Abstract

Imaging of large and dense objects with grating-based X-ray phase-contrast computed tomography requires high X-ray photon energy and large fields of view. It has become increasingly possible due to the improvements in the grating manufacturing processes. Using a high-energy X-ray phase-contrast CT setup with a large (10 cm in diameter) analyzer grating and operated at an acceleration tube voltage of 70 kVp, we investigate the complementarity of both attenuation and phase contrast modalities with materials of various atomic numbers (Z). We confirm experimentally that for low-Z materials, phase contrast yields no additional information content over attenuation images, yet it provides increased contrast-to-noise ratios (CNRs). The complementarity of both signals can be seen again with increasing Z of the materials and a more comprehensive material characterization is thus possible. Imaging of a part of a human cervical spine with intervertebral discs surrounded by bones and various soft tissue types showcases the benefit of high-energy X-ray phase-contrast system. Phase-contrast reconstruction reveals the internal structure of the discs and makes the boundary between the disc annulus and nucleus pulposus visible. Despite the fact that it still remains challenging to develop a high-energy grating interferometer with a broad polychromatic source with satisfactory optical performance, improved image quality for phase contrast as compared to attenuation contrast can be obtained and new exciting applications foreseen.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quantitative X-ray phase-contrast computed tomography at 82 keV

Marian Willner, Martin Bech, Julia Herzen, Irene Zanette, Dieter Hahn, Johannes Kenntner, Juergen Mohr, Alexander Rack, Timm Weitkamp, and Franz Pfeiffer
Opt. Express 21(4) 4155-4166 (2013)

Numerical comparison of X-ray differential phase contrast and attenuation contrast

Dieter Hahn, Pierre Thibault, Martin Bech, Marco Stockmar, Simone Schleede, Irene Zanette, Alexander Rack, Timm Weitkamp, Aniko Sztrókay, Thomas Schlossbauer, Fabian Bamberg, Maximilian Reiser, and Franz Pfeiffer
Biomed. Opt. Express 3(6) 1141-1148 (2012)

Quantitative phase-contrast tomography of a liquid phantom using a conventional x-ray tube source

Julia Herzen, Tilman Donath, Franz Pfeiffer, Oliver Bunk, Celestino Padeste, Felix Beckmann, Andreas Schreyer, and Christian David
Opt. Express 17(12) 10010-10018 (2009)

References

  • View by:
  • |
  • |
  • |

  1. H. Hetterich, M. Willner, S. Fill, J. Herzen, F. Bamberg, A. Hipp, U. Schller, S. Adam-Neumair, S. Wirth, M. Reiser, and et al., “Phase-contrast ct: Qualitative and quantitative evaluation of atherosclerotic carotid artery plaque,” Radiology 271, 870–878 (2014).
    [Crossref] [PubMed]
  2. M. Willner, J. Herzen, S. Grandl, S. Auweter, D. Mayr, A. Hipp, M. Chabior, A. Sarapata, K. Achterhold, I. Zanette, and et al., “Quantitative breast tissue characterization using grating-based x-ray phase-contrast imaging,” Phys. Med. Biol. 59, 1557–1571 (2014).
    [Crossref] [PubMed]
  3. J. Herzen, M. S. Willner, A. A. Fingerle, P. B. Nol, T. Khler, E. Drecoll, E. J. Rummeny, and F. Pfeiffer, “Imaging liver lesions using grating-based phase-contrast computed tomography with bi-lateral filter post-processing,” PLoS ONE 9, e83369 (2014).
    [Crossref] [PubMed]
  4. G. Schulz, A. Morel, M. S. Imholz, H. Deyhle, T. Weitkamp, I. Zanette, F. Pfeiffer, C. David, M. Mller-Gerbl, and B. Mller, “Evaluating the microstructure of human brain tissues using synchrotron radiation-based microcomputed tomography,” Proc. SPIE 7804, 78040F (2010).
    [Crossref]
  5. M. Willner, M. Bech, J. Herzen, I. Zanette, D. Hahn, J. Kenntner, J. Mohr, A. Rack, T. Weitkamp, and F. Pfeiffer, “Quantitative x-ray phase-contrast computed tomography at 82 kev,” Opt. Express 21, 4155–4166 (2013).
    [Crossref] [PubMed]
  6. T. Donath, F. Pfeiffer, O. Bunk, W. Groot, M. Bednarzik, C. Grunzweig, E. Hempel, S. Popescu, M. Hoheisel, and C. David, “Phase-contrast imaging and tomography at 60 kev using a conventional x-ray tube source,” Rev. Sci. Instrum. 80, 053701 (2009).
    [Crossref] [PubMed]
  7. A. Sarapata, J. W. Stayman, M. Finkenthal, J. H. Siewerdsen, F. Pfeiffer, and D. Stutman, “High energy x-ray phase contrast ct using glancing-angle grating interferometers,” Med. Phys. 41, 021904 (2014).
    [Crossref] [PubMed]
  8. T. Thuering, M. Abis, Z. Wang, C. David, and M. Stampanoni, “X-ray phase-contrast imaging at 100 kev on a conventional source,” Sci. Rep. 4, 5198 (2014).
  9. J. Herzen, T. Donath, F. Pfeiffer, O. Bunk, C. Padeste, F. Beckmann, A. Schreyer, C. David, and et al., “Quantitative phase-contrast tomography of a liquid phantom using a conventional x-ray tube source,” Opt. Express 17, 10010–10018 (2009).
    [Crossref] [PubMed]
  10. A. Momose, W. Yashiro, Y. Takeda, Y. Suzuki, and T. Hattori, “Phase tomography by x-ray talbot interferometry for biological imaging,” Jpn. J. Appl. Phys. 45, 5254–5262 (2006).
    [Crossref]
  11. T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express 13, 6296–6304 (2005).
    [Crossref] [PubMed]
  12. F. Pfeiffer, C. Kottler, O. Bunk, and C. David, “Hard x-ray phase tomography with low-brilliance sources,” Phys. Rev. Lett. 98, 108105 (2007).
    [Crossref] [PubMed]
  13. F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources,” Nature Phys. 2, 258–261 (2006).
    [Crossref]
  14. E. Reznikova, J. Mohr, M. Boerner, V. Nazmov, and P.-J. Jakobs, “Soft x-ray lithography of high aspect ratio su8 submicron structures,” Microsyst. Technol. 14, 1683–1688 (2008).
    [Crossref]
  15. J. Mohr, T. Grund, D. Kunka, J. Kenntner, J. Leuthold, J. Meiser, J. Schulz, and M. Walter, “High aspect ratio gratings for x-ray phase contrast imaging,” AIP Conf. Proc. 1466, 41–50 (2012).
    [Crossref]
  16. P. Meyer, J. Schulz, and V. Saile, “Deep x-ray lithography,” in “Micro-Manufacturing Engineering and Technology,”, Y. Qin, ed. (Elsevier, 2010), pp. 202–220.
    [Crossref]
  17. J. Meiser, M. Amberger, M. Willner, D. Kunka, P. Meyer, F. Koch, A. Hipp, M. Walter, F. Pfeiffer, and J. Mohr, “Increasing the field of view of x-ray phase contrast imaging using stitched gratings on low absorbent carriers,” Proc. SPIE 9033, 903355 (2014).
    [Crossref]
  18. A. J. C. Wilson, The Optical Principles of the Diffraction of X-rays by R.W. James, vol. III (International Union of Crystallography (IUCr), 1950).
  19. R. James, The Optical Principles of the Diffraction of X-rays, Crystalline State (Bell, 1967).
  20. E. C. McCullough, “Photon attenuation in computed tomography,” Med. Phys. 2, 307–320 (1975).
    [Crossref] [PubMed]
  21. J. H. Hubbell, “Photon cross sections, attenuation coefficients, and energy absorption coefficients from 10 kev to 100 gev,” Tech. rep., NSRDS-NBS (1969).
  22. M. J. Berger, J. H. Hubbell, S. M. Seltzer, J. Chang, J. S. Coursey, R. Sukumar, D. S. Zucker, and K. Olsen, “XCOM: Photon cross section database,” (NIST Standard Reference Database 82010).
  23. T. Kohler, K. Jurgen Engel, and E. Roessl, “Noise properties of grating-based x-ray phase contrast computed tomography,” Med. Phys. 38, S106–S116 (2011).
    [Crossref] [PubMed]
  24. T. Donath, M. Chabior, F. Pfeiffer, O. Bunk, E. Reznikova, J. Mohr, E. Hempel, S. Popescu, M. Hoheisel, M. Schuster, and et al., “Inverse geometry for grating-based x-ray phase-contrast imaging,” J. Appl. Phys. 106, 054703 (2009).
    [Crossref]
  25. G. Poludniowski, G. Landry, F. DeBlois, P. M. Evans, and F. Verhaegen, “Spekcalc: a program to calculate photon spectra from tungsten anode x-ray tubes,” Phys. Med. Biol. 54, N433–N438 (2009).
    [Crossref] [PubMed]
  26. F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Bronnimann, C. Grnzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nature Mater. 7, 134–137 (2008).
    [Crossref]
  27. T. Koehler and E. Roessl, “Simultaneous de-noising in phase contrast tomography,” AIP Conf. Proc. 1466, 78–83 (2012).
    [Crossref]
  28. P. Bandyopadhyay and C. Segre, Mucal 1.3, http://www.csrri.iit.edu/mucal.html (April2009).
  29. A. Malecki, G. Potdevin, and F. Pfeiffer, “Quantitative wave-optical numerical analysis of the dark-field signal in grating-based x-ray interferometry,” Europhys. Lett. 99, 48001 (2012).
    [Crossref]
  30. S. J. Matcher, C. P. Winlove, and S. V. Gangnus, “The collagen structure of bovine intervertebral disc studied using polarization-sensitive optical coherence tomography,” Phys. Med. Biol. 49, 1295–1306 (2004).
    [Crossref] [PubMed]
  31. R. Raupach and T. G. Flohr, “Analytical evaluation of the signal and noise propagation in x-ray differential phase-contrast computed tomography,” Phys. Med. Biol. 56, 2219–2244 (2011).
    [Crossref] [PubMed]
  32. D. Stutman and M. Finkenthal, “Glancing angle talbot-lau grating interferometers for phase contrast imaging at high x-ray energy,” Appl. Phys. Lett. 101, 091108 (2012).
    [Crossref]

