Abstract

A comprehensive experimental benchmarking of Yb3+:YAG crystalline and co-sintered ceramic disks of similar thickness and doping level is presented in the context of high average power laser amplifier operation. Comparison is performed considering gain, depolarization and wave front deformation quantitative measurements and analysis.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Low temperature diode pumped active mirror Yb3+:YAG disk laser amplifier studies

Samuel Marrazzo, Thierry Gonçalvès-Novo, François Millet, and Jean-Christophe Chanteloup
Opt. Express 24(12) 12651-12660 (2016)

14 J / 2 Hz Yb3+:YAG diode pumped solid state laser chain

Thierry Gonçalvès-Novo, Daniel Albach, Bernard Vincent, Mikayel Arzakantsyan, and Jean-Christophe Chanteloup
Opt. Express 21(1) 855-866 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. Ikesue, O. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
    [Crossref]
  2. A. Ikesue and Y. L. Aung, “Synthesis and performance of advanced ceramic lasers,” J. Am. Ceram. Soc. 89(6), 1936–1944 (2006).
    [Crossref]
  3. H. Yagi, J. Bisson, K. Ueda, and T. Yanagitani, “Y3Al5O12 ceramic absorbers for the suppression of parasitic oscillation in high-power Nd:YAG lasers,” J. Lumin. 121(1), 88–94 (2006).
    [Crossref]
  4. K. Ueda, J.-F. Bisson, H. Yagi, K. Takaichi, A. Shirakawa, T. Yanagitani, and A. A. Kaminskii, “Scalable ceramic lasers,” Laser Phys. 15(7), 927–938 (2005).
  5. A. A. Kaminskii, M. S. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and fracture toughness of Y2O3-and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
    [Crossref]
  6. J. Akiyama, Y. Sato, and T. Taira, “Laser ceramics with rare-earth-doped anisotropic materials,” Opt. Lett. 35(21), 3598–3600 (2010).
    [Crossref] [PubMed]
  7. T. Gonçalvès-Novo, D. Albach, B. Vincent, M. Arzakantsyan, and J.-C. Chanteloup, “14 J/2 Hz Yb3+:YAG Diode Pumped Solid State Laser chain,” Opt. Express 21(1), 855–866 (2013).
    [Crossref] [PubMed]
  8. D. Albach, J.-C. Chanteloup, and G. Touzé, “Influence of ASE on the gain distribution in large size, high gain Yb3+:YAG slabs,” Opt. Express 17(5), 3792–3801 (2009).
    [Crossref] [PubMed]
  9. D. Albach, G. LeTouzé, and J.-C. Chanteloup, “Deformation of partially pumped active mirrors for high average-power diode-pumped solid-state lasers,” Opt. Express 19(9), 8413–8422 (2011).
    [Crossref] [PubMed]
  10. M. Arzakantsyan, N. Ananyan, V. Gevorgyan, and J.-C. Chanteloup, “Growth of large 90 mm diameter Yb:YAG single crystals with Bagdasarov method,” Opt. Mater. Express 2(9), 1219–1225 (2012).
    [Crossref]
  11. M. E. Graham, B. I. Davis, and D. V. Keller, “Immersion liquids for Ruby Lasers,” Appl. Opt. 4(5), 613–615 (1965).
    [Crossref]
  12. K. Ertel, C. Hooker, S. J. Hawkes, B. T. Parry, and J. L. Collier, “ASE suppression in a high energy Titanium sapphire amplifier,” Opt. Express 16(11), 8039–8049 (2008).
    [Crossref] [PubMed]
  13. S. Guch., “Parasitic suppression in large aperture disk lasers employing liquid edge claddings,” Appl. Opt. 15(6), 1453–1457 (1976).
    [Crossref] [PubMed]
  14. D. C. Brown, R. L. Cone, Y. Sun, and R. W. Equall, “Yb:YAG Absorption at Ambient and Cryogenic Temperatures,” IEEE J. Sel. Top. Quantum Electron. 11(3), 604–612 (2005).
    [Crossref]
  15. J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
    [Crossref]
  16. J.-C. Chanteloup, D. Albach, F. Assémat, S. Bahbah, G. Bourdet, P. Piatti, M. Pluvinage, B. Vincent, G. Le Touzé, T. Mattern, J. Biesenbach, H. Müntz, A. Noeske, and R. Venohr, “Wavelength tunable, 264 J Laser Diode Array for 10Hz/1ms Yb:YAG pumping,” Fifth International Conference on Inertial Fusion Sciences and Applications (IFSA 2007), September 9–14, 2007, Kobe, Japan; J. Phys. Conf. Ser. 112(3), 032056 (2008).
    [Crossref]
  17. C. Eckert, Helmholtz-Zentrum Dresden-Rossendorf, Institut für Strahlenphysik, Bautzner Landstrasse 400, 01328 Dresden, Germany, E. Zenker, D. Albach and M. Bussmann are preparing a manuscript to be called “HASEonGPU - An adaptive, load-balanced MPI/GPU-Code for calculating the amplified spontaneous emission in high power laser media.”
  18. R. Wynne, J. L. Daneu, and T. Y. Fan, “Thermal Coefficients of the Expansion and Refractive Index in YAG,” Appl. Opt. 38(15), 3282–3284 (1999).
    [Crossref] [PubMed]
  19. M. Ostermeyer, D. Mudge, P. J. Veitch, and J. Munch, “Thermally induced birefringence in Nd:YAG slab lasers,” Appl. Opt. 45(21), 5368–5376 (2006).
    [Crossref] [PubMed]
  20. Y. Chen, B. Chen, M. K. R. Patel, and M. Bass, “Calculation of thermal-gradient-induced stress birefringence in slab Lasers,” IEEE J. Quantum Electron. 40(7), 909–916 (2004).
    [Crossref]
  21. I. Shoji and T. Taira, “Intrinsic reduction of the depolarization loss in solid-state lasers by use of a (110)-cut Y3Al5O12 crystal,” Appl. Phys. Lett. 80(17), 3048 (2002).
    [Crossref]
  22. O. Puncken, H. Tünnermann, J. J. Morehead, P. Wessels, M. Frede, J. Neumann, and D. Kracht, “Intrinsic reduction of the depolarization in Nd:YAG crystals,” Opt. Express 18(19), 20461–20474 (2010).
    [Crossref] [PubMed]
  23. E. A. Khazanov, “Thermally induced birefringence in Nd:YAG ceramics,” Opt. Lett. 27(9), 716–718 (2002).
    [Crossref] [PubMed]
  24. A. Lucianetti, D. Albach, and J.-C. Chanteloup, “Active-mirror-laser-amplifier thermal management with tunable helium pressure at cryogenic temperatures,” Opt. Express 19(13), 12766–12780 (2011).
    [Crossref] [PubMed]

