Abstract

Besides the long-haul optical networks covering over thousands of kilometers for backbone transmission, short reach optical networks (SR-ONs) are widely deployed in metro-area for aggregation and accessing. The SR-ONs include the metro optical transport networks (Metro-OTN), optical access networks or other optical inter-connection systems with even shorter distance. As predicted, the growing bandwidth demanding from SR-ONs will be much more than that from the long-haul optical networks in the near future. Besides, there are tremendous amounts of optical terminals and end-users in SR-ONs compared with the long-haul transmission systems and thus will induce large cost and huge energy consumption. So, the power and cost efficiency should be the key consideration for SR-ONs besides the transmission performance. To improve the power and cost efficiency in SR-ONs, advanced modulations and detection techniques based on low power, low cost and integrated optical modulators should be utilized. In this paper, different advanced modulation formats have been discussed. 56Gbps PAM4, 112Gbps poly-binary and 100Gbps DMT that can be used to realize 400-Gbps SR-ONs for different applications have also been demonstrated respectively. In addition, low-cost and low-power opto-electronic components suitable for SR-ONs, the impairments induced by all kinds of defects and bandwidth limitation of opto-electronic components and the corresponding compensation techniques based on DSP algorithms have also been discussed in the experiments.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Experimental study of PAM-4, CAP-16, and DMT for 100 Gb/s Short Reach Optical Transmission Systems

Kangping Zhong, Xian Zhou, Tao Gui, Li Tao, Yuliang Gao, Wei Chen, Jiangwei Man, Li Zeng, Alan Pak Tao Lau, and Chao Lu
Opt. Express 23(2) 1176-1189 (2015)

Experimental demonstration of large capacity WSDM optical access network with multicore fibers and advanced modulation formats

Borui Li, Zhenhua Feng, Ming Tang, Zhilin Xu, Songnian Fu, Qiong Wu, Lei Deng, Weijun Tong, Shuang Liu, and Perry Ping Shum
Opt. Express 23(9) 10997-11006 (2015)

Emerging Optical Access Network Technologies for 5G Wireless [Invited]

