Abstract

A digital micromirror device (DMD) is used to spatially structure a 532 nm laser beam to print features spatially congruent to the laser spot in a laser-induced forward transfer (LIFT) process known as laser decal transfer (LDT). The DMD is a binary (on/off) spatial light modulator and its resolution, half-toning and beam shaping properties are studied using LDT of silver nanopaste layers. Edge-enhanced “checkerboard” beam profiles led to a ~30% decrease in the laser transfer fluence threshold (compared to a reference “checkerboard” profile) for a 20-pixel bitmap pattern and its resulting 10-μm square feature.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spatially modulated laser pulses for printing electronics

Raymond C. Y. Auyeung, Heungsoo Kim, Scott Mathews, and Alberto Piqué
Appl. Opt. 54(31) F70-F77 (2015)

Dynamic spatial pulse shaping via a digital micromirror device for patterned laser-induced forward transfer of solid polymer films

Daniel J Heath, Matthias Feinaeugle, James A Grant-Jacob, Ben Mills, and Robert W Eason
Opt. Mater. Express 5(5) 1129-1136 (2015)

High-speed multi-jets printing using laser forward transfer: time-resolved study of the ejection dynamics

Emeric Biver, Ludovic Rapp, Anne-Patricia Alloncle, Pere Serra, and Philippe Delaporte
Opt. Express 22(14) 17122-17134 (2014)

References

  • View by:
  • |
  • |
  • |

  1. K. K. B. Hon, L. Li, and I. M. Hutchings, “Direct writing technology - advances and developments,” CIRP Ann. Manuf. Technol. 57(2), 601–620 (2008).
    [Crossref]
  2. N. S. Kim and K. N. Han, “Future direction of direct writing,” J. Appl. Phys. 108(10), 102801 (2010).
    [Crossref]
  3. C. B. Arnold, P. Serra, and A. Piqué, “Laser direct-write techniques for printing of complex materials,” MRS Bull. 32(01), 23–32 (2007).
    [Crossref]
  4. B. Derby, “Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution,” Annu. Rev. Mater. Res. 40(1), 395–414 (2010).
    [Crossref]
  5. A. Mahajan, C. D. Frisbie, and L. F. Francis, “Optimization of aerosol jet printing for high-resolution, high-aspect ratio silver lines,” ACS Appl. Mater. Interfaces 5(11), 4856–4864 (2013).
    [Crossref] [PubMed]
  6. N. A. Charipar, K. M. Charipar, H. Kim, M. A. Kirleis, R. C. Y. Auyeung, A. T. Smith, S. A. Mathews, and A. Piqué, “Laser processing of 2D and 3D metamaterial structures,” Proc. SPIE 8607, 86070T (2013).
    [Crossref]
  7. A. Piqué and H. Kim, “Laser-induced forward transfer of functional materials: advances and future directions,” J. Laser Micro Nanoeng. 9(3), 192–197 (2014).
    [Crossref]
  8. A. Khan, K. Rahman, D. S. Kim, and K. H. Choi, “Direct printing of copper conductive micro-tracks by multi-nozzle electrohydrodynamic inkjet printing process,” J. Mater. Process. Technol. 212(3), 700–706 (2012).
    [Crossref]
  9. R. Auyeung, H. Kim, N. Charipar, A. Birnbaum, S. Mathews, and A. Piqué, “Laser forward transfer based on a spatial light modulator,” Appl. Phys., A Mater. Sci. Process. 102(1), 21–26 (2011).
    [Crossref]
  10. A. Piqué, R. C. Y. Auyeung, H. Kim, K. M. Metkus, and S. A. Mathews, “Digital microfabrication by laser decal transfer,” J. Laser Micro Nanoeng. 3(3), 163–169 (2008).
    [Crossref]
  11. H. Kim, J. S. Melinger, A. Khachatrian, N. A. Charipar, R. C. Y. Auyeung, and A. Piqué, “Fabrication of terahertz metamaterials by laser printing,” Opt. Lett. 35(23), 4039–4041 (2010).
    [Crossref] [PubMed]
  12. Texas Instruments data sheet TI DN 2509699 Rev B (March 2009).
  13. R. Ulichney, Digital Halftoning (MIT, 1987).
  14. A. Piqué, R. Auyeung, K. Metkus, H. Kim, S. Mathews, T. Bailey, X. Chen, and L. Young, “Laser decal transfer of electronic materials with thin film characteristics,” Proc. SPIE 6879, 687911 (2008).
    [Crossref]
  15. S. A. Mathews, R. C. Y. Auyeung, H. Kim, N. A. Charipar, and A. Piqué, “High-speed video study of laser-induced forward transfer of silver nano-suspensions,” J. Appl. Phys. 114(6), 064910 (2013).
    [Crossref]
  16. L. Rapp, C. Constantinescu, Y. Larmande, A. Alloncle, and P. Delaporte, “Smart beam shaping for the deposition of solid polymeric material by laser forward transfer,” Appl. Phys., A Mater. Sci. Process. 117(1), 333–339 (2014).
    [Crossref]