2014 (6)

H. Hetterich, M. Willner, S. Fill, J. Herzen, F. Bamberg, A. Hipp, U. Schller, S. Adam-Neumair, S. Wirth, M. Reiser, and et al., “Phase-contrast ct: Qualitative and quantitative evaluation of atherosclerotic carotid artery plaque,” Radiology 271, 870–878 (2014).
[Crossref] [PubMed]

M. Willner, J. Herzen, S. Grandl, S. Auweter, D. Mayr, A. Hipp, M. Chabior, A. Sarapata, K. Achterhold, I. Zanette, and et al., “Quantitative breast tissue characterization using grating-based x-ray phase-contrast imaging,” Phys. Med. Biol. 59, 1557–1571 (2014).
[Crossref] [PubMed]

J. Herzen, M. S. Willner, A. A. Fingerle, P. B. Nol, T. Khler, E. Drecoll, E. J. Rummeny, and F. Pfeiffer, “Imaging liver lesions using grating-based phase-contrast computed tomography with bi-lateral filter post-processing,” PLoS ONE 9, e83369 (2014).
[Crossref] [PubMed]

A. Sarapata, J. W. Stayman, M. Finkenthal, J. H. Siewerdsen, F. Pfeiffer, and D. Stutman, “High energy x-ray phase contrast ct using glancing-angle grating interferometers,” Med. Phys. 41, 021904 (2014).
[Crossref] [PubMed]

T. Thuering, M. Abis, Z. Wang, C. David, and M. Stampanoni, “X-ray phase-contrast imaging at 100 kev on a conventional source,” Sci. Rep. 4, 5198 (2014).

J. Meiser, M. Amberger, M. Willner, D. Kunka, P. Meyer, F. Koch, A. Hipp, M. Walter, F. Pfeiffer, and J. Mohr, “Increasing the field of view of x-ray phase contrast imaging using stitched gratings on low absorbent carriers,” Proc. SPIE 9033, 903355 (2014).
[Crossref]

2013 (1)

2012 (4)

J. Mohr, T. Grund, D. Kunka, J. Kenntner, J. Leuthold, J. Meiser, J. Schulz, and M. Walter, “High aspect ratio gratings for x-ray phase contrast imaging,” AIP Conf. Proc. 1466, 41–50 (2012).
[Crossref]

T. Koehler and E. Roessl, “Simultaneous de-noising in phase contrast tomography,” AIP Conf. Proc. 1466, 78–83 (2012).
[Crossref]

A. Malecki, G. Potdevin, and F. Pfeiffer, “Quantitative wave-optical numerical analysis of the dark-field signal in grating-based x-ray interferometry,” Europhys. Lett. 99, 48001 (2012).
[Crossref]

D. Stutman and M. Finkenthal, “Glancing angle talbot-lau grating interferometers for phase contrast imaging at high x-ray energy,” Appl. Phys. Lett. 101, 091108 (2012).
[Crossref]

2011 (2)

R. Raupach and T. G. Flohr, “Analytical evaluation of the signal and noise propagation in x-ray differential phase-contrast computed tomography,” Phys. Med. Biol. 56, 2219–2244 (2011).
[Crossref] [PubMed]

T. Kohler, K. Jurgen Engel, and E. Roessl, “Noise properties of grating-based x-ray phase contrast computed tomography,” Med. Phys. 38, S106–S116 (2011).
[Crossref] [PubMed]

2010 (1)

G. Schulz, A. Morel, M. S. Imholz, H. Deyhle, T. Weitkamp, I. Zanette, F. Pfeiffer, C. David, M. Mller-Gerbl, and B. Mller, “Evaluating the microstructure of human brain tissues using synchrotron radiation-based microcomputed tomography,” Proc. SPIE 7804, 78040F (2010).
[Crossref]

2009 (4)

J. Herzen, T. Donath, F. Pfeiffer, O. Bunk, C. Padeste, F. Beckmann, A. Schreyer, C. David, and et al., “Quantitative phase-contrast tomography of a liquid phantom using a conventional x-ray tube source,” Opt. Express 17, 10010–10018 (2009).
[Crossref] [PubMed]

T. Donath, F. Pfeiffer, O. Bunk, W. Groot, M. Bednarzik, C. Grunzweig, E. Hempel, S. Popescu, M. Hoheisel, and C. David, “Phase-contrast imaging and tomography at 60 kev using a conventional x-ray tube source,” Rev. Sci. Instrum. 80, 053701 (2009).
[Crossref] [PubMed]

T. Donath, M. Chabior, F. Pfeiffer, O. Bunk, E. Reznikova, J. Mohr, E. Hempel, S. Popescu, M. Hoheisel, M. Schuster, and et al., “Inverse geometry for grating-based x-ray phase-contrast imaging,” J. Appl. Phys. 106, 054703 (2009).
[Crossref]

G. Poludniowski, G. Landry, F. DeBlois, P. M. Evans, and F. Verhaegen, “Spekcalc: a program to calculate photon spectra from tungsten anode x-ray tubes,” Phys. Med. Biol. 54, N433–N438 (2009).
[Crossref] [PubMed]

2008 (2)

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Bronnimann, C. Grnzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nature Mater. 7, 134–137 (2008).
[Crossref]

E. Reznikova, J. Mohr, M. Boerner, V. Nazmov, and P.-J. Jakobs, “Soft x-ray lithography of high aspect ratio su8 submicron structures,” Microsyst. Technol. 14, 1683–1688 (2008).
[Crossref]

2007 (1)

F. Pfeiffer, C. Kottler, O. Bunk, and C. David, “Hard x-ray phase tomography with low-brilliance sources,” Phys. Rev. Lett. 98, 108105 (2007).
[Crossref] [PubMed]

2006 (2)

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources,” Nature Phys. 2, 258–261 (2006).
[Crossref]

A. Momose, W. Yashiro, Y. Takeda, Y. Suzuki, and T. Hattori, “Phase tomography by x-ray talbot interferometry for biological imaging,” Jpn. J. Appl. Phys. 45, 5254–5262 (2006).
[Crossref]

2005 (1)

2004 (1)

S. J. Matcher, C. P. Winlove, and S. V. Gangnus, “The collagen structure of bovine intervertebral disc studied using polarization-sensitive optical coherence tomography,” Phys. Med. Biol. 49, 1295–1306 (2004).
[Crossref] [PubMed]

1975 (1)

E. C. McCullough, “Photon attenuation in computed tomography,” Med. Phys. 2, 307–320 (1975).
[Crossref] [PubMed]

Abis, M.

T. Thuering, M. Abis, Z. Wang, C. David, and M. Stampanoni, “X-ray phase-contrast imaging at 100 kev on a conventional source,” Sci. Rep. 4, 5198 (2014).

Achterhold, K.

M. Willner, J. Herzen, S. Grandl, S. Auweter, D. Mayr, A. Hipp, M. Chabior, A. Sarapata, K. Achterhold, I. Zanette, and et al., “Quantitative breast tissue characterization using grating-based x-ray phase-contrast imaging,” Phys. Med. Biol. 59, 1557–1571 (2014).
[Crossref] [PubMed]

Adam-Neumair, S.

H. Hetterich, M. Willner, S. Fill, J. Herzen, F. Bamberg, A. Hipp, U. Schller, S. Adam-Neumair, S. Wirth, M. Reiser, and et al., “Phase-contrast ct: Qualitative and quantitative evaluation of atherosclerotic carotid artery plaque,” Radiology 271, 870–878 (2014).
[Crossref] [PubMed]

Amberger, M.

J. Meiser, M. Amberger, M. Willner, D. Kunka, P. Meyer, F. Koch, A. Hipp, M. Walter, F. Pfeiffer, and J. Mohr, “Increasing the field of view of x-ray phase contrast imaging using stitched gratings on low absorbent carriers,” Proc. SPIE 9033, 903355 (2014).
[Crossref]

Auweter, S.

M. Willner, J. Herzen, S. Grandl, S. Auweter, D. Mayr, A. Hipp, M. Chabior, A. Sarapata, K. Achterhold, I. Zanette, and et al., “Quantitative breast tissue characterization using grating-based x-ray phase-contrast imaging,” Phys. Med. Biol. 59, 1557–1571 (2014).
[Crossref] [PubMed]

Bamberg, F.

H. Hetterich, M. Willner, S. Fill, J. Herzen, F. Bamberg, A. Hipp, U. Schller, S. Adam-Neumair, S. Wirth, M. Reiser, and et al., “Phase-contrast ct: Qualitative and quantitative evaluation of atherosclerotic carotid artery plaque,” Radiology 271, 870–878 (2014).
[Crossref] [PubMed]

Bech, M.

