Abstract

The ability of narrow bandpass filters to discriminate wavelengths between closely-separated gas absorption lines is crucial in many areas of infrared spectroscopy. As improvements to the sensitivity of infrared detectors enables operation in uncontrolled high-temperature environments, this imposes demands on the explicit bandpass design to provide temperature-invariant behavior. The unique negative temperature coefficient (dn/dT<0) of Lead-based (Pb) salts, in combination with dielectric materials enable bandpass filters with exclusive immunity to shifts in wavelength with temperature. This paper presents the results of an investigation into the interdependence between multilayer bandpass design and optical materials together with a review on invariance at elevated temperatures.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Determination of the embedded thermo-optical expansion coefficients of PbTe and ZnSe thin film infrared multilayers

Gary J. Hawkins and Thomine Stolberg-Rohr
Opt. Express 23(12) 16348-16355 (2015)

High-performance infrared narrow-bandpass filters for the Indian National Satellite System meteorological instrument (INSAT-3D)

G. J. Hawkins, R. E. Sherwood, B. M. Barrett, M. Wallace, H. J. B. Orr, K. Matthews, and S. Bisht
Appl. Opt. 47(13) 2346-2356 (2008)

References

  • View by:
  • |
  • |
  • |

  1. G. J. Hawkins, R. Hunneman, R. Sherwood, and B. M. Barrett, “Infrared filters and coatings for the High Resolution Dynamics Limb Sounder (6-18 microm),” Appl. Opt. 39(28), 5221–5230 (2000).
    [Crossref] [PubMed]
  2. T. Katsumata, R. Nishimura, K. Yamaoka, E. G. Camargo, T. Morishita, K. Ueno, S. Tokuo, H. Goto, and N. Kuze, “Uncooled InGaSb photovoltaic infrared detectors for gas sensing,” J. Cryst. Growth 378, 611–613 (2013).
    [Crossref]
  3. A. G. U. Perera, P. V. V. Jayaweera, G. Ariyawansa, S. G. Matsik, K. Tennakone, M. Buchanan, H. C. Liu, X. H. Su, and P. Bhattacharya, “Room temperature nano- and microstructured photon detectors,” Microelectron. J. 40(3), 507–511 (2009).
    [Crossref]
  4. P. V. V. Jayaweera, S. G. Matsik, A. G. U. Perera, H. C. Liu, M. Buchanan, and Z. R. Wasilewski, “Uncooled infrared detectors for 3-5 um and beyond,” Appl. Phys. Lett. 93(2), 021105 (2008).
    [Crossref]
  5. T. Stolberg-Rohr, R. Buchner, S. Clausen, J. M. Jensen, A. Skouboe, G. Hawkins, and R. S. Hansen, “In optics humidity compensation in NDIR exhaust gas measurements of NO2,” in Advanced Photonics Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper SeTh1C.3.
    [Crossref]
  6. R. Mark, D. Morand, and S. Waldstein, “Temperature control of the bandpass of an interference filter,” Appl. Opt. 9(10), 2305–2310 (1970).
    [Crossref] [PubMed]
  7. C. S. Evans, R. Hunneman, and J. S. Seeley, “Optical thickness changes in freshly deposited layers of lead telluride,” J. Phys. D. 9(2), 321–328 (1976).
    [Crossref]
  8. J. S. Seeley, R. Hunneman, and A. Whatley, “Temperature-invariant and other narrow band IR filters containing PbTe, 4-20 um,” Proc. SPIE 246, 83–96 (1980).
    [Crossref]
  9. C. R. Pidgeon and S. D. Smith, “Resolving power of multilayer filters in nonparallel light,” J. Opt. Soc. Am. 54(12), 1459–1466 (1964).
    [Crossref]
  10. J. S. Seeley, G. J. Hawkins, and R. Hunneman, “Performance model for cooled IR filters,” J. Phys. D 21(10S), S71–S74 (1988).
    [Crossref]
  11. B. Li, S. Y. Zhang, J. C. Jiang, D. Q. Liu, and F. S. Zhang, “Recent progress in improving low-temperature stability of infrared thin-film interference filters,” Opt. Express 13(17), 6376–6380 (2005).
    [Crossref] [PubMed]
  12. J. P. Borgogno, F. Flory, P. Roche, B. Schmitt, G. Albrand, E. Pelletier, and H. A. Macleod, “Refractive index and inhomogeneity of thin films,” Appl. Opt. 23(20), 3567–3570 (1984).
