Abstract

Increasing our knowledge on dissolved organic carbon (DOC) spatio-temporal distribution in the coastal ocean represents a crucial challenge for better understanding the role of these ecosystems in the global oceanic carbon cycle. The assessment of DOC concentration from the absorption properties of the colored part of the dissolved organic matter (acdom) was investigated from an extensive data set covering a variety of coastal environments. Our results confirmed that variation in the acdom(412) to DOC ratio (a*cdom(412)) can be depicted from the CDOM spectral slope in the UV domain (S275-295). They also evidenced that regional first order variation in both a*cdom(412) and S275-295 are highly correlated to variation in acdom(412). From these observations, generalized relationships for estimating a*cdom(412) from S275-295 or acdom(412) were parameterized from our development sites (N = 158; English Channel, French Guiana, Hai Phong Bay) and tested against an independent data set covering others coastal regions (N = 223; French Polynesia, Rhone River estuary, Gulf of Maine, Chesapeake Bay, Southern Middle Atlantic Bight) demonstrating the possibility to derive DOC estimates from in situ CDOM optical properties with an average accuracy of ~16% over very contrasted coastal environments (with DOC ranging from 50 to 250 µmol.L−1). The applicability of these generalized approaches was evaluated in the context of ocean color remote sensing observation emphasizing the limits of S275-295-based formulations and the potential for acdom-based approaches to represent a compelling alternative for assessing synoptic DOC distribution.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Using CDOM optical properties for estimating DOC concentrations and pCO2 in the Lower Amazon River

Aline de Matos Valerio, Milton Kampel, Vincent Vantrepotte, Nicholas D. Ward, Henrique Oliveira Sawakuchi, Diani Fernanda Da Silva Less, Vania Neu, Alan Cunha, and Jeffrey Richey
Opt. Express 26(14) A657-A677 (2018)

Assessment of the colored dissolved organic matter in coastal waters from ocean color remote sensing.

Hubert Loisel, Vincent Vantrepotte, David Dessailly, and Xavier Mériaux
Opt. Express 22(11) 13109-13124 (2014)

Bio-optical properties and ocean color algorithms for coastal waters influenced by the Mississippi River during a cold front

Eurico J. D'Sa, Richard L. Miller, and Carlos Del Castillo
Appl. Opt. 45(28) 7410-7428 (2006)

References

  • View by:
  • |
  • |
  • |

  1. N. R. Bates and D. A. Hansell, “A high resolution study of surface layer hydrographic and biogeochemical properties between Cheasapeake Bay and Bermuda,” Mar. Chem. 67(1-2), 1–16 (1999).
    [Crossref]
  2. J. I. Hedges, “Why dissolved organic matter,” in Biogeochemistry of Marine Dissolved Organic Matter, D. A. Hansell and C. A. Carlson, ed. (Academic, 2002).
  3. W. Ludwig, J. L. Probst, and S. Kempe, “Predicting the oceanic input of organic carbon by continentalerosion,” Global Biogeochem. Cycles 10(1), 23–41 (1996).
    [Crossref]
  4. C. T. A. Chen and A. V. Borges, “Reconciling opposing views on carbon cycling in the coastal ocean: Continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2,” Deep Sea Res. Part II Top. Stud. Oceanogr. 56(8-10), 578–590 (2009).
    [Crossref]
  5. J. P. Gattuso, M. Frankignoulle, and R. Wollast, “Carbon and carbonate metabolism in coastal aquatic ecosystems,” Annu. Rev. Ecol. Syst. 29(1), 405–434 (1998).
    [Crossref]
  6. C. T. A. Chen, “Exchanges of carbon in the coastal seas,” in The Global Carbon Cycle: Integrating Humans, Climate and the Natural World, C. B. Field and M. R. Raupach, eds. (Island Press, 2004).
  7. V. Borges, B. Delille, and M. Frankignoulle, “Budgeting sinks and sources of CO2 in the coastal ocean: diversity of ecosystems counts,” Geophys. Res. Lett. 30, 1558 (2005).
    [Crossref]
  8. G. M. Ferrari, “The relationship between chromophoric dissolved organic matter and dissolved organic carbon in the European Atlantic coastal area and in the West Mediterranean Sea (Gulf of lions),” Mar. Chem. 70(4), 339–357 (2000).
    [Crossref]
  9. R. Del Vecchio and N. V. Blough, “Spatial and seasonal distribution of chromophoric dissolved organic matter and dissolved organic carbon in the Middle Atlantic Bight,” Mar. Chem. 89(1-4), 169–187 (2004).
    [Crossref]
  10. N. V. Blough and R. Del Vecchio, “Distribution and dynamics of chromophoric dissolved organic matter (CDOM) in the coastal environment,” in Biogeochemistry of marine dissolved organic matter, D. A. Hansell and C. A. Carlson, ed. (Academic, 2002).
  11. C. Guéguen, L. Guo, and N. Tanaka, “Distribution and characteristics of colored dissolved organic matter in the Western Artic Ocean,” Cont. Shelf Res. 25(10), 1195–1207 (2005).
    [Crossref]
  12. C. E. Del Castillo and R. L. Miller, “On the use of ocean remote sensing to measure the transport of dissolved organic carbon by the Mississippi River Plume,” Remote Sens. Environ. 112(3), 836–844 (2008).
    [Crossref]
  13. A. Mannino, M. E. Russ, and S. B. Hooker, “Algorithm development and validation for satellite-derived distribution of DOC and CDOM in the U.S Middle Atlantic Bight,” J. Geophys. Res. 113(C7), 07051 (2008).
    [Crossref]
  14. C. G. Fichot and R. Benner, “A novel method to estimate DOC concentrations from CDOM absorption coefficients in coastal waters,” Geophys. Res. Lett. 38(3), L03610 (2011).
    [Crossref]
  15. C. G. Fichot and R. Benner, “The spectral slope coefficient of chromophoric dissolved organic matter (S275-295) as a tracer of terrigenous dissolved organic carbon in river-influenced ocean margins,” Limnol. Oceanogr. 57(5), 1453–1466 (2012).
    [Crossref]
  16. R. Lopez, C. E. Del Castillo, R. L. Miller, J. Slisbury, and D. Wisser, “Examining organic carbon transport by the Orinoco River using SeaWiFS imagery,” J. Geophys. Res. 117(G3), G03022 (2012).
    [Crossref]
  17. L. Yang, H. Hong, C. T. A. Chen, W. Guo, and T. H. Huang, “Chromophoric dissolved organic matter in the estuaries of populated and mountainous Taiwan,” Mar. Chem. 157, 12–23 (2013).
    [Crossref]
  18. E. Rochelle-Newall, F. D. Hulot, J. L. Janeau, and A. Merroune, “CDOM fluorescence as a proxy of DOC concentration in natural waters: a comparison of four contrasting tropical systems,” Environ. Monit. Assess. 186(1), 589–596 (2014).
    [Crossref] [PubMed]
  19. J. R. Helms, A. Stubbins, J. D. Ritchie, E. C. Minor, D. J. Kieber, and K. Mopper, “Absorption spectral slopes and slope ratios as indicator of molecular weight, source, and photobleaching of chromophoric dissolved organic matter,” Limnol. Oceanogr. 53(3), 955–969 (2008).
    [Crossref]
  20. C. G. Fichot, K. Kaiser, S. B. Hooker, R. M. W. Amon, M. Babin, S. Bélanger, S. A. Walker, and R. Benner, “Pan-Arctic distributions of continental runoff in the Arctic Ocean,” Sci Rep 3, 1053 (2013).
    [Crossref] [PubMed]
  21. Dessier and J. Donguy, “The sea-surface salinity in the tropical Atlantic between 10°S and 30°N – seasonal and interannual variations (1977 – 1989),” Deep-Sea Res. 1, 81–100 (1994).
  22. V. Vantrepotte, E. Gensac, H. Loisel, A. Gardel, D. Dessailly, and X. Mériaux, “Satellite assessment of the coupling between in water suspended particulate matter and mud banks dynamics over the French Guiana coastal domain,” J. S. Am. Earth Sci. 44, 25–34 (2013).
    [Crossref]
  23. V. Vantrepotte, C. Brunet, X. Mériaux, E. Lécuyer, V. Vellucci, and R. Santer, “Bio-optical properties of coastal waters in the Eastern English Channel,” Estuar. Coast. Shelf Sci. 72(1-2), 201–212 (2007).
    [Crossref]
  24. B. G. Mitchell, M. Kahru, J. Wieland, and M. Stramska, “Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, J. L. Mueller, G. D. Fargion and C. R. McClain, eds. (NASA Goddard Space Flight Center, 2003).
  25. M. Babin, D. Stramski, G. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 3211 (2003).
    [Crossref]
  26. A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26(1), 43–53 (1981).
    [Crossref]
  27. B. Lubac and H. Loisel, “Variability and classification of remote sensing reflectance spectra in the eastern English Channel and southern North Sea,” Remote Sens. Environ. 110(1), 45–58 (2007).
    [Crossref]
  28. X. Pan, A. Mannino, M. E. Russ, and S. B. Hooker, “Remote sensing of the absorption coefficients and chlorophyll a concentration in the United States southern Middle Atlantic Bight from SeaWiFS and MODIS-Aqua,” J. Geophys. Res. 113(C11), C11022 (2008).
    [Crossref]
  29. J. Para, P. G. Coble, B. Charrière, M. Tedetti, C. Fontana, and R. Sempéré, “Fluorescence and absorption of chromophoric dissolved organic matter (CDOM) in coastal surface waters of the northwestern Mediterranean Sea, influence of the Rhône River,” Biogeosciences 7(12), 4083–4103 (2010).
    [Crossref]
  30. X. Mari, E. Rochelle-Newall, J. P. Torréton, O. Pringault, A. Jouon, and C. Migon, “Water residence time: A regulatory factor of the DOM to POM transfer efficiency,” Limnol. Oceanogr. 52(2), 808–819 (2007).
    [Crossref]
  31. H. Loisel, X. Mériaux, A. Poteau, L. F. Artigas, B. Lubac, A. Gardel, J. Caillaud, and S. Lesourd, “Analyse of the inherent optical properties of French Guiana coastal waters for remote sensing implications,” J. Coastal Res. SI 56, 1532–1536 (2009).
  32. V. Vantrepotte, H. Loisel, D. Dessailly, and X. Mériaux, “Optical classification of contrasted coastal waters,” Remote Sens. Environ. 123, 306–323 (2012).
    [Crossref]
  33. H. Xie, C. Aubry, S. Bélanger, and G. Song, “The dynamics of absorption coefficients of CDOM and particles in the St.Lawrence estuarine system: biogeochimical and physical implications,” Mar. Chem. 128-129(1), 44–56 (2012).
    [Crossref]
  34. L. Bracchini, A. Tognazzi, A. M. Dattilo, F. Decembrini, C. Rossi, and S. A. Loiselle, “Sensitivity analysis of CDOM spectral slope in artificial and natural samples: an application in the central eastern Mediterranean Basin,” Aquat. Sci. 72(4), 485–498 (2010).
    [Crossref]
  35. R. G. M. Spencer, P. J. Hermes, R. Ruf, A. Baker, R. Y. Dyda, A. Stubbins, and J. Six, “Temporal controls of dissolved organic matter and lignin biogeochemistry in a pristine tropical river, Democratic Republic of Congo,” J. Geophys. Res. 115(G3), G03013 (2010).
    [Crossref]
  36. M. A. Granskog, C. A. Stedmon, P. A. Dodd, R. M. W. Amon, A. K. Pavlov, L. de Steur, and E. Hansen, “Characteristics of colored dissolved organic matter (CDOM) in the Artic outflow in the Fram Strait: Assessing the changes and fate of terrigenous CDOM in the Arctic Ocean,” J. Geophys. Res. 117(C12), C12021 (2012).
    [Crossref]
  37. R. G. M. Spencer, K. D. Butler, and G. R. Aiken, “Dissolved organic carbon and chromophoric dissolved organic matter properties of river in the USA,” J. Geophys. Res. 117(G3), G03001 (2012).
    [Crossref]
  38. E. Ortega-Retuerta, T. K. Frazer, C. M. Duarte, S. Ruiz-Halpern, A. Tovar-Sánchez, J. M. Arrieta, and I. Reche, “Biogeneration of chromophoric dissolved organic matter by bacteria end krill in the Southern Ocean,” Limnol. Oceanogr. 54(6), 1941–1950 (2009).
    [Crossref]
  39. C. L. Osburn and C. A. Stedmon, “Linking the chemical and optical properties of dissolved organic matter in the Baltic-North Sea transition zone to differentiate three allochtonous inputs,” Mar. Chem. 126(1–4), 281–294 (2011).
    [Crossref]
  40. E. J. D’Sa, “Colored dissolved organic matter in coastal waters influenced by the Atchafalaya River, USA: Effects of an algal bloom,” J. Appl. Remote Sens. 2(1), 023502 (2008).
    [Crossref]
  41. A. Matsuoka, S. B. Hooker, A. Bricaud, B. Gentili, and M. Babin, “Estimating absorption coefficients of colored dissolved organic matter (CDOM) using a semi-analytical algorithm for southern Beaufort Sea waters: application to deriving concentrations of dissolved organic carbon from space,” Biogeosciences 10(2), 917–927 (2013).
    [Crossref]
  42. Q. Dong, S. Shang, and Z. Lee, “An algorithm to retrieve absorption coefficient of chromophoric dissolved organic matter from ocean color,” Remote Sens. Environ. 128, 259–267 (2013).
    [Crossref]
  43. H. Loisel, V. Vantrepotte, D. Dessailly, and X. Mériaux, “Assessment of the colored dissolved organic matter in coastal waters from ocean color remote sensing,” Opt. Express 22(11), 13109–13124 (2014).
    [Crossref] [PubMed]
  44. C. G. Fichot, S. E. Lohrenz, and R. Benner, “Pulsed, cross-shelf export of terrigenous dissolved organic carbon to the Gulf of Mexico,” J. Geophys. Res. 119(2), 1176–1194 (2014).
    [Crossref]
  45. C. Goyens, C. Jamet, and T. Schroeder, “Evaluation of four atmospheric correction algorithms for MODIS-AQUA image over contrasted coastal waters,” Remote Sens. Environ. 131, 63–75 (2013).
    [Crossref]