2014 (1)

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

2013 (1)

2012 (1)

2011 (2)

2010 (2)

2009 (1)

2008 (2)

K. Ertel, C. Hooker, S. J. Hawkes, B. T. Parry, and J. L. Collier, “ASE suppression in a high energy Titanium sapphire amplifier,” Opt. Express 16(11), 8039–8049 (2008).
[Crossref] [PubMed]

J.-C. Chanteloup, D. Albach, F. Assémat, S. Bahbah, G. Bourdet, P. Piatti, M. Pluvinage, B. Vincent, G. Le Touzé, T. Mattern, J. Biesenbach, H. Müntz, A. Noeske, and R. Venohr, “Wavelength tunable, 264 J Laser Diode Array for 10Hz/1ms Yb:YAG pumping,” Fifth International Conference on Inertial Fusion Sciences and Applications (IFSA 2007), September 9–14, 2007, Kobe, Japan; J. Phys. Conf. Ser. 112(3), 032056 (2008).
[Crossref]

2006 (3)

A. Ikesue and Y. L. Aung, “Synthesis and performance of advanced ceramic lasers,” J. Am. Ceram. Soc. 89(6), 1936–1944 (2006).
[Crossref]

H. Yagi, J. Bisson, K. Ueda, and T. Yanagitani, “Y3Al5O12 ceramic absorbers for the suppression of parasitic oscillation in high-power Nd:YAG lasers,” J. Lumin. 121(1), 88–94 (2006).
[Crossref]