    [Crossref] [PubMed]
  13. H. Rafla-Yuan, B. P. Hichwa, and T. H. Allen, “Noncontact method for measuring coefficient of linear thermal expansion of thin films,” J. Vac. Sci. Technol. A 16(5), 3119–3122 (1998).
    [Crossref]
  14. K. Zhang, J. Seeley, R. Hunneman, and G. Hawkins, “Optical and semiconductor properties of lead telluride coatings,” Proc. SPIE 1125, 45–52 (1989).
  15. C. Jacobs, “Dielectric square bandpass design,” Appl. Opt. 20(6), 1039–1042 (1981).
    [Crossref] [PubMed]
  16. H. A. Macleod, Thin-Film Optical Filters, Fourth Edition (CRC Press, 2010).
  17. H. Takashashi, “Temperature stability of thin-film narrow-bandpass filters produced by ion-assisted deposition,” Appl. Opt. 34(4), 667–675 (1995).
    [Crossref] [PubMed]
  18. P. Baumeister, “Methods of altering the characteristics of a multilayer stack,” J. Opt. Soc. Am. 52(10), 1149–1152 (1962).
    [Crossref]
  19. P. Klocek, Handbook of Infrared Materials (Marcel Dekker, Inc., 1991).
  20. C.-H. Su, S. Feth, and S. L. Lehoczky, “Thermal expansion coefficient of ZnSe crystal between 17 and 1080°C by interferometry,” Mater. Lett. 63(17), 1475–1477 (2009).
    [Crossref]
  21. Yu. I. Ravich, B. A. Efimova, and I. A. Smirnov, Semiconducting Lead Chalcogenides (Plenum Press, 1970).
  22. Y.-H. Yen, L.-X. Zhu, W.-D. Zhang, F.-S. Zhang, and S.-Y. Wang, “Study of PbTe optical coatings,” Appl. Opt. 23(20), 3597–3601 (1984).
    [Crossref] [PubMed]
  23. R. Dalven, “A review of the semiconductor properties of PbTe, PbSe, PbS and PbO,” Infrared Phys. 9(4), 141–184 (1969).
    [Crossref]
  24. E. Palik, Handbook of Optical Constants of Solids (Acedemic Press, 1985).
  25. R. A. Feldman, D. Horowitz, and R. M. Waxler, “Refractive properties of infrared window materials” in Proceedings of Laser induced damage in optical materials, (SPIE, 1977).
  26. R. J. Harris, G. T. Johnston, G. A. Kepple, P. C. Krok, and H. Mukai, “Infrared thermooptic coefficient measurement of polycrystalline ZnSe, ZnS, CdTe, CaF(2), and BaF(2), single crystal KCI, and TI-20 glass,” Appl. Opt. 16(2), 436–438 (1977).
    [Crossref] [PubMed]
  27. H. W. Icenogle, B. C. Platt, and W. L. Wolfe, “Refractive indexes and temperature coefficients of germanium and silicon,” Appl. Opt. 15(10), 2348–2351 (1976).
    [Crossref] [PubMed]
  28. B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE 6273, 62732J (2006).
  29. J. Thornton, “Absorption characteristics of low-resistivity germanium,” Proc. SPIE 1112, 94–98 (1989).
  30. S.-H. Kim and C. K. Hwangbo, “Derivation of the center-wavelength shift of narrow-bandpass filters under temperature change,” Opt. Express 12(23), 5634–5639 (2004).
    [Crossref] [PubMed]
  31. H. Takashashi, “Temperature stability of thin-film narrow-bandpass filters produced by ion-assisted deposition,” Appl. Opt. 34(4), 667–675 (1995).
    [Crossref] [PubMed]
  32. G. J. Hawkins, R. E. Sherwood, B. M. Barrett, M. Wallace, H. J. B. Orr, K. Matthews, and S. Bisht, “High-performance infrared narrow-bandpass filters for the Indian National Satellite System meteorological instrument (INSAT-3D),” Appl. Opt. 47(13), 2346–2356 (2008).
    [Crossref] [PubMed]
  33. J. E. Murphy-Morris and S. W. Hinkal, “GOES Sounder Overview,” Proc. SPIE 2812, 174–181 (1996).
    [Crossref]
  34. G. J. Hawkins, R. E. Sherwood, K. Djotni, P. M. Coppo, H. Höhnemann, and F. Belli, “Cooled infrared filters and dichroics for the Sea and Land Surface Temperature Radiometer,” Appl. Opt. 52(10), 2125–2135 (2013).
    [Crossref] [PubMed]
  35. E. Ritter, “Properties of optical film materials,” Appl. Opt. 20(1), 21–25 (1981).
    [Crossref] [PubMed]
  36. H. A. Macleod, “Microstructure of optical thin films,” Proc. SPIE 325, 21–28 (1982).
    [Crossref]

2013 (2)