2014 (2)

A. Piqué and H. Kim, “Laser-induced forward transfer of functional materials: advances and future directions,” J. Laser Micro Nanoeng. 9(3), 192–197 (2014).
[Crossref]

L. Rapp, C. Constantinescu, Y. Larmande, A. Alloncle, and P. Delaporte, “Smart beam shaping for the deposition of solid polymeric material by laser forward transfer,” Appl. Phys., A Mater. Sci. Process. 117(1), 333–339 (2014).
[Crossref]

2013 (3)

A. Mahajan, C. D. Frisbie, and L. F. Francis, “Optimization of aerosol jet printing for high-resolution, high-aspect ratio silver lines,” ACS Appl. Mater. Interfaces 5(11), 4856–4864 (2013).
[Crossref] [PubMed]

N. A. Charipar, K. M. Charipar, H. Kim, M. A. Kirleis, R. C. Y. Auyeung, A. T. Smith, S. A. Mathews, and A. Piqué, “Laser processing of 2D and 3D metamaterial structures,” Proc. SPIE 8607, 86070T (2013).
[Crossref]

S. A. Mathews, R. C. Y. Auyeung, H. Kim, N. A. Charipar, and A. Piqué, “High-speed video study of laser-induced forward transfer of silver nano-suspensions,” J. Appl. Phys. 114(6), 064910 (2013).
[Crossref]

2012 (1)

A. Khan, K. Rahman, D. S. Kim, and K. H. Choi, “Direct printing of copper conductive micro-tracks by multi-nozzle electrohydrodynamic inkjet printing process,” J. Mater. Process. Technol. 212(3), 700–706 (2012).
[Crossref]

2011 (1)

R. Auyeung, H. Kim, N. Charipar, A. Birnbaum, S. Mathews, and A. Piqué, “Laser forward transfer based on a spatial light modulator,” Appl. Phys., A Mater. Sci. Process. 102(1), 21–26 (2011).
[Crossref]

2010 (3)

N. S. Kim and K. N. Han, “Future direction of direct writing,” J. Appl. Phys. 108(10), 102801 (2010).
[Crossref]

B. Derby, “Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution,” Annu. Rev. Mater. Res. 40(1), 395–414 (2010).
[Crossref]

H. Kim, J. S. Melinger, A. Khachatrian, N. A. Charipar, R. C. Y. Auyeung, and A. Piqué, “Fabrication of terahertz metamaterials by laser printing,” Opt. Lett. 35(23), 4039–4041 (2010).
[Crossref] [PubMed]

2008 (3)

K. K. B. Hon, L. Li, and I. M. Hutchings, “Direct writing technology - advances and developments,” CIRP Ann. Manuf. Technol. 57(2), 601–620 (2008).
[Crossref]

A. Piqué, R. C. Y. Auyeung, H. Kim, K. M. Metkus, and S. A. Mathews, “Digital microfabrication by laser decal transfer,” J. Laser Micro Nanoeng. 3(3), 163–169 (2008).
[Crossref]

A. Piqué, R. Auyeung, K. Metkus, H. Kim, S. Mathews, T. Bailey, X. Chen, and L. Young, “Laser decal transfer of electronic materials with thin film characteristics,” Proc. SPIE 6879, 687911 (2008).
[Crossref]

2007 (1)

C. B. Arnold, P. Serra, and A. Piqué, “Laser direct-write techniques for printing of complex materials,” MRS Bull. 32(01), 23–32 (2007).
[Crossref]

Alloncle, A.

L. Rapp, C. Constantinescu, Y. Larmande, A. Alloncle, and P. Delaporte, “Smart beam shaping for the deposition of solid polymeric material by laser forward transfer,” Appl. Phys., A Mater. Sci. Process. 117(1), 333–339 (2014).
[Crossref]

Arnold, C. B.