M. Willner, M. Bech, J. Herzen, I. Zanette, D. Hahn, J. Kenntner, J. Mohr, A. Rack, T. Weitkamp, and F. Pfeiffer, “Quantitative x-ray phase-contrast computed tomography at 82 kev,” Opt. Express 21, 4155–4166 (2013).
[Crossref] [PubMed]

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Bronnimann, C. Grnzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nature Mater. 7, 134–137 (2008).
[Crossref]

Beckmann, F.

Bednarzik, M.

T. Donath, F. Pfeiffer, O. Bunk, W. Groot, M. Bednarzik, C. Grunzweig, E. Hempel, S. Popescu, M. Hoheisel, and C. David, “Phase-contrast imaging and tomography at 60 kev using a conventional x-ray tube source,” Rev. Sci. Instrum. 80, 053701 (2009).
[Crossref] [PubMed]

Berger, M. J.

M. J. Berger, J. H. Hubbell, S. M. Seltzer, J. Chang, J. S. Coursey, R. Sukumar, D. S. Zucker, and K. Olsen, “XCOM: Photon cross section database,” (NIST Standard Reference Database 82010).

Boerner, M.

E. Reznikova, J. Mohr, M. Boerner, V. Nazmov, and P.-J. Jakobs, “Soft x-ray lithography of high aspect ratio su8 submicron structures,” Microsyst. Technol. 14, 1683–1688 (2008).
[Crossref]

Bronnimann, C.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Bronnimann, C. Grnzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nature Mater. 7, 134–137 (2008).
[Crossref]

Bunk, O.

T. Donath, F. Pfeiffer, O. Bunk, W. Groot, M. Bednarzik, C. Grunzweig, E. Hempel, S. Popescu, M. Hoheisel, and C. David, “Phase-contrast imaging and tomography at 60 kev using a conventional x-ray tube source,” Rev. Sci. Instrum. 80, 053701 (2009).
[Crossref] [PubMed]

T. Donath, M. Chabior, F. Pfeiffer, O. Bunk, E. Reznikova, J. Mohr, E. Hempel, S. Popescu, M. Hoheisel, M. Schuster, and et al., “Inverse geometry for grating-based x-ray phase-contrast imaging,” J. Appl. Phys. 106, 054703 (2009).
[Crossref]

J. Herzen, T. Donath, F. Pfeiffer, O. Bunk, C. Padeste, F. Beckmann, A. Schreyer, C. David, and et al., “Quantitative phase-contrast tomography of a liquid phantom using a conventional x-ray tube source,” Opt. Express 17, 10010–10018 (2009).
[Crossref] [PubMed]

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Bronnimann, C. Grnzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nature Mater. 7, 134–137 (2008).
[Crossref]

F. Pfeiffer, C. Kottler, O. Bunk, and C. David, “Hard x-ray phase tomography with low-brilliance sources,” Phys. Rev. Lett. 98, 108105 (2007).
[Crossref] [PubMed]

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources,” Nature Phys. 2, 258–261 (2006).
[Crossref]

Chabior, M.

M. Willner, J. Herzen, S. Grandl, S. Auweter, D. Mayr, A. Hipp, M. Chabior, A. Sarapata, K. Achterhold, I. Zanette, and et al., “Quantitative breast tissue characterization using grating-based x-ray phase-contrast imaging,” Phys. Med. Biol. 59, 1557–1571 (2014).
[Crossref] [PubMed]

T. Donath, M. Chabior, F. Pfeiffer, O. Bunk, E. Reznikova, J. Mohr, E. Hempel, S. Popescu, M. Hoheisel, M. Schuster, and et al., “Inverse geometry for grating-based x-ray phase-contrast imaging,” J. Appl. Phys. 106, 054703 (2009).
[Crossref]

Chang, J.

M. J. Berger, J. H. Hubbell, S. M. Seltzer, J. Chang, J. S. Coursey, R. Sukumar, D. S. Zucker, and K. Olsen, “XCOM: Photon cross section database,” (NIST Standard Reference Database 82010).

Cloetens, P.

Coursey, J. S.

M. J. Berger, J. H. Hubbell, S. M. Seltzer, J. Chang, J. S. Coursey, R. Sukumar, D. S. Zucker, and K. Olsen, “XCOM: Photon cross section database,” (NIST Standard Reference Database 82010).

David, C.

T. Thuering, M. Abis, Z. Wang, C. David, and M. Stampanoni, “X-ray phase-contrast imaging at 100 kev on a conventional source,” Sci. Rep. 4, 5198 (2014).

G. Schulz, A. Morel, M. S. Imholz, H. Deyhle, T. Weitkamp, I. Zanette, F. Pfeiffer, C. David, M. Mller-Gerbl, and B. Mller, “Evaluating the microstructure of human brain tissues using synchrotron radiation-based microcomputed tomography,” Proc. SPIE 7804, 78040F (2010).
[Crossref]

T. Donath, F. Pfeiffer, O. Bunk, W. Groot, M. Bednarzik, C. Grunzweig, E. Hempel, S. Popescu, M. Hoheisel, and C. David, “Phase-contrast imaging and tomography at 60 kev using a conventional x-ray tube source,” Rev. Sci. Instrum. 80, 053701 (2009).
[Crossref] [PubMed]

J. Herzen, T. Donath, F. Pfeiffer, O. Bunk, C. Padeste, F. Beckmann, A. Schreyer, C. David, and et al., “Quantitative phase-contrast tomography of a liquid phantom using a conventional x-ray tube source,” Opt. Express 17, 10010–10018 (2009).
[Crossref] [PubMed]

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Bronnimann, C. Grnzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nature Mater. 7, 134–137 (2008).
[Crossref]

F. Pfeiffer, C. Kottler, O. Bunk, and C. David, “Hard x-ray phase tomography with low-brilliance sources,” Phys. Rev. Lett. 98, 108105 (2007).
[Crossref] [PubMed]

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources,” Nature Phys. 2, 258–261 (2006).
[Crossref]

T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express 13, 6296–6304 (2005).
[Crossref] [PubMed]

DeBlois, F.

G. Poludniowski, G. Landry, F. DeBlois, P. M. Evans, and F. Verhaegen, “Spekcalc: a program to calculate photon spectra from tungsten anode x-ray tubes,” Phys. Med. Biol. 54, N433–N438 (2009).
[Crossref] [PubMed]

Deyhle, H.

G. Schulz, A. Morel, M. S. Imholz, H. Deyhle, T. Weitkamp, I. Zanette, F. Pfeiffer, C. David, M. Mller-Gerbl, and B. Mller, “Evaluating the microstructure of human brain tissues using synchrotron radiation-based microcomputed tomography,” Proc. SPIE 7804, 78040F (2010).
[Crossref]

Diaz, A.

Donath, T.

J. Herzen, T. Donath, F. Pfeiffer, O. Bunk, C. Padeste, F. Beckmann, A. Schreyer, C. David, and et al., “Quantitative phase-contrast tomography of a liquid phantom using a conventional x-ray tube source,” Opt. Express 17, 10010–10018 (2009).
[Crossref] [PubMed]

T. Donath, F. Pfeiffer, O. Bunk, W. Groot, M. Bednarzik, C. Grunzweig, E. Hempel, S. Popescu, M. Hoheisel, and C. David, “Phase-contrast imaging and tomography at 60 kev using a conventional x-ray tube source,” Rev. Sci. Instrum. 80, 053701 (2009).
[Crossref] [PubMed]

T. Donath, M. Chabior, F. Pfeiffer, O. Bunk, E. Reznikova, J. Mohr, E. Hempel, S. Popescu, M. Hoheisel, M. Schuster, and et al., “Inverse geometry for grating-based x-ray phase-contrast imaging,” J. Appl. Phys. 106, 054703 (2009).
[Crossref]

Drecoll, E.

J. Herzen, M. S. Willner, A. A. Fingerle, P. B. Nol, T. Khler, E. Drecoll, E. J. Rummeny, and F. Pfeiffer, “Imaging liver lesions using grating-based phase-contrast computed tomography with bi-lateral filter post-processing,” PLoS ONE 9, e83369 (2014).
[Crossref] [PubMed]

Eikenberry, E. F.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Bronnimann, C. Grnzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nature Mater. 7, 134–137 (2008).
[Crossref]

Evans, P. M.

G. Poludniowski, G. Landry, F. DeBlois, P. M. Evans, and F. Verhaegen, “Spekcalc: a program to calculate photon spectra from tungsten anode x-ray tubes,” Phys. Med. Biol. 54, N433–N438 (2009).
[Crossref] [PubMed]

Fill, S.

H. Hetterich, M. Willner, S. Fill, J. Herzen, F. Bamberg, A. Hipp, U. Schller, S. Adam-Neumair, S. Wirth, M. Reiser, and et al., “Phase-contrast ct: Qualitative and quantitative evaluation of atherosclerotic carotid artery plaque,” Radiology 271, 870–878 (2014).
[Crossref] [PubMed]

Fingerle, A. A.

J. Herzen, M. S. Willner, A. A. Fingerle, P. B. Nol, T. Khler, E. Drecoll, E. J. Rummeny, and F. Pfeiffer, “Imaging liver lesions using grating-based phase-contrast computed tomography with bi-lateral filter post-processing,” PLoS ONE 9, e83369 (2014).
[Crossref] [PubMed]

Finkenthal, M.