2014 (3)

E. Rochelle-Newall, F. D. Hulot, J. L. Janeau, and A. Merroune, “CDOM fluorescence as a proxy of DOC concentration in natural waters: a comparison of four contrasting tropical systems,” Environ. Monit. Assess. 186(1), 589–596 (2014).
[Crossref] [PubMed]

C. G. Fichot, S. E. Lohrenz, and R. Benner, “Pulsed, cross-shelf export of terrigenous dissolved organic carbon to the Gulf of Mexico,” J. Geophys. Res. 119(2), 1176–1194 (2014).
[Crossref]

H. Loisel, V. Vantrepotte, D. Dessailly, and X. Mériaux, “Assessment of the colored dissolved organic matter in coastal waters from ocean color remote sensing,” Opt. Express 22(11), 13109–13124 (2014).
[Crossref] [PubMed]

2013 (6)

C. Goyens, C. Jamet, and T. Schroeder, “Evaluation of four atmospheric correction algorithms for MODIS-AQUA image over contrasted coastal waters,” Remote Sens. Environ. 131, 63–75 (2013).
[Crossref]

A. Matsuoka, S. B. Hooker, A. Bricaud, B. Gentili, and M. Babin, “Estimating absorption coefficients of colored dissolved organic matter (CDOM) using a semi-analytical algorithm for southern Beaufort Sea waters: application to deriving concentrations of dissolved organic carbon from space,” Biogeosciences 10(2), 917–927 (2013).
[Crossref]

Q. Dong, S. Shang, and Z. Lee, “An algorithm to retrieve absorption coefficient of chromophoric dissolved organic matter from ocean color,” Remote Sens. Environ. 128, 259–267 (2013).
[Crossref]

L. Yang, H. Hong, C. T. A. Chen, W. Guo, and T. H. Huang, “Chromophoric dissolved organic matter in the estuaries of populated and mountainous Taiwan,” Mar. Chem. 157, 12–23 (2013).
[Crossref]

V. Vantrepotte, E. Gensac, H. Loisel, A. Gardel, D. Dessailly, and X. Mériaux, “Satellite assessment of the coupling between in water suspended particulate matter and mud banks dynamics over the French Guiana coastal domain,” J. S. Am. Earth Sci. 44, 25–34 (2013).
[Crossref]

C. G. Fichot, K. Kaiser, S. B. Hooker, R. M. W. Amon, M. Babin, S. Bélanger, S. A. Walker, and R. Benner, “Pan-Arctic distributions of continental runoff in the Arctic Ocean,” Sci Rep 3, 1053 (2013).
[Crossref] [PubMed]

2012 (6)

V. Vantrepotte, H. Loisel, D. Dessailly, and X. Mériaux, “Optical classification of contrasted coastal waters,” Remote Sens. Environ. 123, 306–323 (2012).
[Crossref]

H. Xie, C. Aubry, S. Bélanger, and G. Song, “The dynamics of absorption coefficients of CDOM and particles in the St.Lawrence estuarine system: biogeochimical and physical implications,” Mar. Chem. 128-129(1), 44–56 (2012).
[Crossref]

M. A. Granskog, C. A. Stedmon, P. A. Dodd, R. M. W. Amon, A. K. Pavlov, L. de Steur, and E. Hansen, “Characteristics of colored dissolved organic matter (CDOM) in the Artic outflow in the Fram Strait: Assessing the changes and fate of terrigenous CDOM in the Arctic Ocean,” J. Geophys. Res. 117(C12), C12021 (2012).
[Crossref]

R. G. M. Spencer, K. D. Butler, and G. R. Aiken, “Dissolved organic carbon and chromophoric dissolved organic matter properties of river in the USA,” J. Geophys. Res. 117(G3), G03001 (2012).
[Crossref]

C. G. Fichot and R. Benner, “The spectral slope coefficient of chromophoric dissolved organic matter (S275-295) as a tracer of terrigenous dissolved organic carbon in river-influenced ocean margins,” Limnol. Oceanogr. 57(5), 1453–1466 (2012).
[Crossref]

R. Lopez, C. E. Del Castillo, R. L. Miller, J. Slisbury, and D. Wisser, “Examining organic carbon transport by the Orinoco River using SeaWiFS imagery,” J. Geophys. Res. 117(G3), G03022 (2012).
[Crossref]

2011 (2)

C. G. Fichot and R. Benner, “A novel method to estimate DOC concentrations from CDOM absorption coefficients in coastal waters,” Geophys. Res. Lett. 38(3), L03610 (2011).
[Crossref]

C. L. Osburn and C. A. Stedmon, “Linking the chemical and optical properties of dissolved organic matter in the Baltic-North Sea transition zone to differentiate three allochtonous inputs,” Mar. Chem. 126(1–4), 281–294 (2011).
[Crossref]

2010 (3)

J. Para, P. G. Coble, B. Charrière, M. Tedetti, C. Fontana, and R. Sempéré, “Fluorescence and absorption of chromophoric dissolved organic matter (CDOM) in coastal surface waters of the northwestern Mediterranean Sea, influence of the Rhône River,” Biogeosciences 7(12), 4083–4103 (2010).
[Crossref]

L. Bracchini, A. Tognazzi, A. M. Dattilo, F. Decembrini, C. Rossi, and S. A. Loiselle, “Sensitivity analysis of CDOM spectral slope in artificial and natural samples: an application in the central eastern Mediterranean Basin,” Aquat. Sci. 72(4), 485–498 (2010).
[Crossref]

R. G. M. Spencer, P. J. Hermes, R. Ruf, A. Baker, R. Y. Dyda, A. Stubbins, and J. Six, “Temporal controls of dissolved organic matter and lignin biogeochemistry in a pristine tropical river, Democratic Republic of Congo,” J. Geophys. Res. 115(G3), G03013 (2010).
[Crossref]

2009 (3)

E. Ortega-Retuerta, T. K. Frazer, C. M. Duarte, S. Ruiz-Halpern, A. Tovar-Sánchez, J. M. Arrieta, and I. Reche, “Biogeneration of chromophoric dissolved organic matter by bacteria end krill in the Southern Ocean,” Limnol. Oceanogr. 54(6), 1941–1950 (2009).
[Crossref]

C. T. A. Chen and A. V. Borges, “Reconciling opposing views on carbon cycling in the coastal ocean: Continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2,” Deep Sea Res. Part II Top. Stud. Oceanogr. 56(8-10), 578–590 (2009).
[Crossref]

H. Loisel, X. Mériaux, A. Poteau, L. F. Artigas, B. Lubac, A. Gardel, J. Caillaud, and S. Lesourd, “Analyse of the inherent optical properties of French Guiana coastal waters for remote sensing implications,” J. Coastal Res. SI 56, 1532–1536 (2009).

