Abstract

Utilizing low-cost, 2.2GHz modulation bandwidth, uncooled and standalone directly modulated VCSEL (DM-VCSEL)-based real-time dual-band optical OFDM (OOFDM) transmitters, aggregated 16.375Gb/s transmissions of OOFDM signals having bandwidths approximately 3.8 times higher than the VCSEL manufacturer-specified modulation bandwidths, are experimentally demonstrated, for the first time, over 200m OM2 MMF links based on intensity modulation and direct detection. The aggregated signal transmission capacities of the aforementioned links vary by just 8% for various OM2 MMFs ranging from 100m to 500m, and by just 10% over a 1GHz passband carrier frequency detuning range. Such dual-band OOFDM adaptability-induced excellent performance robustness and large passband frequency tunability can significantly relax the requirements on VCSEL modulation bandwidth for achieving specific transmission performances for cost-sensitive application scenarios such as data centers.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Robust real-time 15.125Gb/s adaptive optical OFDM transmissions over 100m OM2 MMFs utilizing directly modulated VCSELs subject to optical injection locking

H. B. Zhang, X. W. Yi, Q. W. Zhang, Y. Ling, M. L. Deng, E. Hugues-Salas, R. P. Giddings, Y. Hong, M. Wang, and J. M. Tang
Opt. Express 22(1) 1163-1171 (2014)

Adaptability-Enabled Record-High and Robust Capacity-Versus-Reach Performance of Real-Time Dual-Band Optical OFDM Signals Over Various OM1/OM2 MMF Systems [Invited]

Emilio Hugues-Salas, Qianwu Zhang, Roger Philip Giddings, Min Wang, and Jianming Tang
J. Opt. Commun. Netw. 5(10) A1-A11 (2013)