M. Ostermeyer, D. Mudge, P. J. Veitch, and J. Munch, “Thermally induced birefringence in Nd:YAG slab lasers,” Appl. Opt. 45(21), 5368–5376 (2006).
[Crossref] [PubMed]

2005 (3)

K. Ueda, J.-F. Bisson, H. Yagi, K. Takaichi, A. Shirakawa, T. Yanagitani, and A. A. Kaminskii, “Scalable ceramic lasers,” Laser Phys. 15(7), 927–938 (2005).

A. A. Kaminskii, M. S. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and fracture toughness of Y2O3-and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[Crossref]

D. C. Brown, R. L. Cone, Y. Sun, and R. W. Equall, “Yb:YAG Absorption at Ambient and Cryogenic Temperatures,” IEEE J. Sel. Top. Quantum Electron. 11(3), 604–612 (2005).
[Crossref]

2004 (1)

Y. Chen, B. Chen, M. K. R. Patel, and M. Bass, “Calculation of thermal-gradient-induced stress birefringence in slab Lasers,” IEEE J. Quantum Electron. 40(7), 909–916 (2004).
[Crossref]

2002 (2)

I. Shoji and T. Taira, “Intrinsic reduction of the depolarization loss in solid-state lasers by use of a (110)-cut Y3Al5O12 crystal,” Appl. Phys. Lett. 80(17), 3048 (2002).
[Crossref]

E. A. Khazanov, “Thermally induced birefringence in Nd:YAG ceramics,” Opt. Lett. 27(9), 716–718 (2002).
[Crossref] [PubMed]

1999 (1)

1995 (1)

A. Ikesue, O. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

1976 (1)

1965 (1)

Akchurin, M. S.

A. A. Kaminskii, M. S. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and fracture toughness of Y2O3-and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[Crossref]

Akiyama, J.

Albach, D.

Ananyan, N.

Arzakantsyan, M.

Assémat, F.

J.-C. Chanteloup, D. Albach, F. Assémat, S. Bahbah, G. Bourdet, P. Piatti, M. Pluvinage, B. Vincent, G. Le Touzé, T. Mattern, J. Biesenbach, H. Müntz, A. Noeske, and R. Venohr, “Wavelength tunable, 264 J Laser Diode Array for 10Hz/1ms Yb:YAG pumping,” Fifth International Conference on Inertial Fusion Sciences and Applications (IFSA 2007), September 9–14, 2007, Kobe, Japan; J. Phys. Conf. Ser. 112(3), 032056 (2008).
[Crossref]

Aung, Y. L.

A. Ikesue and Y. L. Aung, “Synthesis and performance of advanced ceramic lasers,” J. Am. Ceram. Soc. 89(6), 1936–1944 (2006).
[Crossref]

Bahbah, S.

J.-C. Chanteloup, D. Albach, F. Assémat, S. Bahbah, G. Bourdet, P. Piatti, M. Pluvinage, B. Vincent, G. Le Touzé, T. Mattern, J. Biesenbach, H. Müntz, A. Noeske, and R. Venohr, “Wavelength tunable, 264 J Laser Diode Array for 10Hz/1ms Yb:YAG pumping,” Fifth International Conference on Inertial Fusion Sciences and Applications (IFSA 2007), September 9–14, 2007, Kobe, Japan; J. Phys. Conf. Ser. 112(3), 032056 (2008).
[Crossref]

Bass, M.

Y. Chen, B. Chen, M. K. R. Patel, and M. Bass, “Calculation of thermal-gradient-induced stress birefringence in slab Lasers,” IEEE J. Quantum Electron. 40(7), 909–916 (2004).
[Crossref]

Biesenbach, J.

J.-C. Chanteloup, D. Albach, F. Assémat, S. Bahbah, G. Bourdet, P. Piatti, M. Pluvinage, B. Vincent, G. Le Touzé, T. Mattern, J. Biesenbach, H. Müntz, A. Noeske, and R. Venohr, “Wavelength tunable, 264 J Laser Diode Array for 10Hz/1ms Yb:YAG pumping,” Fifth International Conference on Inertial Fusion Sciences and Applications (IFSA 2007), September 9–14, 2007, Kobe, Japan; J. Phys. Conf. Ser. 112(3), 032056 (2008).
[Crossref]

Bisson, J.