A. Sarapata, J. W. Stayman, M. Finkenthal, J. H. Siewerdsen, F. Pfeiffer, and D. Stutman, “High energy x-ray phase contrast ct using glancing-angle grating interferometers,” Med. Phys. 41, 021904 (2014).
[Crossref] [PubMed]

D. Stutman and M. Finkenthal, “Glancing angle talbot-lau grating interferometers for phase contrast imaging at high x-ray energy,” Appl. Phys. Lett. 101, 091108 (2012).
[Crossref]

Flohr, T. G.

R. Raupach and T. G. Flohr, “Analytical evaluation of the signal and noise propagation in x-ray differential phase-contrast computed tomography,” Phys. Med. Biol. 56, 2219–2244 (2011).
[Crossref] [PubMed]

Gangnus, S. V.

S. J. Matcher, C. P. Winlove, and S. V. Gangnus, “The collagen structure of bovine intervertebral disc studied using polarization-sensitive optical coherence tomography,” Phys. Med. Biol. 49, 1295–1306 (2004).
[Crossref] [PubMed]

Grandl, S.

M. Willner, J. Herzen, S. Grandl, S. Auweter, D. Mayr, A. Hipp, M. Chabior, A. Sarapata, K. Achterhold, I. Zanette, and et al., “Quantitative breast tissue characterization using grating-based x-ray phase-contrast imaging,” Phys. Med. Biol. 59, 1557–1571 (2014).
[Crossref] [PubMed]

Grnzweig, C.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Bronnimann, C. Grnzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nature Mater. 7, 134–137 (2008).
[Crossref]

Groot, W.

T. Donath, F. Pfeiffer, O. Bunk, W. Groot, M. Bednarzik, C. Grunzweig, E. Hempel, S. Popescu, M. Hoheisel, and C. David, “Phase-contrast imaging and tomography at 60 kev using a conventional x-ray tube source,” Rev. Sci. Instrum. 80, 053701 (2009).
[Crossref] [PubMed]

Grund, T.

J. Mohr, T. Grund, D. Kunka, J. Kenntner, J. Leuthold, J. Meiser, J. Schulz, and M. Walter, “High aspect ratio gratings for x-ray phase contrast imaging,” AIP Conf. Proc. 1466, 41–50 (2012).
[Crossref]

Grunzweig, C.

T. Donath, F. Pfeiffer, O. Bunk, W. Groot, M. Bednarzik, C. Grunzweig, E. Hempel, S. Popescu, M. Hoheisel, and C. David, “Phase-contrast imaging and tomography at 60 kev using a conventional x-ray tube source,” Rev. Sci. Instrum. 80, 053701 (2009).
[Crossref] [PubMed]

Hahn, D.

Hattori, T.

A. Momose, W. Yashiro, Y. Takeda, Y. Suzuki, and T. Hattori, “Phase tomography by x-ray talbot interferometry for biological imaging,” Jpn. J. Appl. Phys. 45, 5254–5262 (2006).
[Crossref]

Hempel, E.

T. Donath, F. Pfeiffer, O. Bunk, W. Groot, M. Bednarzik, C. Grunzweig, E. Hempel, S. Popescu, M. Hoheisel, and C. David, “Phase-contrast imaging and tomography at 60 kev using a conventional x-ray tube source,” Rev. Sci. Instrum. 80, 053701 (2009).
[Crossref] [PubMed]

T. Donath, M. Chabior, F. Pfeiffer, O. Bunk, E. Reznikova, J. Mohr, E. Hempel, S. Popescu, M. Hoheisel, M. Schuster, and et al., “Inverse geometry for grating-based x-ray phase-contrast imaging,” J. Appl. Phys. 106, 054703 (2009).
[Crossref]

Herzen, J.

J. Herzen, M. S. Willner, A. A. Fingerle, P. B. Nol, T. Khler, E. Drecoll, E. J. Rummeny, and F. Pfeiffer, “Imaging liver lesions using grating-based phase-contrast computed tomography with bi-lateral filter post-processing,” PLoS ONE 9, e83369 (2014).
[Crossref] [PubMed]

H. Hetterich, M. Willner, S. Fill, J. Herzen, F. Bamberg, A. Hipp, U. Schller, S. Adam-Neumair, S. Wirth, M. Reiser, and et al., “Phase-contrast ct: Qualitative and quantitative evaluation of atherosclerotic carotid artery plaque,” Radiology 271, 870–878 (2014).
[Crossref] [PubMed]

M. Willner, J. Herzen, S. Grandl, S. Auweter, D. Mayr, A. Hipp, M. Chabior, A. Sarapata, K. Achterhold, I. Zanette, and et al., “Quantitative breast tissue characterization using grating-based x-ray phase-contrast imaging,” Phys. Med. Biol. 59, 1557–1571 (2014).
[Crossref] [PubMed]

M. Willner, M. Bech, J. Herzen, I. Zanette, D. Hahn, J. Kenntner, J. Mohr, A. Rack, T. Weitkamp, and F. Pfeiffer, “Quantitative x-ray phase-contrast computed tomography at 82 kev,” Opt. Express 21, 4155–4166 (2013).
[Crossref] [PubMed]

J. Herzen, T. Donath, F. Pfeiffer, O. Bunk, C. Padeste, F. Beckmann, A. Schreyer, C. David, and et al., “Quantitative phase-contrast tomography of a liquid phantom using a conventional x-ray tube source,” Opt. Express 17, 10010–10018 (2009).
[Crossref] [PubMed]

Hetterich, H.

H. Hetterich, M. Willner, S. Fill, J. Herzen, F. Bamberg, A. Hipp, U. Schller, S. Adam-Neumair, S. Wirth, M. Reiser, and et al., “Phase-contrast ct: Qualitative and quantitative evaluation of atherosclerotic carotid artery plaque,” Radiology 271, 870–878 (2014).
[Crossref] [PubMed]

Hipp, A.

H. Hetterich, M. Willner, S. Fill, J. Herzen, F. Bamberg, A. Hipp, U. Schller, S. Adam-Neumair, S. Wirth, M. Reiser, and et al., “Phase-contrast ct: Qualitative and quantitative evaluation of atherosclerotic carotid artery plaque,” Radiology 271, 870–878 (2014).
[Crossref] [PubMed]

M. Willner, J. Herzen, S. Grandl, S. Auweter, D. Mayr, A. Hipp, M. Chabior, A. Sarapata, K. Achterhold, I. Zanette, and et al., “Quantitative breast tissue characterization using grating-based x-ray phase-contrast imaging,” Phys. Med. Biol. 59, 1557–1571 (2014).
[Crossref] [PubMed]

J. Meiser, M. Amberger, M. Willner, D. Kunka, P. Meyer, F. Koch, A. Hipp, M. Walter, F. Pfeiffer, and J. Mohr, “Increasing the field of view of x-ray phase contrast imaging using stitched gratings on low absorbent carriers,” Proc. SPIE 9033, 903355 (2014).
[Crossref]

Hoheisel, M.

T. Donath, M. Chabior, F. Pfeiffer, O. Bunk, E. Reznikova, J. Mohr, E. Hempel, S. Popescu, M. Hoheisel, M. Schuster, and et al., “Inverse geometry for grating-based x-ray phase-contrast imaging,” J. Appl. Phys. 106, 054703 (2009).
[Crossref]

T. Donath, F. Pfeiffer, O. Bunk, W. Groot, M. Bednarzik, C. Grunzweig, E. Hempel, S. Popescu, M. Hoheisel, and C. David, “Phase-contrast imaging and tomography at 60 kev using a conventional x-ray tube source,” Rev. Sci. Instrum. 80, 053701 (2009).
[Crossref] [PubMed]

Hubbell, J. H.

J. H. Hubbell, “Photon cross sections, attenuation coefficients, and energy absorption coefficients from 10 kev to 100 gev,” Tech. rep., NSRDS-NBS (1969).

M. J. Berger, J. H. Hubbell, S. M. Seltzer, J. Chang, J. S. Coursey, R. Sukumar, D. S. Zucker, and K. Olsen, “XCOM: Photon cross section database,” (NIST Standard Reference Database 82010).

Imholz, M. S.

G. Schulz, A. Morel, M. S. Imholz, H. Deyhle, T. Weitkamp, I. Zanette, F. Pfeiffer, C. David, M. Mller-Gerbl, and B. Mller, “Evaluating the microstructure of human brain tissues using synchrotron radiation-based microcomputed tomography,” Proc. SPIE 7804, 78040F (2010).
[Crossref]

Jakobs, P.-J.

E. Reznikova, J. Mohr, M. Boerner, V. Nazmov, and P.-J. Jakobs, “Soft x-ray lithography of high aspect ratio su8 submicron structures,” Microsyst. Technol. 14, 1683–1688 (2008).
[Crossref]

James, R.

R. James, The Optical Principles of the Diffraction of X-rays, Crystalline State (Bell, 1967).

Jurgen Engel, K.

T. Kohler, K. Jurgen Engel, and E. Roessl, “Noise properties of grating-based x-ray phase contrast computed tomography,” Med. Phys. 38, S106–S116 (2011).
[Crossref] [PubMed]

Kenntner, J.