References

  • View by:
  • |
  • |
  • |

  1. L. Paraschis, “Advancements in data-center networking and the importance of optical interconnections,” in European Conference and Exhibition on Optical Communication (ECOC), (Institution of Engineering and Technology, London, 2013), paper Th.2.F.3.
    [Crossref]
  2. D. H. Sim, Y. Takushima, and Y. C. Chung, “High-speed multimode fiber transmission by using mode-field matched center-launching technique,” J. Lightwave Technol. 27(8), 1018–1026 (2009).
    [Crossref]
  3. R. E. Freund, C. A. Bunge, N. N. Ledentsov, D. Molin, and C. Caspar, “High-speed transmission in multimode fibers,” J. Lightwave Technol. 28(4), 569–586 (2010).
    [Crossref]
  4. A. Amphawan, “Holographic mode-selective launch for bandwidth enhancement in multimode fiber,” Opt. Express 19(10), 9056–9065 (2011).
    [Crossref] [PubMed]
  5. A. Okamoto, K. Aoki, Y. Wakayama, D. Soma, and T. Oda, “Multi-excitation of spatial modes using single spatial light modulator for mode division multiplexing,” in Optical Fiber Communication /National Fiber Optic Engineers Conference (OFC/NFOEC), (Optical Society of America, Los Angeles, California, 2012), paper JW2A.38.
  6. C. P. Yu, J. H. Liou, Y. J. Chiu, and H. Taga, “Mode multiplexer for multimode transmission in multimode fibers,” Opt. Express 19(13), 12673–12678 (2011).
    [Crossref] [PubMed]
  7. C.-H. Hang, L. Chrostowski, and C. J. Chang-Hasnain, “Injection locking of VCSELs,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1386–1393 (2003).
    [Crossref]
  8. L. Chrostowski, B. Faraji, W. Hofmann, M.-C. Amann, S. Wieczorek, and W. W. Chow, “40 GHz bandwidth and 64 GHz resonance frequency in injection-locked 1.55 μm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1200–1208 (2007).
    [Crossref]
  9. C. Kachris and I. Tomkos, “Energy-efficient bandwidth allocation in optical OFDM-based data center networks,” in Optical Fiber Communication /National Fiber Optic Engineers Conference (OFC/NFOEC), (Optical Society of America, Los Angeles, California, 2012), paper JTh2A.34.
  10. Y. Benlachtar, R. Bouziane, R. I. Killey, C. R. Berger, P. Milder, R. Koutsoyannis, J. C. Hoe, M. Püschel, and M. Glick, “ Optical OFDM for the data center,” in International Conference on Transparent Optical Networks (ICTON), (Munich, Germany, 2010), paper We.A4.3.
  11. E. Hugues-Salas, X. Q. Jin, R. P. Giddings, Y. Hong, S. Mansoor, A. Villafranca, and J. M. Tang, “Directly modulated VCSEL-based real-time 11.25-Gb/s optical OFDM transmission over 2000-m legacy MMFs,” IEEE Photon. J. 4(1), 143–154 (2012).
    [Crossref]
  12. E. Hugues-Salas, N. Courjault, X. Q. Jin, R. P. Giddings, C. Aupetit-Berthelemot, and J. M. Tang, “Real-time 11.25Gb/s optical OFDM transmission over 2000m legacy MMFs utilizing directly modulated VCSELs,” in Optical Fiber Communication /National Fiber Optic Engineers Conference (OFC/NFOEC), (Optical Society of America, Los Angeles, California, 2012), paper OW3B.1.
  13. H. B. Zhang, X. W. Yi, Q. W. Zhang, Y. Ling, M. L. Deng, E. Hugues-Salas, R. P. Giddings, Y. Hong, M. Wang, and J. M. Tang, “Robust real-time 15.125 Gb/s adaptive optical OFDM transmissions over 100 m OM2 MMFs utilizing directly modulated VCSELs subject to optical injection locking,” Opt. Express 22(1), 1163–1171 (2014).
    [Crossref] [PubMed]
  14. X. Jin, J. Wei, R. Giddings, T. Quinlan, S. Walker, and J. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photon. J. 3(3), 500–511 (2011).
    [Crossref]
  15. R. P. Giddings, E. Hugues-Salas, and J. M. Tang, “Experimental demonstration of record high 19.125 Gb/s real-time end-to-end dual-band optical OFDM transmission over 25 km SMF in a simple EML-based IMDD system,” Opt. Express 20(18), 20666–20679 (2012).
    [Crossref] [PubMed]
  16. Q. W. Zhang, E. Hugues-Salas, Y. Ling, H. B. Zhang, R. P. Giddings, J. J. Zhang, M. Wang, and J. M. Tang, “Record-high and robust 17.125 Gb/s gross-rate over 25 km SSMF transmissions of real-time dual-band optical OFDM signals directly modulated by 1 GHz RSOAs,” Opt. Express 22(6), 6339–6348 (2014).
    [Crossref] [PubMed]
  17. M. L. Deng, Y. Ling, X. F. Chen, R. P. Giddings, Y. H. Hong, X. W. Yi, K. Qiu, and J. M. Tang, “Self-seeding-based 10Gb/s over 25km optical OFDM transmissions utilizing face-to-face dual-RSOAs at gain saturation,” Opt. Express 22(10), 11954–11965 (2014).
    [Crossref] [PubMed]
  18. E. Hugues-Salas, R. P. Giddings, X. Q. Jin, Y. Hong, T. Quinlan, S. Walker, and J. M. Tang, “REAM intensity modulator-enabled 10Gb/s colorless upstream transmission of real-time optical OFDM signals in a single-fiber-based bidirectional PON architecture,” Opt. Express 20(19), 21089–21100 (2012).
    [Crossref] [PubMed]

2014 (3)

2012 (3)

2011 (3)

X. Jin, J. Wei, R. Giddings, T. Quinlan, S. Walker, and J. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photon. J. 3(3), 500–511 (2011).
[Crossref]

A. Amphawan, “Holographic mode-selective launch for bandwidth enhancement in multimode fiber,” Opt. Express 19(10), 9056–9065 (2011).
[Crossref] [PubMed]

C. P. Yu, J. H. Liou, Y. J. Chiu, and H. Taga, “Mode multiplexer for multimode transmission in multimode fibers,” Opt. Express 19(13), 12673–12678 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (1)

2007 (1)

L. Chrostowski, B. Faraji, W. Hofmann, M.-C. Amann, S. Wieczorek, and W. W. Chow, “40 GHz bandwidth and 64 GHz resonance frequency in injection-locked 1.55 μm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1200–1208 (2007).
[Crossref]

2003 (1)

C.-H. Hang, L. Chrostowski, and C. J. Chang-Hasnain, “Injection locking of VCSELs,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1386–1393 (2003).
[Crossref]

Amann, M.-C.

