert, and H. Peter, “Chromaticity of unique white in object mode,” Opt. Express 22(21), 25830–25841 (2014).
[Crossref] [PubMed]

2013 (2)

M. S. Rea and J. P. Freyssinier, “White lighting,” Color Res. Appl. 38(2), 82–92 (2013).
[Crossref]

L. Whitehead, “Interpretation concerns regarding white light,” Color Res. Appl. 38(2), 93–95 (2013).
[Crossref]

2008 (1)

2006 (1)

I. Kuriki, “The loci of achromatic points in a real environment under various illuminant chromaticities,” Vision Res. 46(19), 3055–3066 (2006).
[Crossref] [PubMed]

1991 (1)

J. Walraven and J. S. Werner, “The invariance of unique white; a possible implication for normalizing cone action spectra,” Vision Res. 31(12), 2185–2193 (1991).
[Crossref] [PubMed]

1974 (1)

K. V. Mardia, “Applications of some measures of multivariate skewness and kurtosis in testing normality and robustness studies,” Sankhyā: The Indian Journal of Statistics Series B, 36, 115–128 (1974).

1971 (1)

A. Valberg, “A method for the precise determination of achromatic colours including white,” Vision Res. 11(2), 157–160 (1971).
[Crossref] [PubMed]

1970 (1)

1951 (1)

1921 (1)

I. G. Priest, “The spectral distribution of energy required to evoke the gray sensation,” Scientific Papers of the United States Bureau of Standards 17(), 231–265 (1921).
[Crossref]

Chauhan, T.

T. Chauhan, E. Perales, K. Xiao, E. Hird, D. Karatzas, and S. Wuerger, “The achromatic locus: effect of navigation direction in color space,” J. Vis. 14(1), 25 (2014).
[Crossref] [PubMed]

Freyssinier, J. P.

M. S. Rea and J. P. Freyssinier, “White lighting,” Color Res. Appl. 38(2), 82–92 (2013).
[Crossref]

Geert, D.

Hird, E.

T. Chauhan, E. Perales, K. Xiao, E. Hird, D. Karatzas, and S. Wuerger, “The achromatic locus: effect of navigation direction in color space,” J. Vis. 14(1), 25 (2014).
[Crossref] [PubMed]

Honjyo, K.

Hurvich, L. M.

Jameson, D.

Karatzas, D.

T. Chauhan, E. Perales, K. Xiao, E. Hird, D. Karatzas, and S. Wuerger, “The achromatic locus: effect of navigation direction in color space,” J. Vis. 14(1), 25 (2014).
[Crossref] [PubMed]

Kevin, A. G.

Kuriki, I.

I. Kuriki, “The loci of achromatic points in a real environment under various illuminant chromaticities,” Vision Res. 46(19), 3055–3066 (2006).
[Crossref] [PubMed]

Leonard, D.

Mardia, K. V.

K. V. Mardia, “Applications of some measures of multivariate skewness and kurtosis in testing normality and robustness studies,” Sankhyā: The Indian Journal of Statistics Series B, 36, 115–128 (1974).

Nonaka, M.

Perales, E.

T. Chauhan, E. Perales, K. Xiao, E. Hird, D. Karatzas, and S. Wuerger, “The achromatic locus: effect of navigation direction in color space,” J. Vis. 14(1), 25 (2014).
[Crossref] [PubMed]

Peter, H.

Priest, I. G.

I. G. Priest, “The spectral distribution of energy required to evoke the gray sensation,” Scientific Papers of the United States Bureau of Standards 17(), 231–265 (1921).
[Crossref]

Rea, M. S.

M. S. Rea and J. P. Freyssinier, “White lighting,” Color Res. Appl. 38(2), 82–92 (2013).
[Crossref]

Valberg, A.

A. Valberg, “A method for the precise determination of achromatic colours including white,” Vision Res. 11(2), 157–160 (1971).
[Crossref] [PubMed]

Walraven, J.

J. Walraven and J. S. Werner, “The invariance of unique white; a possible implication for normalizing cone action spectra,” Vision Res. 31(12), 2185–2193 (1991).
[Crossref] [PubMed]

Webster, M. A.

Werner, J. S.

J. Walraven and J. S. Werner, “The invariance of unique white; a possible implication for normalizing cone action spectra,” Vision Res. 31(12), 2185–2193 (1991).
[Crossref] [PubMed]

Whitehead, L.