Xiang Liu and Frank Effenberger
J. Opt. Commun. Netw. 8(12) B70-B79 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. J. Savory, G. Gavioli, R. I. Killey, and P. Bayvel, “Electronic compensation of chromatic dispersion using a digital coherent receiver,” Opt. Express 15(5), 2120–2126 (2007).
    [Crossref] [PubMed]
  2. C. R. S. Fludger, T. Duthel, D. van den Borne, C. Schulien, E.-D. Schmidt, T. Wuth, J. Geyer, E. de Man, G.-D. Khoe, and H. de Waardt, “Coherent equalization and POLMUX-RZ-DQPSK for robust 100-GE transmission,” J. Lightwave Technol. 26(1), 64–72 (2008).
    [Crossref]
  3. X. Liu, S. Chandrasekhar, B. Zhu, P. J. Winzer, A. H. Gnauck, and D. W. Peckham, “448-Gb/s reduced-guard interval CO-OFDM transmission over 2000 km of ultra-large-area fiber and five 80-GHz-grid ROADMs,” J. Lightwave Technol. 29(4), 483–490 (2011).
    [Crossref]
  4. Metro network traffic growth: an architecture impact study,” strategic white paper from Bell Labs.
  5. W. Vereecken, W. V. Heddeghem, M. Deruyck, B. Puype, B. Lannoo, W. Joseph, D. Colle, L. Martensand, and P. Demeester, “Power consumption in tele-communication networks: overview and reduction strategies,” IEEE Commun. Mag. 49(6), 62–69 (2011).
  6. M. P. I. Dias and E. Wong, “Sleep/doze controlled dynamic bandwidth allocation algorithms for energy-efficient passive optical networks,” Opt. Express 21(8), 9931–9946 (2013).
    [Crossref] [PubMed]
  7. A. R. Dhaini, P.-H. Ho, and G. Shen, “Toward green next generation passive optical networks,” IEEE Commun. Mag. 49(11), 94–101 (2011).
    [Crossref]
  8. P. Cao, X. Hu, Z. Zhuang, L. Zhang, Q. Chang, Q. Yang, R. Hu, and Y. Su, “Power margin improvement for OFDMA-PON using hierarchical modulation,” Opt. Express 21(7), 8261–8268 (2013).
    [Crossref] [PubMed]
  9. X. Dong, T. El-Gorashi, and J. M. H. Elmirghani, “On the energy efficiency of physical topology design for IP over WDM networks,” J. Lightwave Technol. 30(12), 1931–1942 (2012).
  10. I. Cerutti, P. G. Raponi, N. Andriolli, P. Castoldi, and O. Liboiron-Ladouceur, “Designing energy-efficient data center networks using space-time optical inter-connection architectures,” IEEE J. Sel. Top. Quantum Electron. 19(2), 203–210 (2013).
    [Crossref]
  11. B. Schrenk, F. B. Bo, J. Bauwelinck, J. Prat, and J. A. Lazaro, “Energy-efficient optical access networks supported by a noise-powered extender box,” IEEE J. Sel. Top. Quantum Electron. 17(2), 480–488 (2011).
    [Crossref]
  12. E. Wong, M. Mueller, M. P. I. Dias, C. A. Chan, and M. C. Amann, “Energy-efficiency of optical network units with vertical-cavity surface-emitting lasers,” Opt. Express 20(14), 14960–14970 (2012).
    [Crossref] [PubMed]
  13. D.-Z. Hsu, C.-C. Wei, and H.-Y. Chen, “A 40-Gbps OFDM LR-PON system over 100-km fiber employing an economical 10-GHz-based transceiver,” in Proc. OFC (2012), OW4B.2.
  14. J. L. Wei, J. D. Ingham, D. G. Cunningham, R. V. Penty, and I. H. White, “Performance and power dissipation comparisons between 28Gb/s NRZ, PAM, CAP and optical OFDM systems for data communication applications,” J. Lightwave Technol. 30(20), 3273–3280 (2012).
    [Crossref]
  15. Y. Bao, Z. Li, J. Li, X. Feng, B. O. Guan, and G. Li, “Nonlinearity mitigation for high-speed optical OFDM transmitters using digital pre-distortion,” Opt. Express 21(6), 7354–7361 (2013).
    [Crossref] [PubMed]
  16. S. H. Han and J. H. Lee, “Modulation, coding and signal processing for wireless communications—an overview of peak-to-average power ratio reduction techniques for multicarrier transmission,” IEEE Wireless Commun. Mag. 12(2), 56–65 (2005).
    [Crossref]
  17. D. Kim and G. L. Stüber, “Clipping noise mitigationfor OFDM by decision–aided reconstruction,” IEEE Commun. Lett. 3(1), 4–6 (1999).
    [Crossref]
  18. L. Ding, Z. Ma, D. R. Morgan, M. Zierdt, and G. Tong Zhou, “Compensation of frequency-dependent gain/phase imbalance in pre-distortion linearization systems,” IEEE Trans. on Circuits Syst. I. Reg. Papers 55(1), 390–397 (2008).
  19. D. R. Morgan, Z. Ma, J. Kim, M. G. Zierdt, and J. Pastalan, “A generalized memory polynomial model for digital predistortion of RF power amplifiers,” IEEE Trans. Signal Process. 54(10), 3852–3860 (2006).
    [Crossref]
  20. A. Lender, “Correlative digital communication techniques,” IEEE Trans. Commun. Technol. 12(4), 128–135 (1964).
    [Crossref]
  21. R. Howson, “An analysis of the capabilities of polybinary data transmission,” IEEE Trans. Commun. Technol. 13(3), 312–319 (1965).
    [Crossref]
  22. S. Walklin and J. Conradi, “Multilevel signaling for increasing the reach of 10 Gb/s lightwave systems,” J. Lightwave Technol. 17(11), 2235–2248 (1999).
    [Crossref]
  23. L. F. Suhr,”112-Gbit/s x 4 Lane Polybinary 4-PAM for 400G Base,” in Proc. ECOC (2014), Tu 4.3.2.
  24. L. Zhang, Q. Zhang, T. Zuo, E. Zhou, G. N. Liu, and X. Xu, “C-band 100-Gb/s optical IM-DD transmission over 80km SMF without CD compensation enabled by SSB-DMT,” Submitted to Proc. OFC (2015).
  25. Q. Zhang, Y. Fang, E. Zhou, T. Zuo, L. Zhang, G. N. Liu, and X. Xu, “C-band 56Gbps transmission over 80km single mode fiber without chromatic dispersion compensation by using intensity-modualtion direct-detection,” in Proc. ECOC (2014), P.5.19.