L. Chrostowski, B. Faraji, W. Hofmann, M.-C. Amann, S. Wieczorek, and W. W. Chow, “40 GHz bandwidth and 64 GHz resonance frequency in injection-locked 1.55 μm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1200–1208 (2007).
[Crossref]

Amphawan, A.

Bunge, C. A.

Caspar, C.

Chang-Hasnain, C. J.

C.-H. Hang, L. Chrostowski, and C. J. Chang-Hasnain, “Injection locking of VCSELs,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1386–1393 (2003).
[Crossref]

Chen, X. F.

Chiu, Y. J.

Chow, W. W.

L. Chrostowski, B. Faraji, W. Hofmann, M.-C. Amann, S. Wieczorek, and W. W. Chow, “40 GHz bandwidth and 64 GHz resonance frequency in injection-locked 1.55 μm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1200–1208 (2007).
[Crossref]

Chrostowski, L.

L. Chrostowski, B. Faraji, W. Hofmann, M.-C. Amann, S. Wieczorek, and W. W. Chow, “40 GHz bandwidth and 64 GHz resonance frequency in injection-locked 1.55 μm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1200–1208 (2007).
[Crossref]

C.-H. Hang, L. Chrostowski, and C. J. Chang-Hasnain, “Injection locking of VCSELs,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1386–1393 (2003).
[Crossref]

Chung, Y. C.

Deng, M. L.

Faraji, B.

L. Chrostowski, B. Faraji, W. Hofmann, M.-C. Amann, S. Wieczorek, and W. W. Chow, “40 GHz bandwidth and 64 GHz resonance frequency in injection-locked 1.55 μm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1200–1208 (2007).
[Crossref]

Freund, R. E.

Giddings, R.

X. Jin, J. Wei, R. Giddings, T. Quinlan, S. Walker, and J. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photon. J. 3(3), 500–511 (2011).
[Crossref]

Giddings, R. P.

H. B. Zhang, X. W. Yi, Q. W. Zhang, Y. Ling, M. L. Deng, E. Hugues-Salas, R. P. Giddings, Y. Hong, M. Wang, and J. M. Tang, “Robust real-time 15.125 Gb/s adaptive optical OFDM transmissions over 100 m OM2 MMFs utilizing directly modulated VCSELs subject to optical injection locking,” Opt. Express 22(1), 1163–1171 (2014).
[Crossref] [PubMed]

Q. W. Zhang, E. Hugues-Salas, Y. Ling, H. B. Zhang, R. P. Giddings, J. J. Zhang, M. Wang, and J. M. Tang, “Record-high and robust 17.125 Gb/s gross-rate over 25 km SSMF transmissions of real-time dual-band optical OFDM signals directly modulated by 1 GHz RSOAs,” Opt. Express 22(6), 6339–6348 (2014).
[Crossref] [PubMed]

M. L. Deng, Y. Ling, X. F. Chen, R. P. Giddings, Y. H. Hong, X. W. Yi, K. Qiu, and J. M. Tang, “Self-seeding-based 10Gb/s over 25km optical OFDM transmissions utilizing face-to-face dual-RSOAs at gain saturation,” Opt. Express 22(10), 11954–11965 (2014).
[Crossref] [PubMed]

E. Hugues-Salas, R. P. Giddings, X. Q. Jin, Y. Hong, T. Quinlan, S. Walker, and J. M. Tang, “REAM intensity modulator-enabled 10Gb/s colorless upstream transmission of real-time optical OFDM signals in a single-fiber-based bidirectional PON architecture,” Opt. Express 20(19), 21089–21100 (2012).
[Crossref] [PubMed]

R. P. Giddings, E. Hugues-Salas, and J. M. Tang, “Experimental demonstration of record high 19.125 Gb/s real-time end-to-end dual-band optical OFDM transmission over 25 km SMF in a simple EML-based IMDD system,” Opt. Express 20(18), 20666–20679 (2012).
[Crossref] [PubMed]

E. Hugues-Salas, X. Q. Jin, R. P. Giddings, Y. Hong, S. Mansoor, A. Villafranca, and J. M. Tang, “Directly modulated VCSEL-based real-time 11.25-Gb/s optical OFDM transmission over 2000-m legacy MMFs,” IEEE Photon. J. 4(1), 143–154 (2012).
[Crossref]

Hang, C.-H.