C. B. Arnold, P. Serra, and A. Piqué, “Laser direct-write techniques for printing of complex materials,” MRS Bull. 32(01), 23–32 (2007).
[Crossref]

Auyeung, R.

R. Auyeung, H. Kim, N. Charipar, A. Birnbaum, S. Mathews, and A. Piqué, “Laser forward transfer based on a spatial light modulator,” Appl. Phys., A Mater. Sci. Process. 102(1), 21–26 (2011).
[Crossref]

A. Piqué, R. Auyeung, K. Metkus, H. Kim, S. Mathews, T. Bailey, X. Chen, and L. Young, “Laser decal transfer of electronic materials with thin film characteristics,” Proc. SPIE 6879, 687911 (2008).
[Crossref]

Auyeung, R. C. Y.

S. A. Mathews, R. C. Y. Auyeung, H. Kim, N. A. Charipar, and A. Piqué, “High-speed video study of laser-induced forward transfer of silver nano-suspensions,” J. Appl. Phys. 114(6), 064910 (2013).
[Crossref]

N. A. Charipar, K. M. Charipar, H. Kim, M. A. Kirleis, R. C. Y. Auyeung, A. T. Smith, S. A. Mathews, and A. Piqué, “Laser processing of 2D and 3D metamaterial structures,” Proc. SPIE 8607, 86070T (2013).
[Crossref]

H. Kim, J. S. Melinger, A. Khachatrian, N. A. Charipar, R. C. Y. Auyeung, and A. Piqué, “Fabrication of terahertz metamaterials by laser printing,” Opt. Lett. 35(23), 4039–4041 (2010).
[Crossref] [PubMed]

A. Piqué, R. C. Y. Auyeung, H. Kim, K. M. Metkus, and S. A. Mathews, “Digital microfabrication by laser decal transfer,” J. Laser Micro Nanoeng. 3(3), 163–169 (2008).
[Crossref]

Bailey, T.

A. Piqué, R. Auyeung, K. Metkus, H. Kim, S. Mathews, T. Bailey, X. Chen, and L. Young, “Laser decal transfer of electronic materials with thin film characteristics,” Proc. SPIE 6879, 687911 (2008).
[Crossref]

Birnbaum, A.

R. Auyeung, H. Kim, N. Charipar, A. Birnbaum, S. Mathews, and A. Piqué, “Laser forward transfer based on a spatial light modulator,” Appl. Phys., A Mater. Sci. Process. 102(1), 21–26 (2011).
[Crossref]

Charipar, K. M.

N. A. Charipar, K. M. Charipar, H. Kim, M. A. Kirleis, R. C. Y. Auyeung, A. T. Smith, S. A. Mathews, and A. Piqué, “Laser processing of 2D and 3D metamaterial structures,” Proc. SPIE 8607, 86070T (2013).
[Crossref]

Charipar, N.

R. Auyeung, H. Kim, N. Charipar, A. Birnbaum, S. Mathews, and A. Piqué, “Laser forward transfer based on a spatial light modulator,” Appl. Phys., A Mater. Sci. Process. 102(1), 21–26 (2011).
[Crossref]

Charipar, N. A.

N. A. Charipar, K. M. Charipar, H. Kim, M. A. Kirleis, R. C. Y. Auyeung, A. T. Smith, S. A. Mathews, and A. Piqué, “Laser processing of 2D and 3D metamaterial structures,” Proc. SPIE 8607, 86070T (2013).
[Crossref]

S. A. Mathews, R. C. Y. Auyeung, H. Kim, N. A. Charipar, and A. Piqué, “High-speed video study of laser-induced forward transfer of silver nano-suspensions,” J. Appl. Phys. 114(6), 064910 (2013).
[Crossref]

H. Kim, J. S. Melinger, A. Khachatrian, N. A. Charipar, R. C. Y. Auyeung, and A. Piqué, “Fabrication of terahertz metamaterials by laser printing,” Opt. Lett. 35(23), 4039–4041 (2010).
[Crossref] [PubMed]

Chen, X.

A. Piqué, R. Auyeung, K. Metkus, H. Kim, S. Mathews, T. Bailey, X. Chen, and L. Young, “Laser decal transfer of electronic materials with thin film characteristics,” Proc. SPIE 6879, 687911 (2008).
[Crossref]

Choi, K. H.