M. Willner, M. Bech, J. Herzen, I. Zanette, D. Hahn, J. Kenntner, J. Mohr, A. Rack, T. Weitkamp, and F. Pfeiffer, “Quantitative x-ray phase-contrast computed tomography at 82 kev,” Opt. Express 21, 4155–4166 (2013).
[Crossref] [PubMed]

J. Mohr, T. Grund, D. Kunka, J. Kenntner, J. Leuthold, J. Meiser, J. Schulz, and M. Walter, “High aspect ratio gratings for x-ray phase contrast imaging,” AIP Conf. Proc. 1466, 41–50 (2012).
[Crossref]

Khler, T.

J. Herzen, M. S. Willner, A. A. Fingerle, P. B. Nol, T. Khler, E. Drecoll, E. J. Rummeny, and F. Pfeiffer, “Imaging liver lesions using grating-based phase-contrast computed tomography with bi-lateral filter post-processing,” PLoS ONE 9, e83369 (2014).
[Crossref] [PubMed]

Koch, F.

J. Meiser, M. Amberger, M. Willner, D. Kunka, P. Meyer, F. Koch, A. Hipp, M. Walter, F. Pfeiffer, and J. Mohr, “Increasing the field of view of x-ray phase contrast imaging using stitched gratings on low absorbent carriers,” Proc. SPIE 9033, 903355 (2014).
[Crossref]

Koehler, T.

T. Koehler and E. Roessl, “Simultaneous de-noising in phase contrast tomography,” AIP Conf. Proc. 1466, 78–83 (2012).
[Crossref]

Kohler, T.

T. Kohler, K. Jurgen Engel, and E. Roessl, “Noise properties of grating-based x-ray phase contrast computed tomography,” Med. Phys. 38, S106–S116 (2011).
[Crossref] [PubMed]

Kottler, C.

F. Pfeiffer, C. Kottler, O. Bunk, and C. David, “Hard x-ray phase tomography with low-brilliance sources,” Phys. Rev. Lett. 98, 108105 (2007).
[Crossref] [PubMed]

Kraft, P.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Bronnimann, C. Grnzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nature Mater. 7, 134–137 (2008).
[Crossref]

Kunka, D.

J. Meiser, M. Amberger, M. Willner, D. Kunka, P. Meyer, F. Koch, A. Hipp, M. Walter, F. Pfeiffer, and J. Mohr, “Increasing the field of view of x-ray phase contrast imaging using stitched gratings on low absorbent carriers,” Proc. SPIE 9033, 903355 (2014).
[Crossref]

J. Mohr, T. Grund, D. Kunka, J. Kenntner, J. Leuthold, J. Meiser, J. Schulz, and M. Walter, “High aspect ratio gratings for x-ray phase contrast imaging,” AIP Conf. Proc. 1466, 41–50 (2012).
[Crossref]

Landry, G.

G. Poludniowski, G. Landry, F. DeBlois, P. M. Evans, and F. Verhaegen, “Spekcalc: a program to calculate photon spectra from tungsten anode x-ray tubes,” Phys. Med. Biol. 54, N433–N438 (2009).
[Crossref] [PubMed]

Leuthold, J.

J. Mohr, T. Grund, D. Kunka, J. Kenntner, J. Leuthold, J. Meiser, J. Schulz, and M. Walter, “High aspect ratio gratings for x-ray phase contrast imaging,” AIP Conf. Proc. 1466, 41–50 (2012).
[Crossref]

Malecki, A.

A. Malecki, G. Potdevin, and F. Pfeiffer, “Quantitative wave-optical numerical analysis of the dark-field signal in grating-based x-ray interferometry,” Europhys. Lett. 99, 48001 (2012).
[Crossref]

Matcher, S. J.

S. J. Matcher, C. P. Winlove, and S. V. Gangnus, “The collagen structure of bovine intervertebral disc studied using polarization-sensitive optical coherence tomography,” Phys. Med. Biol. 49, 1295–1306 (2004).
[Crossref] [PubMed]

Mayr, D.

M. Willner, J. Herzen, S. Grandl, S. Auweter, D. Mayr, A. Hipp, M. Chabior, A. Sarapata, K. Achterhold, I. Zanette, and et al., “Quantitative breast tissue characterization using grating-based x-ray phase-contrast imaging,” Phys. Med. Biol. 59, 1557–1571 (2014).
[Crossref] [PubMed]

McCullough, E. C.

E. C. McCullough, “Photon attenuation in computed tomography,” Med. Phys. 2, 307–320 (1975).
[Crossref] [PubMed]

Meiser, J.

J. Meiser, M. Amberger, M. Willner, D. Kunka, P. Meyer, F. Koch, A. Hipp, M. Walter, F. Pfeiffer, and J. Mohr, “Increasing the field of view of x-ray phase contrast imaging using stitched gratings on low absorbent carriers,” Proc. SPIE 9033, 903355 (2014).
[Crossref]

J. Mohr, T. Grund, D. Kunka, J. Kenntner, J. Leuthold, J. Meiser, J. Schulz, and M. Walter, “High aspect ratio gratings for x-ray phase contrast imaging,” AIP Conf. Proc. 1466, 41–50 (2012).
[Crossref]

Meyer, P.

J. Meiser, M. Amberger, M. Willner, D. Kunka, P. Meyer, F. Koch, A. Hipp, M. Walter, F. Pfeiffer, and J. Mohr, “Increasing the field of view of x-ray phase contrast imaging using stitched gratings on low absorbent carriers,” Proc. SPIE 9033, 903355 (2014).
[Crossref]

P. Meyer, J. Schulz, and V. Saile, “Deep x-ray lithography,” in “Micro-Manufacturing Engineering and Technology,”, Y. Qin, ed. (Elsevier, 2010), pp. 202–220.
[Crossref]

Mller, B.

G. Schulz, A. Morel, M. S. Imholz, H. Deyhle, T. Weitkamp, I. Zanette, F. Pfeiffer, C. David, M. Mller-Gerbl, and B. Mller, “Evaluating the microstructure of human brain tissues using synchrotron radiation-based microcomputed tomography,” Proc. SPIE 7804, 78040F (2010).
[Crossref]

Mller-Gerbl, M.

G. Schulz, A. Morel, M. S. Imholz, H. Deyhle, T. Weitkamp, I. Zanette, F. Pfeiffer, C. David, M. Mller-Gerbl, and B. Mller, “Evaluating the microstructure of human brain tissues using synchrotron radiation-based microcomputed tomography,” Proc. SPIE 7804, 78040F (2010).
[Crossref]

Mohr, J.

J. Meiser, M. Amberger, M. Willner, D. Kunka, P. Meyer, F. Koch, A. Hipp, M. Walter, F. Pfeiffer, and J. Mohr, “Increasing the field of view of x-ray phase contrast imaging using stitched gratings on low absorbent carriers,” Proc. SPIE 9033, 903355 (2014).
[Crossref]

M. Willner, M. Bech, J. Herzen, I. Zanette, D. Hahn, J. Kenntner, J. Mohr, A. Rack, T. Weitkamp, and F. Pfeiffer, “Quantitative x-ray phase-contrast computed tomography at 82 kev,” Opt. Express 21, 4155–4166 (2013).
[Crossref] [PubMed]

J. Mohr, T. Grund, D. Kunka, J. Kenntner, J. Leuthold, J. Meiser, J. Schulz, and M. Walter, “High aspect ratio gratings for x-ray phase contrast imaging,” AIP Conf. Proc. 1466, 41–50 (2012).
[Crossref]

T. Donath, M. Chabior, F. Pfeiffer, O. Bunk, E. Reznikova, J. Mohr, E. Hempel, S. Popescu, M. Hoheisel, M. Schuster, and et al., “Inverse geometry for grating-based x-ray phase-contrast imaging,” J. Appl. Phys. 106, 054703 (2009).
[Crossref]

E. Reznikova, J. Mohr, M. Boerner, V. Nazmov, and P.-J. Jakobs, “Soft x-ray lithography of high aspect ratio su8 submicron structures,” Microsyst. Technol. 14, 1683–1688 (2008).
[Crossref]

Momose, A.

A. Momose, W. Yashiro, Y. Takeda, Y. Suzuki, and T. Hattori, “Phase tomography by x-ray talbot interferometry for biological imaging,” Jpn. J. Appl. Phys. 45, 5254–5262 (2006).
[Crossref]

Morel, A.

G. Schulz, A. Morel, M. S. Imholz, H. Deyhle, T. Weitkamp, I. Zanette, F. Pfeiffer, C. David, M. Mller-Gerbl, and B. Mller, “Evaluating the microstructure of human brain tissues using synchrotron radiation-based microcomputed tomography,” Proc. SPIE 7804, 78040F (2010).
[Crossref]

Nazmov, V.

E. Reznikova, J. Mohr, M. Boerner, V. Nazmov, and P.-J. Jakobs, “Soft x-ray lithography of high aspect ratio su8 submicron structures,” Microsyst. Technol. 14, 1683–1688 (2008).
[Crossref]

Nol, P. B.

J. Herzen, M. S. Willner, A. A. Fingerle, P. B. Nol, T. Khler, E. Drecoll, E. J. Rummeny, and F. Pfeiffer, “Imaging liver lesions using grating-based phase-contrast computed tomography with bi-lateral filter post-processing,” PLoS ONE 9, e83369 (2014).
[Crossref] [PubMed]

Olsen, K.

M. J. Berger, J. H. Hubbell, S. M. Seltzer, J. Chang, J. S. Coursey, R. Sukumar, D. S. Zucker, and K. Olsen, “XCOM: Photon cross section database,” (NIST Standard Reference Database 82010).

Padeste, C.