C.-H. Hang, L. Chrostowski, and C. J. Chang-Hasnain, “Injection locking of VCSELs,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1386–1393 (2003).
[Crossref]

Hofmann, W.

L. Chrostowski, B. Faraji, W. Hofmann, M.-C. Amann, S. Wieczorek, and W. W. Chow, “40 GHz bandwidth and 64 GHz resonance frequency in injection-locked 1.55 μm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1200–1208 (2007).
[Crossref]

Hong, Y.

Hong, Y. H.

Hugues-Salas, E.

Q. W. Zhang, E. Hugues-Salas, Y. Ling, H. B. Zhang, R. P. Giddings, J. J. Zhang, M. Wang, and J. M. Tang, “Record-high and robust 17.125 Gb/s gross-rate over 25 km SSMF transmissions of real-time dual-band optical OFDM signals directly modulated by 1 GHz RSOAs,” Opt. Express 22(6), 6339–6348 (2014).
[Crossref] [PubMed]

H. B. Zhang, X. W. Yi, Q. W. Zhang, Y. Ling, M. L. Deng, E. Hugues-Salas, R. P. Giddings, Y. Hong, M. Wang, and J. M. Tang, “Robust real-time 15.125 Gb/s adaptive optical OFDM transmissions over 100 m OM2 MMFs utilizing directly modulated VCSELs subject to optical injection locking,” Opt. Express 22(1), 1163–1171 (2014).
[Crossref] [PubMed]

E. Hugues-Salas, X. Q. Jin, R. P. Giddings, Y. Hong, S. Mansoor, A. Villafranca, and J. M. Tang, “Directly modulated VCSEL-based real-time 11.25-Gb/s optical OFDM transmission over 2000-m legacy MMFs,” IEEE Photon. J. 4(1), 143–154 (2012).
[Crossref]

R. P. Giddings, E. Hugues-Salas, and J. M. Tang, “Experimental demonstration of record high 19.125 Gb/s real-time end-to-end dual-band optical OFDM transmission over 25 km SMF in a simple EML-based IMDD system,” Opt. Express 20(18), 20666–20679 (2012).
[Crossref] [PubMed]

E. Hugues-Salas, R. P. Giddings, X. Q. Jin, Y. Hong, T. Quinlan, S. Walker, and J. M. Tang, “REAM intensity modulator-enabled 10Gb/s colorless upstream transmission of real-time optical OFDM signals in a single-fiber-based bidirectional PON architecture,” Opt. Express 20(19), 21089–21100 (2012).
[Crossref] [PubMed]

Jin, X.

X. Jin, J. Wei, R. Giddings, T. Quinlan, S. Walker, and J. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photon. J. 3(3), 500–511 (2011).
[Crossref]

Jin, X. Q.

E. Hugues-Salas, R. P. Giddings, X. Q. Jin, Y. Hong, T. Quinlan, S. Walker, and J. M. Tang, “REAM intensity modulator-enabled 10Gb/s colorless upstream transmission of real-time optical OFDM signals in a single-fiber-based bidirectional PON architecture,” Opt. Express 20(19), 21089–21100 (2012).
[Crossref] [PubMed]

E. Hugues-Salas, X. Q. Jin, R. P. Giddings, Y. Hong, S. Mansoor, A. Villafranca, and J. M. Tang, “Directly modulated VCSEL-based real-time 11.25-Gb/s optical OFDM transmission over 2000-m legacy MMFs,” IEEE Photon. J. 4(1), 143–154 (2012).
[Crossref]

Ledentsov, N. N.

Ling, Y.

Liou, J. H.

Mansoor, S.

E. Hugues-Salas, X. Q. Jin, R. P. Giddings, Y. Hong, S. Mansoor, A. Villafranca, and J. M. Tang, “Directly modulated VCSEL-based real-time 11.25-Gb/s optical OFDM transmission over 2000-m legacy MMFs,” IEEE Photon. J. 4(1), 143–154 (2012).
[Crossref]

Molin, D.

