Abstract

We report a cost-effective transmitter optical sub-assembly using a monolithic four-wavelength vertical-cavity surface-emitting laser (VCSEL) array with 100-GHz wavelength spacing for future-proof mobile fronthaul transport using the data rate of common public radio interface option 6. The wavelength spacing is achieved using selectively etched cavity control layers and fine current adjustment. The differences in operating current and output power for maintaining the wavelength spacing of four VCSELs are <1.4 mA and <1 dB, respectively. Stable operation performance without mode hopping is observed, and error-free transmission under direct modulation is demonstrated over a 20-km single-mode fiber without any dispersion-compensation techniques.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Bidirectional Fiber-Wireless Access Technology for 5G Mobile Spectral Aggregation and Cell Densification

Mu Xu, Jhih-Heng Yan, Junwen Zhang, Feng Lu, Jing Wang, Lin Cheng, Daniel Guidotti, and Gee-Kung Chang
J. Opt. Commun. Netw. 8(12) B104-B110 (2016)

A cost-effective 25-Gb/s EML TOSA using all-in-one FPCB wiring and metal optical bench

Young-Tak Han, Oh-Kee Kwon, Dong-Hun Lee, Chul-Wook Lee, Young-Ahn Leem, Jang-Uk Shin, Sang-Ho Park, and Yongsoon Baek
Opt. Express 21(22) 26962-26971 (2013)

Digital Mobile Fronthaul Based on Delta–Sigma Modulation for 32 LTE Carrier Aggregation and FBMC Signals