2008 (5)

E. J. D’Sa, “Colored dissolved organic matter in coastal waters influenced by the Atchafalaya River, USA: Effects of an algal bloom,” J. Appl. Remote Sens. 2(1), 023502 (2008).
[Crossref]

J. R. Helms, A. Stubbins, J. D. Ritchie, E. C. Minor, D. J. Kieber, and K. Mopper, “Absorption spectral slopes and slope ratios as indicator of molecular weight, source, and photobleaching of chromophoric dissolved organic matter,” Limnol. Oceanogr. 53(3), 955–969 (2008).
[Crossref]

C. E. Del Castillo and R. L. Miller, “On the use of ocean remote sensing to measure the transport of dissolved organic carbon by the Mississippi River Plume,” Remote Sens. Environ. 112(3), 836–844 (2008).
[Crossref]

A. Mannino, M. E. Russ, and S. B. Hooker, “Algorithm development and validation for satellite-derived distribution of DOC and CDOM in the U.S Middle Atlantic Bight,” J. Geophys. Res. 113(C7), 07051 (2008).
[Crossref]

X. Pan, A. Mannino, M. E. Russ, and S. B. Hooker, “Remote sensing of the absorption coefficients and chlorophyll a concentration in the United States southern Middle Atlantic Bight from SeaWiFS and MODIS-Aqua,” J. Geophys. Res. 113(C11), C11022 (2008).
[Crossref]

2007 (3)

B. Lubac and H. Loisel, “Variability and classification of remote sensing reflectance spectra in the eastern English Channel and southern North Sea,” Remote Sens. Environ. 110(1), 45–58 (2007).
[Crossref]

V. Vantrepotte, C. Brunet, X. Mériaux, E. Lécuyer, V. Vellucci, and R. Santer, “Bio-optical properties of coastal waters in the Eastern English Channel,” Estuar. Coast. Shelf Sci. 72(1-2), 201–212 (2007).
[Crossref]

X. Mari, E. Rochelle-Newall, J. P. Torréton, O. Pringault, A. Jouon, and C. Migon, “Water residence time: A regulatory factor of the DOM to POM transfer efficiency,” Limnol. Oceanogr. 52(2), 808–819 (2007).
[Crossref]

2005 (2)

V. Borges, B. Delille, and M. Frankignoulle, “Budgeting sinks and sources of CO2 in the coastal ocean: diversity of ecosystems counts,” Geophys. Res. Lett. 30, 1558 (2005).
[Crossref]

C. Guéguen, L. Guo, and N. Tanaka, “Distribution and characteristics of colored dissolved organic matter in the Western Artic Ocean,” Cont. Shelf Res. 25(10), 1195–1207 (2005).
[Crossref]

2004 (1)

R. Del Vecchio and N. V. Blough, “Spatial and seasonal distribution of chromophoric dissolved organic matter and dissolved organic carbon in the Middle Atlantic Bight,” Mar. Chem. 89(1-4), 169–187 (2004).
[Crossref]

2003 (1)

M. Babin, D. Stramski, G. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 3211 (2003).
[Crossref]

2000 (1)

G. M. Ferrari, “The relationship between chromophoric dissolved organic matter and dissolved organic carbon in the European Atlantic coastal area and in the West Mediterranean Sea (Gulf of lions),” Mar. Chem. 70(4), 339–357 (2000).
[Crossref]

1999 (1)

N. R. Bates and D. A. Hansell, “A high resolution study of surface layer hydrographic and biogeochemical properties between Cheasapeake Bay and Bermuda,” Mar. Chem. 67(1-2), 1–16 (1999).
[Crossref]

1998 (1)

J. P. Gattuso, M. Frankignoulle, and R. Wollast, “Carbon and carbonate metabolism in coastal aquatic ecosystems,” Annu. Rev. Ecol. Syst. 29(1), 405–434 (1998).
[Crossref]

1996 (1)

W. Ludwig, J. L. Probst, and S. Kempe, “Predicting the oceanic input of organic carbon by continentalerosion,” Global Biogeochem. Cycles 10(1), 23–41 (1996).
[Crossref]

1994 (1)

Dessier and J. Donguy, “The sea-surface salinity in the tropical Atlantic between 10°S and 30°N – seasonal and interannual variations (1977 – 1989),” Deep-Sea Res. 1, 81–100 (1994).

1981 (1)

A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26(1), 43–53 (1981).
[Crossref]

Aiken, G. R.

R. G. M. Spencer, K. D. Butler, and G. R. Aiken, “Dissolved organic carbon and chromophoric dissolved organic matter properties of river in the USA,” J. Geophys. Res. 117(G3), G03001 (2012).
[Crossref]

Amon, R. M. W.

C. G. Fichot, K. Kaiser, S. B. Hooker, R. M. W. Amon, M. Babin, S. Bélanger, S. A. Walker, and R. Benner, “Pan-Arctic distributions of continental runoff in the Arctic Ocean,” Sci Rep 3, 1053 (2013).
[Crossref] [PubMed]

M. A. Granskog, C. A. Stedmon, P. A. Dodd, R. M. W. Amon, A. K. Pavlov, L. de Steur, and E. Hansen, “Characteristics of colored dissolved organic matter (CDOM) in the Artic outflow in the Fram Strait: Assessing the changes and fate of terrigenous CDOM in the Arctic Ocean,” J. Geophys. Res. 117(C12), C12021 (2012).
[Crossref]

Arrieta, J. M.

E. Ortega-Retuerta, T. K. Frazer, C. M. Duarte, S. Ruiz-Halpern, A. Tovar-Sánchez, J. M. Arrieta, and I. Reche, “Biogeneration of chromophoric dissolved organic matter by bacteria end krill in the Southern Ocean,” Limnol. Oceanogr. 54(6), 1941–1950 (2009).
[Crossref]

Artigas, L. F.

H. Loisel, X. Mériaux, A. Poteau, L. F. Artigas, B. Lubac, A. Gardel, J. Caillaud, and S. Lesourd, “Analyse of the inherent optical properties of French Guiana coastal waters for remote sensing implications,” J. Coastal Res. SI 56, 1532–1536 (2009).

Aubry, C.

H. Xie, C. Aubry, S. Bélanger, and G. Song, “The dynamics of absorption coefficients of CDOM and particles in the St.Lawrence estuarine system: biogeochimical and physical implications,” Mar. Chem. 128-129(1), 44–56 (2012).
[Crossref]

Babin, M.

C. G. Fichot, K. Kaiser, S. B. Hooker, R. M. W. Amon, M. Babin, S. Bélanger, S. A. Walker, and R. Benner, “Pan-Arctic distributions of continental runoff in the Arctic Ocean,” Sci Rep 3, 1053 (2013).
[Crossref] [PubMed]

A. Matsuoka, S. B. Hooker, A. Bricaud, B. Gentili, and M. Babin, “Estimating absorption coefficients of colored dissolved organic matter (CDOM) using a semi-analytical algorithm for southern Beaufort Sea waters: application to deriving concentrations of dissolved organic carbon from space,” Biogeosciences 10(2), 917–927 (2013).
[Crossref]

M. Babin, D. Stramski, G. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 3211 (2003).
[Crossref]

Baker, A.

R. G. M. Spencer, P. J. Hermes, R. Ruf, A. Baker, R. Y. Dyda, A. Stubbins, and J. Six, “Temporal controls of dissolved organic matter and lignin biogeochemistry in a pristine tropical river, Democratic Republic of Congo,” J. Geophys. Res. 115(G3), G03013 (2010).
[Crossref]

Bates, N. R.

N. R. Bates and D. A. Hansell, “A high resolution study of surface layer hydrographic and biogeochemical properties between Cheasapeake Bay and Bermuda,” Mar. Chem. 67(1-2), 1–16 (1999).
[Crossref]

Bélanger, S.

C. G. Fichot, K. Kaiser, S. B. Hooker, R. M. W. Amon, M. Babin, S. Bélanger, S. A. Walker, and R. Benner, “Pan-Arctic distributions of continental runoff in the Arctic Ocean,” Sci Rep 3, 1053 (2013).
[Crossref] [PubMed]

H. Xie, C. Aubry, S. Bélanger, and G. Song, “The dynamics of absorption coefficients of CDOM and particles in the St.Lawrence estuarine system: biogeochimical and physical implications,” Mar. Chem. 128-129(1), 44–56 (2012).
[Crossref]

Benner, R.

C. G. Fichot, S. E. Lohrenz, and R. Benner, “Pulsed, cross-shelf export of terrigenous dissolved organic carbon to the Gulf of Mexico,” J. Geophys. Res. 119(2), 1176–1194 (2014).
[Crossref]

C. G. Fichot, K. Kaiser, S. B. Hooker, R. M. W. Amon, M. Babin, S. Bélanger, S. A. Walker, and R. Benner, “Pan-Arctic distributions of continental runoff in the Arctic Ocean,” Sci Rep 3, 1053 (2013).
[Crossref] [PubMed]

C. G. Fichot and R. Benner, “The spectral slope coefficient of chromophoric dissolved organic matter (S275-295) as a tracer of terrigenous dissolved organic carbon in river-influenced ocean margins,” Limnol. Oceanogr. 57(5), 1453–1466 (2012).
[Crossref]

C. G. Fichot and R. Benner, “A novel method to estimate DOC concentrations from CDOM absorption coefficients in coastal waters,” Geophys. Res. Lett. 38(3), L03610 (2011).
[Crossref]

Blough, N. V.

R. Del Vecchio and N. V. Blough, “Spatial and seasonal distribution of chromophoric dissolved organic matter and dissolved organic carbon in the Middle Atlantic Bight,” Mar. Chem. 89(1-4), 169–187 (2004).
[Crossref]

Borges, A. V.

C. T. A. Chen and A. V. Borges, “Reconciling opposing views on carbon cycling in the coastal ocean: Continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2,” Deep Sea Res. Part II Top. Stud. Oceanogr. 56(8-10), 578–590 (2009).
[Crossref]

Borges, V.

V. Borges, B. Delille, and M. Frankignoulle, “Budgeting sinks and sources of CO2 in the coastal ocean: diversity of ecosystems counts,” Geophys. Res. Lett. 30, 1558 (2005).
[Crossref]

Bracchini, L.

L. Bracchini, A. Tognazzi, A. M. Dattilo, F. Decembrini, C. Rossi, and S. A. Loiselle, “Sensitivity analysis of CDOM spectral slope in artificial and natural samples: an application in the central eastern Mediterranean Basin,” Aquat. Sci. 72(4), 485–498 (2010).
[Crossref]

Bricaud, A.

A. Matsuoka, S. B. Hooker, A. Bricaud, B. Gentili, and M. Babin, “Estimating absorption coefficients of colored dissolved organic matter (CDOM) using a semi-analytical algorithm for southern Beaufort Sea waters: application to deriving concentrations of dissolved organic carbon from space,” Biogeosciences 10(2), 917–927 (2013).
[Crossref]

M. Babin, D. Stramski, G. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 3211 (2003).
[Crossref]

A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26(1), 43–53 (1981).
[Crossref]

Brunet, C.

V. Vantrepotte, C. Brunet, X. Mériaux, E. Lécuyer, V. Vellucci, and R. Santer, “Bio-optical properties of coastal waters in the Eastern English Channel,” Estuar. Coast. Shelf Sci. 72(1-2), 201–212 (2007).
[Crossref]

Butler, K. D.

R. G. M. Spencer, K. D. Butler, and G. R. Aiken, “Dissolved organic carbon and chromophoric dissolved organic matter properties of river in the USA,” J. Geophys. Res. 117(G3), G03001 (2012).
[Crossref]

Caillaud, J.

H. Loisel, X. Mériaux, A. Poteau, L. F. Artigas, B. Lubac, A. Gardel, J. Caillaud, and S. Lesourd, “Analyse of the inherent optical properties of French Guiana coastal waters for remote sensing implications,” J. Coastal Res. SI 56, 1532–1536 (2009).

Charrière, B.

J. Para, P. G. Coble, B. Charrière, M. Tedetti, C. Fontana, and R. Sempéré, “Fluorescence and absorption of chromophoric dissolved organic matter (CDOM) in coastal surface waters of the northwestern Mediterranean Sea, influence of the Rhône River,” Biogeosciences 7(12), 4083–4103 (2010).
[Crossref]

Chen, C. T. A.

L. Yang, H. Hong, C. T. A. Chen, W. Guo, and T. H. Huang, “Chromophoric dissolved organic matter in the estuaries of populated and mountainous Taiwan,” Mar. Chem. 157, 12–23 (2013).
[Crossref]

C. T. A. Chen and A. V. Borges, “Reconciling opposing views on carbon cycling in the coastal ocean: Continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2,” Deep Sea Res. Part II Top. Stud. Oceanogr. 56(8-10), 578–590 (2009).
[Crossref]

Claustre, H.

M. Babin, D. Stramski, G. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 3211 (2003).
[Crossref]

Coble, P. G.