Pfeiffer, F.

J. Meiser, M. Amberger, M. Willner, D. Kunka, P. Meyer, F. Koch, A. Hipp, M. Walter, F. Pfeiffer, and J. Mohr, “Increasing the field of view of x-ray phase contrast imaging using stitched gratings on low absorbent carriers,” Proc. SPIE 9033, 903355 (2014).
[Crossref]

J. Herzen, M. S. Willner, A. A. Fingerle, P. B. Nol, T. Khler, E. Drecoll, E. J. Rummeny, and F. Pfeiffer, “Imaging liver lesions using grating-based phase-contrast computed tomography with bi-lateral filter post-processing,” PLoS ONE 9, e83369 (2014).
[Crossref] [PubMed]

A. Sarapata, J. W. Stayman, M. Finkenthal, J. H. Siewerdsen, F. Pfeiffer, and D. Stutman, “High energy x-ray phase contrast ct using glancing-angle grating interferometers,” Med. Phys. 41, 021904 (2014).
[Crossref] [PubMed]

M. Willner, M. Bech, J. Herzen, I. Zanette, D. Hahn, J. Kenntner, J. Mohr, A. Rack, T. Weitkamp, and F. Pfeiffer, “Quantitative x-ray phase-contrast computed tomography at 82 kev,” Opt. Express 21, 4155–4166 (2013).
[Crossref] [PubMed]

A. Malecki, G. Potdevin, and F. Pfeiffer, “Quantitative wave-optical numerical analysis of the dark-field signal in grating-based x-ray interferometry,” Europhys. Lett. 99, 48001 (2012).
[Crossref]

G. Schulz, A. Morel, M. S. Imholz, H. Deyhle, T. Weitkamp, I. Zanette, F. Pfeiffer, C. David, M. Mller-Gerbl, and B. Mller, “Evaluating the microstructure of human brain tissues using synchrotron radiation-based microcomputed tomography,” Proc. SPIE 7804, 78040F (2010).
[Crossref]

T. Donath, F. Pfeiffer, O. Bunk, W. Groot, M. Bednarzik, C. Grunzweig, E. Hempel, S. Popescu, M. Hoheisel, and C. David, “Phase-contrast imaging and tomography at 60 kev using a conventional x-ray tube source,” Rev. Sci. Instrum. 80, 053701 (2009).
[Crossref] [PubMed]

T. Donath, M. Chabior, F. Pfeiffer, O. Bunk, E. Reznikova, J. Mohr, E. Hempel, S. Popescu, M. Hoheisel, M. Schuster, and et al., “Inverse geometry for grating-based x-ray phase-contrast imaging,” J. Appl. Phys. 106, 054703 (2009).
[Crossref]

J. Herzen, T. Donath, F. Pfeiffer, O. Bunk, C. Padeste, F. Beckmann, A. Schreyer, C. David, and et al., “Quantitative phase-contrast tomography of a liquid phantom using a conventional x-ray tube source,” Opt. Express 17, 10010–10018 (2009).
[Crossref] [PubMed]

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Bronnimann, C. Grnzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nature Mater. 7, 134–137 (2008).
[Crossref]

F. Pfeiffer, C. Kottler, O. Bunk, and C. David, “Hard x-ray phase tomography with low-brilliance sources,” Phys. Rev. Lett. 98, 108105 (2007).
[Crossref] [PubMed]

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources,” Nature Phys. 2, 258–261 (2006).
[Crossref]

T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express 13, 6296–6304 (2005).
[Crossref] [PubMed]

Poludniowski, G.

G. Poludniowski, G. Landry, F. DeBlois, P. M. Evans, and F. Verhaegen, “Spekcalc: a program to calculate photon spectra from tungsten anode x-ray tubes,” Phys. Med. Biol. 54, N433–N438 (2009).
[Crossref] [PubMed]

Popescu, S.

T. Donath, M. Chabior, F. Pfeiffer, O. Bunk, E. Reznikova, J. Mohr, E. Hempel, S. Popescu, M. Hoheisel, M. Schuster, and et al., “Inverse geometry for grating-based x-ray phase-contrast imaging,” J. Appl. Phys. 106, 054703 (2009).
[Crossref]

T. Donath, F. Pfeiffer, O. Bunk, W. Groot, M. Bednarzik, C. Grunzweig, E. Hempel, S. Popescu, M. Hoheisel, and C. David, “Phase-contrast imaging and tomography at 60 kev using a conventional x-ray tube source,” Rev. Sci. Instrum. 80, 053701 (2009).
[Crossref] [PubMed]

Potdevin, G.

A. Malecki, G. Potdevin, and F. Pfeiffer, “Quantitative wave-optical numerical analysis of the dark-field signal in grating-based x-ray interferometry,” Europhys. Lett. 99, 48001 (2012).
[Crossref]

Rack, A.

Raupach, R.

R. Raupach and T. G. Flohr, “Analytical evaluation of the signal and noise propagation in x-ray differential phase-contrast computed tomography,” Phys. Med. Biol. 56, 2219–2244 (2011).
[Crossref] [PubMed]

Reiser, M.

H. Hetterich, M. Willner, S. Fill, J. Herzen, F. Bamberg, A. Hipp, U. Schller, S. Adam-Neumair, S. Wirth, M. Reiser, and et al., “Phase-contrast ct: Qualitative and quantitative evaluation of atherosclerotic carotid artery plaque,” Radiology 271, 870–878 (2014).
[Crossref] [PubMed]

Reznikova, E.

T. Donath, M. Chabior, F. Pfeiffer, O. Bunk, E. Reznikova, J. Mohr, E. Hempel, S. Popescu, M. Hoheisel, M. Schuster, and et al., “Inverse geometry for grating-based x-ray phase-contrast imaging,” J. Appl. Phys. 106, 054703 (2009).
[Crossref]

E. Reznikova, J. Mohr, M. Boerner, V. Nazmov, and P.-J. Jakobs, “Soft x-ray lithography of high aspect ratio su8 submicron structures,” Microsyst. Technol. 14, 1683–1688 (2008).
[Crossref]

Roessl, E.

T. Koehler and E. Roessl, “Simultaneous de-noising in phase contrast tomography,” AIP Conf. Proc. 1466, 78–83 (2012).
[Crossref]

T. Kohler, K. Jurgen Engel, and E. Roessl, “Noise properties of grating-based x-ray phase contrast computed tomography,” Med. Phys. 38, S106–S116 (2011).
[Crossref] [PubMed]

Rummeny, E. J.

J. Herzen, M. S. Willner, A. A. Fingerle, P. B. Nol, T. Khler, E. Drecoll, E. J. Rummeny, and F. Pfeiffer, “Imaging liver lesions using grating-based phase-contrast computed tomography with bi-lateral filter post-processing,” PLoS ONE 9, e83369 (2014).
[Crossref] [PubMed]

Saile, V.

P. Meyer, J. Schulz, and V. Saile, “Deep x-ray lithography,” in “Micro-Manufacturing Engineering and Technology,”, Y. Qin, ed. (Elsevier, 2010), pp. 202–220.
[Crossref]

Sarapata, A.

A. Sarapata, J. W. Stayman, M. Finkenthal, J. H. Siewerdsen, F. Pfeiffer, and D. Stutman, “High energy x-ray phase contrast ct using glancing-angle grating interferometers,” Med. Phys. 41, 021904 (2014).
[Crossref] [PubMed]

M. Willner, J. Herzen, S. Grandl, S. Auweter, D. Mayr, A. Hipp, M. Chabior, A. Sarapata, K. Achterhold, I. Zanette, and et al., “Quantitative breast tissue characterization using grating-based x-ray phase-contrast imaging,” Phys. Med. Biol. 59, 1557–1571 (2014).
[Crossref] [PubMed]

Schller, U.

H. Hetterich, M. Willner, S. Fill, J. Herzen, F. Bamberg, A. Hipp, U. Schller, S. Adam-Neumair, S. Wirth, M. Reiser, and et al., “Phase-contrast ct: Qualitative and quantitative evaluation of atherosclerotic carotid artery plaque,” Radiology 271, 870–878 (2014).
[Crossref] [PubMed]

Schreyer, A.

Schulz, G.

G. Schulz, A. Morel, M. S. Imholz, H. Deyhle, T. Weitkamp, I. Zanette, F. Pfeiffer, C. David, M. Mller-Gerbl, and B. Mller, “Evaluating the microstructure of human brain tissues using synchrotron radiation-based microcomputed tomography,” Proc. SPIE 7804, 78040F (2010).
[Crossref]

Schulz, J.

J. Mohr, T. Grund, D. Kunka, J. Kenntner, J. Leuthold, J. Meiser, J. Schulz, and M. Walter, “High aspect ratio gratings for x-ray phase contrast imaging,” AIP Conf. Proc. 1466, 41–50 (2012).
[Crossref]

P. Meyer, J. Schulz, and V. Saile, “Deep x-ray lithography,” in “Micro-Manufacturing Engineering and Technology,”, Y. Qin, ed. (Elsevier, 2010), pp. 202–220.
[Crossref]

Schuster, M.

T. Donath, M. Chabior, F. Pfeiffer, O. Bunk, E. Reznikova, J. Mohr, E. Hempel, S. Popescu, M. Hoheisel, M. Schuster, and et al., “Inverse geometry for grating-based x-ray phase-contrast imaging,” J. Appl. Phys. 106, 054703 (2009).
[Crossref]

Seltzer, S. M.