T. Katsumata, R. Nishimura, K. Yamaoka, E. G. Camargo, T. Morishita, K. Ueno, S. Tokuo, H. Goto, and N. Kuze, “Uncooled InGaSb photovoltaic infrared detectors for gas sensing,” J. Cryst. Growth 378, 611–613 (2013).
[Crossref]

G. J. Hawkins, R. E. Sherwood, K. Djotni, P. M. Coppo, H. Höhnemann, and F. Belli, “Cooled infrared filters and dichroics for the Sea and Land Surface Temperature Radiometer,” Appl. Opt. 52(10), 2125–2135 (2013).
[Crossref] [PubMed]

2009 (2)

A. G. U. Perera, P. V. V. Jayaweera, G. Ariyawansa, S. G. Matsik, K. Tennakone, M. Buchanan, H. C. Liu, X. H. Su, and P. Bhattacharya, “Room temperature nano- and microstructured photon detectors,” Microelectron. J. 40(3), 507–511 (2009).
[Crossref]

C.-H. Su, S. Feth, and S. L. Lehoczky, “Thermal expansion coefficient of ZnSe crystal between 17 and 1080°C by interferometry,” Mater. Lett. 63(17), 1475–1477 (2009).
[Crossref]

2008 (2)

2006 (1)

B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE 6273, 62732J (2006).

2005 (1)

2004 (1)

2000 (1)

1998 (1)

H. Rafla-Yuan, B. P. Hichwa, and T. H. Allen, “Noncontact method for measuring coefficient of linear thermal expansion of thin films,” J. Vac. Sci. Technol. A 16(5), 3119–3122 (1998).
[Crossref]

1996 (1)

J. E. Murphy-Morris and S. W. Hinkal, “GOES Sounder Overview,” Proc. SPIE 2812, 174–181 (1996).
[Crossref]

1995 (2)

1989 (2)

J. Thornton, “Absorption characteristics of low-resistivity germanium,” Proc. SPIE 1112, 94–98 (1989).

K. Zhang, J. Seeley, R. Hunneman, and G. Hawkins, “Optical and semiconductor properties of lead telluride coatings,” Proc. SPIE 1125, 45–52 (1989).

1988 (1)

J. S. Seeley, G. J. Hawkins, and R. Hunneman, “Performance model for cooled IR filters,” J. Phys. D 21(10S), S71–S74 (1988).
[Crossref]

1984 (2)

1982 (1)

H. A. Macleod, “Microstructure of optical thin films,” Proc. SPIE 325, 21–28 (1982).
[Crossref]

1981 (2)

1980 (1)

J. S. Seeley, R. Hunneman, and A. Whatley, “Temperature-invariant and other narrow band IR filters containing PbTe, 4-20 um,” Proc. SPIE 246, 83–96 (1980).
[Crossref]

1977 (1)

1976 (2)

H. W. Icenogle, B. C. Platt, and W. L. Wolfe, “Refractive indexes and temperature coefficients of germanium and silicon,” Appl. Opt. 15(10), 2348–2351 (1976).
[Crossref] [PubMed]

C. S. Evans, R. Hunneman, and J. S. Seeley, “Optical thickness changes in freshly deposited layers of lead telluride,” J. Phys. D. 9(2), 321–328 (1976).
[Crossref]

1970 (1)

1969 (1)

R. Dalven, “A review of the semiconductor properties of PbTe, PbSe, PbS and PbO,” Infrared Phys. 9(4), 141–184 (1969).
[Crossref]

1964 (1)

1962 (1)

Albrand, G.

Allen, T. H.

H. Rafla-Yuan, B. P. Hichwa, and T. H. Allen, “Noncontact method for measuring coefficient of linear thermal expansion of thin films,” J. Vac. Sci. Technol. A 16(5), 3119–3122 (1998).
[Crossref]

Ariyawansa, G.

A. G. U. Perera, P. V. V. Jayaweera, G. Ariyawansa, S. G. Matsik, K. Tennakone, M. Buchanan, H. C. Liu, X. H. Su, and P. Bhattacharya, “Room temperature nano- and microstructured photon detectors,” Microelectron. J. 40(3), 507–511 (2009).
[Crossref]

Barrett, B. M.

Baumeister, P.

Belli, F.

Bhattacharya, P.

A. G. U. Perera, P. V. V. Jayaweera, G. Ariyawansa, S. G. Matsik, K. Tennakone, M. Buchanan, H. C. Liu, X. H. Su, and P. Bhattacharya, “Room temperature nano- and microstructured photon detectors,” Microelectron. J. 40(3), 507–511 (2009).
[Crossref]

Bisht, S.

Borgogno, J. P.

Buchanan, M.