J. Para, P. G. Coble, B. Charrière, M. Tedetti, C. Fontana, and R. Sempéré, “Fluorescence and absorption of chromophoric dissolved organic matter (CDOM) in coastal surface waters of the northwestern Mediterranean Sea, influence of the Rhône River,” Biogeosciences 7(12), 4083–4103 (2010).
[Crossref]

D’Sa, E. J.

E. J. D’Sa, “Colored dissolved organic matter in coastal waters influenced by the Atchafalaya River, USA: Effects of an algal bloom,” J. Appl. Remote Sens. 2(1), 023502 (2008).
[Crossref]

Dattilo, A. M.

L. Bracchini, A. Tognazzi, A. M. Dattilo, F. Decembrini, C. Rossi, and S. A. Loiselle, “Sensitivity analysis of CDOM spectral slope in artificial and natural samples: an application in the central eastern Mediterranean Basin,” Aquat. Sci. 72(4), 485–498 (2010).
[Crossref]

de Steur, L.

M. A. Granskog, C. A. Stedmon, P. A. Dodd, R. M. W. Amon, A. K. Pavlov, L. de Steur, and E. Hansen, “Characteristics of colored dissolved organic matter (CDOM) in the Artic outflow in the Fram Strait: Assessing the changes and fate of terrigenous CDOM in the Arctic Ocean,” J. Geophys. Res. 117(C12), C12021 (2012).
[Crossref]

Decembrini, F.

L. Bracchini, A. Tognazzi, A. M. Dattilo, F. Decembrini, C. Rossi, and S. A. Loiselle, “Sensitivity analysis of CDOM spectral slope in artificial and natural samples: an application in the central eastern Mediterranean Basin,” Aquat. Sci. 72(4), 485–498 (2010).
[Crossref]

Del Castillo, C. E.

R. Lopez, C. E. Del Castillo, R. L. Miller, J. Slisbury, and D. Wisser, “Examining organic carbon transport by the Orinoco River using SeaWiFS imagery,” J. Geophys. Res. 117(G3), G03022 (2012).
[Crossref]

C. E. Del Castillo and R. L. Miller, “On the use of ocean remote sensing to measure the transport of dissolved organic carbon by the Mississippi River Plume,” Remote Sens. Environ. 112(3), 836–844 (2008).
[Crossref]

Del Vecchio, R.

R. Del Vecchio and N. V. Blough, “Spatial and seasonal distribution of chromophoric dissolved organic matter and dissolved organic carbon in the Middle Atlantic Bight,” Mar. Chem. 89(1-4), 169–187 (2004).
[Crossref]

Delille, B.

V. Borges, B. Delille, and M. Frankignoulle, “Budgeting sinks and sources of CO2 in the coastal ocean: diversity of ecosystems counts,” Geophys. Res. Lett. 30, 1558 (2005).
[Crossref]

Dessailly, D.

H. Loisel, V. Vantrepotte, D. Dessailly, and X. Mériaux, “Assessment of the colored dissolved organic matter in coastal waters from ocean color remote sensing,” Opt. Express 22(11), 13109–13124 (2014).
[Crossref] [PubMed]

V. Vantrepotte, E. Gensac, H. Loisel, A. Gardel, D. Dessailly, and X. Mériaux, “Satellite assessment of the coupling between in water suspended particulate matter and mud banks dynamics over the French Guiana coastal domain,” J. S. Am. Earth Sci. 44, 25–34 (2013).
[Crossref]

V. Vantrepotte, H. Loisel, D. Dessailly, and X. Mériaux, “Optical classification of contrasted coastal waters,” Remote Sens. Environ. 123, 306–323 (2012).
[Crossref]

Dessier,

Dessier and J. Donguy, “The sea-surface salinity in the tropical Atlantic between 10°S and 30°N – seasonal and interannual variations (1977 – 1989),” Deep-Sea Res. 1, 81–100 (1994).

Dodd, P. A.

M. A. Granskog, C. A. Stedmon, P. A. Dodd, R. M. W. Amon, A. K. Pavlov, L. de Steur, and E. Hansen, “Characteristics of colored dissolved organic matter (CDOM) in the Artic outflow in the Fram Strait: Assessing the changes and fate of terrigenous CDOM in the Arctic Ocean,” J. Geophys. Res. 117(C12), C12021 (2012).
[Crossref]

Dong, Q.

Q. Dong, S. Shang, and Z. Lee, “An algorithm to retrieve absorption coefficient of chromophoric dissolved organic matter from ocean color,” Remote Sens. Environ. 128, 259–267 (2013).
[Crossref]

Donguy, J.

Dessier and J. Donguy, “The sea-surface salinity in the tropical Atlantic between 10°S and 30°N – seasonal and interannual variations (1977 – 1989),” Deep-Sea Res. 1, 81–100 (1994).

Duarte, C. M.

E. Ortega-Retuerta, T. K. Frazer, C. M. Duarte, S. Ruiz-Halpern, A. Tovar-Sánchez, J. M. Arrieta, and I. Reche, “Biogeneration of chromophoric dissolved organic matter by bacteria end krill in the Southern Ocean,” Limnol. Oceanogr. 54(6), 1941–1950 (2009).
[Crossref]

Dyda, R. Y.

R. G. M. Spencer, P. J. Hermes, R. Ruf, A. Baker, R. Y. Dyda, A. Stubbins, and J. Six, “Temporal controls of dissolved organic matter and lignin biogeochemistry in a pristine tropical river, Democratic Republic of Congo,” J. Geophys. Res. 115(G3), G03013 (2010).
[Crossref]

Ferrari, G.

M. Babin, D. Stramski, G. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 3211 (2003).
[Crossref]

Ferrari, G. M.

G. M. Ferrari, “The relationship between chromophoric dissolved organic matter and dissolved organic carbon in the European Atlantic coastal area and in the West Mediterranean Sea (Gulf of lions),” Mar. Chem. 70(4), 339–357 (2000).
[Crossref]

Fichot, C. G.

C. G. Fichot, S. E. Lohrenz, and R. Benner, “Pulsed, cross-shelf export of terrigenous dissolved organic carbon to the Gulf of Mexico,” J. Geophys. Res. 119(2), 1176–1194 (2014).
[Crossref]

C. G. Fichot, K. Kaiser, S. B. Hooker, R. M. W. Amon, M. Babin, S. Bélanger, S. A. Walker, and R. Benner, “Pan-Arctic distributions of continental runoff in the Arctic Ocean,” Sci Rep 3, 1053 (2013).
[Crossref] [PubMed]

C. G. Fichot and R. Benner, “The spectral slope coefficient of chromophoric dissolved organic matter (S275-295) as a tracer of terrigenous dissolved organic carbon in river-influenced ocean margins,” Limnol. Oceanogr. 57(5), 1453–1466 (2012).
[Crossref]

C. G. Fichot and R. Benner, “A novel method to estimate DOC concentrations from CDOM absorption coefficients in coastal waters,” Geophys. Res. Lett. 38(3), L03610 (2011).
[Crossref]

Fontana, C.

J. Para, P. G. Coble, B. Charrière, M. Tedetti, C. Fontana, and R. Sempéré, “Fluorescence and absorption of chromophoric dissolved organic matter (CDOM) in coastal surface waters of the northwestern Mediterranean Sea, influence of the Rhône River,” Biogeosciences 7(12), 4083–4103 (2010).
[Crossref]

Frankignoulle, M.

V. Borges, B. Delille, and M. Frankignoulle, “Budgeting sinks and sources of CO2 in the coastal ocean: diversity of ecosystems counts,” Geophys. Res. Lett. 30, 1558 (2005).
[Crossref]

J. P. Gattuso, M. Frankignoulle, and R. Wollast, “Carbon and carbonate metabolism in coastal aquatic ecosystems,” Annu. Rev. Ecol. Syst. 29(1), 405–434 (1998).
[Crossref]

Frazer, T. K.

E. Ortega-Retuerta, T. K. Frazer, C. M. Duarte, S. Ruiz-Halpern, A. Tovar-Sánchez, J. M. Arrieta, and I. Reche, “Biogeneration of chromophoric dissolved organic matter by bacteria end krill in the Southern Ocean,” Limnol. Oceanogr. 54(6), 1941–1950 (2009).
[Crossref]

Gardel, A.

V. Vantrepotte, E. Gensac, H. Loisel, A. Gardel, D. Dessailly, and X. Mériaux, “Satellite assessment of the coupling between in water suspended particulate matter and mud banks dynamics over the French Guiana coastal domain,” J. S. Am. Earth Sci. 44, 25–34 (2013).
[Crossref]

H. Loisel, X. Mériaux, A. Poteau, L. F. Artigas, B. Lubac, A. Gardel, J. Caillaud, and S. Lesourd, “Analyse of the inherent optical properties of French Guiana coastal waters for remote sensing implications,” J. Coastal Res. SI 56, 1532–1536 (2009).

Gattuso, J. P.

J. P. Gattuso, M. Frankignoulle, and R. Wollast, “Carbon and carbonate metabolism in coastal aquatic ecosystems,” Annu. Rev. Ecol. Syst. 29(1), 405–434 (1998).
[Crossref]

Gensac, E.

V. Vantrepotte, E. Gensac, H. Loisel, A. Gardel, D. Dessailly, and X. Mériaux, “Satellite assessment of the coupling between in water suspended particulate matter and mud banks dynamics over the French Guiana coastal domain,” J. S. Am. Earth Sci. 44, 25–34 (2013).
[Crossref]

Gentili, B.

A. Matsuoka, S. B. Hooker, A. Bricaud, B. Gentili, and M. Babin, “Estimating absorption coefficients of colored dissolved organic matter (CDOM) using a semi-analytical algorithm for southern Beaufort Sea waters: application to deriving concentrations of dissolved organic carbon from space,” Biogeosciences 10(2), 917–927 (2013).
[Crossref]

Goyens, C.

C. Goyens, C. Jamet, and T. Schroeder, “Evaluation of four atmospheric correction algorithms for MODIS-AQUA image over contrasted coastal waters,” Remote Sens. Environ. 131, 63–75 (2013).
[Crossref]

Granskog, M. A.

M. A. Granskog, C. A. Stedmon, P. A. Dodd, R. M. W. Amon, A. K. Pavlov, L. de Steur, and E. Hansen, “Characteristics of colored dissolved organic matter (CDOM) in the Artic outflow in the Fram Strait: Assessing the changes and fate of terrigenous CDOM in the Arctic Ocean,” J. Geophys. Res. 117(C12), C12021 (2012).
[Crossref]

Guéguen, C.

C. Guéguen, L. Guo, and N. Tanaka, “Distribution and characteristics of colored dissolved organic matter in the Western Artic Ocean,” Cont. Shelf Res. 25(10), 1195–1207 (2005).
[Crossref]

Guo, L.

C. Guéguen, L. Guo, and N. Tanaka, “Distribution and characteristics of colored dissolved organic matter in the Western Artic Ocean,” Cont. Shelf Res. 25(10), 1195–1207 (2005).
[Crossref]

Guo, W.

L. Yang, H. Hong, C. T. A. Chen, W. Guo, and T. H. Huang, “Chromophoric dissolved organic matter in the estuaries of populated and mountainous Taiwan,” Mar. Chem. 157, 12–23 (2013).
[Crossref]

Hansell, D. A.