2013 (4)

2012 (3)

2011 (4)

A. R. Dhaini, P.-H. Ho, and G. Shen, “Toward green next generation passive optical networks,” IEEE Commun. Mag. 49(11), 94–101 (2011).
[Crossref]

B. Schrenk, F. B. Bo, J. Bauwelinck, J. Prat, and J. A. Lazaro, “Energy-efficient optical access networks supported by a noise-powered extender box,” IEEE J. Sel. Top. Quantum Electron. 17(2), 480–488 (2011).
[Crossref]

W. Vereecken, W. V. Heddeghem, M. Deruyck, B. Puype, B. Lannoo, W. Joseph, D. Colle, L. Martensand, and P. Demeester, “Power consumption in tele-communication networks: overview and reduction strategies,” IEEE Commun. Mag. 49(6), 62–69 (2011).

X. Liu, S. Chandrasekhar, B. Zhu, P. J. Winzer, A. H. Gnauck, and D. W. Peckham, “448-Gb/s reduced-guard interval CO-OFDM transmission over 2000 km of ultra-large-area fiber and five 80-GHz-grid ROADMs,” J. Lightwave Technol. 29(4), 483–490 (2011).
[Crossref]

2008 (2)

L. Ding, Z. Ma, D. R. Morgan, M. Zierdt, and G. Tong Zhou, “Compensation of frequency-dependent gain/phase imbalance in pre-distortion linearization systems,” IEEE Trans. on Circuits Syst. I. Reg. Papers 55(1), 390–397 (2008).

C. R. S. Fludger, T. Duthel, D. van den Borne, C. Schulien, E.-D. Schmidt, T. Wuth, J. Geyer, E. de Man, G.-D. Khoe, and H. de Waardt, “Coherent equalization and POLMUX-RZ-DQPSK for robust 100-GE transmission,” J. Lightwave Technol. 26(1), 64–72 (2008).
[Crossref]

2007 (1)

2006 (1)

D. R. Morgan, Z. Ma, J. Kim, M. G. Zierdt, and J. Pastalan, “A generalized memory polynomial model for digital predistortion of RF power amplifiers,” IEEE Trans. Signal Process. 54(10), 3852–3860 (2006).
[Crossref]

2005 (1)

S. H. Han and J. H. Lee, “Modulation, coding and signal processing for wireless communications—an overview of peak-to-average power ratio reduction techniques for multicarrier transmission,” IEEE Wireless Commun. Mag. 12(2), 56–65 (2005).
[Crossref]

1999 (2)

D. Kim and G. L. Stüber, “Clipping noise mitigationfor OFDM by decision–aided reconstruction,” IEEE Commun. Lett. 3(1), 4–6 (1999).
[Crossref]

S. Walklin and J. Conradi, “Multilevel signaling for increasing the reach of 10 Gb/s lightwave systems,” J. Lightwave Technol. 17(11), 2235–2248 (1999).
[Crossref]

1965 (1)

R. Howson, “An analysis of the capabilities of polybinary data transmission,” IEEE Trans. Commun. Technol. 13(3), 312–319 (1965).
[Crossref]

1964 (1)

A. Lender, “Correlative digital communication techniques,” IEEE Trans. Commun. Technol. 12(4), 128–135 (1964).
[Crossref]

Amann, M. C.

Andriolli, N.

I. Cerutti, P. G. Raponi, N. Andriolli, P. Castoldi, and O. Liboiron-Ladouceur, “Designing energy-efficient data center networks using space-time optical inter-connection architectures,” IEEE J. Sel. Top. Quantum Electron. 19(2), 203–210 (2013).
[Crossref]

Bao, Y.

Bauwelinck, J.