Qiu, K.

Quinlan, T.

E. Hugues-Salas, R. P. Giddings, X. Q. Jin, Y. Hong, T. Quinlan, S. Walker, and J. M. Tang, “REAM intensity modulator-enabled 10Gb/s colorless upstream transmission of real-time optical OFDM signals in a single-fiber-based bidirectional PON architecture,” Opt. Express 20(19), 21089–21100 (2012).
[Crossref] [PubMed]

X. Jin, J. Wei, R. Giddings, T. Quinlan, S. Walker, and J. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photon. J. 3(3), 500–511 (2011).
[Crossref]

Sim, D. H.

Taga, H.

Takushima, Y.

Tang, J.

X. Jin, J. Wei, R. Giddings, T. Quinlan, S. Walker, and J. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photon. J. 3(3), 500–511 (2011).
[Crossref]

Tang, J. M.

M. L. Deng, Y. Ling, X. F. Chen, R. P. Giddings, Y. H. Hong, X. W. Yi, K. Qiu, and J. M. Tang, “Self-seeding-based 10Gb/s over 25km optical OFDM transmissions utilizing face-to-face dual-RSOAs at gain saturation,” Opt. Express 22(10), 11954–11965 (2014).
[Crossref] [PubMed]

Q. W. Zhang, E. Hugues-Salas, Y. Ling, H. B. Zhang, R. P. Giddings, J. J. Zhang, M. Wang, and J. M. Tang, “Record-high and robust 17.125 Gb/s gross-rate over 25 km SSMF transmissions of real-time dual-band optical OFDM signals directly modulated by 1 GHz RSOAs,” Opt. Express 22(6), 6339–6348 (2014).
[Crossref] [PubMed]

H. B. Zhang, X. W. Yi, Q. W. Zhang, Y. Ling, M. L. Deng, E. Hugues-Salas, R. P. Giddings, Y. Hong, M. Wang, and J. M. Tang, “Robust real-time 15.125 Gb/s adaptive optical OFDM transmissions over 100 m OM2 MMFs utilizing directly modulated VCSELs subject to optical injection locking,” Opt. Express 22(1), 1163–1171 (2014).
[Crossref] [PubMed]

R. P. Giddings, E. Hugues-Salas, and J. M. Tang, “Experimental demonstration of record high 19.125 Gb/s real-time end-to-end dual-band optical OFDM transmission over 25 km SMF in a simple EML-based IMDD system,” Opt. Express 20(18), 20666–20679 (2012).
[Crossref] [PubMed]

E. Hugues-Salas, X. Q. Jin, R. P. Giddings, Y. Hong, S. Mansoor, A. Villafranca, and J. M. Tang, “Directly modulated VCSEL-based real-time 11.25-Gb/s optical OFDM transmission over 2000-m legacy MMFs,” IEEE Photon. J. 4(1), 143–154 (2012).
[Crossref]

E. Hugues-Salas, R. P. Giddings, X. Q. Jin, Y. Hong, T. Quinlan, S. Walker, and J. M. Tang, “REAM intensity modulator-enabled 10Gb/s colorless upstream transmission of real-time optical OFDM signals in a single-fiber-based bidirectional PON architecture,” Opt. Express 20(19), 21089–21100 (2012).
[Crossref] [PubMed]

Villafranca, A.

E. Hugues-Salas, X. Q. Jin, R. P. Giddings, Y. Hong, S. Mansoor, A. Villafranca, and J. M. Tang, “Directly modulated VCSEL-based real-time 11.25-Gb/s optical OFDM transmission over 2000-m legacy MMFs,” IEEE Photon. J. 4(1), 143–154 (2012).
[Crossref]

Walker, S.

E. Hugues-Salas, R. P. Giddings, X. Q. Jin, Y. Hong, T. Quinlan, S. Walker, and J. M. Tang, “REAM intensity modulator-enabled 10Gb/s colorless upstream transmission of real-time optical OFDM signals in a single-fiber-based bidirectional PON architecture,” Opt. Express 20(19), 21089–21100 (2012).
[Crossref] [PubMed]

X. Jin, J. Wei, R. Giddings, T. Quinlan, S. Walker, and J. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photon. J. 3(3), 500–511 (2011).
[Crossref]

Wang, M.