A. Khan, K. Rahman, D. S. Kim, and K. H. Choi, “Direct printing of copper conductive micro-tracks by multi-nozzle electrohydrodynamic inkjet printing process,” J. Mater. Process. Technol. 212(3), 700–706 (2012).
[Crossref]

Constantinescu, C.

L. Rapp, C. Constantinescu, Y. Larmande, A. Alloncle, and P. Delaporte, “Smart beam shaping for the deposition of solid polymeric material by laser forward transfer,” Appl. Phys., A Mater. Sci. Process. 117(1), 333–339 (2014).
[Crossref]

Delaporte, P.

L. Rapp, C. Constantinescu, Y. Larmande, A. Alloncle, and P. Delaporte, “Smart beam shaping for the deposition of solid polymeric material by laser forward transfer,” Appl. Phys., A Mater. Sci. Process. 117(1), 333–339 (2014).
[Crossref]

Derby, B.

B. Derby, “Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution,” Annu. Rev. Mater. Res. 40(1), 395–414 (2010).
[Crossref]

Francis, L. F.

A. Mahajan, C. D. Frisbie, and L. F. Francis, “Optimization of aerosol jet printing for high-resolution, high-aspect ratio silver lines,” ACS Appl. Mater. Interfaces 5(11), 4856–4864 (2013).
[Crossref] [PubMed]

Frisbie, C. D.

A. Mahajan, C. D. Frisbie, and L. F. Francis, “Optimization of aerosol jet printing for high-resolution, high-aspect ratio silver lines,” ACS Appl. Mater. Interfaces 5(11), 4856–4864 (2013).
[Crossref] [PubMed]

Han, K. N.

N. S. Kim and K. N. Han, “Future direction of direct writing,” J. Appl. Phys. 108(10), 102801 (2010).
[Crossref]

Hon, K. K. B.

K. K. B. Hon, L. Li, and I. M. Hutchings, “Direct writing technology - advances and developments,” CIRP Ann. Manuf. Technol. 57(2), 601–620 (2008).
[Crossref]

Hutchings, I. M.

K. K. B. Hon, L. Li, and I. M. Hutchings, “Direct writing technology - advances and developments,” CIRP Ann. Manuf. Technol. 57(2), 601–620 (2008).
[Crossref]

Khachatrian, A.

Khan, A.

A. Khan, K. Rahman, D. S. Kim, and K. H. Choi, “Direct printing of copper conductive micro-tracks by multi-nozzle electrohydrodynamic inkjet printing process,” J. Mater. Process. Technol. 212(3), 700–706 (2012).
[Crossref]

Kim, D. S.

A. Khan, K. Rahman, D. S. Kim, and K. H. Choi, “Direct printing of copper conductive micro-tracks by multi-nozzle electrohydrodynamic inkjet printing process,” J. Mater. Process. Technol. 212(3), 700–706 (2012).
[Crossref]

Kim, H.

A. Piqué and H. Kim, “Laser-induced forward transfer of functional materials: advances and future directions,” J. Laser Micro Nanoeng. 9(3), 192–197 (2014).
[Crossref]

N. A. Charipar, K. M. Charipar, H. Kim, M. A. Kirleis, R. C. Y. Auyeung, A. T. Smith, S. A. Mathews, and A. Piqué, “Laser processing of 2D and 3D metamaterial structures,” Proc. SPIE 8607, 86070T (2013).
[Crossref]

S. A. Mathews, R. C. Y. Auyeung, H. Kim, N. A. Charipar, and A. Piqué, “High-speed video study of laser-induced forward transfer of silver nano-suspensions,” J. Appl. Phys. 114(6), 064910 (2013).
[Crossref]

R. Auyeung, H. Kim, N. Charipar, A. Birnbaum, S. Mathews, and A. Piqué, “Laser forward transfer based on a spatial light modulator,” Appl. Phys., A Mater. Sci. Process. 102(1), 21–26 (2011).
[Crossref]

H. Kim, J. S. Melinger, A. Khachatrian, N. A. Charipar, R. C. Y. Auyeung, and A. Piqué, “Fabrication of terahertz metamaterials by laser printing,” Opt. Lett. 35(23), 4039–4041 (2010).
[Crossref] [PubMed]

A. Piqué, R. C. Y. Auyeung, H. Kim, K. M. Metkus, and S. A. Mathews, “Digital microfabrication by laser decal transfer,” J. Laser Micro Nanoeng. 3(3), 163–169 (2008).
[Crossref]

A. Piqué, R. Auyeung, K. Metkus, H. Kim, S. Mathews, T. Bailey, X. Chen, and L. Young, “Laser decal transfer of electronic materials with thin film characteristics,” Proc. SPIE 6879, 687911 (2008).
[Crossref]

Kim, N. S.