B. Schrenk, F. B. Bo, J. Bauwelinck, J. Prat, and J. A. Lazaro, “Energy-efficient optical access networks supported by a noise-powered extender box,” IEEE J. Sel. Top. Quantum Electron. 17(2), 480–488 (2011).
[Crossref]

Bayvel, P.

Bo, F. B.

B. Schrenk, F. B. Bo, J. Bauwelinck, J. Prat, and J. A. Lazaro, “Energy-efficient optical access networks supported by a noise-powered extender box,” IEEE J. Sel. Top. Quantum Electron. 17(2), 480–488 (2011).
[Crossref]

Cao, P.

Castoldi, P.

I. Cerutti, P. G. Raponi, N. Andriolli, P. Castoldi, and O. Liboiron-Ladouceur, “Designing energy-efficient data center networks using space-time optical inter-connection architectures,” IEEE J. Sel. Top. Quantum Electron. 19(2), 203–210 (2013).
[Crossref]

Cerutti, I.

I. Cerutti, P. G. Raponi, N. Andriolli, P. Castoldi, and O. Liboiron-Ladouceur, “Designing energy-efficient data center networks using space-time optical inter-connection architectures,” IEEE J. Sel. Top. Quantum Electron. 19(2), 203–210 (2013).
[Crossref]

Chan, C. A.

Chandrasekhar, S.

Chang, Q.

Chen, H.-Y.

D.-Z. Hsu, C.-C. Wei, and H.-Y. Chen, “A 40-Gbps OFDM LR-PON system over 100-km fiber employing an economical 10-GHz-based transceiver,” in Proc. OFC (2012), OW4B.2.

Colle, D.

W. Vereecken, W. V. Heddeghem, M. Deruyck, B. Puype, B. Lannoo, W. Joseph, D. Colle, L. Martensand, and P. Demeester, “Power consumption in tele-communication networks: overview and reduction strategies,” IEEE Commun. Mag. 49(6), 62–69 (2011).

Conradi, J.

Cunningham, D. G.

de Man, E.

de Waardt, H.

Demeester, P.

W. Vereecken, W. V. Heddeghem, M. Deruyck, B. Puype, B. Lannoo, W. Joseph, D. Colle, L. Martensand, and P. Demeester, “Power consumption in tele-communication networks: overview and reduction strategies,” IEEE Commun. Mag. 49(6), 62–69 (2011).

Deruyck, M.

W. Vereecken, W. V. Heddeghem, M. Deruyck, B. Puype, B. Lannoo, W. Joseph, D. Colle, L. Martensand, and P. Demeester, “Power consumption in tele-communication networks: overview and reduction strategies,” IEEE Commun. Mag. 49(6), 62–69 (2011).

Dhaini, A. R.

A. R. Dhaini, P.-H. Ho, and G. Shen, “Toward green next generation passive optical networks,” IEEE Commun. Mag. 49(11), 94–101 (2011).
[Crossref]

Dias, M. P. I.

Ding, L.

L. Ding, Z. Ma, D. R. Morgan, M. Zierdt, and G. Tong Zhou, “Compensation of frequency-dependent gain/phase imbalance in pre-distortion linearization systems,” IEEE Trans. on Circuits Syst. I. Reg. Papers 55(1), 390–397 (2008).

Dong, X.

Duthel, T.

El-Gorashi, T.

Elmirghani, J. M. H.

Fang, Y.

Q. Zhang, Y. Fang, E. Zhou, T. Zuo, L. Zhang, G. N. Liu, and X. Xu, “C-band 56Gbps transmission over 80km single mode fiber without chromatic dispersion compensation by using intensity-modualtion direct-detection,” in Proc. ECOC (2014), P.5.19.

Feng, X.

Fludger, C. R. S.

Gavioli, G.

Geyer, J.

Gnauck, A. H.

Guan, B. O.

Han, S. H.

S. H. Han and J. H. Lee, “Modulation, coding and signal processing for wireless communications—an overview of peak-to-average power ratio reduction techniques for multicarrier transmission,” IEEE Wireless Commun. Mag. 12(2), 56–65 (2005).
[Crossref]

Heddeghem, W. V.