H. Yagi, J. Bisson, K. Ueda, and T. Yanagitani, “Y3Al5O12 ceramic absorbers for the suppression of parasitic oscillation in high-power Nd:YAG lasers,” J. Lumin. 121(1), 88–94 (2006).
[Crossref]

Bisson, J.-F.

K. Ueda, J.-F. Bisson, H. Yagi, K. Takaichi, A. Shirakawa, T. Yanagitani, and A. A. Kaminskii, “Scalable ceramic lasers,” Laser Phys. 15(7), 927–938 (2005).

Bourdet, G.

J.-C. Chanteloup, D. Albach, F. Assémat, S. Bahbah, G. Bourdet, P. Piatti, M. Pluvinage, B. Vincent, G. Le Touzé, T. Mattern, J. Biesenbach, H. Müntz, A. Noeske, and R. Venohr, “Wavelength tunable, 264 J Laser Diode Array for 10Hz/1ms Yb:YAG pumping,” Fifth International Conference on Inertial Fusion Sciences and Applications (IFSA 2007), September 9–14, 2007, Kobe, Japan; J. Phys. Conf. Ser. 112(3), 032056 (2008).
[Crossref]

Brown, D. C.

D. C. Brown, R. L. Cone, Y. Sun, and R. W. Equall, “Yb:YAG Absorption at Ambient and Cryogenic Temperatures,” IEEE J. Sel. Top. Quantum Electron. 11(3), 604–612 (2005).
[Crossref]

Chanteloup, J.-C.

Chen, B.

Y. Chen, B. Chen, M. K. R. Patel, and M. Bass, “Calculation of thermal-gradient-induced stress birefringence in slab Lasers,” IEEE J. Quantum Electron. 40(7), 909–916 (2004).
[Crossref]

Chen, Y.

Y. Chen, B. Chen, M. K. R. Patel, and M. Bass, “Calculation of thermal-gradient-induced stress birefringence in slab Lasers,” IEEE J. Quantum Electron. 40(7), 909–916 (2004).
[Crossref]

Collier, J. L.

Cone, R. L.

D. C. Brown, R. L. Cone, Y. Sun, and R. W. Equall, “Yb:YAG Absorption at Ambient and Cryogenic Temperatures,” IEEE J. Sel. Top. Quantum Electron. 11(3), 604–612 (2005).
[Crossref]

Daneu, J. L.

Davis, B. I.

Equall, R. W.

D. C. Brown, R. L. Cone, Y. Sun, and R. W. Equall, “Yb:YAG Absorption at Ambient and Cryogenic Temperatures,” IEEE J. Sel. Top. Quantum Electron. 11(3), 604–612 (2005).
[Crossref]

Ertel, K.

Fan, T. Y.

Frede, M.

Gainutdinov, R. V.

A. A. Kaminskii, M. S. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and fracture toughness of Y2O3-and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[Crossref]

Gevorgyan, V.

Gonçalvès-Novo, T.

Graham, M. E.

Guch, S.

Hawkes, S. J.

Hein, J.

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

Hooker, C.

Ikesue, A.

A. Ikesue and Y. L. Aung, “Synthesis and performance of advanced ceramic lasers,” J. Am. Ceram. Soc. 89(6), 1936–1944 (2006).
[Crossref]

A. Ikesue, O. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

Jambunathan, V.

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

Kaluza, M. C.

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

Kamata, K.

A. Ikesue, O. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

Kaminskii, A. A.

K. Ueda, J.-F. Bisson, H. Yagi, K. Takaichi, A. Shirakawa, T. Yanagitani, and A. A. Kaminskii, “Scalable ceramic lasers,” Laser Phys. 15(7), 927–938 (2005).

A. A. Kaminskii, M. S. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and fracture toughness of Y2O3-and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[Crossref]

Keller, D. V.