Wei, J.

X. Jin, J. Wei, R. Giddings, T. Quinlan, S. Walker, and J. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photon. J. 3(3), 500–511 (2011).
[Crossref]

Wieczorek, S.

L. Chrostowski, B. Faraji, W. Hofmann, M.-C. Amann, S. Wieczorek, and W. W. Chow, “40 GHz bandwidth and 64 GHz resonance frequency in injection-locked 1.55 μm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1200–1208 (2007).
[Crossref]

Yi, X. W.

Yu, C. P.

Zhang, H. B.

Zhang, J. J.

Zhang, Q. W.

IEEE J. Sel. Top. Quantum Electron. (2)

C.-H. Hang, L. Chrostowski, and C. J. Chang-Hasnain, “Injection locking of VCSELs,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1386–1393 (2003).
[Crossref]

L. Chrostowski, B. Faraji, W. Hofmann, M.-C. Amann, S. Wieczorek, and W. W. Chow, “40 GHz bandwidth and 64 GHz resonance frequency in injection-locked 1.55 μm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1200–1208 (2007).
[Crossref]

IEEE Photon. J. (2)

E. Hugues-Salas, X. Q. Jin, R. P. Giddings, Y. Hong, S. Mansoor, A. Villafranca, and J. M. Tang, “Directly modulated VCSEL-based real-time 11.25-Gb/s optical OFDM transmission over 2000-m legacy MMFs,” IEEE Photon. J. 4(1), 143–154 (2012).
[Crossref]

X. Jin, J. Wei, R. Giddings, T. Quinlan, S. Walker, and J. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photon. J. 3(3), 500–511 (2011).
[Crossref]

J. Lightwave Technol. (2)

Opt. Express (7)

A. Amphawan, “Holographic mode-selective launch for bandwidth enhancement in multimode fiber,” Opt. Express 19(10), 9056–9065 (2011).
[Crossref] [PubMed]

R. P. Giddings, E. Hugues-Salas, and J. M. Tang, “Experimental demonstration of record high 19.125 Gb/s real-time end-to-end dual-band optical OFDM transmission over 25 km SMF in a simple EML-based IMDD system,” Opt. Express 20(18), 20666–20679 (2012).
[Crossref] [PubMed]

Q. W. Zhang, E. Hugues-Salas, Y. Ling, H. B. Zhang, R. P. Giddings, J. J. Zhang, M. Wang, and J. M. Tang, “Record-high and robust 17.125 Gb/s gross-rate over 25 km SSMF transmissions of real-time dual-band optical OFDM signals directly modulated by 1 GHz RSOAs,” Opt. Express 22(6), 6339–6348 (2014).
[Crossref] [PubMed]

M. L. Deng, Y. Ling, X. F. Chen, R. P. Giddings, Y. H. Hong, X. W. Yi, K. Qiu, and J. M. Tang, “Self-seeding-based 10Gb/s over 25km optical OFDM transmissions utilizing face-to-face dual-RSOAs at gain saturation,” Opt. Express 22(10), 11954–11965 (2014).
[Crossref] [PubMed]

E. Hugues-Salas, R. P. Giddings, X. Q. Jin, Y. Hong, T. Quinlan, S. Walker, and J. M. Tang, “REAM intensity modulator-enabled 10Gb/s colorless upstream transmission of real-time optical OFDM signals in a single-fiber-based bidirectional PON architecture,” Opt. Express 20(19), 21089–21100 (2012).
[Crossref] [PubMed]

C. P. Yu, J. H. Liou, Y. J. Chiu, and H. Taga, “Mode multiplexer for multimode transmission in multimode fibers,” Opt. Express 19(13), 12673–12678 (2011).
[Crossref] [PubMed]

H. B. Zhang, X. W. Yi, Q. W. Zhang, Y. Ling, M. L. Deng, E. Hugues-Salas, R. P. Giddings, Y. Hong, M. Wang, and J. M. Tang, “Robust real-time 15.125 Gb/s adaptive optical OFDM transmissions over 100 m OM2 MMFs utilizing directly modulated VCSELs subject to optical injection locking,” Opt. Express 22(1), 1163–1171 (2014).
[Crossref] [PubMed]