N. S. Kim and K. N. Han, “Future direction of direct writing,” J. Appl. Phys. 108(10), 102801 (2010).
[Crossref]

Kirleis, M. A.

N. A. Charipar, K. M. Charipar, H. Kim, M. A. Kirleis, R. C. Y. Auyeung, A. T. Smith, S. A. Mathews, and A. Piqué, “Laser processing of 2D and 3D metamaterial structures,” Proc. SPIE 8607, 86070T (2013).
[Crossref]

Larmande, Y.

L. Rapp, C. Constantinescu, Y. Larmande, A. Alloncle, and P. Delaporte, “Smart beam shaping for the deposition of solid polymeric material by laser forward transfer,” Appl. Phys., A Mater. Sci. Process. 117(1), 333–339 (2014).
[Crossref]

Li, L.

K. K. B. Hon, L. Li, and I. M. Hutchings, “Direct writing technology - advances and developments,” CIRP Ann. Manuf. Technol. 57(2), 601–620 (2008).
[Crossref]

Mahajan, A.

A. Mahajan, C. D. Frisbie, and L. F. Francis, “Optimization of aerosol jet printing for high-resolution, high-aspect ratio silver lines,” ACS Appl. Mater. Interfaces 5(11), 4856–4864 (2013).
[Crossref] [PubMed]

Mathews, S.

R. Auyeung, H. Kim, N. Charipar, A. Birnbaum, S. Mathews, and A. Piqué, “Laser forward transfer based on a spatial light modulator,” Appl. Phys., A Mater. Sci. Process. 102(1), 21–26 (2011).
[Crossref]

A. Piqué, R. Auyeung, K. Metkus, H. Kim, S. Mathews, T. Bailey, X. Chen, and L. Young, “Laser decal transfer of electronic materials with thin film characteristics,” Proc. SPIE 6879, 687911 (2008).
[Crossref]

Mathews, S. A.

S. A. Mathews, R. C. Y. Auyeung, H. Kim, N. A. Charipar, and A. Piqué, “High-speed video study of laser-induced forward transfer of silver nano-suspensions,” J. Appl. Phys. 114(6), 064910 (2013).
[Crossref]

N. A. Charipar, K. M. Charipar, H. Kim, M. A. Kirleis, R. C. Y. Auyeung, A. T. Smith, S. A. Mathews, and A. Piqué, “Laser processing of 2D and 3D metamaterial structures,” Proc. SPIE 8607, 86070T (2013).
[Crossref]

A. Piqué, R. C. Y. Auyeung, H. Kim, K. M. Metkus, and S. A. Mathews, “Digital microfabrication by laser decal transfer,” J. Laser Micro Nanoeng. 3(3), 163–169 (2008).
[Crossref]

Melinger, J. S.

Metkus, K.

A. Piqué, R. Auyeung, K. Metkus, H. Kim, S. Mathews, T. Bailey, X. Chen, and L. Young, “Laser decal transfer of electronic materials with thin film characteristics,” Proc. SPIE 6879, 687911 (2008).
[Crossref]

Metkus, K. M.

A. Piqué, R. C. Y. Auyeung, H. Kim, K. M. Metkus, and S. A. Mathews, “Digital microfabrication by laser decal transfer,” J. Laser Micro Nanoeng. 3(3), 163–169 (2008).
[Crossref]

Piqué, A.

A. Piqué and H. Kim, “Laser-induced forward transfer of functional materials: advances and future directions,” J. Laser Micro Nanoeng. 9(3), 192–197 (2014).
[Crossref]

N. A. Charipar, K. M. Charipar, H. Kim, M. A. Kirleis, R. C. Y. Auyeung, A. T. Smith, S. A. Mathews, and A. Piqué, “Laser processing of 2D and 3D metamaterial structures,” Proc. SPIE 8607, 86070T (2013).
[Crossref]

S. A. Mathews, R. C. Y. Auyeung, H. Kim, N. A. Charipar, and A. Piqué, “High-speed video study of laser-induced forward transfer of silver nano-suspensions,” J. Appl. Phys. 114(6), 064910 (2013).
[Crossref]