A. G. U. Perera, P. V. V. Jayaweera, G. Ariyawansa, S. G. Matsik, K. Tennakone, M. Buchanan, H. C. Liu, X. H. Su, and P. Bhattacharya, “Room temperature nano- and microstructured photon detectors,” Microelectron. J. 40(3), 507–511 (2009).
[Crossref]

P. V. V. Jayaweera, S. G. Matsik, A. G. U. Perera, H. C. Liu, M. Buchanan, and Z. R. Wasilewski, “Uncooled infrared detectors for 3-5 um and beyond,” Appl. Phys. Lett. 93(2), 021105 (2008).
[Crossref]

Camargo, E. G.

T. Katsumata, R. Nishimura, K. Yamaoka, E. G. Camargo, T. Morishita, K. Ueno, S. Tokuo, H. Goto, and N. Kuze, “Uncooled InGaSb photovoltaic infrared detectors for gas sensing,” J. Cryst. Growth 378, 611–613 (2013).
[Crossref]

Coppo, P. M.

Dalven, R.

R. Dalven, “A review of the semiconductor properties of PbTe, PbSe, PbS and PbO,” Infrared Phys. 9(4), 141–184 (1969).
[Crossref]

Djotni, K.

Evans, C. S.

C. S. Evans, R. Hunneman, and J. S. Seeley, “Optical thickness changes in freshly deposited layers of lead telluride,” J. Phys. D. 9(2), 321–328 (1976).
[Crossref]

Feth, S.

C.-H. Su, S. Feth, and S. L. Lehoczky, “Thermal expansion coefficient of ZnSe crystal between 17 and 1080°C by interferometry,” Mater. Lett. 63(17), 1475–1477 (2009).
[Crossref]

Flory, F.

Frey, B. J.

B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE 6273, 62732J (2006).

Goto, H.

T. Katsumata, R. Nishimura, K. Yamaoka, E. G. Camargo, T. Morishita, K. Ueno, S. Tokuo, H. Goto, and N. Kuze, “Uncooled InGaSb photovoltaic infrared detectors for gas sensing,” J. Cryst. Growth 378, 611–613 (2013).
[Crossref]

Harris, R. J.

Hawkins, G.

K. Zhang, J. Seeley, R. Hunneman, and G. Hawkins, “Optical and semiconductor properties of lead telluride coatings,” Proc. SPIE 1125, 45–52 (1989).

Hawkins, G. J.

Hichwa, B. P.

H. Rafla-Yuan, B. P. Hichwa, and T. H. Allen, “Noncontact method for measuring coefficient of linear thermal expansion of thin films,” J. Vac. Sci. Technol. A 16(5), 3119–3122 (1998).
[Crossref]

Hinkal, S. W.

J. E. Murphy-Morris and S. W. Hinkal, “GOES Sounder Overview,” Proc. SPIE 2812, 174–181 (1996).
[Crossref]

Höhnemann, H.

Hunneman, R.

G. J. Hawkins, R. Hunneman, R. Sherwood, and B. M. Barrett, “Infrared filters and coatings for the High Resolution Dynamics Limb Sounder (6-18 microm),” Appl. Opt. 39(28), 5221–5230 (2000).
[Crossref] [PubMed]

K. Zhang, J. Seeley, R. Hunneman, and G. Hawkins, “Optical and semiconductor properties of lead telluride coatings,” Proc. SPIE 1125, 45–52 (1989).

J. S. Seeley, G. J. Hawkins, and R. Hunneman, “Performance model for cooled IR filters,” J. Phys. D 21(10S), S71–S74 (1988).
[Crossref]

J. S. Seeley, R. Hunneman, and A. Whatley, “Temperature-invariant and other narrow band IR filters containing PbTe, 4-20 um,” Proc. SPIE 246, 83–96 (1980).
[Crossref]

C. S. Evans, R. Hunneman, and J. S. Seeley, “Optical thickness changes in freshly deposited layers of lead telluride,” J. Phys. D. 9(2), 321–328 (1976).
[Crossref]

Hwangbo, C. K.

Icenogle, H. W.

Jacobs, C.

Jayaweera, P. V. V.

A. G. U. Perera, P. V. V. Jayaweera, G. Ariyawansa, S. G. Matsik, K. Tennakone, M. Buchanan, H. C. Liu, X. H. Su, and P. Bhattacharya, “Room temperature nano- and microstructured photon detectors,” Microelectron. J. 40(3), 507–511 (2009).
[Crossref]

P. V. V. Jayaweera, S. G. Matsik, A. G. U. Perera, H. C. Liu, M. Buchanan, and Z. R. Wasilewski, “Uncooled infrared detectors for 3-5 um and beyond,” Appl. Phys. Lett. 93(2), 021105 (2008).
[Crossref]

Jiang, J. C.

Johnston, G. T.

Katsumata, T.