Other (5)

L. Paraschis, “Advancements in data-center networking and the importance of optical interconnections,” in European Conference and Exhibition on Optical Communication (ECOC), (Institution of Engineering and Technology, London, 2013), paper Th.2.F.3.
[Crossref]

E. Hugues-Salas, N. Courjault, X. Q. Jin, R. P. Giddings, C. Aupetit-Berthelemot, and J. M. Tang, “Real-time 11.25Gb/s optical OFDM transmission over 2000m legacy MMFs utilizing directly modulated VCSELs,” in Optical Fiber Communication /National Fiber Optic Engineers Conference (OFC/NFOEC), (Optical Society of America, Los Angeles, California, 2012), paper OW3B.1.

A. Okamoto, K. Aoki, Y. Wakayama, D. Soma, and T. Oda, “Multi-excitation of spatial modes using single spatial light modulator for mode division multiplexing,” in Optical Fiber Communication /National Fiber Optic Engineers Conference (OFC/NFOEC), (Optical Society of America, Los Angeles, California, 2012), paper JW2A.38.

C. Kachris and I. Tomkos, “Energy-efficient bandwidth allocation in optical OFDM-based data center networks,” in Optical Fiber Communication /National Fiber Optic Engineers Conference (OFC/NFOEC), (Optical Society of America, Los Angeles, California, 2012), paper JTh2A.34.

Y. Benlachtar, R. Bouziane, R. I. Killey, C. R. Berger, P. Milder, R. Koutsoyannis, J. C. Hoe, M. Püschel, and M. Glick, “ Optical OFDM for the data center,” in International Conference on Transparent Optical Networks (ICTON), (Munich, Germany, 2010), paper We.A4.3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Experimental system setup of DM-VCSEL-based dual-band OOFDM OM2 MMF link utilizing real-time OOFDM transmitters. VEA: variable electrical attenuator; AMP: RF amplifier; BPF1: band pass filter (5.6-7.0GHz); BPF2: band pass filter (3.9-9.8GHz); LPF: low pass filter; VOA: variable optical attenuator; LO: local oscillator; MCPC: mode conditioning patch-cord; PIN + TIA: photodetector with integrated transimpedance amplifier.
Fig. 2
Fig. 2 (a) Adaptively loaded and received subcarrier powers, and normalized overall system frequency response for each sub-band; (b) Adaptively loaded optimum subcarrier bit profiles for two sub-bands offering aggregated 16.375Gb/s OOFDM transmissions over 200m OM2 MMFs.
Fig. 3
Fig. 3 Measured spectra of 16.375Gb/s dual-band OOFDM signals. (a) Output signal of the RF multiplexer in the transmitter; (b) received signal at the output of the PIN for the optical BTB case (ROP = −3dBm); (c) received signal at the output of the PIN after the 200m OM2 MMF transmission (ROP = −3dBm).
Fig. 4
Fig. 4 (a) Baseband and passband BER performances of 16.375Gb/s dual-band OOFDM signals for both the optical back-to-back and 200m OM2 MMF transmission link; (b) subcarrier BER distribution across all subcarriers for the baseband and passband OFDM signals after transmission through the 200m OM2 MMF link (ROP = −3dBm). BB: baseband; PB: passband; OBTB: optical back-to-back.
Fig. 5
Fig. 5 Representative received subcarrier constellations before/after channel equalization for the baseband signal.
Fig. 6
Fig. 6 Representative received subcarrier constellations before/after channel equalization for the passband signal.
Fig. 7
Fig. 7 BER performance of the baseband (passband) with passband (baseband) being switched off (stayed on) after 16.375Gb/s over 200 OM2 MMF dual-band OOFDM transmissions.
Fig. 8
Fig. 8 Measured robustness of the aggregated signal transmission capacity. (a) Aggregated signal transmission capacities versus passband frequency; (b) aggregated signal transmission capacities versus MMF transmission distance.

Tables (2)

Tables Icon

Table 1 OOFDM Transceiver and Link Parameters

Tables Icon

Table 2 Dual-band OFDM Signal Power Levels

Metrics