Khazanov, E. A.

Kinoshita, O.

A. Ikesue, O. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

Körner, J.

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

Kracht, D.

Le Touzé, G.

J.-C. Chanteloup, D. Albach, F. Assémat, S. Bahbah, G. Bourdet, P. Piatti, M. Pluvinage, B. Vincent, G. Le Touzé, T. Mattern, J. Biesenbach, H. Müntz, A. Noeske, and R. Venohr, “Wavelength tunable, 264 J Laser Diode Array for 10Hz/1ms Yb:YAG pumping,” Fifth International Conference on Inertial Fusion Sciences and Applications (IFSA 2007), September 9–14, 2007, Kobe, Japan; J. Phys. Conf. Ser. 112(3), 032056 (2008).
[Crossref]

LeTouzé, G.

Loeser, M.

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

Lucianetti, A.

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

A. Lucianetti, D. Albach, and J.-C. Chanteloup, “Active-mirror-laser-amplifier thermal management with tunable helium pressure at cryogenic temperatures,” Opt. Express 19(13), 12766–12780 (2011).
[Crossref] [PubMed]

Mattern, T.

J.-C. Chanteloup, D. Albach, F. Assémat, S. Bahbah, G. Bourdet, P. Piatti, M. Pluvinage, B. Vincent, G. Le Touzé, T. Mattern, J. Biesenbach, H. Müntz, A. Noeske, and R. Venohr, “Wavelength tunable, 264 J Laser Diode Array for 10Hz/1ms Yb:YAG pumping,” Fifth International Conference on Inertial Fusion Sciences and Applications (IFSA 2007), September 9–14, 2007, Kobe, Japan; J. Phys. Conf. Ser. 112(3), 032056 (2008).
[Crossref]

Mocek, T.

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

Morehead, J. J.

Mudge, D.

Munch, J.

Müntz, H.

J.-C. Chanteloup, D. Albach, F. Assémat, S. Bahbah, G. Bourdet, P. Piatti, M. Pluvinage, B. Vincent, G. Le Touzé, T. Mattern, J. Biesenbach, H. Müntz, A. Noeske, and R. Venohr, “Wavelength tunable, 264 J Laser Diode Array for 10Hz/1ms Yb:YAG pumping,” Fifth International Conference on Inertial Fusion Sciences and Applications (IFSA 2007), September 9–14, 2007, Kobe, Japan; J. Phys. Conf. Ser. 112(3), 032056 (2008).
[Crossref]

Neumann, J.

Noeske, A.

J.-C. Chanteloup, D. Albach, F. Assémat, S. Bahbah, G. Bourdet, P. Piatti, M. Pluvinage, B. Vincent, G. Le Touzé, T. Mattern, J. Biesenbach, H. Müntz, A. Noeske, and R. Venohr, “Wavelength tunable, 264 J Laser Diode Array for 10Hz/1ms Yb:YAG pumping,” Fifth International Conference on Inertial Fusion Sciences and Applications (IFSA 2007), September 9–14, 2007, Kobe, Japan; J. Phys. Conf. Ser. 112(3), 032056 (2008).
[Crossref]

Ostermeyer, M.

Parry, B. T.

Patel, M. K. R.

Y. Chen, B. Chen, M. K. R. Patel, and M. Bass, “Calculation of thermal-gradient-induced stress birefringence in slab Lasers,” IEEE J. Quantum Electron. 40(7), 909–916 (2004).
[Crossref]

Piatti, P.

J.-C. Chanteloup, D. Albach, F. Assémat, S. Bahbah, G. Bourdet, P. Piatti, M. Pluvinage, B. Vincent, G. Le Touzé, T. Mattern, J. Biesenbach, H. Müntz, A. Noeske, and R. Venohr, “Wavelength tunable, 264 J Laser Diode Array for 10Hz/1ms Yb:YAG pumping,” Fifth International Conference on Inertial Fusion Sciences and Applications (IFSA 2007), September 9–14, 2007, Kobe, Japan; J. Phys. Conf. Ser. 112(3), 032056 (2008).
[Crossref]

Pluvinage, M.