N. R. Bates and D. A. Hansell, “A high resolution study of surface layer hydrographic and biogeochemical properties between Cheasapeake Bay and Bermuda,” Mar. Chem. 67(1-2), 1–16 (1999).
[Crossref]

Hansen, E.

M. A. Granskog, C. A. Stedmon, P. A. Dodd, R. M. W. Amon, A. K. Pavlov, L. de Steur, and E. Hansen, “Characteristics of colored dissolved organic matter (CDOM) in the Artic outflow in the Fram Strait: Assessing the changes and fate of terrigenous CDOM in the Arctic Ocean,” J. Geophys. Res. 117(C12), C12021 (2012).
[Crossref]

Helms, J. R.

J. R. Helms, A. Stubbins, J. D. Ritchie, E. C. Minor, D. J. Kieber, and K. Mopper, “Absorption spectral slopes and slope ratios as indicator of molecular weight, source, and photobleaching of chromophoric dissolved organic matter,” Limnol. Oceanogr. 53(3), 955–969 (2008).
[Crossref]

Hermes, P. J.

R. G. M. Spencer, P. J. Hermes, R. Ruf, A. Baker, R. Y. Dyda, A. Stubbins, and J. Six, “Temporal controls of dissolved organic matter and lignin biogeochemistry in a pristine tropical river, Democratic Republic of Congo,” J. Geophys. Res. 115(G3), G03013 (2010).
[Crossref]

Hoepffner, N.

M. Babin, D. Stramski, G. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 3211 (2003).
[Crossref]

Hong, H.

L. Yang, H. Hong, C. T. A. Chen, W. Guo, and T. H. Huang, “Chromophoric dissolved organic matter in the estuaries of populated and mountainous Taiwan,” Mar. Chem. 157, 12–23 (2013).
[Crossref]

Hooker, S. B.

C. G. Fichot, K. Kaiser, S. B. Hooker, R. M. W. Amon, M. Babin, S. Bélanger, S. A. Walker, and R. Benner, “Pan-Arctic distributions of continental runoff in the Arctic Ocean,” Sci Rep 3, 1053 (2013).
[Crossref] [PubMed]

A. Matsuoka, S. B. Hooker, A. Bricaud, B. Gentili, and M. Babin, “Estimating absorption coefficients of colored dissolved organic matter (CDOM) using a semi-analytical algorithm for southern Beaufort Sea waters: application to deriving concentrations of dissolved organic carbon from space,” Biogeosciences 10(2), 917–927 (2013).
[Crossref]

A. Mannino, M. E. Russ, and S. B. Hooker, “Algorithm development and validation for satellite-derived distribution of DOC and CDOM in the U.S Middle Atlantic Bight,” J. Geophys. Res. 113(C7), 07051 (2008).
[Crossref]

X. Pan, A. Mannino, M. E. Russ, and S. B. Hooker, “Remote sensing of the absorption coefficients and chlorophyll a concentration in the United States southern Middle Atlantic Bight from SeaWiFS and MODIS-Aqua,” J. Geophys. Res. 113(C11), C11022 (2008).
[Crossref]

Huang, T. H.

L. Yang, H. Hong, C. T. A. Chen, W. Guo, and T. H. Huang, “Chromophoric dissolved organic matter in the estuaries of populated and mountainous Taiwan,” Mar. Chem. 157, 12–23 (2013).
[Crossref]

Hulot, F. D.

E. Rochelle-Newall, F. D. Hulot, J. L. Janeau, and A. Merroune, “CDOM fluorescence as a proxy of DOC concentration in natural waters: a comparison of four contrasting tropical systems,” Environ. Monit. Assess. 186(1), 589–596 (2014).
[Crossref] [PubMed]

Jamet, C.

C. Goyens, C. Jamet, and T. Schroeder, “Evaluation of four atmospheric correction algorithms for MODIS-AQUA image over contrasted coastal waters,” Remote Sens. Environ. 131, 63–75 (2013).
[Crossref]

Janeau, J. L.

E. Rochelle-Newall, F. D. Hulot, J. L. Janeau, and A. Merroune, “CDOM fluorescence as a proxy of DOC concentration in natural waters: a comparison of four contrasting tropical systems,” Environ. Monit. Assess. 186(1), 589–596 (2014).
[Crossref] [PubMed]

Jouon, A.

X. Mari, E. Rochelle-Newall, J. P. Torréton, O. Pringault, A. Jouon, and C. Migon, “Water residence time: A regulatory factor of the DOM to POM transfer efficiency,” Limnol. Oceanogr. 52(2), 808–819 (2007).
[Crossref]

Kaiser, K.

C. G. Fichot, K. Kaiser, S. B. Hooker, R. M. W. Amon, M. Babin, S. Bélanger, S. A. Walker, and R. Benner, “Pan-Arctic distributions of continental runoff in the Arctic Ocean,” Sci Rep 3, 1053 (2013).
[Crossref] [PubMed]

Kempe, S.

W. Ludwig, J. L. Probst, and S. Kempe, “Predicting the oceanic input of organic carbon by continentalerosion,” Global Biogeochem. Cycles 10(1), 23–41 (1996).
[Crossref]

Kieber, D. J.

J. R. Helms, A. Stubbins, J. D. Ritchie, E. C. Minor, D. J. Kieber, and K. Mopper, “Absorption spectral slopes and slope ratios as indicator of molecular weight, source, and photobleaching of chromophoric dissolved organic matter,” Limnol. Oceanogr. 53(3), 955–969 (2008).
[Crossref]

Lécuyer, E.

V. Vantrepotte, C. Brunet, X. Mériaux, E. Lécuyer, V. Vellucci, and R. Santer, “Bio-optical properties of coastal waters in the Eastern English Channel,” Estuar. Coast. Shelf Sci. 72(1-2), 201–212 (2007).
[Crossref]

Lee, Z.

Q. Dong, S. Shang, and Z. Lee, “An algorithm to retrieve absorption coefficient of chromophoric dissolved organic matter from ocean color,” Remote Sens. Environ. 128, 259–267 (2013).
[Crossref]

Lesourd, S.

H. Loisel, X. Mériaux, A. Poteau, L. F. Artigas, B. Lubac, A. Gardel, J. Caillaud, and S. Lesourd, “Analyse of the inherent optical properties of French Guiana coastal waters for remote sensing implications,” J. Coastal Res. SI 56, 1532–1536 (2009).

Lohrenz, S. E.

C. G. Fichot, S. E. Lohrenz, and R. Benner, “Pulsed, cross-shelf export of terrigenous dissolved organic carbon to the Gulf of Mexico,” J. Geophys. Res. 119(2), 1176–1194 (2014).
[Crossref]

Loisel, H.

H. Loisel, V. Vantrepotte, D. Dessailly, and X. Mériaux, “Assessment of the colored dissolved organic matter in coastal waters from ocean color remote sensing,” Opt. Express 22(11), 13109–13124 (2014).
[Crossref] [PubMed]

V. Vantrepotte, E. Gensac, H. Loisel, A. Gardel, D. Dessailly, and X. Mériaux, “Satellite assessment of the coupling between in water suspended particulate matter and mud banks dynamics over the French Guiana coastal domain,” J. S. Am. Earth Sci. 44, 25–34 (2013).
[Crossref]

V. Vantrepotte, H. Loisel, D. Dessailly, and X. Mériaux, “Optical classification of contrasted coastal waters,” Remote Sens. Environ. 123, 306–323 (2012).
[Crossref]

H. Loisel, X. Mériaux, A. Poteau, L. F. Artigas, B. Lubac, A. Gardel, J. Caillaud, and S. Lesourd, “Analyse of the inherent optical properties of French Guiana coastal waters for remote sensing implications,” J. Coastal Res. SI 56, 1532–1536 (2009).

B. Lubac and H. Loisel, “Variability and classification of remote sensing reflectance spectra in the eastern English Channel and southern North Sea,” Remote Sens. Environ. 110(1), 45–58 (2007).
[Crossref]

Loiselle, S. A.

L. Bracchini, A. Tognazzi, A. M. Dattilo, F. Decembrini, C. Rossi, and S. A. Loiselle, “Sensitivity analysis of CDOM spectral slope in artificial and natural samples: an application in the central eastern Mediterranean Basin,” Aquat. Sci. 72(4), 485–498 (2010).
[Crossref]

Lopez, R.

R. Lopez, C. E. Del Castillo, R. L. Miller, J. Slisbury, and D. Wisser, “Examining organic carbon transport by the Orinoco River using SeaWiFS imagery,” J. Geophys. Res. 117(G3), G03022 (2012).
[Crossref]

Lubac, B.

H. Loisel, X. Mériaux, A. Poteau, L. F. Artigas, B. Lubac, A. Gardel, J. Caillaud, and S. Lesourd, “Analyse of the inherent optical properties of French Guiana coastal waters for remote sensing implications,” J. Coastal Res. SI 56, 1532–1536 (2009).

B. Lubac and H. Loisel, “Variability and classification of remote sensing reflectance spectra in the eastern English Channel and southern North Sea,” Remote Sens. Environ. 110(1), 45–58 (2007).
[Crossref]

Ludwig, W.

W. Ludwig, J. L. Probst, and S. Kempe, “Predicting the oceanic input of organic carbon by continentalerosion,” Global Biogeochem. Cycles 10(1), 23–41 (1996).
[Crossref]

Mannino, A.

A. Mannino, M. E. Russ, and S. B. Hooker, “Algorithm development and validation for satellite-derived distribution of DOC and CDOM in the U.S Middle Atlantic Bight,” J. Geophys. Res. 113(C7), 07051 (2008).
[Crossref]

X. Pan, A. Mannino, M. E. Russ, and S. B. Hooker, “Remote sensing of the absorption coefficients and chlorophyll a concentration in the United States southern Middle Atlantic Bight from SeaWiFS and MODIS-Aqua,” J. Geophys. Res. 113(C11), C11022 (2008).
[Crossref]

Mari, X.

X. Mari, E. Rochelle-Newall, J. P. Torréton, O. Pringault, A. Jouon, and C. Migon, “Water residence time: A regulatory factor of the DOM to POM transfer efficiency,” Limnol. Oceanogr. 52(2), 808–819 (2007).
[Crossref]

Matsuoka, A.

A. Matsuoka, S. B. Hooker, A. Bricaud, B. Gentili, and M. Babin, “Estimating absorption coefficients of colored dissolved organic matter (CDOM) using a semi-analytical algorithm for southern Beaufort Sea waters: application to deriving concentrations of dissolved organic carbon from space,” Biogeosciences 10(2), 917–927 (2013).
[Crossref]

Mériaux, X.

H. Loisel, V. Vantrepotte, D. Dessailly, and X. Mériaux, “Assessment of the colored dissolved organic matter in coastal waters from ocean color remote sensing,” Opt. Express 22(11), 13109–13124 (2014).
[Crossref] [PubMed]

V. Vantrepotte, E. Gensac, H. Loisel, A. Gardel, D. Dessailly, and X. Mériaux, “Satellite assessment of the coupling between in water suspended particulate matter and mud banks dynamics over the French Guiana coastal domain,” J. S. Am. Earth Sci. 44, 25–34 (2013).
[Crossref]

V. Vantrepotte, H. Loisel, D. Dessailly, and X. Mériaux, “Optical classification of contrasted coastal waters,” Remote Sens. Environ. 123, 306–323 (2012).
[Crossref]

H. Loisel, X. Mériaux, A. Poteau, L. F. Artigas, B. Lubac, A. Gardel, J. Caillaud, and S. Lesourd, “Analyse of the inherent optical properties of French Guiana coastal waters for remote sensing implications,” J. Coastal Res. SI 56, 1532–1536 (2009).