W. Vereecken, W. V. Heddeghem, M. Deruyck, B. Puype, B. Lannoo, W. Joseph, D. Colle, L. Martensand, and P. Demeester, “Power consumption in tele-communication networks: overview and reduction strategies,” IEEE Commun. Mag. 49(6), 62–69 (2011).

Ho, P.-H.

A. R. Dhaini, P.-H. Ho, and G. Shen, “Toward green next generation passive optical networks,” IEEE Commun. Mag. 49(11), 94–101 (2011).
[Crossref]

Howson, R.

R. Howson, “An analysis of the capabilities of polybinary data transmission,” IEEE Trans. Commun. Technol. 13(3), 312–319 (1965).
[Crossref]

Hsu, D.-Z.

D.-Z. Hsu, C.-C. Wei, and H.-Y. Chen, “A 40-Gbps OFDM LR-PON system over 100-km fiber employing an economical 10-GHz-based transceiver,” in Proc. OFC (2012), OW4B.2.

Hu, R.

Hu, X.

Ingham, J. D.

Joseph, W.

W. Vereecken, W. V. Heddeghem, M. Deruyck, B. Puype, B. Lannoo, W. Joseph, D. Colle, L. Martensand, and P. Demeester, “Power consumption in tele-communication networks: overview and reduction strategies,” IEEE Commun. Mag. 49(6), 62–69 (2011).

Khoe, G.-D.

Killey, R. I.

Kim, D.

D. Kim and G. L. Stüber, “Clipping noise mitigationfor OFDM by decision–aided reconstruction,” IEEE Commun. Lett. 3(1), 4–6 (1999).
[Crossref]

Kim, J.

D. R. Morgan, Z. Ma, J. Kim, M. G. Zierdt, and J. Pastalan, “A generalized memory polynomial model for digital predistortion of RF power amplifiers,” IEEE Trans. Signal Process. 54(10), 3852–3860 (2006).
[Crossref]

Lannoo, B.

W. Vereecken, W. V. Heddeghem, M. Deruyck, B. Puype, B. Lannoo, W. Joseph, D. Colle, L. Martensand, and P. Demeester, “Power consumption in tele-communication networks: overview and reduction strategies,” IEEE Commun. Mag. 49(6), 62–69 (2011).

Lazaro, J. A.

B. Schrenk, F. B. Bo, J. Bauwelinck, J. Prat, and J. A. Lazaro, “Energy-efficient optical access networks supported by a noise-powered extender box,” IEEE J. Sel. Top. Quantum Electron. 17(2), 480–488 (2011).
[Crossref]

Lee, J. H.

S. H. Han and J. H. Lee, “Modulation, coding and signal processing for wireless communications—an overview of peak-to-average power ratio reduction techniques for multicarrier transmission,” IEEE Wireless Commun. Mag. 12(2), 56–65 (2005).
[Crossref]

Lender, A.

A. Lender, “Correlative digital communication techniques,” IEEE Trans. Commun. Technol. 12(4), 128–135 (1964).
[Crossref]

Li, G.

Li, J.

Li, Z.

Liboiron-Ladouceur, O.

I. Cerutti, P. G. Raponi, N. Andriolli, P. Castoldi, and O. Liboiron-Ladouceur, “Designing energy-efficient data center networks using space-time optical inter-connection architectures,” IEEE J. Sel. Top. Quantum Electron. 19(2), 203–210 (2013).
[Crossref]

Liu, G. N.

Q. Zhang, Y. Fang, E. Zhou, T. Zuo, L. Zhang, G. N. Liu, and X. Xu, “C-band 56Gbps transmission over 80km single mode fiber without chromatic dispersion compensation by using intensity-modualtion direct-detection,” in Proc. ECOC (2014), P.5.19.

Liu, X.

Ma, Z.

L. Ding, Z. Ma, D. R. Morgan, M. Zierdt, and G. Tong Zhou, “Compensation of frequency-dependent gain/phase imbalance in pre-distortion linearization systems,” IEEE Trans. on Circuits Syst. I. Reg. Papers 55(1), 390–397 (2008).

