Abstract

We report a novel ultrafast red-green-blue (RGB) laser source based on second harmonic generation from a two zero dispersion wavelength (TZDW) fiber continuum source. The TZDW fiber source consists of a custom-built Yb:fiber amplifier and a commercially available TZDW photonic crystal fiber (PCF) which enables low noise and efficient frequency conversion from the 1035 nm pump source to two spectrally localized pulses centered at 850 nm and 1260 nm with 39.6% and 33.7% power efficiencies. With angularly multiplexed simultaneous phase matching, we achieve mW average power of red, green and blue pulses at 630 nm, 517 nm and 426 nm from single pass second harmonic generation. With broad RGB bandwidths of 7.4 nm, 3.2 nm and 5.2 nm, the source is inherently speckle-free while maintaining an excellent color rendering capability with higher than 99.7% excitation purity of the RGB color primaries, leading to the coverage of 192% NTSC color gamut (CIE 1976). The reported source features a simple system geometry; its potential in power scaling is discussed with currently available technologies.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Analysis of nonlinear wavelength conversion system for a red-green-blue laser-projection source

Edith Innerhofer, Felix Brunner, Sergio V. Marchese, Rüdiger Paschotta, Gunnar Arisholm, Sunao Kurimura, Kenji Kitamura, Takeshi Usami, Hiromasa Ito, and Ursula Keller
J. Opt. Soc. Am. B 23(2) 265-275 (2006)

Powerful red-green-blue laser source pumped with a mode-locked thin disk laser

Felix Brunner, Edith Innerhofer, Sergio V. Marchese, Thomas Südmeyer, Rüdiger Paschotta, Takeshi Usami, Hiromasa Ito, Sunao Kurimura, Kenji Kitamura, Gunnar Arisholm, and Ursula Keller
Opt. Lett. 29(16) 1921-1923 (2004)

Highly efficient second, third and fourth harmonic generation from a two-branch femtosecond erbium fiber source

Konstantinos Moutzouris, Florian Sotier, Florian Adler, and Alfred Leitenstorfer
Opt. Express 14(5) 1905-1912 (2006)