T. Katsumata, R. Nishimura, K. Yamaoka, E. G. Camargo, T. Morishita, K. Ueno, S. Tokuo, H. Goto, and N. Kuze, “Uncooled InGaSb photovoltaic infrared detectors for gas sensing,” J. Cryst. Growth 378, 611–613 (2013).
[Crossref]

Kepple, G. A.

Kim, S.-H.

Krok, P. C.

Kuze, N.

T. Katsumata, R. Nishimura, K. Yamaoka, E. G. Camargo, T. Morishita, K. Ueno, S. Tokuo, H. Goto, and N. Kuze, “Uncooled InGaSb photovoltaic infrared detectors for gas sensing,” J. Cryst. Growth 378, 611–613 (2013).
[Crossref]

Lehoczky, S. L.

C.-H. Su, S. Feth, and S. L. Lehoczky, “Thermal expansion coefficient of ZnSe crystal between 17 and 1080°C by interferometry,” Mater. Lett. 63(17), 1475–1477 (2009).
[Crossref]

Leviton, D. B.

B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE 6273, 62732J (2006).

Li, B.

Liu, D. Q.

Liu, H. C.

A. G. U. Perera, P. V. V. Jayaweera, G. Ariyawansa, S. G. Matsik, K. Tennakone, M. Buchanan, H. C. Liu, X. H. Su, and P. Bhattacharya, “Room temperature nano- and microstructured photon detectors,” Microelectron. J. 40(3), 507–511 (2009).
[Crossref]

P. V. V. Jayaweera, S. G. Matsik, A. G. U. Perera, H. C. Liu, M. Buchanan, and Z. R. Wasilewski, “Uncooled infrared detectors for 3-5 um and beyond,” Appl. Phys. Lett. 93(2), 021105 (2008).
[Crossref]

Macleod, H. A.

Madison, T. J.

B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE 6273, 62732J (2006).

Mark, R.

Matsik, S. G.

A. G. U. Perera, P. V. V. Jayaweera, G. Ariyawansa, S. G. Matsik, K. Tennakone, M. Buchanan, H. C. Liu, X. H. Su, and P. Bhattacharya, “Room temperature nano- and microstructured photon detectors,” Microelectron. J. 40(3), 507–511 (2009).
[Crossref]

P. V. V. Jayaweera, S. G. Matsik, A. G. U. Perera, H. C. Liu, M. Buchanan, and Z. R. Wasilewski, “Uncooled infrared detectors for 3-5 um and beyond,” Appl. Phys. Lett. 93(2), 021105 (2008).
[Crossref]

Matthews, K.

Morand, D.

Morishita, T.

T. Katsumata, R. Nishimura, K. Yamaoka, E. G. Camargo, T. Morishita, K. Ueno, S. Tokuo, H. Goto, and N. Kuze, “Uncooled InGaSb photovoltaic infrared detectors for gas sensing,” J. Cryst. Growth 378, 611–613 (2013).
[Crossref]

Mukai, H.

Murphy-Morris, J. E.

J. E. Murphy-Morris and S. W. Hinkal, “GOES Sounder Overview,” Proc. SPIE 2812, 174–181 (1996).
[Crossref]

Nishimura, R.

T. Katsumata, R. Nishimura, K. Yamaoka, E. G. Camargo, T. Morishita, K. Ueno, S. Tokuo, H. Goto, and N. Kuze, “Uncooled InGaSb photovoltaic infrared detectors for gas sensing,” J. Cryst. Growth 378, 611–613 (2013).
[Crossref]

Orr, H. J. B.

Pelletier, E.

Perera, A. G. U.

A. G. U. Perera, P. V. V. Jayaweera, G. Ariyawansa, S. G. Matsik, K. Tennakone, M. Buchanan, H. C. Liu, X. H. Su, and P. Bhattacharya, “Room temperature nano- and microstructured photon detectors,” Microelectron. J. 40(3), 507–511 (2009).
[Crossref]

P. V. V. Jayaweera, S. G. Matsik, A. G. U. Perera, H. C. Liu, M. Buchanan, and Z. R. Wasilewski, “Uncooled infrared detectors for 3-5 um and beyond,” Appl. Phys. Lett. 93(2), 021105 (2008).
[Crossref]

Pidgeon, C. R.

Platt, B. C.

Rafla-Yuan, H.

H. Rafla-Yuan, B. P. Hichwa, and T. H. Allen, “Noncontact method for measuring coefficient of linear thermal expansion of thin films,” J. Vac. Sci. Technol. A 16(5), 3119–3122 (1998).
[Crossref]

Ritter, E.

Roche, P.

Schmitt, B.

Seeley, J.