J.-C. Chanteloup, D. Albach, F. Assémat, S. Bahbah, G. Bourdet, P. Piatti, M. Pluvinage, B. Vincent, G. Le Touzé, T. Mattern, J. Biesenbach, H. Müntz, A. Noeske, and R. Venohr, “Wavelength tunable, 264 J Laser Diode Array for 10Hz/1ms Yb:YAG pumping,” Fifth International Conference on Inertial Fusion Sciences and Applications (IFSA 2007), September 9–14, 2007, Kobe, Japan; J. Phys. Conf. Ser. 112(3), 032056 (2008).
[Crossref]

Puncken, O.

Sato, Y.

Schramm, U.

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

Seifert, R.

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

Shirakava, A.

A. A. Kaminskii, M. S. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and fracture toughness of Y2O3-and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[Crossref]

Shirakawa, A.

K. Ueda, J.-F. Bisson, H. Yagi, K. Takaichi, A. Shirakawa, T. Yanagitani, and A. A. Kaminskii, “Scalable ceramic lasers,” Laser Phys. 15(7), 927–938 (2005).

Shoji, I.

I. Shoji and T. Taira, “Intrinsic reduction of the depolarization loss in solid-state lasers by use of a (110)-cut Y3Al5O12 crystal,” Appl. Phys. Lett. 80(17), 3048 (2002).
[Crossref]

Siebold, M.

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

Sikocinski, P.

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

Sun, Y.

D. C. Brown, R. L. Cone, Y. Sun, and R. W. Equall, “Yb:YAG Absorption at Ambient and Cryogenic Temperatures,” IEEE J. Sel. Top. Quantum Electron. 11(3), 604–612 (2005).
[Crossref]

Taira, T.

J. Akiyama, Y. Sato, and T. Taira, “Laser ceramics with rare-earth-doped anisotropic materials,” Opt. Lett. 35(21), 3598–3600 (2010).
[Crossref] [PubMed]

I. Shoji and T. Taira, “Intrinsic reduction of the depolarization loss in solid-state lasers by use of a (110)-cut Y3Al5O12 crystal,” Appl. Phys. Lett. 80(17), 3048 (2002).
[Crossref]

Takaichi, K.

K. Ueda, J.-F. Bisson, H. Yagi, K. Takaichi, A. Shirakawa, T. Yanagitani, and A. A. Kaminskii, “Scalable ceramic lasers,” Laser Phys. 15(7), 927–938 (2005).

A. A. Kaminskii, M. S. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and fracture toughness of Y2O3-and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[Crossref]

Touzé, G.

Tünnermann, H.

Ueda, K.

H. Yagi, J. Bisson, K. Ueda, and T. Yanagitani, “Y3Al5O12 ceramic absorbers for the suppression of parasitic oscillation in high-power Nd:YAG lasers,” J. Lumin. 121(1), 88–94 (2006).
[Crossref]

A. A. Kaminskii, M. S. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and fracture toughness of Y2O3-and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[Crossref]

K. Ueda, J.-F. Bisson, H. Yagi, K. Takaichi, A. Shirakawa, T. Yanagitani, and A. A. Kaminskii, “Scalable ceramic lasers,” Laser Phys. 15(7), 927–938 (2005).

Veitch, P. J.

Venohr, R.

J.-C. Chanteloup, D. Albach, F. Assémat, S. Bahbah, G. Bourdet, P. Piatti, M. Pluvinage, B. Vincent, G. Le Touzé, T. Mattern, J. Biesenbach, H. Müntz, A. Noeske, and R. Venohr, “Wavelength tunable, 264 J Laser Diode Array for 10Hz/1ms Yb:YAG pumping,” Fifth International Conference on Inertial Fusion Sciences and Applications (IFSA 2007), September 9–14, 2007, Kobe, Japan; J. Phys. Conf. Ser. 112(3), 032056 (2008).
[Crossref]

Vincent, B.