References

  • View by:
  • |
  • |
  • |

  1. G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources (invited),” J. Opt. Soc. Am. B 24(8), 1771–1785 (2007).
    [Crossref]
  2. J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).
  3. K. V. Chellappan, E. Erden, and H. Urey, “Laser-based displays: a review,” Appl. Opt. 49(25), F79–F98 (2010).
    [Crossref] [PubMed]
  4. H. Bjelkhagen and D. Brotherton-Ratcliffe, Ultra-realistic Imaging: Advanced Techniques in Analogue and Digital Colour Holography (CRC, 2013).
  5. W. G. Telford, F. V. Subach, and V. V. Verkhusha, “Supercontinuum white light lasers for flow cytometry,” Cytometry A 75A(5), 450–459 (2009).
    [Crossref] [PubMed]
  6. F. Brunner, E. Innerhofer, S. V. Marchese, T. Südmeyer, R. Paschotta, T. Usami, H. Ito, S. Kurimura, K. Kitamura, G. Arisholm, and U. Keller, “Powerful red-green-blue laser source pumped with a mode-locked thin disk laser,” Opt. Lett. 29(16), 1921–1923 (2004).
    [Crossref] [PubMed]
  7. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and M. W. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12(13), 2864–2869 (2004).
    [Crossref] [PubMed]
  8. M. Rusu, S. Kivistö, C. Gawith, and O. Okhotnikov, “Red-green-blue (RGB) light generator using tapered fiber pumped with a frequency-doubled Yb-fiber laser,” Opt. Express 13(21), 8547–8554 (2005).
    [Crossref] [PubMed]
  9. Y. Chen, Z. Chen, W. J. Wadsworth, and T. A. Birks, “Nonlinear optics in the LP02 higher-order mode of a fiber,” Opt. Express 21(15), 17786–17799 (2013).
    [Crossref] [PubMed]
  10. P. Dupriez, F. Poletti, P. Horak, M. N. Petrovich, Y. Jeong, J. Nilsson, D. J. Richardson, and D. N. Payne, “Efficient white light generation in secondary cores of holey fibers,” Opt. Express 15(7), 3729–3736 (2007).
    [Crossref] [PubMed]
  11. K. M. Hilligsøe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. Hansen, and J. J. Larsen, “Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,” Opt. Express 12(6), 1045–1054 (2004).
    [Crossref] [PubMed]
  12. A. Aguirre, N. Nishizawa, J. Fujimoto, W. Seitz, M. Lederer, and D. Kopf, “Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm,” Opt. Express 14(3), 1145–1160 (2006).
    [Crossref] [PubMed]
  13. S. Murugkar, C. Brideau, A. Ridsdale, M. Naji, P. K. Stys, and H. Anis, “Coherent anti-Stokes Raman scattering microscopy using photonic crystal fiber with two closely lying zero dispersion wavelengths,” Opt. Express 15(21), 14028–14037 (2007).
    [Crossref] [PubMed]
  14. P. Klarskov, A. Isomäki, K. P. Hansen, and P. E. Andersen, “Supercontinuum generation for coherent anti-Stokes Raman scattering microscopy with photonic crystal fibers,” Opt. Express 19(27), 26672–26683 (2011).
    [Crossref] [PubMed]
  15. Y. Yao and W. H. Knox, “Difference frequency generation of femtosecond mid infrared pulses employing intense Stokes pulses excitation in a photonic crystal fiber,” Opt. Express 20(23), 25275–25283 (2012).
    [Crossref] [PubMed]
  16. Y. Yao and W. H. Knox, “Broadly tunable femtosecond mid-infrared source based on dual photonic crystal fibers,” Opt. Express 21(22), 26612–26619 (2013).
    [Crossref] [PubMed]
  17. Y. Yao and W. H. Knox, “Fiber laser driven dual photonic crystal fiber femtosecond mid-infrared source tunable in the range of 4.2 to 9 μm,” Proc. SPIE 8964, 89640Q (2014).
    [Crossref]
  18. P. M. Moselund, M. H. Frosz, C. L. Thomsen, and O. Bang, “Back-seeding of higher order gain processes in picosecond supercontinuum generation,” Opt. Express 16(16), 11954–11968 (2008).
    [Crossref] [PubMed]
  19. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2013).
  20. D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301(5640), 1705–1708 (2003).
    [Crossref] [PubMed]
  21. M. Frosz, P. Falk, and O. Bang, “The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength,” Opt. Express 13(16), 6181–6192 (2005).
    [Crossref] [PubMed]
  22. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000).
    [Crossref] [PubMed]
  23. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
    [Crossref] [PubMed]
  24. Y. Yao and W. Knox, “Spectrally coherent efficient femtosecond Stokes pulse generation from a photonic crystal fiber with two zero dispersion wavelengths (TZDW),” In CLEO: OSA Technical Digest (Optical Society of America, 2014), paper SM 1O, 2 (2014).
  25. F. Lu and W. Knox, “Low noise wavelength conversion of femtosecond pulses with dispersion micro-managed holey fibers,” Opt. Express 13(20), 8172–8178 (2005).
    [Crossref] [PubMed]
  26. D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62(5), 1968–1983 (1987).
    [Crossref]
  27. G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
    [Crossref]
  28. R. S. Berns, F. W. Billmeyer, and M. Saltzman, Billmeyer and Saltzman's Principles of Color Technology (Wiley, 2000).
  29. M. E. V. Pedersen, J. Cheng, K. Charan, K. Wang, C. Xu, L. Grüner-Nielsen, and D. Jakobsen, “Higher-order-mode fiber optimized for energetic soliton propagation,” Opt. Lett. 37(16), 3459–3461 (2012).
    [Crossref] [PubMed]
  30. Y. Deng, M. Koch, F. Lu, G. Wicks, and W. Knox, “Colliding-pulse passive harmonic mode-locking in a femtosecond Yb-doped fiber laser with a semiconductor saturable absorber,” Opt. Express 12(16), 3872–3877 (2004).
    [Crossref] [PubMed]
  31. H.-W. Chen, Z. Haider, J. Lim, S. Xu, Z. Yang, F. X. Kärtner, and G. Chang, “3 GHz, Yb-fiber laser-based, few-cycle ultrafast source at the Ti:sapphire laser wavelength,” Opt. Lett. 38(22), 4927–4930 (2013).
    [Crossref] [PubMed]
  32. C. Corbari, A. V. Gladyshev, L. Lago, M. Ibsen, Y. Hernandez, and P. G. Kazansky, “All-fiber frequency-doubled visible laser,” Opt. Lett. 39(22), 6505–6508 (2014).
    [Crossref] [PubMed]

2014 (3)

Y. Yao and W. H. Knox, “Fiber laser driven dual photonic crystal fiber femtosecond mid-infrared source tunable in the range of 4.2 to 9 μm,” Proc. SPIE 8964, 89640Q (2014).
[Crossref]

Y. Yao and W. Knox, “Spectrally coherent efficient femtosecond Stokes pulse generation from a photonic crystal fiber with two zero dispersion wavelengths (TZDW),” In CLEO: OSA Technical Digest (Optical Society of America, 2014), paper SM 1O, 2 (2014).