D. R. Morgan, Z. Ma, J. Kim, M. G. Zierdt, and J. Pastalan, “A generalized memory polynomial model for digital predistortion of RF power amplifiers,” IEEE Trans. Signal Process. 54(10), 3852–3860 (2006).
[Crossref]

Martensand, L.

W. Vereecken, W. V. Heddeghem, M. Deruyck, B. Puype, B. Lannoo, W. Joseph, D. Colle, L. Martensand, and P. Demeester, “Power consumption in tele-communication networks: overview and reduction strategies,” IEEE Commun. Mag. 49(6), 62–69 (2011).

Morgan, D. R.

L. Ding, Z. Ma, D. R. Morgan, M. Zierdt, and G. Tong Zhou, “Compensation of frequency-dependent gain/phase imbalance in pre-distortion linearization systems,” IEEE Trans. on Circuits Syst. I. Reg. Papers 55(1), 390–397 (2008).

D. R. Morgan, Z. Ma, J. Kim, M. G. Zierdt, and J. Pastalan, “A generalized memory polynomial model for digital predistortion of RF power amplifiers,” IEEE Trans. Signal Process. 54(10), 3852–3860 (2006).
[Crossref]

Mueller, M.

Pastalan, J.

D. R. Morgan, Z. Ma, J. Kim, M. G. Zierdt, and J. Pastalan, “A generalized memory polynomial model for digital predistortion of RF power amplifiers,” IEEE Trans. Signal Process. 54(10), 3852–3860 (2006).
[Crossref]

Peckham, D. W.

Penty, R. V.

Prat, J.

B. Schrenk, F. B. Bo, J. Bauwelinck, J. Prat, and J. A. Lazaro, “Energy-efficient optical access networks supported by a noise-powered extender box,” IEEE J. Sel. Top. Quantum Electron. 17(2), 480–488 (2011).
[Crossref]

Puype, B.

W. Vereecken, W. V. Heddeghem, M. Deruyck, B. Puype, B. Lannoo, W. Joseph, D. Colle, L. Martensand, and P. Demeester, “Power consumption in tele-communication networks: overview and reduction strategies,” IEEE Commun. Mag. 49(6), 62–69 (2011).

Raponi, P. G.

I. Cerutti, P. G. Raponi, N. Andriolli, P. Castoldi, and O. Liboiron-Ladouceur, “Designing energy-efficient data center networks using space-time optical inter-connection architectures,” IEEE J. Sel. Top. Quantum Electron. 19(2), 203–210 (2013).
[Crossref]

Savory, S. J.

Schmidt, E.-D.

Schrenk, B.

B. Schrenk, F. B. Bo, J. Bauwelinck, J. Prat, and J. A. Lazaro, “Energy-efficient optical access networks supported by a noise-powered extender box,” IEEE J. Sel. Top. Quantum Electron. 17(2), 480–488 (2011).
[Crossref]

Schulien, C.

Shen, G.

A. R. Dhaini, P.-H. Ho, and G. Shen, “Toward green next generation passive optical networks,” IEEE Commun. Mag. 49(11), 94–101 (2011).
[Crossref]

Stüber, G. L.

D. Kim and G. L. Stüber, “Clipping noise mitigationfor OFDM by decision–aided reconstruction,” IEEE Commun. Lett. 3(1), 4–6 (1999).
[Crossref]

Su, Y.

Suhr, L. F.

L. F. Suhr,”112-Gbit/s x 4 Lane Polybinary 4-PAM for 400G Base,” in Proc. ECOC (2014), Tu 4.3.2.

Tong Zhou, G.

L. Ding, Z. Ma, D. R. Morgan, M. Zierdt, and G. Tong Zhou, “Compensation of frequency-dependent gain/phase imbalance in pre-distortion linearization systems,” IEEE Trans. on Circuits Syst. I. Reg. Papers 55(1), 390–397 (2008).

van den Borne, D.

Vereecken, W.

W. Vereecken, W. V. Heddeghem, M. Deruyck, B. Puype, B. Lannoo, W. Joseph, D. Colle, L. Martensand, and P. Demeester, “Power consumption in tele-communication networks: overview and reduction strategies,” IEEE Commun. Mag. 49(6), 62–69 (2011).