R. Auyeung, H. Kim, N. Charipar, A. Birnbaum, S. Mathews, and A. Piqué, “Laser forward transfer based on a spatial light modulator,” Appl. Phys., A Mater. Sci. Process. 102(1), 21–26 (2011).
[Crossref]

H. Kim, J. S. Melinger, A. Khachatrian, N. A. Charipar, R. C. Y. Auyeung, and A. Piqué, “Fabrication of terahertz metamaterials by laser printing,” Opt. Lett. 35(23), 4039–4041 (2010).
[Crossref] [PubMed]

A. Piqué, R. Auyeung, K. Metkus, H. Kim, S. Mathews, T. Bailey, X. Chen, and L. Young, “Laser decal transfer of electronic materials with thin film characteristics,” Proc. SPIE 6879, 687911 (2008).
[Crossref]

A. Piqué, R. C. Y. Auyeung, H. Kim, K. M. Metkus, and S. A. Mathews, “Digital microfabrication by laser decal transfer,” J. Laser Micro Nanoeng. 3(3), 163–169 (2008).
[Crossref]

C. B. Arnold, P. Serra, and A. Piqué, “Laser direct-write techniques for printing of complex materials,” MRS Bull. 32(01), 23–32 (2007).
[Crossref]

Rahman, K.

A. Khan, K. Rahman, D. S. Kim, and K. H. Choi, “Direct printing of copper conductive micro-tracks by multi-nozzle electrohydrodynamic inkjet printing process,” J. Mater. Process. Technol. 212(3), 700–706 (2012).
[Crossref]

Rapp, L.

L. Rapp, C. Constantinescu, Y. Larmande, A. Alloncle, and P. Delaporte, “Smart beam shaping for the deposition of solid polymeric material by laser forward transfer,” Appl. Phys., A Mater. Sci. Process. 117(1), 333–339 (2014).
[Crossref]

Serra, P.

C. B. Arnold, P. Serra, and A. Piqué, “Laser direct-write techniques for printing of complex materials,” MRS Bull. 32(01), 23–32 (2007).
[Crossref]

Smith, A. T.

N. A. Charipar, K. M. Charipar, H. Kim, M. A. Kirleis, R. C. Y. Auyeung, A. T. Smith, S. A. Mathews, and A. Piqué, “Laser processing of 2D and 3D metamaterial structures,” Proc. SPIE 8607, 86070T (2013).
[Crossref]

Young, L.

A. Piqué, R. Auyeung, K. Metkus, H. Kim, S. Mathews, T. Bailey, X. Chen, and L. Young, “Laser decal transfer of electronic materials with thin film characteristics,” Proc. SPIE 6879, 687911 (2008).
[Crossref]

ACS Appl. Mater. Interfaces (1)

A. Mahajan, C. D. Frisbie, and L. F. Francis, “Optimization of aerosol jet printing for high-resolution, high-aspect ratio silver lines,” ACS Appl. Mater. Interfaces 5(11), 4856–4864 (2013).
[Crossref] [PubMed]

Annu. Rev. Mater. Res. (1)

B. Derby, “Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution,” Annu. Rev. Mater. Res. 40(1), 395–414 (2010).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (2)

L. Rapp, C. Constantinescu, Y. Larmande, A. Alloncle, and P. Delaporte, “Smart beam shaping for the deposition of solid polymeric material by laser forward transfer,” Appl. Phys., A Mater. Sci. Process. 117(1), 333–339 (2014).
[Crossref]

R. Auyeung, H. Kim, N. Charipar, A. Birnbaum, S. Mathews, and A. Piqué, “Laser forward transfer based on a spatial light modulator,” Appl. Phys., A Mater. Sci. Process. 102(1), 21–26 (2011).
[Crossref]

CIRP Ann. Manuf. Technol. (1)

K. K. B. Hon, L. Li, and I. M. Hutchings, “Direct writing technology - advances and developments,” CIRP Ann. Manuf. Technol. 57(2), 601–620 (2008).
[Crossref]

J. Appl. Phys. (2)

N. S. Kim and K. N. Han, “Future direction of direct writing,” J. Appl. Phys. 108(10), 102801 (2010).
[Crossref]

S. A. Mathews, R. C. Y. Auyeung, H. Kim, N. A. Charipar, and A. Piqué, “High-speed video study of laser-induced forward transfer of silver nano-suspensions,” J. Appl. Phys. 114(6), 064910 (2013).
[Crossref]