C. Corbari, A. V. Gladyshev, L. Lago, M. Ibsen, Y. Hernandez, and P. G. Kazansky, “All-fiber frequency-doubled visible laser,” Opt. Lett. 39(22), 6505–6508 (2014).
[Crossref] [PubMed]

2013 (3)

2012 (2)

2011 (1)

2010 (1)

2009 (1)

W. G. Telford, F. V. Subach, and V. V. Verkhusha, “Supercontinuum white light lasers for flow cytometry,” Cytometry A 75A(5), 450–459 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (3)

2006 (1)

2005 (3)

2004 (4)

2003 (2)

D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301(5640), 1705–1708 (2003).
[Crossref] [PubMed]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[Crossref] [PubMed]

2000 (1)

1987 (1)

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62(5), 1968–1983 (1987).
[Crossref]

1968 (1)

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

Aguirre, A.

Andersen, P. E.

Andersen, T. V.

Anis, H.

Arisholm, G.

Bang, O.

Birks, T. A.

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

Brideau, C.

Brunner, F.

Chang, G.

Charan, K.

Chellappan, K. V.

Chen, H.-W.

Chen, Y.

Chen, Z.

Cheng, J.

Coen, S.

G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources (invited),” J. Opt. Soc. Am. B 24(8), 1771–1785 (2007).
[Crossref]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[Crossref] [PubMed]

Corbari, C.

Corwin, K. L.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[Crossref] [PubMed]

Davis, L.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62(5), 1968–1983 (1987).
[Crossref]

Deng, Y.

Diddams, S. A.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[Crossref] [PubMed]

Dudley, J. M.

G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources (invited),” J. Opt. Soc. Am. B 24(8), 1771–1785 (2007).
[Crossref]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[Crossref] [PubMed]

Dupriez, P.

Eimerl, D.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62(5), 1968–1983 (1987).
[Crossref]

Erden, E.

Falk, P.

Frosz, M.

Frosz, M. H.

Fujimoto, J.

Gawith, C.

Genty, G.

Gladyshev, A. V.

Graham, E. K.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62(5), 1968–1983 (1987).
[Crossref]

Grüner-Nielsen, L.

Haider, Z.

Hansen, K.

Hansen, K. P.

Hernandez, Y.

Hilligsøe, K. M.

Horak, P.

Ibsen, M.

Innerhofer, E.

Isomäki, A.

Ito, H.

Jakobsen, D.

Jeong, Y.

Kärtner, F. X.

Kazansky, P. G.

Keiding, S.

Keller, U.

Kitamura, K.

Kivistö, S.

Klarskov, P.

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

Knight, J. C.

D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301(5640), 1705–1708 (2003).
[Crossref] [PubMed]

Knox, W.

Knox, W. H.

Koch, M.

Kopf, D.

Kristiansen, R.

Kurimura, S.

Lago, L.

Larsen, J. J.

Lederer, M.

Leon-Saval, S. G.

Lim, J.

Lu, F.

Luan, F.

D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301(5640), 1705–1708 (2003).
[Crossref] [PubMed]

Marchese, S. V.

Mason, M. W.

Mølmer, K.

Moselund, P. M.

Murugkar, S.

Naji, M.

Newbury, N. R.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[Crossref] [PubMed]

Nielsen, C. K.

Nilsson, J.

Nishizawa, N.

Okhotnikov, O.

Paschotta, R.

Paulsen, H. N.

Payne, D. N.

Pedersen, M. E. V.

Petrovich, M. N.

Poletti, F.

Ranka, J. K.

Richardson, D. J.

Ridsdale, A.

Russell, P. S. J.

D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301(5640), 1705–1708 (2003).
[Crossref] [PubMed]

Rusu, M.

Seitz, W.

Skryabin, D. V.

D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301(5640), 1705–1708 (2003).
[Crossref] [PubMed]

St. J. Russell, P.

Stentz, A. J.

Stys, P. K.

Subach, F. V.