Walklin, S.

Wei, C.-C.

D.-Z. Hsu, C.-C. Wei, and H.-Y. Chen, “A 40-Gbps OFDM LR-PON system over 100-km fiber employing an economical 10-GHz-based transceiver,” in Proc. OFC (2012), OW4B.2.

Wei, J. L.

White, I. H.

Winzer, P. J.

Wong, E.

Wuth, T.

Xu, X.

Q. Zhang, Y. Fang, E. Zhou, T. Zuo, L. Zhang, G. N. Liu, and X. Xu, “C-band 56Gbps transmission over 80km single mode fiber without chromatic dispersion compensation by using intensity-modualtion direct-detection,” in Proc. ECOC (2014), P.5.19.

Yang, Q.

Zhang, L.

P. Cao, X. Hu, Z. Zhuang, L. Zhang, Q. Chang, Q. Yang, R. Hu, and Y. Su, “Power margin improvement for OFDMA-PON using hierarchical modulation,” Opt. Express 21(7), 8261–8268 (2013).
[Crossref] [PubMed]

Q. Zhang, Y. Fang, E. Zhou, T. Zuo, L. Zhang, G. N. Liu, and X. Xu, “C-band 56Gbps transmission over 80km single mode fiber without chromatic dispersion compensation by using intensity-modualtion direct-detection,” in Proc. ECOC (2014), P.5.19.

Zhang, Q.

Q. Zhang, Y. Fang, E. Zhou, T. Zuo, L. Zhang, G. N. Liu, and X. Xu, “C-band 56Gbps transmission over 80km single mode fiber without chromatic dispersion compensation by using intensity-modualtion direct-detection,” in Proc. ECOC (2014), P.5.19.

Zhou, E.

Q. Zhang, Y. Fang, E. Zhou, T. Zuo, L. Zhang, G. N. Liu, and X. Xu, “C-band 56Gbps transmission over 80km single mode fiber without chromatic dispersion compensation by using intensity-modualtion direct-detection,” in Proc. ECOC (2014), P.5.19.

Zhu, B.

Zhuang, Z.

Zierdt, M.

L. Ding, Z. Ma, D. R. Morgan, M. Zierdt, and G. Tong Zhou, “Compensation of frequency-dependent gain/phase imbalance in pre-distortion linearization systems,” IEEE Trans. on Circuits Syst. I. Reg. Papers 55(1), 390–397 (2008).

Zierdt, M. G.

D. R. Morgan, Z. Ma, J. Kim, M. G. Zierdt, and J. Pastalan, “A generalized memory polynomial model for digital predistortion of RF power amplifiers,” IEEE Trans. Signal Process. 54(10), 3852–3860 (2006).
[Crossref]

Zuo, T.

Q. Zhang, Y. Fang, E. Zhou, T. Zuo, L. Zhang, G. N. Liu, and X. Xu, “C-band 56Gbps transmission over 80km single mode fiber without chromatic dispersion compensation by using intensity-modualtion direct-detection,” in Proc. ECOC (2014), P.5.19.

IEEE Commun. Lett. (1)

D. Kim and G. L. Stüber, “Clipping noise mitigationfor OFDM by decision–aided reconstruction,” IEEE Commun. Lett. 3(1), 4–6 (1999).
[Crossref]

IEEE Commun. Mag. (2)

W. Vereecken, W. V. Heddeghem, M. Deruyck, B. Puype, B. Lannoo, W. Joseph, D. Colle, L. Martensand, and P. Demeester, “Power consumption in tele-communication networks: overview and reduction strategies,” IEEE Commun. Mag. 49(6), 62–69 (2011).