V. Vantrepotte, C. Brunet, X. Mériaux, E. Lécuyer, V. Vellucci, and R. Santer, “Bio-optical properties of coastal waters in the Eastern English Channel,” Estuar. Coast. Shelf Sci. 72(1-2), 201–212 (2007).
[Crossref]

Merroune, A.

E. Rochelle-Newall, F. D. Hulot, J. L. Janeau, and A. Merroune, “CDOM fluorescence as a proxy of DOC concentration in natural waters: a comparison of four contrasting tropical systems,” Environ. Monit. Assess. 186(1), 589–596 (2014).
[Crossref] [PubMed]

Migon, C.

X. Mari, E. Rochelle-Newall, J. P. Torréton, O. Pringault, A. Jouon, and C. Migon, “Water residence time: A regulatory factor of the DOM to POM transfer efficiency,” Limnol. Oceanogr. 52(2), 808–819 (2007).
[Crossref]

Miller, R. L.

R. Lopez, C. E. Del Castillo, R. L. Miller, J. Slisbury, and D. Wisser, “Examining organic carbon transport by the Orinoco River using SeaWiFS imagery,” J. Geophys. Res. 117(G3), G03022 (2012).
[Crossref]

C. E. Del Castillo and R. L. Miller, “On the use of ocean remote sensing to measure the transport of dissolved organic carbon by the Mississippi River Plume,” Remote Sens. Environ. 112(3), 836–844 (2008).
[Crossref]

Minor, E. C.

J. R. Helms, A. Stubbins, J. D. Ritchie, E. C. Minor, D. J. Kieber, and K. Mopper, “Absorption spectral slopes and slope ratios as indicator of molecular weight, source, and photobleaching of chromophoric dissolved organic matter,” Limnol. Oceanogr. 53(3), 955–969 (2008).
[Crossref]

Mopper, K.

J. R. Helms, A. Stubbins, J. D. Ritchie, E. C. Minor, D. J. Kieber, and K. Mopper, “Absorption spectral slopes and slope ratios as indicator of molecular weight, source, and photobleaching of chromophoric dissolved organic matter,” Limnol. Oceanogr. 53(3), 955–969 (2008).
[Crossref]

Morel, A.

A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26(1), 43–53 (1981).
[Crossref]

Obolensky, G.

M. Babin, D. Stramski, G. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 3211 (2003).
[Crossref]

Ortega-Retuerta, E.

E. Ortega-Retuerta, T. K. Frazer, C. M. Duarte, S. Ruiz-Halpern, A. Tovar-Sánchez, J. M. Arrieta, and I. Reche, “Biogeneration of chromophoric dissolved organic matter by bacteria end krill in the Southern Ocean,” Limnol. Oceanogr. 54(6), 1941–1950 (2009).
[Crossref]

Osburn, C. L.

C. L. Osburn and C. A. Stedmon, “Linking the chemical and optical properties of dissolved organic matter in the Baltic-North Sea transition zone to differentiate three allochtonous inputs,” Mar. Chem. 126(1–4), 281–294 (2011).
[Crossref]

Pan, X.

X. Pan, A. Mannino, M. E. Russ, and S. B. Hooker, “Remote sensing of the absorption coefficients and chlorophyll a concentration in the United States southern Middle Atlantic Bight from SeaWiFS and MODIS-Aqua,” J. Geophys. Res. 113(C11), C11022 (2008).
[Crossref]

Para, J.

J. Para, P. G. Coble, B. Charrière, M. Tedetti, C. Fontana, and R. Sempéré, “Fluorescence and absorption of chromophoric dissolved organic matter (CDOM) in coastal surface waters of the northwestern Mediterranean Sea, influence of the Rhône River,” Biogeosciences 7(12), 4083–4103 (2010).
[Crossref]

Pavlov, A. K.

M. A. Granskog, C. A. Stedmon, P. A. Dodd, R. M. W. Amon, A. K. Pavlov, L. de Steur, and E. Hansen, “Characteristics of colored dissolved organic matter (CDOM) in the Artic outflow in the Fram Strait: Assessing the changes and fate of terrigenous CDOM in the Arctic Ocean,” J. Geophys. Res. 117(C12), C12021 (2012).
[Crossref]

Poteau, A.

H. Loisel, X. Mériaux, A. Poteau, L. F. Artigas, B. Lubac, A. Gardel, J. Caillaud, and S. Lesourd, “Analyse of the inherent optical properties of French Guiana coastal waters for remote sensing implications,” J. Coastal Res. SI 56, 1532–1536 (2009).

Prieur, L.

A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26(1), 43–53 (1981).
[Crossref]

Pringault, O.

X. Mari, E. Rochelle-Newall, J. P. Torréton, O. Pringault, A. Jouon, and C. Migon, “Water residence time: A regulatory factor of the DOM to POM transfer efficiency,” Limnol. Oceanogr. 52(2), 808–819 (2007).
[Crossref]

Probst, J. L.

W. Ludwig, J. L. Probst, and S. Kempe, “Predicting the oceanic input of organic carbon by continentalerosion,” Global Biogeochem. Cycles 10(1), 23–41 (1996).
[Crossref]

Reche, I.

E. Ortega-Retuerta, T. K. Frazer, C. M. Duarte, S. Ruiz-Halpern, A. Tovar-Sánchez, J. M. Arrieta, and I. Reche, “Biogeneration of chromophoric dissolved organic matter by bacteria end krill in the Southern Ocean,” Limnol. Oceanogr. 54(6), 1941–1950 (2009).
[Crossref]

Ritchie, J. D.

J. R. Helms, A. Stubbins, J. D. Ritchie, E. C. Minor, D. J. Kieber, and K. Mopper, “Absorption spectral slopes and slope ratios as indicator of molecular weight, source, and photobleaching of chromophoric dissolved organic matter,” Limnol. Oceanogr. 53(3), 955–969 (2008).
[Crossref]

Rochelle-Newall, E.

E. Rochelle-Newall, F. D. Hulot, J. L. Janeau, and A. Merroune, “CDOM fluorescence as a proxy of DOC concentration in natural waters: a comparison of four contrasting tropical systems,” Environ. Monit. Assess. 186(1), 589–596 (2014).
[Crossref] [PubMed]

X. Mari, E. Rochelle-Newall, J. P. Torréton, O. Pringault, A. Jouon, and C. Migon, “Water residence time: A regulatory factor of the DOM to POM transfer efficiency,” Limnol. Oceanogr. 52(2), 808–819 (2007).
[Crossref]

Rossi, C.

L. Bracchini, A. Tognazzi, A. M. Dattilo, F. Decembrini, C. Rossi, and S. A. Loiselle, “Sensitivity analysis of CDOM spectral slope in artificial and natural samples: an application in the central eastern Mediterranean Basin,” Aquat. Sci. 72(4), 485–498 (2010).
[Crossref]

Ruf, R.

R. G. M. Spencer, P. J. Hermes, R. Ruf, A. Baker, R. Y. Dyda, A. Stubbins, and J. Six, “Temporal controls of dissolved organic matter and lignin biogeochemistry in a pristine tropical river, Democratic Republic of Congo,” J. Geophys. Res. 115(G3), G03013 (2010).
[Crossref]

Ruiz-Halpern, S.

E. Ortega-Retuerta, T. K. Frazer, C. M. Duarte, S. Ruiz-Halpern, A. Tovar-Sánchez, J. M. Arrieta, and I. Reche, “Biogeneration of chromophoric dissolved organic matter by bacteria end krill in the Southern Ocean,” Limnol. Oceanogr. 54(6), 1941–1950 (2009).
[Crossref]

Russ, M. E.

X. Pan, A. Mannino, M. E. Russ, and S. B. Hooker, “Remote sensing of the absorption coefficients and chlorophyll a concentration in the United States southern Middle Atlantic Bight from SeaWiFS and MODIS-Aqua,” J. Geophys. Res. 113(C11), C11022 (2008).
[Crossref]

A. Mannino, M. E. Russ, and S. B. Hooker, “Algorithm development and validation for satellite-derived distribution of DOC and CDOM in the U.S Middle Atlantic Bight,” J. Geophys. Res. 113(C7), 07051 (2008).
[Crossref]

Santer, R.

V. Vantrepotte, C. Brunet, X. Mériaux, E. Lécuyer, V. Vellucci, and R. Santer, “Bio-optical properties of coastal waters in the Eastern English Channel,” Estuar. Coast. Shelf Sci. 72(1-2), 201–212 (2007).
[Crossref]

Schroeder, T.

C. Goyens, C. Jamet, and T. Schroeder, “Evaluation of four atmospheric correction algorithms for MODIS-AQUA image over contrasted coastal waters,” Remote Sens. Environ. 131, 63–75 (2013).
[Crossref]

Sempéré, R.

J. Para, P. G. Coble, B. Charrière, M. Tedetti, C. Fontana, and R. Sempéré, “Fluorescence and absorption of chromophoric dissolved organic matter (CDOM) in coastal surface waters of the northwestern Mediterranean Sea, influence of the Rhône River,” Biogeosciences 7(12), 4083–4103 (2010).
[Crossref]

Shang, S.

Q. Dong, S. Shang, and Z. Lee, “An algorithm to retrieve absorption coefficient of chromophoric dissolved organic matter from ocean color,” Remote Sens. Environ. 128, 259–267 (2013).
[Crossref]

Six, J.

R. G. M. Spencer, P. J. Hermes, R. Ruf, A. Baker, R. Y. Dyda, A. Stubbins, and J. Six, “Temporal controls of dissolved organic matter and lignin biogeochemistry in a pristine tropical river, Democratic Republic of Congo,” J. Geophys. Res. 115(G3), G03013 (2010).
[Crossref]

Slisbury, J.

R. Lopez, C. E. Del Castillo, R. L. Miller, J. Slisbury, and D. Wisser, “Examining organic carbon transport by the Orinoco River using SeaWiFS imagery,” J. Geophys. Res. 117(G3), G03022 (2012).
[Crossref]

Song, G.

H. Xie, C. Aubry, S. Bélanger, and G. Song, “The dynamics of absorption coefficients of CDOM and particles in the St.Lawrence estuarine system: biogeochimical and physical implications,” Mar. Chem. 128-129(1), 44–56 (2012).
[Crossref]

Spencer, R. G. M.

R. G. M. Spencer, K. D. Butler, and G. R. Aiken, “Dissolved organic carbon and chromophoric dissolved organic matter properties of river in the USA,” J. Geophys. Res. 117(G3), G03001 (2012).
[Crossref]

R. G. M. Spencer, P. J. Hermes, R. Ruf, A. Baker, R. Y. Dyda, A. Stubbins, and J. Six, “Temporal controls of dissolved organic matter and lignin biogeochemistry in a pristine tropical river, Democratic Republic of Congo,” J. Geophys. Res. 115(G3), G03013 (2010).
[Crossref]

Stedmon, C. A.