T. Gonçalvès-Novo, D. Albach, B. Vincent, M. Arzakantsyan, and J.-C. Chanteloup, “14 J/2 Hz Yb3+:YAG Diode Pumped Solid State Laser chain,” Opt. Express 21(1), 855–866 (2013).
[Crossref] [PubMed]

J.-C. Chanteloup, D. Albach, F. Assémat, S. Bahbah, G. Bourdet, P. Piatti, M. Pluvinage, B. Vincent, G. Le Touzé, T. Mattern, J. Biesenbach, H. Müntz, A. Noeske, and R. Venohr, “Wavelength tunable, 264 J Laser Diode Array for 10Hz/1ms Yb:YAG pumping,” Fifth International Conference on Inertial Fusion Sciences and Applications (IFSA 2007), September 9–14, 2007, Kobe, Japan; J. Phys. Conf. Ser. 112(3), 032056 (2008).
[Crossref]

Wessels, P.

Wynne, R.

Yagi, H.

H. Yagi, J. Bisson, K. Ueda, and T. Yanagitani, “Y3Al5O12 ceramic absorbers for the suppression of parasitic oscillation in high-power Nd:YAG lasers,” J. Lumin. 121(1), 88–94 (2006).
[Crossref]

A. A. Kaminskii, M. S. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and fracture toughness of Y2O3-and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[Crossref]

K. Ueda, J.-F. Bisson, H. Yagi, K. Takaichi, A. Shirakawa, T. Yanagitani, and A. A. Kaminskii, “Scalable ceramic lasers,” Laser Phys. 15(7), 927–938 (2005).

Yanagitani, T.

H. Yagi, J. Bisson, K. Ueda, and T. Yanagitani, “Y3Al5O12 ceramic absorbers for the suppression of parasitic oscillation in high-power Nd:YAG lasers,” J. Lumin. 121(1), 88–94 (2006).
[Crossref]

A. A. Kaminskii, M. S. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and fracture toughness of Y2O3-and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[Crossref]

K. Ueda, J.-F. Bisson, H. Yagi, K. Takaichi, A. Shirakawa, T. Yanagitani, and A. A. Kaminskii, “Scalable ceramic lasers,” Laser Phys. 15(7), 927–938 (2005).

Yoshida, K.

A. Ikesue, O. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

Appl. Opt. (4)

Appl. Phys. B (1)

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

Appl. Phys. Lett. (1)

I. Shoji and T. Taira, “Intrinsic reduction of the depolarization loss in solid-state lasers by use of a (110)-cut Y3Al5O12 crystal,” Appl. Phys. Lett. 80(17), 3048 (2002).
[Crossref]

Crystallogr. Rep. (1)

A. A. Kaminskii, M. S. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and fracture toughness of Y2O3-and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[Crossref]

IEEE J. Quantum Electron. (1)

Y. Chen, B. Chen, M. K. R. Patel, and M. Bass, “Calculation of thermal-gradient-induced stress birefringence in slab Lasers,” IEEE J. Quantum Electron. 40(7), 909–916 (2004).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

D. C. Brown, R. L. Cone, Y. Sun, and R. W. Equall, “Yb:YAG Absorption at Ambient and Cryogenic Temperatures,” IEEE J. Sel. Top. Quantum Electron. 11(3), 604–612 (2005).
[Crossref]

J. Am. Ceram. Soc. (2)

A. Ikesue, O. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

A. Ikesue and Y. L. Aung, “Synthesis and performance of advanced ceramic lasers,” J. Am. Ceram. Soc. 89(6), 1936–1944 (2006).
[Crossref]

J. Lumin. (1)

H. Yagi, J. Bisson, K. Ueda, and T. Yanagitani, “Y3Al5O12 ceramic absorbers for the suppression of parasitic oscillation in high-power Nd:YAG lasers,” J. Lumin. 121(1), 88–94 (2006).
[Crossref]

J. Phys. Conf. Ser. (1)

J.-C. Chanteloup, D. Albach, F. Assémat, S. Bahbah, G. Bourdet, P. Piatti, M. Pluvinage, B. Vincent, G. Le Touzé, T. Mattern, J. Biesenbach, H. Müntz, A. Noeske, and R. Venohr, “Wavelength tunable, 264 J Laser Diode Array for 10Hz/1ms Yb:YAG pumping,” Fifth International Conference on Inertial Fusion Sciences and Applications (IFSA 2007), September 9–14, 2007, Kobe, Japan; J. Phys. Conf. Ser. 112(3), 032056 (2008).
[Crossref]

Laser Phys. (1)

K. Ueda, J.-F. Bisson, H. Yagi, K. Takaichi, A. Shirakawa, T. Yanagitani, and A. A. Kaminskii, “Scalable ceramic lasers,” Laser Phys. 15(7), 927–938 (2005).