A. R. Dhaini, P.-H. Ho, and G. Shen, “Toward green next generation passive optical networks,” IEEE Commun. Mag. 49(11), 94–101 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

I. Cerutti, P. G. Raponi, N. Andriolli, P. Castoldi, and O. Liboiron-Ladouceur, “Designing energy-efficient data center networks using space-time optical inter-connection architectures,” IEEE J. Sel. Top. Quantum Electron. 19(2), 203–210 (2013).
[Crossref]

B. Schrenk, F. B. Bo, J. Bauwelinck, J. Prat, and J. A. Lazaro, “Energy-efficient optical access networks supported by a noise-powered extender box,” IEEE J. Sel. Top. Quantum Electron. 17(2), 480–488 (2011).
[Crossref]

IEEE Trans. Commun. Technol. (2)

A. Lender, “Correlative digital communication techniques,” IEEE Trans. Commun. Technol. 12(4), 128–135 (1964).
[Crossref]

R. Howson, “An analysis of the capabilities of polybinary data transmission,” IEEE Trans. Commun. Technol. 13(3), 312–319 (1965).
[Crossref]

IEEE Trans. on Circuits Syst. I. Reg. Papers (1)

L. Ding, Z. Ma, D. R. Morgan, M. Zierdt, and G. Tong Zhou, “Compensation of frequency-dependent gain/phase imbalance in pre-distortion linearization systems,” IEEE Trans. on Circuits Syst. I. Reg. Papers 55(1), 390–397 (2008).

IEEE Trans. Signal Process. (1)

D. R. Morgan, Z. Ma, J. Kim, M. G. Zierdt, and J. Pastalan, “A generalized memory polynomial model for digital predistortion of RF power amplifiers,” IEEE Trans. Signal Process. 54(10), 3852–3860 (2006).
[Crossref]

IEEE Wireless Commun. Mag. (1)

S. H. Han and J. H. Lee, “Modulation, coding and signal processing for wireless communications—an overview of peak-to-average power ratio reduction techniques for multicarrier transmission,” IEEE Wireless Commun. Mag. 12(2), 56–65 (2005).
[Crossref]

J. Lightwave Technol. (5)

Opt. Express (5)

Other (5)

D.-Z. Hsu, C.-C. Wei, and H.-Y. Chen, “A 40-Gbps OFDM LR-PON system over 100-km fiber employing an economical 10-GHz-based transceiver,” in Proc. OFC (2012), OW4B.2.

Metro network traffic growth: an architecture impact study,” strategic white paper from Bell Labs.

L. F. Suhr,”112-Gbit/s x 4 Lane Polybinary 4-PAM for 400G Base,” in Proc. ECOC (2014), Tu 4.3.2.

L. Zhang, Q. Zhang, T. Zuo, E. Zhou, G. N. Liu, and X. Xu, “C-band 100-Gb/s optical IM-DD transmission over 80km SMF without CD compensation enabled by SSB-DMT,” Submitted to Proc. OFC (2015).

Q. Zhang, Y. Fang, E. Zhou, T. Zuo, L. Zhang, G. N. Liu, and X. Xu, “C-band 56Gbps transmission over 80km single mode fiber without chromatic dispersion compensation by using intensity-modualtion direct-detection,” in Proc. ECOC (2014), P.5.19.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Experimental setup for PAM4 system.
Fig. 2
Fig. 2 56-Gbps PAM 4 based on 1320nm EML/PIN PAM4 experiment results for B2B and 10-km SSMF transmission.
Fig. 3
Fig. 3 (a) BER curve of the 112Gbps IM-DD poly-binary systems Eye-diagram of the signal (b) before and (c) after equalizer.
Fig. 4
Fig. 4 BER curve of 10-GHz EML/PIN-ROSA based IM-DD poly-binary systems.
Fig. 5
Fig. 5 Principles of the generation of optical SSB signal based on a DD-MZM.
Fig. 6
Fig. 6 Experimental setup of the proposed DD-MZM-based SSB-DMT system.
Fig. 7
Fig. 7 Optical spectra of SSB-DMT and DSB-DMT signals.
Fig. 8
Fig. 8 BER performances of 100-Gbps SSB-DMT system.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

b k = a k b k1 mod4
c k = b k + b k1
a k = c k mod4
E out = 2 2 E in { e j*[ π V π I(t) π 2 ] + e j*[ π V π Q(t)] }= 2 2 E in { -j* e j*[ π V π I(t)] + e j*[ π V π Q(t)] }
E 2 2 E in { j[1+j* π V π I(t)]+[1+j* π V π Q(t)] } 2 2 E in { π V π *[ I(t)+j*Q(t) ¯ ]+1j }

Metrics