J. Laser Micro Nanoeng. (2)

A. Piqué and H. Kim, “Laser-induced forward transfer of functional materials: advances and future directions,” J. Laser Micro Nanoeng. 9(3), 192–197 (2014).
[Crossref]

A. Piqué, R. C. Y. Auyeung, H. Kim, K. M. Metkus, and S. A. Mathews, “Digital microfabrication by laser decal transfer,” J. Laser Micro Nanoeng. 3(3), 163–169 (2008).
[Crossref]

J. Mater. Process. Technol. (1)

A. Khan, K. Rahman, D. S. Kim, and K. H. Choi, “Direct printing of copper conductive micro-tracks by multi-nozzle electrohydrodynamic inkjet printing process,” J. Mater. Process. Technol. 212(3), 700–706 (2012).
[Crossref]

MRS Bull. (1)

C. B. Arnold, P. Serra, and A. Piqué, “Laser direct-write techniques for printing of complex materials,” MRS Bull. 32(01), 23–32 (2007).
[Crossref]

Opt. Lett. (1)

Proc. SPIE (2)

N. A. Charipar, K. M. Charipar, H. Kim, M. A. Kirleis, R. C. Y. Auyeung, A. T. Smith, S. A. Mathews, and A. Piqué, “Laser processing of 2D and 3D metamaterial structures,” Proc. SPIE 8607, 86070T (2013).
[Crossref]

A. Piqué, R. Auyeung, K. Metkus, H. Kim, S. Mathews, T. Bailey, X. Chen, and L. Young, “Laser decal transfer of electronic materials with thin film characteristics,” Proc. SPIE 6879, 687911 (2008).
[Crossref]

Other (2)

Texas Instruments data sheet TI DN 2509699 Rev B (March 2009).

R. Ulichney, Digital Halftoning (MIT, 1987).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic diagram of the laser transfer setup with a 532 nm laser pulse spatially modulated by a DMD.
Fig. 2
Fig. 2 Tracking of LDT process from initial DMD bitmap images of 4 different square sizes to their corresponding final transfer features. The top row shows (a) 125-px, (b) 51-px, (c) 23-px and (d) 8-px square bitmap images and the second row shows the corresponding measured beam profiles. (The inset in (d) is a magnified beam profile from the 8-px square pattern). The third row shows 3-D confocal microscopy images of the hole left in the ribbon after the transfer. Last row shows SEM images of the resulting transfer on silicon.
Fig. 3
Fig. 3 Tracking of LDT process from initial DMD bitmap images of 4 different rings to their corresponding final transfer features. The top row shows 169-px square bitmap images with (a) 125-px, (b) 51-px, (c) 23-px and (d) 8-px ‘hole’ and the second row shows the corresponding measured beam profiles. The third row shows 3-D confocal microscopy images of the mesa left in the ribbon after the transfer. Last row shows SEM images of the resulting transfer on silicon.
Fig. 4
Fig. 4 Tracking of LDT process from initial DMD bitmap images of “checkerboard” pattern to their corresponding final transfer features. The top row shows decreasing unit cell sizes of the 80-pixel square bitmap image loaded onto the DMD. The second row shows the measured beam profiles of the laser spot striking the ribbon. The third row shows 3-D confocal microscopy images of the hole left in the 1.5 µm-thick ribbon and the fourth row shows SEM images of the resulting transfer on silicon along with the laser transfer fluence. The last row shows higher resolution SEM images of the 2- and 1-pixel unit cell checkerboard pattern transfers.
Fig. 5
Fig. 5 Tracking of LDT process using edge-enhanced beams created with a) 80-pixel, b) 40-pixel and c) 20-pixel square ‘checkerboard’ bitmap images with a 5-10% border width as shown in the top row. The second row shows the measured beam profiles of the laser spot striking the ribbon. Confocal microscopy images of the hole left in the ribbon and the resulting fully-cured transfer on silicon are shown in the third and fourth row respectively. Laser transfer fluence thresholds for these edge-enhanced checkerboard patterns are a) 39, b) 57 and c) 96 mJ/cm2 respectively.
Fig. 6
Fig. 6 Laser transfer fluence threshold with laser spot size for checkerboard reference and checkerboard edge-enhanced beam profiles. The unit cell for the checkerboard bitmap pattern is 1-pixel square. Threshold fluences are measured for square laser transfers of silver nanopaste. The solid and dashed lines are visual guides only.

Metrics