M. J. Berger, J. H. Hubbell, S. M. Seltzer, J. Chang, J. S. Coursey, R. Sukumar, D. S. Zucker, and K. Olsen, “XCOM: Photon cross section database,” (NIST Standard Reference Database 82010).

Siewerdsen, J. H.

A. Sarapata, J. W. Stayman, M. Finkenthal, J. H. Siewerdsen, F. Pfeiffer, and D. Stutman, “High energy x-ray phase contrast ct using glancing-angle grating interferometers,” Med. Phys. 41, 021904 (2014).
[Crossref] [PubMed]

Stampanoni, M.

T. Thuering, M. Abis, Z. Wang, C. David, and M. Stampanoni, “X-ray phase-contrast imaging at 100 kev on a conventional source,” Sci. Rep. 4, 5198 (2014).

T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express 13, 6296–6304 (2005).
[Crossref] [PubMed]

Stayman, J. W.

A. Sarapata, J. W. Stayman, M. Finkenthal, J. H. Siewerdsen, F. Pfeiffer, and D. Stutman, “High energy x-ray phase contrast ct using glancing-angle grating interferometers,” Med. Phys. 41, 021904 (2014).
[Crossref] [PubMed]

Stutman, D.

A. Sarapata, J. W. Stayman, M. Finkenthal, J. H. Siewerdsen, F. Pfeiffer, and D. Stutman, “High energy x-ray phase contrast ct using glancing-angle grating interferometers,” Med. Phys. 41, 021904 (2014).
[Crossref] [PubMed]

D. Stutman and M. Finkenthal, “Glancing angle talbot-lau grating interferometers for phase contrast imaging at high x-ray energy,” Appl. Phys. Lett. 101, 091108 (2012).
[Crossref]

Sukumar, R.

M. J. Berger, J. H. Hubbell, S. M. Seltzer, J. Chang, J. S. Coursey, R. Sukumar, D. S. Zucker, and K. Olsen, “XCOM: Photon cross section database,” (NIST Standard Reference Database 82010).

Suzuki, Y.

A. Momose, W. Yashiro, Y. Takeda, Y. Suzuki, and T. Hattori, “Phase tomography by x-ray talbot interferometry for biological imaging,” Jpn. J. Appl. Phys. 45, 5254–5262 (2006).
[Crossref]

Takeda, Y.

A. Momose, W. Yashiro, Y. Takeda, Y. Suzuki, and T. Hattori, “Phase tomography by x-ray talbot interferometry for biological imaging,” Jpn. J. Appl. Phys. 45, 5254–5262 (2006).
[Crossref]

Thuering, T.

T. Thuering, M. Abis, Z. Wang, C. David, and M. Stampanoni, “X-ray phase-contrast imaging at 100 kev on a conventional source,” Sci. Rep. 4, 5198 (2014).

Verhaegen, F.

G. Poludniowski, G. Landry, F. DeBlois, P. M. Evans, and F. Verhaegen, “Spekcalc: a program to calculate photon spectra from tungsten anode x-ray tubes,” Phys. Med. Biol. 54, N433–N438 (2009).
[Crossref] [PubMed]

Walter, M.

J. Meiser, M. Amberger, M. Willner, D. Kunka, P. Meyer, F. Koch, A. Hipp, M. Walter, F. Pfeiffer, and J. Mohr, “Increasing the field of view of x-ray phase contrast imaging using stitched gratings on low absorbent carriers,” Proc. SPIE 9033, 903355 (2014).
[Crossref]

J. Mohr, T. Grund, D. Kunka, J. Kenntner, J. Leuthold, J. Meiser, J. Schulz, and M. Walter, “High aspect ratio gratings for x-ray phase contrast imaging,” AIP Conf. Proc. 1466, 41–50 (2012).
[Crossref]

Wang, Z.

T. Thuering, M. Abis, Z. Wang, C. David, and M. Stampanoni, “X-ray phase-contrast imaging at 100 kev on a conventional source,” Sci. Rep. 4, 5198 (2014).

Weitkamp, T.

M. Willner, M. Bech, J. Herzen, I. Zanette, D. Hahn, J. Kenntner, J. Mohr, A. Rack, T. Weitkamp, and F. Pfeiffer, “Quantitative x-ray phase-contrast computed tomography at 82 kev,” Opt. Express 21, 4155–4166 (2013).
[Crossref] [PubMed]

G. Schulz, A. Morel, M. S. Imholz, H. Deyhle, T. Weitkamp, I. Zanette, F. Pfeiffer, C. David, M. Mller-Gerbl, and B. Mller, “Evaluating the microstructure of human brain tissues using synchrotron radiation-based microcomputed tomography,” Proc. SPIE 7804, 78040F (2010).
[Crossref]

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources,” Nature Phys. 2, 258–261 (2006).
[Crossref]

T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express 13, 6296–6304 (2005).
[Crossref] [PubMed]

Willner, M.

J. Meiser, M. Amberger, M. Willner, D. Kunka, P. Meyer, F. Koch, A. Hipp, M. Walter, F. Pfeiffer, and J. Mohr, “Increasing the field of view of x-ray phase contrast imaging using stitched gratings on low absorbent carriers,” Proc. SPIE 9033, 903355 (2014).
[Crossref]

H. Hetterich, M. Willner, S. Fill, J. Herzen, F. Bamberg, A. Hipp, U. Schller, S. Adam-Neumair, S. Wirth, M. Reiser, and et al., “Phase-contrast ct: Qualitative and quantitative evaluation of atherosclerotic carotid artery plaque,” Radiology 271, 870–878 (2014).
[Crossref] [PubMed]

M. Willner, J. Herzen, S. Grandl, S. Auweter, D. Mayr, A. Hipp, M. Chabior, A. Sarapata, K. Achterhold, I. Zanette, and et al., “Quantitative breast tissue characterization using grating-based x-ray phase-contrast imaging,” Phys. Med. Biol. 59, 1557–1571 (2014).
[Crossref] [PubMed]

M. Willner, M. Bech, J. Herzen, I. Zanette, D. Hahn, J. Kenntner, J. Mohr, A. Rack, T. Weitkamp, and F. Pfeiffer, “Quantitative x-ray phase-contrast computed tomography at 82 kev,” Opt. Express 21, 4155–4166 (2013).
[Crossref] [PubMed]

Willner, M. S.

J. Herzen, M. S. Willner, A. A. Fingerle, P. B. Nol, T. Khler, E. Drecoll, E. J. Rummeny, and F. Pfeiffer, “Imaging liver lesions using grating-based phase-contrast computed tomography with bi-lateral filter post-processing,” PLoS ONE 9, e83369 (2014).
[Crossref] [PubMed]

Wilson, A. J. C.

A. J. C. Wilson, The Optical Principles of the Diffraction of X-rays by R.W. James, vol. III (International Union of Crystallography (IUCr), 1950).

Winlove, C. P.

S. J. Matcher, C. P. Winlove, and S. V. Gangnus, “The collagen structure of bovine intervertebral disc studied using polarization-sensitive optical coherence tomography,” Phys. Med. Biol. 49, 1295–1306 (2004).
[Crossref] [PubMed]

Wirth, S.

H. Hetterich, M. Willner, S. Fill, J. Herzen, F. Bamberg, A. Hipp, U. Schller, S. Adam-Neumair, S. Wirth, M. Reiser, and et al., “Phase-contrast ct: Qualitative and quantitative evaluation of atherosclerotic carotid artery plaque,” Radiology 271, 870–878 (2014).
[Crossref] [PubMed]

Yashiro, W.

A. Momose, W. Yashiro, Y. Takeda, Y. Suzuki, and T. Hattori, “Phase tomography by x-ray talbot interferometry for biological imaging,” Jpn. J. Appl. Phys. 45, 5254–5262 (2006).
[Crossref]

Zanette, I.

M. Willner, J. Herzen, S. Grandl, S. Auweter, D. Mayr, A. Hipp, M. Chabior, A. Sarapata, K. Achterhold, I. Zanette, and et al., “Quantitative breast tissue characterization using grating-based x-ray phase-contrast imaging,” Phys. Med. Biol. 59, 1557–1571 (2014).
[Crossref] [PubMed]

M. Willner, M. Bech, J. Herzen, I. Zanette, D. Hahn, J. Kenntner, J. Mohr, A. Rack, T. Weitkamp, and F. Pfeiffer, “Quantitative x-ray phase-contrast computed tomography at 82 kev,” Opt. Express 21, 4155–4166 (2013).
[Crossref] [PubMed]

G. Schulz, A. Morel, M. S. Imholz, H. Deyhle, T. Weitkamp, I. Zanette, F. Pfeiffer, C. David, M. Mller-Gerbl, and B. Mller, “Evaluating the microstructure of human brain tissues using synchrotron radiation-based microcomputed tomography,” Proc. SPIE 7804, 78040F (2010).
[Crossref]

Ziegler, E.

Zucker, D. S.

M. J. Berger, J. H. Hubbell, S. M. Seltzer, J. Chang, J. S. Coursey, R. Sukumar, D. S. Zucker, and K. Olsen, “XCOM: Photon cross section database,” (NIST Standard Reference Database 82010).