M. A. Granskog, C. A. Stedmon, P. A. Dodd, R. M. W. Amon, A. K. Pavlov, L. de Steur, and E. Hansen, “Characteristics of colored dissolved organic matter (CDOM) in the Artic outflow in the Fram Strait: Assessing the changes and fate of terrigenous CDOM in the Arctic Ocean,” J. Geophys. Res. 117(C12), C12021 (2012).
[Crossref]

C. L. Osburn and C. A. Stedmon, “Linking the chemical and optical properties of dissolved organic matter in the Baltic-North Sea transition zone to differentiate three allochtonous inputs,” Mar. Chem. 126(1–4), 281–294 (2011).
[Crossref]

Stramski, D.

M. Babin, D. Stramski, G. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 3211 (2003).
[Crossref]

Stubbins, A.

R. G. M. Spencer, P. J. Hermes, R. Ruf, A. Baker, R. Y. Dyda, A. Stubbins, and J. Six, “Temporal controls of dissolved organic matter and lignin biogeochemistry in a pristine tropical river, Democratic Republic of Congo,” J. Geophys. Res. 115(G3), G03013 (2010).
[Crossref]

J. R. Helms, A. Stubbins, J. D. Ritchie, E. C. Minor, D. J. Kieber, and K. Mopper, “Absorption spectral slopes and slope ratios as indicator of molecular weight, source, and photobleaching of chromophoric dissolved organic matter,” Limnol. Oceanogr. 53(3), 955–969 (2008).
[Crossref]

Tanaka, N.

C. Guéguen, L. Guo, and N. Tanaka, “Distribution and characteristics of colored dissolved organic matter in the Western Artic Ocean,” Cont. Shelf Res. 25(10), 1195–1207 (2005).
[Crossref]

Tedetti, M.

J. Para, P. G. Coble, B. Charrière, M. Tedetti, C. Fontana, and R. Sempéré, “Fluorescence and absorption of chromophoric dissolved organic matter (CDOM) in coastal surface waters of the northwestern Mediterranean Sea, influence of the Rhône River,” Biogeosciences 7(12), 4083–4103 (2010).
[Crossref]

Tognazzi, A.

L. Bracchini, A. Tognazzi, A. M. Dattilo, F. Decembrini, C. Rossi, and S. A. Loiselle, “Sensitivity analysis of CDOM spectral slope in artificial and natural samples: an application in the central eastern Mediterranean Basin,” Aquat. Sci. 72(4), 485–498 (2010).
[Crossref]

Torréton, J. P.

X. Mari, E. Rochelle-Newall, J. P. Torréton, O. Pringault, A. Jouon, and C. Migon, “Water residence time: A regulatory factor of the DOM to POM transfer efficiency,” Limnol. Oceanogr. 52(2), 808–819 (2007).
[Crossref]

Tovar-Sánchez, A.

E. Ortega-Retuerta, T. K. Frazer, C. M. Duarte, S. Ruiz-Halpern, A. Tovar-Sánchez, J. M. Arrieta, and I. Reche, “Biogeneration of chromophoric dissolved organic matter by bacteria end krill in the Southern Ocean,” Limnol. Oceanogr. 54(6), 1941–1950 (2009).
[Crossref]

Vantrepotte, V.

H. Loisel, V. Vantrepotte, D. Dessailly, and X. Mériaux, “Assessment of the colored dissolved organic matter in coastal waters from ocean color remote sensing,” Opt. Express 22(11), 13109–13124 (2014).
[Crossref] [PubMed]

V. Vantrepotte, E. Gensac, H. Loisel, A. Gardel, D. Dessailly, and X. Mériaux, “Satellite assessment of the coupling between in water suspended particulate matter and mud banks dynamics over the French Guiana coastal domain,” J. S. Am. Earth Sci. 44, 25–34 (2013).
[Crossref]

V. Vantrepotte, H. Loisel, D. Dessailly, and X. Mériaux, “Optical classification of contrasted coastal waters,” Remote Sens. Environ. 123, 306–323 (2012).
[Crossref]

V. Vantrepotte, C. Brunet, X. Mériaux, E. Lécuyer, V. Vellucci, and R. Santer, “Bio-optical properties of coastal waters in the Eastern English Channel,” Estuar. Coast. Shelf Sci. 72(1-2), 201–212 (2007).
[Crossref]

Vellucci, V.

V. Vantrepotte, C. Brunet, X. Mériaux, E. Lécuyer, V. Vellucci, and R. Santer, “Bio-optical properties of coastal waters in the Eastern English Channel,” Estuar. Coast. Shelf Sci. 72(1-2), 201–212 (2007).
[Crossref]

Walker, S. A.

C. G. Fichot, K. Kaiser, S. B. Hooker, R. M. W. Amon, M. Babin, S. Bélanger, S. A. Walker, and R. Benner, “Pan-Arctic distributions of continental runoff in the Arctic Ocean,” Sci Rep 3, 1053 (2013).
[Crossref] [PubMed]

Wisser, D.

R. Lopez, C. E. Del Castillo, R. L. Miller, J. Slisbury, and D. Wisser, “Examining organic carbon transport by the Orinoco River using SeaWiFS imagery,” J. Geophys. Res. 117(G3), G03022 (2012).
[Crossref]

Wollast, R.

J. P. Gattuso, M. Frankignoulle, and R. Wollast, “Carbon and carbonate metabolism in coastal aquatic ecosystems,” Annu. Rev. Ecol. Syst. 29(1), 405–434 (1998).
[Crossref]

Xie, H.

H. Xie, C. Aubry, S. Bélanger, and G. Song, “The dynamics of absorption coefficients of CDOM and particles in the St.Lawrence estuarine system: biogeochimical and physical implications,” Mar. Chem. 128-129(1), 44–56 (2012).
[Crossref]

Yang, L.

L. Yang, H. Hong, C. T. A. Chen, W. Guo, and T. H. Huang, “Chromophoric dissolved organic matter in the estuaries of populated and mountainous Taiwan,” Mar. Chem. 157, 12–23 (2013).
[Crossref]

Annu. Rev. Ecol. Syst. (1)

J. P. Gattuso, M. Frankignoulle, and R. Wollast, “Carbon and carbonate metabolism in coastal aquatic ecosystems,” Annu. Rev. Ecol. Syst. 29(1), 405–434 (1998).
[Crossref]

Aquat. Sci. (1)

L. Bracchini, A. Tognazzi, A. M. Dattilo, F. Decembrini, C. Rossi, and S. A. Loiselle, “Sensitivity analysis of CDOM spectral slope in artificial and natural samples: an application in the central eastern Mediterranean Basin,” Aquat. Sci. 72(4), 485–498 (2010).
[Crossref]

Biogeosciences (2)

J. Para, P. G. Coble, B. Charrière, M. Tedetti, C. Fontana, and R. Sempéré, “Fluorescence and absorption of chromophoric dissolved organic matter (CDOM) in coastal surface waters of the northwestern Mediterranean Sea, influence of the Rhône River,” Biogeosciences 7(12), 4083–4103 (2010).
[Crossref]

A. Matsuoka, S. B. Hooker, A. Bricaud, B. Gentili, and M. Babin, “Estimating absorption coefficients of colored dissolved organic matter (CDOM) using a semi-analytical algorithm for southern Beaufort Sea waters: application to deriving concentrations of dissolved organic carbon from space,” Biogeosciences 10(2), 917–927 (2013).
[Crossref]

Cont. Shelf Res. (1)

C. Guéguen, L. Guo, and N. Tanaka, “Distribution and characteristics of colored dissolved organic matter in the Western Artic Ocean,” Cont. Shelf Res. 25(10), 1195–1207 (2005).
[Crossref]

Deep Sea Res. Part II Top. Stud. Oceanogr. (1)

C. T. A. Chen and A. V. Borges, “Reconciling opposing views on carbon cycling in the coastal ocean: Continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2,” Deep Sea Res. Part II Top. Stud. Oceanogr. 56(8-10), 578–590 (2009).
[Crossref]

Deep-Sea Res. (1)

Dessier and J. Donguy, “The sea-surface salinity in the tropical Atlantic between 10°S and 30°N – seasonal and interannual variations (1977 – 1989),” Deep-Sea Res. 1, 81–100 (1994).

Environ. Monit. Assess. (1)

E. Rochelle-Newall, F. D. Hulot, J. L. Janeau, and A. Merroune, “CDOM fluorescence as a proxy of DOC concentration in natural waters: a comparison of four contrasting tropical systems,” Environ. Monit. Assess. 186(1), 589–596 (2014).
[Crossref] [PubMed]

Estuar. Coast. Shelf Sci. (1)

V. Vantrepotte, C. Brunet, X. Mériaux, E. Lécuyer, V. Vellucci, and R. Santer, “Bio-optical properties of coastal waters in the Eastern English Channel,” Estuar. Coast. Shelf Sci. 72(1-2), 201–212 (2007).
[Crossref]

Geophys. Res. Lett. (2)

V. Borges, B. Delille, and M. Frankignoulle, “Budgeting sinks and sources of CO2 in the coastal ocean: diversity of ecosystems counts,” Geophys. Res. Lett. 30, 1558 (2005).
[Crossref]

C. G. Fichot and R. Benner, “A novel method to estimate DOC concentrations from CDOM absorption coefficients in coastal waters,” Geophys. Res. Lett. 38(3), L03610 (2011).
[Crossref]

Global Biogeochem. Cycles (1)

W. Ludwig, J. L. Probst, and S. Kempe, “Predicting the oceanic input of organic carbon by continentalerosion,” Global Biogeochem. Cycles 10(1), 23–41 (1996).
[Crossref]

J. Appl. Remote Sens. (1)

E. J. D’Sa, “Colored dissolved organic matter in coastal waters influenced by the Atchafalaya River, USA: Effects of an algal bloom,” J. Appl. Remote Sens. 2(1), 023502 (2008).
[Crossref]

J. Coastal Res. SI (1)

H. Loisel, X. Mériaux, A. Poteau, L. F. Artigas, B. Lubac, A. Gardel, J. Caillaud, and S. Lesourd, “Analyse of the inherent optical properties of French Guiana coastal waters for remote sensing implications,” J. Coastal Res. SI 56, 1532–1536 (2009).