K. Zhang, J. Seeley, R. Hunneman, and G. Hawkins, “Optical and semiconductor properties of lead telluride coatings,” Proc. SPIE 1125, 45–52 (1989).

Seeley, J. S.

J. S. Seeley, G. J. Hawkins, and R. Hunneman, “Performance model for cooled IR filters,” J. Phys. D 21(10S), S71–S74 (1988).
[Crossref]

J. S. Seeley, R. Hunneman, and A. Whatley, “Temperature-invariant and other narrow band IR filters containing PbTe, 4-20 um,” Proc. SPIE 246, 83–96 (1980).
[Crossref]

C. S. Evans, R. Hunneman, and J. S. Seeley, “Optical thickness changes in freshly deposited layers of lead telluride,” J. Phys. D. 9(2), 321–328 (1976).
[Crossref]

Sherwood, R.

Sherwood, R. E.

Smith, S. D.

Su, C.-H.

C.-H. Su, S. Feth, and S. L. Lehoczky, “Thermal expansion coefficient of ZnSe crystal between 17 and 1080°C by interferometry,” Mater. Lett. 63(17), 1475–1477 (2009).
[Crossref]

Su, X. H.

A. G. U. Perera, P. V. V. Jayaweera, G. Ariyawansa, S. G. Matsik, K. Tennakone, M. Buchanan, H. C. Liu, X. H. Su, and P. Bhattacharya, “Room temperature nano- and microstructured photon detectors,” Microelectron. J. 40(3), 507–511 (2009).
[Crossref]

Takashashi, H.

Tennakone, K.

A. G. U. Perera, P. V. V. Jayaweera, G. Ariyawansa, S. G. Matsik, K. Tennakone, M. Buchanan, H. C. Liu, X. H. Su, and P. Bhattacharya, “Room temperature nano- and microstructured photon detectors,” Microelectron. J. 40(3), 507–511 (2009).
[Crossref]

Thornton, J.

J. Thornton, “Absorption characteristics of low-resistivity germanium,” Proc. SPIE 1112, 94–98 (1989).

Tokuo, S.

T. Katsumata, R. Nishimura, K. Yamaoka, E. G. Camargo, T. Morishita, K. Ueno, S. Tokuo, H. Goto, and N. Kuze, “Uncooled InGaSb photovoltaic infrared detectors for gas sensing,” J. Cryst. Growth 378, 611–613 (2013).
[Crossref]

Ueno, K.

T. Katsumata, R. Nishimura, K. Yamaoka, E. G. Camargo, T. Morishita, K. Ueno, S. Tokuo, H. Goto, and N. Kuze, “Uncooled InGaSb photovoltaic infrared detectors for gas sensing,” J. Cryst. Growth 378, 611–613 (2013).
[Crossref]

Waldstein, S.

Wallace, M.

Wang, S.-Y.

Wasilewski, Z. R.

P. V. V. Jayaweera, S. G. Matsik, A. G. U. Perera, H. C. Liu, M. Buchanan, and Z. R. Wasilewski, “Uncooled infrared detectors for 3-5 um and beyond,” Appl. Phys. Lett. 93(2), 021105 (2008).
[Crossref]

Whatley, A.

J. S. Seeley, R. Hunneman, and A. Whatley, “Temperature-invariant and other narrow band IR filters containing PbTe, 4-20 um,” Proc. SPIE 246, 83–96 (1980).
[Crossref]

Wolfe, W. L.

Yamaoka, K.

T. Katsumata, R. Nishimura, K. Yamaoka, E. G. Camargo, T. Morishita, K. Ueno, S. Tokuo, H. Goto, and N. Kuze, “Uncooled InGaSb photovoltaic infrared detectors for gas sensing,” J. Cryst. Growth 378, 611–613 (2013).
[Crossref]

Yen, Y.-H.

Zhang, F. S.

Zhang, F.-S.

Zhang, K.

K. Zhang, J. Seeley, R. Hunneman, and G. Hawkins, “Optical and semiconductor properties of lead telluride coatings,” Proc. SPIE 1125, 45–52 (1989).

Zhang, S. Y.

Zhang, W.-D.

Zhu, L.-X.