AIP Conf. Proc. (2)

J. Mohr, T. Grund, D. Kunka, J. Kenntner, J. Leuthold, J. Meiser, J. Schulz, and M. Walter, “High aspect ratio gratings for x-ray phase contrast imaging,” AIP Conf. Proc. 1466, 41–50 (2012).
[Crossref]

T. Koehler and E. Roessl, “Simultaneous de-noising in phase contrast tomography,” AIP Conf. Proc. 1466, 78–83 (2012).
[Crossref]

Appl. Phys. Lett. (1)

D. Stutman and M. Finkenthal, “Glancing angle talbot-lau grating interferometers for phase contrast imaging at high x-ray energy,” Appl. Phys. Lett. 101, 091108 (2012).
[Crossref]

Europhys. Lett. (1)

A. Malecki, G. Potdevin, and F. Pfeiffer, “Quantitative wave-optical numerical analysis of the dark-field signal in grating-based x-ray interferometry,” Europhys. Lett. 99, 48001 (2012).
[Crossref]

J. Appl. Phys. (1)

T. Donath, M. Chabior, F. Pfeiffer, O. Bunk, E. Reznikova, J. Mohr, E. Hempel, S. Popescu, M. Hoheisel, M. Schuster, and et al., “Inverse geometry for grating-based x-ray phase-contrast imaging,” J. Appl. Phys. 106, 054703 (2009).
[Crossref]

Jpn. J. Appl. Phys. (1)

A. Momose, W. Yashiro, Y. Takeda, Y. Suzuki, and T. Hattori, “Phase tomography by x-ray talbot interferometry for biological imaging,” Jpn. J. Appl. Phys. 45, 5254–5262 (2006).
[Crossref]

Med. Phys. (3)

A. Sarapata, J. W. Stayman, M. Finkenthal, J. H. Siewerdsen, F. Pfeiffer, and D. Stutman, “High energy x-ray phase contrast ct using glancing-angle grating interferometers,” Med. Phys. 41, 021904 (2014).
[Crossref] [PubMed]

E. C. McCullough, “Photon attenuation in computed tomography,” Med. Phys. 2, 307–320 (1975).
[Crossref] [PubMed]

T. Kohler, K. Jurgen Engel, and E. Roessl, “Noise properties of grating-based x-ray phase contrast computed tomography,” Med. Phys. 38, S106–S116 (2011).
[Crossref] [PubMed]

Microsyst. Technol. (1)

E. Reznikova, J. Mohr, M. Boerner, V. Nazmov, and P.-J. Jakobs, “Soft x-ray lithography of high aspect ratio su8 submicron structures,” Microsyst. Technol. 14, 1683–1688 (2008).
[Crossref]

Nature Mater. (1)

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Bronnimann, C. Grnzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nature Mater. 7, 134–137 (2008).
[Crossref]

Nature Phys. (1)

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources,” Nature Phys. 2, 258–261 (2006).
[Crossref]

Opt. Express (3)

Phys. Med. Biol. (4)

M. Willner, J. Herzen, S. Grandl, S. Auweter, D. Mayr, A. Hipp, M. Chabior, A. Sarapata, K. Achterhold, I. Zanette, and et al., “Quantitative breast tissue characterization using grating-based x-ray phase-contrast imaging,” Phys. Med. Biol. 59, 1557–1571 (2014).
[Crossref] [PubMed]

G. Poludniowski, G. Landry, F. DeBlois, P. M. Evans, and F. Verhaegen, “Spekcalc: a program to calculate photon spectra from tungsten anode x-ray tubes,” Phys. Med. Biol. 54, N433–N438 (2009).
[Crossref] [PubMed]

S. J. Matcher, C. P. Winlove, and S. V. Gangnus, “The collagen structure of bovine intervertebral disc studied using polarization-sensitive optical coherence tomography,” Phys. Med. Biol. 49, 1295–1306 (2004).
[Crossref] [PubMed]

R. Raupach and T. G. Flohr, “Analytical evaluation of the signal and noise propagation in x-ray differential phase-contrast computed tomography,” Phys. Med. Biol. 56, 2219–2244 (2011).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

F. Pfeiffer, C. Kottler, O. Bunk, and C. David, “Hard x-ray phase tomography with low-brilliance sources,” Phys. Rev. Lett. 98, 108105 (2007).
[Crossref] [PubMed]

PLoS ONE (1)

J. Herzen, M. S. Willner, A. A. Fingerle, P. B. Nol, T. Khler, E. Drecoll, E. J. Rummeny, and F. Pfeiffer, “Imaging liver lesions using grating-based phase-contrast computed tomography with bi-lateral filter post-processing,” PLoS ONE 9, e83369 (2014).
[Crossref] [PubMed]

Proc. SPIE (2)

G. Schulz, A. Morel, M. S. Imholz, H. Deyhle, T. Weitkamp, I. Zanette, F. Pfeiffer, C. David, M. Mller-Gerbl, and B. Mller, “Evaluating the microstructure of human brain tissues using synchrotron radiation-based microcomputed tomography,” Proc. SPIE 7804, 78040F (2010).
[Crossref]

J. Meiser, M. Amberger, M. Willner, D. Kunka, P. Meyer, F. Koch, A. Hipp, M. Walter, F. Pfeiffer, and J. Mohr, “Increasing the field of view of x-ray phase contrast imaging using stitched gratings on low absorbent carriers,” Proc. SPIE 9033, 903355 (2014).
[Crossref]

Radiology (1)

H. Hetterich, M. Willner, S. Fill, J. Herzen, F. Bamberg, A. Hipp, U. Schller, S. Adam-Neumair, S. Wirth, M. Reiser, and et al., “Phase-contrast ct: Qualitative and quantitative evaluation of atherosclerotic carotid artery plaque,” Radiology 271, 870–878 (2014).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

T. Donath, F. Pfeiffer, O. Bunk, W. Groot, M. Bednarzik, C. Grunzweig, E. Hempel, S. Popescu, M. Hoheisel, and C. David, “Phase-contrast imaging and tomography at 60 kev using a conventional x-ray tube source,” Rev. Sci. Instrum. 80, 053701 (2009).
[Crossref] [PubMed]

Sci. Rep. (1)

T. Thuering, M. Abis, Z. Wang, C. David, and M. Stampanoni, “X-ray phase-contrast imaging at 100 kev on a conventional source,” Sci. Rep. 4, 5198 (2014).

Other (6)

A. J. C. Wilson, The Optical Principles of the Diffraction of X-rays by R.W. James, vol. III (International Union of Crystallography (IUCr), 1950).

R. James, The Optical Principles of the Diffraction of X-rays, Crystalline State (Bell, 1967).

P. Meyer, J. Schulz, and V. Saile, “Deep x-ray lithography,” in “Micro-Manufacturing Engineering and Technology,”, Y. Qin, ed. (Elsevier, 2010), pp. 202–220.
[Crossref]

J. H. Hubbell, “Photon cross sections, attenuation coefficients, and energy absorption coefficients from 10 kev to 100 gev,” Tech. rep., NSRDS-NBS (1969).

M. J. Berger, J. H. Hubbell, S. M. Seltzer, J. Chang, J. S. Coursey, R. Sukumar, D. S. Zucker, and K. Olsen, “XCOM: Photon cross section database,” (NIST Standard Reference Database 82010).

P. Bandyopadhyay and C. Segre, Mucal 1.3, http://www.csrri.iit.edu/mucal.html (April2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Photon cross-sections calculated for ethylene glycol (a) and aluminum (b) from XCOM database [22].
Fig. 2
Fig. 2 Tomographic reconstruction axial slices of linear attenuation coefficient μ (a) and refraction index decrement δ (b). The liquids are as follows: 0 - water, 1 - H2O/glycerol, 2 - isopropyl, 3 - ethanol, 4 - H2O/ethanol, 5 - H2O/ethylene glycol, 6 - ethylene glycol. Both images show a very similar contrast because of the dependence of image formation on electron density for both channels.
Fig. 3
Fig. 3 Tomographic reconstruction axial slices of linear attenuation coefficient μ (a) and refraction index decrement δ (b). At 51 keV mean energy, high-Z materials show again the complementarity of both signals.
Fig. 4
Fig. 4 Tomographic reconstruction slices of the human cervical spine. Phase-contrast axial (b) and sagittal slice (d) show improved visibility of the intervertebral discs over attenuation-contrast axial (a) and sagittal slice (c). Internal structure of the discs is visible and the clear boundary between the disc annulus and the nucleus pulposus can only be seen in the phase-contrast image (indicated by the arrows).

Tables (4)

Tables Icon

Table 1 Measured and theoretical (subscript th) attenuation coefficients μ, refraction index decrements δ and electron densities ρe for all fluids inside the low-Z phantom.

Tables Icon

Table 3 Measured and theoretical (subscript th) attenuation coefficients μ, refraction index decrements δ and electron densities ρe for all the materials inside the high-Z phantom.

Tables Icon

Table 2 Contrast-to-noise ratios for phase contrast CNRphase and attenuation contrast CNRabs for selected sets of two materials inside the low-Z phantom.

Tables Icon

Table 4 Contrast-to-noise ratios for phase contrast CNRphase and attenuation contrast CNRabs for selected sets of two materials inside the high-Z phantom.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

δ = r 0 h 2 c 2 2 π E 2 i = 1 b N i f i 1 ,
ρ e = 2 π E 2 r 0 h 2 c 2 δ .
μ = μ pe + μ coh + μ incoh ,
μ = ρ e σ tot e = ρ e ( σ pe + σ coh + σ incoh ) .
σ pe = const Z eff k E l
σ coh = const Z eff m E n
CNR = | S a S b | ( σ a ) 2 + ( σ b ) 2

Metrics