Opt. Express (6)

Opt. Lett. (2)

Opt. Mater. Express (1)

Other (1)

C. Eckert, Helmholtz-Zentrum Dresden-Rossendorf, Institut für Strahlenphysik, Bautzner Landstrasse 400, 01328 Dresden, Germany, E. Zenker, D. Albach and M. Bussmann are preparing a manuscript to be called “HASEonGPU - An adaptive, load-balanced MPI/GPU-Code for calculating the amplified spontaneous emission in high power laser media.”

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 7 mm thickness, 2 at.% Yb3+ doped YAG disks in crystalline form (left, 60 mm diameter) and in ceramic form (center, 45 mm diameter including a 5 mm wide 0.25 at.% Cr4+ doped periphery). The horizontal double head arrow indicates the pictures common scale. Yb3+:YAG and Cr4+:YAG absorption spectra are depicted on the right graph.
Fig. 2
Fig. 2 The small signal gain (SSG) measurement setup. A cw laser source is imaged onto the backside of the laser gain medium and is again imaged onto a photodiode. Out of the oscilloscope traces the SSG is calculated.
Fig. 3
Fig. 3 Left: ASE performance / SSG of the crystal (red), ceramic (orange), the case of no ASE (black), simulation with ASE (blue). Greyed part shows the pump duration (also indicated by the arrow). Right: SSG of the crystal compared to the SSG of the composite ceramics. The dash-dot line indicates SSG parity. The numbers indicate the average pump intensity in kW/cm2.
Fig. 4
Fig. 4 Lucia water cooled power amplifier mount (left) hosting the 7 mm YAG disk pump from the top and cooled from the other side. Thermally induced differential surfaces expansion (top right) leads to the disk bending (bottom right).
Fig. 5
Fig. 5 3D thermo-mechanical model of both crystal (left) and co-sintered ceramic (right) 7 mm thick YAG disks. 15 kW/m2/K heat exchanged coefficient water cooling takes place from the bottom (observe the cold blue surface) while pumping occurs on the top surface. The color temperature distribution clearly reveals the opposite radial temperature gradient of both cases. The heat source corresponds to a 16 kW/cm2 pumping at 2 Hz, 1 ms.
Fig. 6
Fig. 6 Global thermally induced negative focal length fTot versus average pump intensity for the crystal (diamonds) and the ceramic (triangles). The dashed line corresponds to the theoretical focal length [9]. The relative error bars for the ceramic case are in the same order as for the crystal. They were omitted for visibility reason.
Fig. 7
Fig. 7 Calculated angular depolarization loss maps for an Yb3+:YAG crystal carrying three type of orientations. The left map is obtained for a double pass (active mirror architecture) extraction beam propagating through the disk at normal incidence (AOI 0°) whereas a 13° AOI (corresponding to Lucia experimental case) is depicted on the right map.
Fig. 8
Fig. 8 The experimental setup for the measurement of depolarization loss. A polarized cw laser beam is imaged onto the backside of the HR coated laser gain medium and recorded by a CCD camera setup. By rotating of the analyzer relative to the polarizer the depolarization loss can be measured. The gain medium can be rotated as well.
Fig. 9
Fig. 9 Birefringence loss for the ceramic (blue circles) and the crystal (red triangles). For both diagrams the vertical scales give losses in % with respect to the incident energy beam. The evolution of the average pump intensity hitting the disks is depicted on the left logarithmic diagram while the right angular map is given for a 40W value. The dashed lines in left the graph indicate a quadratic behavior of the depolarization loss with increasing average intensity.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f Tot. = f mech. f therm. 2 f mech. + f therm.

Metrics