Appl. Opt. (12)

R. Mark, D. Morand, and S. Waldstein, “Temperature control of the bandpass of an interference filter,” Appl. Opt. 9(10), 2305–2310 (1970).
[Crossref] [PubMed]

H. W. Icenogle, B. C. Platt, and W. L. Wolfe, “Refractive indexes and temperature coefficients of germanium and silicon,” Appl. Opt. 15(10), 2348–2351 (1976).
[Crossref] [PubMed]

R. J. Harris, G. T. Johnston, G. A. Kepple, P. C. Krok, and H. Mukai, “Infrared thermooptic coefficient measurement of polycrystalline ZnSe, ZnS, CdTe, CaF(2), and BaF(2), single crystal KCI, and TI-20 glass,” Appl. Opt. 16(2), 436–438 (1977).
[Crossref] [PubMed]

E. Ritter, “Properties of optical film materials,” Appl. Opt. 20(1), 21–25 (1981).
[Crossref] [PubMed]

C. Jacobs, “Dielectric square bandpass design,” Appl. Opt. 20(6), 1039–1042 (1981).
[Crossref] [PubMed]

J. P. Borgogno, F. Flory, P. Roche, B. Schmitt, G. Albrand, E. Pelletier, and H. A. Macleod, “Refractive index and inhomogeneity of thin films,” Appl. Opt. 23(20), 3567–3570 (1984).
[Crossref] [PubMed]

Y.-H. Yen, L.-X. Zhu, W.-D. Zhang, F.-S. Zhang, and S.-Y. Wang, “Study of PbTe optical coatings,” Appl. Opt. 23(20), 3597–3601 (1984).
[Crossref] [PubMed]

H. Takashashi, “Temperature stability of thin-film narrow-bandpass filters produced by ion-assisted deposition,” Appl. Opt. 34(4), 667–675 (1995).
[Crossref] [PubMed]

H. Takashashi, “Temperature stability of thin-film narrow-bandpass filters produced by ion-assisted deposition,” Appl. Opt. 34(4), 667–675 (1995).
[Crossref] [PubMed]

G. J. Hawkins, R. Hunneman, R. Sherwood, and B. M. Barrett, “Infrared filters and coatings for the High Resolution Dynamics Limb Sounder (6-18 microm),” Appl. Opt. 39(28), 5221–5230 (2000).
[Crossref] [PubMed]

G. J. Hawkins, R. E. Sherwood, B. M. Barrett, M. Wallace, H. J. B. Orr, K. Matthews, and S. Bisht, “High-performance infrared narrow-bandpass filters for the Indian National Satellite System meteorological instrument (INSAT-3D),” Appl. Opt. 47(13), 2346–2356 (2008).
[Crossref] [PubMed]

G. J. Hawkins, R. E. Sherwood, K. Djotni, P. M. Coppo, H. Höhnemann, and F. Belli, “Cooled infrared filters and dichroics for the Sea and Land Surface Temperature Radiometer,” Appl. Opt. 52(10), 2125–2135 (2013).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

P. V. V. Jayaweera, S. G. Matsik, A. G. U. Perera, H. C. Liu, M. Buchanan, and Z. R. Wasilewski, “Uncooled infrared detectors for 3-5 um and beyond,” Appl. Phys. Lett. 93(2), 021105 (2008).
[Crossref]

Infrared Phys. (1)

R. Dalven, “A review of the semiconductor properties of PbTe, PbSe, PbS and PbO,” Infrared Phys. 9(4), 141–184 (1969).
[Crossref]

J. Cryst. Growth (1)

T. Katsumata, R. Nishimura, K. Yamaoka, E. G. Camargo, T. Morishita, K. Ueno, S. Tokuo, H. Goto, and N. Kuze, “Uncooled InGaSb photovoltaic infrared detectors for gas sensing,” J. Cryst. Growth 378, 611–613 (2013).
[Crossref]

J. Opt. Soc. Am. (2)

J. Phys. D (1)

J. S. Seeley, G. J. Hawkins, and R. Hunneman, “Performance model for cooled IR filters,” J. Phys. D 21(10S), S71–S74 (1988).
[Crossref]

J. Phys. D. (1)

C. S. Evans, R. Hunneman, and J. S. Seeley, “Optical thickness changes in freshly deposited layers of lead telluride,” J. Phys. D. 9(2), 321–328 (1976).
[Crossref]

J. Vac. Sci. Technol. A (1)

H. Rafla-Yuan, B. P. Hichwa, and T. H. Allen, “Noncontact method for measuring coefficient of linear thermal expansion of thin films,” J. Vac. Sci. Technol. A 16(5), 3119–3122 (1998).
[Crossref]

Mater. Lett. (1)

C.-H. Su, S. Feth, and S. L. Lehoczky, “Thermal expansion coefficient of ZnSe crystal between 17 and 1080°C by interferometry,” Mater. Lett. 63(17), 1475–1477 (2009).
[Crossref]

Microelectron. J. (1)

A. G. U. Perera, P. V. V. Jayaweera, G. Ariyawansa, S. G. Matsik, K. Tennakone, M. Buchanan, H. C. Liu, X. H. Su, and P. Bhattacharya, “Room temperature nano- and microstructured photon detectors,” Microelectron. J. 40(3), 507–511 (2009).
[Crossref]

Opt. Express (2)

Proc. SPIE (6)

B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE 6273, 62732J (2006).