J. Geophys. Res. (8)

C. G. Fichot, S. E. Lohrenz, and R. Benner, “Pulsed, cross-shelf export of terrigenous dissolved organic carbon to the Gulf of Mexico,” J. Geophys. Res. 119(2), 1176–1194 (2014).
[Crossref]

R. Lopez, C. E. Del Castillo, R. L. Miller, J. Slisbury, and D. Wisser, “Examining organic carbon transport by the Orinoco River using SeaWiFS imagery,” J. Geophys. Res. 117(G3), G03022 (2012).
[Crossref]

M. Babin, D. Stramski, G. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 3211 (2003).
[Crossref]

A. Mannino, M. E. Russ, and S. B. Hooker, “Algorithm development and validation for satellite-derived distribution of DOC and CDOM in the U.S Middle Atlantic Bight,” J. Geophys. Res. 113(C7), 07051 (2008).
[Crossref]

X. Pan, A. Mannino, M. E. Russ, and S. B. Hooker, “Remote sensing of the absorption coefficients and chlorophyll a concentration in the United States southern Middle Atlantic Bight from SeaWiFS and MODIS-Aqua,” J. Geophys. Res. 113(C11), C11022 (2008).
[Crossref]

R. G. M. Spencer, P. J. Hermes, R. Ruf, A. Baker, R. Y. Dyda, A. Stubbins, and J. Six, “Temporal controls of dissolved organic matter and lignin biogeochemistry in a pristine tropical river, Democratic Republic of Congo,” J. Geophys. Res. 115(G3), G03013 (2010).
[Crossref]

M. A. Granskog, C. A. Stedmon, P. A. Dodd, R. M. W. Amon, A. K. Pavlov, L. de Steur, and E. Hansen, “Characteristics of colored dissolved organic matter (CDOM) in the Artic outflow in the Fram Strait: Assessing the changes and fate of terrigenous CDOM in the Arctic Ocean,” J. Geophys. Res. 117(C12), C12021 (2012).
[Crossref]

R. G. M. Spencer, K. D. Butler, and G. R. Aiken, “Dissolved organic carbon and chromophoric dissolved organic matter properties of river in the USA,” J. Geophys. Res. 117(G3), G03001 (2012).
[Crossref]

J. S. Am. Earth Sci. (1)

V. Vantrepotte, E. Gensac, H. Loisel, A. Gardel, D. Dessailly, and X. Mériaux, “Satellite assessment of the coupling between in water suspended particulate matter and mud banks dynamics over the French Guiana coastal domain,” J. S. Am. Earth Sci. 44, 25–34 (2013).
[Crossref]

Limnol. Oceanogr. (5)

J. R. Helms, A. Stubbins, J. D. Ritchie, E. C. Minor, D. J. Kieber, and K. Mopper, “Absorption spectral slopes and slope ratios as indicator of molecular weight, source, and photobleaching of chromophoric dissolved organic matter,” Limnol. Oceanogr. 53(3), 955–969 (2008).
[Crossref]

A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26(1), 43–53 (1981).
[Crossref]

E. Ortega-Retuerta, T. K. Frazer, C. M. Duarte, S. Ruiz-Halpern, A. Tovar-Sánchez, J. M. Arrieta, and I. Reche, “Biogeneration of chromophoric dissolved organic matter by bacteria end krill in the Southern Ocean,” Limnol. Oceanogr. 54(6), 1941–1950 (2009).
[Crossref]

X. Mari, E. Rochelle-Newall, J. P. Torréton, O. Pringault, A. Jouon, and C. Migon, “Water residence time: A regulatory factor of the DOM to POM transfer efficiency,” Limnol. Oceanogr. 52(2), 808–819 (2007).
[Crossref]

C. G. Fichot and R. Benner, “The spectral slope coefficient of chromophoric dissolved organic matter (S275-295) as a tracer of terrigenous dissolved organic carbon in river-influenced ocean margins,” Limnol. Oceanogr. 57(5), 1453–1466 (2012).
[Crossref]

Mar. Chem. (6)

L. Yang, H. Hong, C. T. A. Chen, W. Guo, and T. H. Huang, “Chromophoric dissolved organic matter in the estuaries of populated and mountainous Taiwan,” Mar. Chem. 157, 12–23 (2013).
[Crossref]

N. R. Bates and D. A. Hansell, “A high resolution study of surface layer hydrographic and biogeochemical properties between Cheasapeake Bay and Bermuda,” Mar. Chem. 67(1-2), 1–16 (1999).
[Crossref]

G. M. Ferrari, “The relationship between chromophoric dissolved organic matter and dissolved organic carbon in the European Atlantic coastal area and in the West Mediterranean Sea (Gulf of lions),” Mar. Chem. 70(4), 339–357 (2000).
[Crossref]

R. Del Vecchio and N. V. Blough, “Spatial and seasonal distribution of chromophoric dissolved organic matter and dissolved organic carbon in the Middle Atlantic Bight,” Mar. Chem. 89(1-4), 169–187 (2004).
[Crossref]

C. L. Osburn and C. A. Stedmon, “Linking the chemical and optical properties of dissolved organic matter in the Baltic-North Sea transition zone to differentiate three allochtonous inputs,” Mar. Chem. 126(1–4), 281–294 (2011).
[Crossref]

H. Xie, C. Aubry, S. Bélanger, and G. Song, “The dynamics of absorption coefficients of CDOM and particles in the St.Lawrence estuarine system: biogeochimical and physical implications,” Mar. Chem. 128-129(1), 44–56 (2012).
[Crossref]

Opt. Express (1)

Remote Sens. Environ. (5)

V. Vantrepotte, H. Loisel, D. Dessailly, and X. Mériaux, “Optical classification of contrasted coastal waters,” Remote Sens. Environ. 123, 306–323 (2012).
[Crossref]

C. Goyens, C. Jamet, and T. Schroeder, “Evaluation of four atmospheric correction algorithms for MODIS-AQUA image over contrasted coastal waters,” Remote Sens. Environ. 131, 63–75 (2013).
[Crossref]

Q. Dong, S. Shang, and Z. Lee, “An algorithm to retrieve absorption coefficient of chromophoric dissolved organic matter from ocean color,” Remote Sens. Environ. 128, 259–267 (2013).
[Crossref]

B. Lubac and H. Loisel, “Variability and classification of remote sensing reflectance spectra in the eastern English Channel and southern North Sea,” Remote Sens. Environ. 110(1), 45–58 (2007).
[Crossref]

C. E. Del Castillo and R. L. Miller, “On the use of ocean remote sensing to measure the transport of dissolved organic carbon by the Mississippi River Plume,” Remote Sens. Environ. 112(3), 836–844 (2008).
[Crossref]

Sci Rep (1)

C. G. Fichot, K. Kaiser, S. B. Hooker, R. M. W. Amon, M. Babin, S. Bélanger, S. A. Walker, and R. Benner, “Pan-Arctic distributions of continental runoff in the Arctic Ocean,” Sci Rep 3, 1053 (2013).
[Crossref] [PubMed]

Other (4)

B. G. Mitchell, M. Kahru, J. Wieland, and M. Stramska, “Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, J. L. Mueller, G. D. Fargion and C. R. McClain, eds. (NASA Goddard Space Flight Center, 2003).

C. T. A. Chen, “Exchanges of carbon in the coastal seas,” in The Global Carbon Cycle: Integrating Humans, Climate and the Natural World, C. B. Field and M. R. Raupach, eds. (Island Press, 2004).

N. V. Blough and R. Del Vecchio, “Distribution and dynamics of chromophoric dissolved organic matter (CDOM) in the coastal environment,” in Biogeochemistry of marine dissolved organic matter, D. A. Hansell and C. A. Carlson, ed. (Academic, 2002).

J. I. Hedges, “Why dissolved organic matter,” in Biogeochemistry of Marine Dissolved Organic Matter, D. A. Hansell and C. A. Carlson, ed. (Academic, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Location of the stations sampled in the frame of this study. (a) French Guyana cruises in 2010 (triangle) and 2012 (cross). (b) VITEL cruises sampling stations within the Hai Phong bay and Red River Delta in Vietnam in 2011 (triangle) and 2013 (cross).(c) Stations biweekly visited along a coastal-offshore transect (circle) in the eastern English Channel or during short episodic cruises within coastal and estuarine waters of the English Channel (cross) in 2012 and 2013.
Fig. 2
Fig. 2 Relationships between salinity and a) acdom(412), b) DOC, c) a*cdom(412) and d) S275-295, for the French Guiana, Vietnam and eastern English Channel coastal waters.
Fig. 3
Fig. 3 acdom(412)-DOC linear relationships (black lines) in (a) French Guiana, (b) Vietnamese coastal waters, and (c) the eastern English Channel. The red lines in (a), (b), and (c) delimit the 95% confidence intervals. The relationships at 355 nm in these three regions (eastern English Channel: N = 68, r2 = 0.77, Vietnam: N = 41, r2 = 0.73, French Guiana: N = 49, r2 = 0.79) are compared with those reported in the literature for diverse coastal waters under the influence of river discharges in DOM (Middle Atlantic Bight (MAB), Chesapeake Bay (CB) and Delaware Bay (DB) [9, 13, 18].
Fig. 4
Fig. 4 a) Relationship between a*cdom(412) and S275-295 for the development data set gathering data collected in French Guiana, Vietnamese and English Channel coastal waters. The same relationship is provided at 355 nm (b) for comparison with Fichot and Benner [14].
Fig. 5
Fig. 5 Relationship between acdom(412) and S275-295 obtained for the development data set.
Fig. 6
Fig. 6 Relationship between acdom(412) and a*cdom(412) in the three geographical areas investigated.
Fig. 7
Fig. 7 Scatter plots of the retrieved a*cdom(412) values using (a) the general formulations in Eqs. (6) and (7) (S275-295 based method) and (b) Eq. (8) (acdom(412) based method) as a function of the measured a*cdom(412) values for the development data set. The solid lines represent 1:1 line and the dashed lines represents the 20% error lines.
Fig. 8
Fig. 8 Scatter plots of the DOC retrieved values from (a) regional acdom(412)-DOC relationships (b) the S275-295 based method, and (c) the acdom(412) based method, as a function of the measured DOC values. The solid lines represent the 1:1 line, and the dashed lines represents the 20% error lines. The values of statistical indicators are provided in each panel.
Fig. 9
Fig. 9 a*cdom(412) and DOC retrieved from the general formulations in Eqs. (6) and (7) (S275-295 based method, a), b)) and in Eq. (8) (acdom(412) based method c), d) for the validation data set. Samples represented in green correspond to data with relatively high levels of Chla (see text). The solid lines represent the 1:1 line, and the dashed lines represents the 20% error lines.
Fig. 10
Fig. 10 S275-295 retrieval obtained from a multi-linear combination of the MODIS marine reflectance using the original algorithms by Fichot et al. [20] and Fichot et al. [44] applied to the Vietnamese and French Guiana samples.
Fig. 11
Fig. 11 MODIS DOC distribution in the eastern English Channel, Vietnamese and French Guiana coastal waters estimated from regional relationships (Fig. 3), acdom-based generalized formulation (Eq. (8)) and S275-295 -based relationships (Eq. (6)) with S275-295 estimated from acdom(412) (Eq. (7)) or from the reflectance according to Fichot et al. [20, 44]. acdom(412) was computed from the MODIS reflectance using the recent algorithm by Loisel et al. [43]. Black pixels indicate invalid reflectance data or data out of the limits of applicability of the different approaches proposed (see text).

Tables (4)

Tables Icon

Table 1 Description of the development and validation (in bold) data sets.

Tables Icon

Table 2 Median, standard deviation, and range values of salinity, acdom(412), S275-295, DOC, a*cdom(412) measurements in the French Guiana, eastern English Channel and Vietnamese coastal waters.

Tables Icon

Table 3 Statistics for a*cdom(412) and DOC retrievals using the regional acdom(412) vs DOC relationships derived for each site investigated and the two proposed generalized formulations.

Tables Icon

Table 4 Statistics for a*cdom(412) and DOC retrievals for the validation data set using the two proposed generalized formulations.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

a cdom (λ)=2.303.A(λ)/L
a cdom (λ)= a cdom ( λ 0 ) e S(λ λ 0 )
RMSD= i=1 N ( y i x i )² N
MRAD=100. 1 N i=1 N | y i x i | x i
Bias=100. 1 N i=1 N y i x i x i
a cdom * (412)=a.( e (b. S 275295 ) e (c. S 275295 ) )+d
S 275295 = (0.0425+0.1061. a cdom (412)) 1+9.238. a cdom (412)
a cdom * (412)= 10 (0.7109. log 10 ( a cdom (412))2.1722)

Metrics