W. G. Telford, F. V. Subach, and V. V. Verkhusha, “Supercontinuum white light lasers for flow cytometry,” Cytometry A 75A(5), 450–459 (2009).
[Crossref] [PubMed]

Südmeyer, T.

Telford, W. G.

W. G. Telford, F. V. Subach, and V. V. Verkhusha, “Supercontinuum white light lasers for flow cytometry,” Cytometry A 75A(5), 450–459 (2009).
[Crossref] [PubMed]

Thomsen, C. L.

Urey, H.

Usami, T.

Velsko, S.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62(5), 1968–1983 (1987).
[Crossref]

Verkhusha, V. V.

W. G. Telford, F. V. Subach, and V. V. Verkhusha, “Supercontinuum white light lasers for flow cytometry,” Cytometry A 75A(5), 450–459 (2009).
[Crossref] [PubMed]

Wadsworth, W. J.

Wang, K.

Weber, K.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[Crossref] [PubMed]

Wicks, G.

Windeler, R. S.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[Crossref] [PubMed]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000).
[Crossref] [PubMed]

Xu, C.

Xu, S.

Yang, Z.

Yao, Y.

Y. Yao and W. Knox, “Spectrally coherent efficient femtosecond Stokes pulse generation from a photonic crystal fiber with two zero dispersion wavelengths (TZDW),” In CLEO: OSA Technical Digest (Optical Society of America, 2014), paper SM 1O, 2 (2014).

Y. Yao and W. H. Knox, “Fiber laser driven dual photonic crystal fiber femtosecond mid-infrared source tunable in the range of 4.2 to 9 μm,” Proc. SPIE 8964, 89640Q (2014).
[Crossref]

Y. Yao and W. H. Knox, “Broadly tunable femtosecond mid-infrared source based on dual photonic crystal fibers,” Opt. Express 21(22), 26612–26619 (2013).
[Crossref] [PubMed]

Y. Yao and W. H. Knox, “Difference frequency generation of femtosecond mid infrared pulses employing intense Stokes pulses excitation in a photonic crystal fiber,” Opt. Express 20(23), 25275–25283 (2012).
[Crossref] [PubMed]

Zalkin, A.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62(5), 1968–1983 (1987).
[Crossref]

Appl. Opt. (1)

Cytometry A (1)

W. G. Telford, F. V. Subach, and V. V. Verkhusha, “Supercontinuum white light lasers for flow cytometry,” Cytometry A 75A(5), 450–459 (2009).
[Crossref] [PubMed]

In CLEO: OSA Technical Digest (Optical Society of America, 2014), paper SM (1)

Y. Yao and W. Knox, “Spectrally coherent efficient femtosecond Stokes pulse generation from a photonic crystal fiber with two zero dispersion wavelengths (TZDW),” In CLEO: OSA Technical Digest (Optical Society of America, 2014), paper SM 1O, 2 (2014).

J. Appl. Phys. (2)

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62(5), 1968–1983 (1987).
[Crossref]

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Express (14)

S. Murugkar, C. Brideau, A. Ridsdale, M. Naji, P. K. Stys, and H. Anis, “Coherent anti-Stokes Raman scattering microscopy using photonic crystal fiber with two closely lying zero dispersion wavelengths,” Opt. Express 15(21), 14028–14037 (2007).
[Crossref] [PubMed]

P. M. Moselund, M. H. Frosz, C. L. Thomsen, and O. Bang, “Back-seeding of higher order gain processes in picosecond supercontinuum generation,” Opt. Express 16(16), 11954–11968 (2008).
[Crossref] [PubMed]

Y. Yao and W. H. Knox, “Difference frequency generation of femtosecond mid infrared pulses employing intense Stokes pulses excitation in a photonic crystal fiber,” Opt. Express 20(23), 25275–25283 (2012).
[Crossref] [PubMed]

Y. Chen, Z. Chen, W. J. Wadsworth, and T. A. Birks, “Nonlinear optics in the LP02 higher-order mode of a fiber,” Opt. Express 21(15), 17786–17799 (2013).
[Crossref] [PubMed]

Y. Yao and W. H. Knox, “Broadly tunable femtosecond mid-infrared source based on dual photonic crystal fibers,” Opt. Express 21(22), 26612–26619 (2013).
[Crossref] [PubMed]

P. Klarskov, A. Isomäki, K. P. Hansen, and P. E. Andersen, “Supercontinuum generation for coherent anti-Stokes Raman scattering microscopy with photonic crystal fibers,” Opt. Express 19(27), 26672–26683 (2011).
[Crossref] [PubMed]