L. Whitehead, “Interpretation concerns regarding white light,” Color Res. Appl. 38(2), 93–95 (2013).
[Crossref]

Wuerger, S.

T. Chauhan, E. Perales, K. Xiao, E. Hird, D. Karatzas, and S. Wuerger, “The achromatic locus: effect of navigation direction in color space,” J. Vis. 14(1), 25 (2014).
[Crossref] [PubMed]

Xiao, K.

T. Chauhan, E. Perales, K. Xiao, E. Hird, D. Karatzas, and S. Wuerger, “The achromatic locus: effect of navigation direction in color space,” J. Vis. 14(1), 25 (2014).
[Crossref] [PubMed]

Color Res. Appl. (2)

M. S. Rea and J. P. Freyssinier, “White lighting,” Color Res. Appl. 38(2), 82–92 (2013).
[Crossref]

L. Whitehead, “Interpretation concerns regarding white light,” Color Res. Appl. 38(2), 93–95 (2013).
[Crossref]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (1)

J. Vis. (1)

T. Chauhan, E. Perales, K. Xiao, E. Hird, D. Karatzas, and S. Wuerger, “The achromatic locus: effect of navigation direction in color space,” J. Vis. 14(1), 25 (2014).
[Crossref] [PubMed]

Opt. Express (1)

Sankhya: The Indian Journal of Statistics Series B, (1)

K. V. Mardia, “Applications of some measures of multivariate skewness and kurtosis in testing normality and robustness studies,” Sankhyā: The Indian Journal of Statistics Series B, 36, 115–128 (1974).

Scientific Papers of the United States Bureau of Standards (1)

I. G. Priest, “The spectral distribution of energy required to evoke the gray sensation,” Scientific Papers of the United States Bureau of Standards 17(), 231–265 (1921).
[Crossref]

Vision Res. (3)

A. Valberg, “A method for the precise determination of achromatic colours including white,” Vision Res. 11(2), 157–160 (1971).
[Crossref] [PubMed]

J. Walraven and J. S. Werner, “The invariance of unique white; a possible implication for normalizing cone action spectra,” Vision Res. 31(12), 2185–2193 (1991).
[Crossref] [PubMed]

I. Kuriki, “The loci of achromatic points in a real environment under various illuminant chromaticities,” Vision Res. 46(19), 3055–3066 (2006).
[Crossref] [PubMed]

Other (5)

CIES004/E-2001, “Colours of Light Signals,” (CIE, Vienna, 2001).

Y. Ohno and M. Fein, “Vision experiment on white light chromaticity for lighting,” in CIE/USA-CNC/CIE Biennial Joint Meeting (Davis, USA, 2013).

C. Cuttle, Lighting by Design (Architectural Press, 2003).

M. D. Fairchild, “Color Appearance Models,” (John Wiley & Sons, 2005).

M. H. Kim, T. Weyrich, and J. Kautz, Modeling Human Color Perception under Extended Luminance Levels,” TOG - ACM Transactions on Graphics (Proc. SIGGRAPH) 28, 27:21–29 (2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Experimental Setup. Left: full setup. Right: view by an observer focused on the stimulus.
Fig. 2
Fig. 2 Unique whites settings and the associated standard deviation ellipses for each observer (each color represents data of one observer): (a) 200 cd/m2, (b) 1000 cd/m2, (c) 2000 cd/m2 and (d) luminance invariance assumed. The average 3-SD-ellipse (dashed black line) – a measure for the average intra-observer variability – and the 3-SD-ellipse of the average observer unique settings (solid black line) – a measure of the inter-observer variability – are also plotted. Finally, the CIE class A and B white regions are also shown, along with the blackbody and daylight loci (thin black solid curves).
Fig. 3
Fig. 3 CCT (a) and Duv (b) versus luminance level. Colored solid lines: individual test subjects. Black dashed lines: ‘average’ observer. Solid black lines in the Duv graph show the limits of what is typically still considered white light, i.e. chromaticity values for which the concept of CCT is valid: |Duv| ≤ 5.4e-3.

Tables (2)

Tables Icon

Table 1 Intra (average) and inter observer variability ellipses for the adjustment method.

Tables Icon

Table 2 Maximum and minimum of the CCT and Duv corresponding to the centers of the individual observer SD-ellipses and the CCT and Duv (and their standard errors, SE) for the average observer.

Metrics