J. Thornton, “Absorption characteristics of low-resistivity germanium,” Proc. SPIE 1112, 94–98 (1989).

J. E. Murphy-Morris and S. W. Hinkal, “GOES Sounder Overview,” Proc. SPIE 2812, 174–181 (1996).
[Crossref]

H. A. Macleod, “Microstructure of optical thin films,” Proc. SPIE 325, 21–28 (1982).
[Crossref]

K. Zhang, J. Seeley, R. Hunneman, and G. Hawkins, “Optical and semiconductor properties of lead telluride coatings,” Proc. SPIE 1125, 45–52 (1989).

J. S. Seeley, R. Hunneman, and A. Whatley, “Temperature-invariant and other narrow band IR filters containing PbTe, 4-20 um,” Proc. SPIE 246, 83–96 (1980).
[Crossref]

Other (6)

Yu. I. Ravich, B. A. Efimova, and I. A. Smirnov, Semiconducting Lead Chalcogenides (Plenum Press, 1970).

E. Palik, Handbook of Optical Constants of Solids (Acedemic Press, 1985).

R. A. Feldman, D. Horowitz, and R. M. Waxler, “Refractive properties of infrared window materials” in Proceedings of Laser induced damage in optical materials, (SPIE, 1977).

H. A. Macleod, Thin-Film Optical Filters, Fourth Edition (CRC Press, 2010).

P. Klocek, Handbook of Infrared Materials (Marcel Dekker, Inc., 1991).

T. Stolberg-Rohr, R. Buchner, S. Clausen, J. M. Jensen, A. Skouboe, G. Hawkins, and R. S. Hansen, “In optics humidity compensation in NDIR exhaust gas measurements of NO2,” in Advanced Photonics Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper SeTh1C.3.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Opposing optical layer properties resulting in wavelength immunity of PbTe/ZnSe narrow bandpass filter with temperature.
Fig. 2
Fig. 2 Comparison of reported thermal expansion of thin film and bulk values of ZnSe
Fig. 3
Fig. 3 Thermal expansion coefficients of bulk material for PbTe and ZnSe. (Dashed lines indicate the values deployed in the simulations).
Fig. 4
Fig. 4 Overlay of dispersion curves for bulk and thin film PbTe material (17-163K).
Fig. 5
Fig. 5 Dispersion temperature coefficient ( β n ) and linear thermal expansion coefficient ( α L ) of PbTe and ZnSe.
Fig. 6
Fig. 6 Simulated temperature response of four different thickness-order L-cavity ZnSe/PbTe bandpass filters at 4 and 10 µm. Each color covers the range 20-160°C in steps of 20°C
Fig. 7
Fig. 7 Overlay of simulated center wavelength displacement (circles), and displacement predicted from Eq. (2).
Fig. 8
Fig. 8 Measured transmission of 4 mm thick ZnS, ZnSe and Ge uncoated substrate materials at temperatures from 20 °C to 200 °C at 20 °C increments.
Fig. 9
Fig. 9 Center wavelength shift for several filters of similar bandpass design deposited on differing substrate materials at wavelengths of 4 μm and 12 μm.
Fig. 10
Fig. 10 Center wavelength shift of manufactured filters with cavity thickness and temperature (20-120 °C).
Fig. 11
Fig. 11 Example normalized transmission measurements of 3-cavity bandpass filters at 4.2 µm, 7.6 and 10.3 µm showing temperature invariance in the range 20 - 200 °C.
Fig. 12
Fig. 12 Predicted center wavelength shift (lines) compared with measured wavelength shifts (symbols).
Fig. 13
Fig. 13 Temperature variations of a multilayer design without thickness errors, and with gross thickness error applied to the center cavity of ± 2%.

Tables (3)

Tables Icon

Table 1 Results of review of mid-infrared optical properties of ZnSe and PbTe (20 - 160 °C)

Tables Icon

Table 2 Weight factors for Eq. (2).

Tables Icon

Table 3 Analysis of mean temperature shift from a repository of manufactured bandpass filters (20–120 °C) (Deposited on Ge, ZnSe and ZnS optical substrates).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d d T λ 0 λ = m = 1 q s m 1 δ m   d δ m d T
d d T λ 0 λ = s L   1 δ L d δ L d T + s H   1 δ H d δ H d T
1 δ d δ d T = 1 n l d d T n l = 1 n   l ( l d n d T + n d l d T ) = 1 n d n d T + 1 l d l d T = β n + α L  
d d T λ 0 λ = s L   γ L + s H   γ H = s L     ( β n L + α L L ) + s H     ( β n H + α L H )

Metrics