K. M. Hilligsøe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. Hansen, and J. J. Larsen, “Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,” Opt. Express 12(6), 1045–1054 (2004).
[Crossref] [PubMed]

S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and M. W. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12(13), 2864–2869 (2004).
[Crossref] [PubMed]

Y. Deng, M. Koch, F. Lu, G. Wicks, and W. Knox, “Colliding-pulse passive harmonic mode-locking in a femtosecond Yb-doped fiber laser with a semiconductor saturable absorber,” Opt. Express 12(16), 3872–3877 (2004).
[Crossref] [PubMed]

M. Frosz, P. Falk, and O. Bang, “The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength,” Opt. Express 13(16), 6181–6192 (2005).
[Crossref] [PubMed]

F. Lu and W. Knox, “Low noise wavelength conversion of femtosecond pulses with dispersion micro-managed holey fibers,” Opt. Express 13(20), 8172–8178 (2005).
[Crossref] [PubMed]

M. Rusu, S. Kivistö, C. Gawith, and O. Okhotnikov, “Red-green-blue (RGB) light generator using tapered fiber pumped with a frequency-doubled Yb-fiber laser,” Opt. Express 13(21), 8547–8554 (2005).
[Crossref] [PubMed]

A. Aguirre, N. Nishizawa, J. Fujimoto, W. Seitz, M. Lederer, and D. Kopf, “Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm,” Opt. Express 14(3), 1145–1160 (2006).
[Crossref] [PubMed]

P. Dupriez, F. Poletti, P. Horak, M. N. Petrovich, Y. Jeong, J. Nilsson, D. J. Richardson, and D. N. Payne, “Efficient white light generation in secondary cores of holey fibers,” Opt. Express 15(7), 3729–3736 (2007).
[Crossref] [PubMed]

Opt. Lett. (5)

Phys. Rev. Lett. (1)

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[Crossref] [PubMed]

Proc. SPIE (1)

Y. Yao and W. H. Knox, “Fiber laser driven dual photonic crystal fiber femtosecond mid-infrared source tunable in the range of 4.2 to 9 μm,” Proc. SPIE 8964, 89640Q (2014).
[Crossref]

Science (1)

D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301(5640), 1705–1708 (2003).
[Crossref] [PubMed]

Other (4)

R. S. Berns, F. W. Billmeyer, and M. Saltzman, Billmeyer and Saltzman's Principles of Color Technology (Wiley, 2000).

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2013).

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).

H. Bjelkhagen and D. Brotherton-Ratcliffe, Ultra-realistic Imaging: Advanced Techniques in Analogue and Digital Colour Holography (CRC, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Experimental set-up for the RGB laser source. (b) Dispersion profile of the TZDW PCF.
Fig. 2
Fig. 2 Measured output spectra of the TZDW fiber source as a function of input power.
Fig. 3
Fig. 3 (a) Measured power dependence of the filtered out anti-Stokes and Stokes pulses with increasing pump power. (b) Traces of direct auto-correlation measurements of the filtered out dual pulses (FWHMs shown).
Fig. 4
Fig. 4 (a) Measured and theoretical internal phase matching angles for type-I SHG in BBO (left scale) and crystal dispersion along its ordinary axis (right scale). (b) Wavelength dependence of group velocity mismatch (left scale) and spatial walk-off angles (right scale) for the employed process. (c). Measured SHG power at attenuated anti-Stokes and Stokes pulses powers; inset: measured SHG power (left scale) and conversion efficiency (right scale) with increasing with increasing pump power. (d) Measured spectra of the red, green and blue pulses.
Fig. 5
Fig. 5 Chromaticity coordinates and color gamut of the reported RGB source with the NTSC reference in (a) CIE 1931 xyY color space. (b) CIE 1976 UCS color space.
Fig. 6
Fig. 6 Photograph of a running RGB source. Neutral density filters are applied before the nonlinear crystal to reduce saturation of the camera.

Tables (1)

Tables Icon

Table 1 Colorimetry data of the reported RGB source

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

L D = T 0 2 | β 2 | .
L NL = 1 γ P 0 .
N 2 = L D L NL .
X=k λ S(λ) x ¯ λ dλ,Y=k λ S(λ) y ¯ λ dλ,Z=k λ S(λ) z ¯ λ dλ.
x= X X+Y+Z ,y= Y X+Y+Z .
u'= 4x 2x+12y+3 ,v'= 9y 2x+12y+3 .

Metrics