Jing Wang, Zhenhua Yu, Kai Ying, Junwen Zhang, Feng Lu, Mu Xu, Lin Cheng, Xiaoli Ma, and Gee-Kung Chang
J. Opt. Commun. Netw. 9(2) A233-A244 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Ghosh, R. Ratasuk, B. Mondal, B. Managalvedhe, and T. Thomas, “LTE-advanced: next-generation wireless broadband technology,” IEEE Wireless Commun. 17(3), 10–22 (2010).
    [Crossref]
  2. S. M. Kim, “A study on the output power optimization of mobile WiMAX base station,” J. Kor. Inf. Commun. Soc. 35(4), 341–349 (2010).
  3. G. Yuan, X. Zhang, W. Wang, and Y. Yang, “Carrier aggregation for LTE-Advanced mobile communication systems,” IEEE Commun. Mag. 48(2), 88–93 (2010).
    [Crossref]
  4. A. B. Ericsson, Huawei Technologies Co. Ltd, NEC Corporation, Alcatel Lucent, and Nokia Siemens Networks GmbH & Co. KG., “CPRI specification v6.0,” http://www.cpri.info/downloads/CPRI_v_6_0_2013-08-30.pdf .
  5. F. Ponzini, L. Giorgi, A. Bianchi, and R. Sabella, “Centralized radio access networks over wavelength-division multiplexing: a plug-and-play implementation,” IEEE Commun. Mag. 51(9), 94–99 (2013).
    [Crossref]
  6. J. H. Lee, S.-H. Cho, K. H. Doo, S.-I. Myong, J. H. Lee, and S. S. Lee, “CPRI transceiver for mobile front-haul based on wavelength division multiplexing,” in Proceedings of the International Conference on ICT Convergence (ICTC), (2012), Paper VI-4.5.
    [Crossref]
  7. P. Chanclou, A. Pizzinat, F. Leclech, T. L. Reedeker, Y. Lagadec, F. Saliou, B. Leguyader, L. Guillo, Q. Deniel, S. Gosselin, S. D. Le, T. Diallo, R. Brenot, F. Lelarge, L. Marazzi, P. Parolari, M. Martinelli, S. O’dull, A. Gebrewold, D. Hillerkuss, J. Leuthold, G. Gavioli, and P. Galli, “Optical fiber solution for mobile fronthaul to achieve cloud radio access network,” in Proceedings of the Future Network and Mobile Summit (FutureNetworkSummit), (2013), pp. 1–11.
  8. S.-H. Cho, J. H. Lee, K. H. Doo, S. I. Myong, J. H. Lee, and S. S. Lee, “Experimental investigations of RIN of spectrally sliced ASE injected RSOA in WDM-PON for mobile fronthauling applications based on CPRI line rate option 3,” in Proceedings of the International Conference on ICT Convergence (ICTC), (2012), Paper VI-4.3.
    [Crossref]
  9. Y. Ma, D. Liu, J. Yu, and X. Wang, “System evaluation of economic 16/32chs 1.25Gbps WDM-PON with self-seeded RSOA,” Opt. Express 20(20), 22523–22530 (2012).
    [Crossref] [PubMed]
  10. L. Marazzi, P. Parolari, R. Brenot, G. de Valicourt, and M. Martinelli, “Network-embedded self-tuning cavity for WDM-PON transmitter,” Opt. Express 20(4), 3781–3786 (2012).
    [Crossref] [PubMed]
  11. W. Lee, S.-H. Cho, J. Park, B. K. Kim, and B. Kim, “Noise suppression of spectrum-sliced WDM-PON light sources using FP-LD,” ETRI J. 27(3), 334–336 (2005).
    [Crossref]
  12. C. J. Chang-Hasnain, M. W. Maeda, N. G. Stoffel, J. P. Harbison, L. T. Florez, and J. Jewell, “Surface emitting laser arrays with uniformly separated wavelengths,” Electron. Lett. 26(13), 940–942 (1990).
    [Crossref]
  13. H. Saito, I. Ogura, and Y. Sugimoto, “Uniform CW operation of multiple-wavelength vertical-cavity surface-emitting lasers fabricated by mask molecular beam epitaxy,” IEEE Photon. Technol. Lett. 8(9), 1118–1120 (1996).
    [Crossref]
  14. F. Koyama, T. Mukaihara, Y. Hayashi, N. Ohnoki, N. Hatori, and K. Iga, “Two-dimensional mutiwavelength surface emitting laser arrays fabricated by nonplanar MOCVD,” Electron. Lett. 30(23), 1947–1948 (1994).
    [Crossref]
  15. G. G. Ortiz, S. Q. Luong, S. Z. Sun, J. Cheng, H. Q. Hou, G. A. Vawter, and B. E. Hammons, “Monolithic, multiple-wavelength vertical-cavity surface-emitting laser arrays by surface-controlled MOCVD growth rate enhancement and reduction,” IEEE Photon. Technol. Lett. 9(8), 1069–1071 (1997).
  16. W. Hofmann, E. Wong, G. Böhm, M. Ortsiefer, N. H. Zhu, and M. C. Amann, “1.55-μm VCSEL arrays for high-bandwidth WDM-PONs,” IEEE Photon. Technol. Lett. 20(4), 291–293 (2008).
    [Crossref]
  17. A. Karim, J. Piprek, P. Abraham, D. Lofgreen, Y.-J. Chiu, and J. E. Bowers, “1.55-μm vertical-cavity laser arrays for wavelength-division multiplexing,” IEEE J. Sel. Top. Quantum Electron. 7(2), 178–183 (2001).
    [Crossref]
  18. J.-H. Kim, B.-S. Yoo, J.-H. Shin, W.-S. Han, O.-K. Kwon, Y.-G. Ju, and H.-W. Song, “Fabrication method of densely spaced 1.55-μm multiple-wavelength vertical-cavity surface-emitting laser array structure for the application of dense wavelength division multiplexing,” Jap. J. Appl. Phys. 43(1), 137–139 (2004).
    [Crossref]
  19. H. J. Unold, S. W. Z. Mahmoud, R. Jager, M. Grabherr, R. Michalzik, and K. J. Ebeling, “Large-area single-mode VCSELs and the self-aligned surface relief,” IEEE J. Sel. Top. Quantum Electron. 7(2), 386–392 (2001).
    [Crossref]
  20. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (John Willey & Sons, 1995), Chap. 2.
  21. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (John Willey & Sons, 1995), Chap. 5.
  22. N. Nishiyama, C. Caneau, S. Tsuda, G. Guryanov, M. Hu, R. Bhat, and C.-E. Zah, “10-Gb/s error-free transmission under optical reflection using isolator-free 1.3-μm InP-based vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 17(8), 1605–1607 (2005).
    [Crossref]
  23. K. Sato, S. Kuwahara, and Y. Miyamoto, “Chirp characteristics of 40-Gb/s directly modulated distributed-feedback laser diodes,” J. Lightwave Technol. 23(11), 3790–3797 (2005).
    [Crossref]
  24. K. Yamada, K. Nakamura, Y. Matsui, T. Kunii, and Y. Ogawa, “Negative-chirp electroabsorption modulator using low-wavelength detuning,” IEEE Photon. Technol. Lett. 7(10), 1157–1158 (1995).
    [Crossref]
  25. J. Yu, Z. Jia, M.-F. Huang, M. Haris, P. N. Ji, T. Wang, and G.-K. Chang, “Applications of 40-Gb/s chirp-managed laser in access and metro networks,” J. Lightwave Technol. 27(3), 253–265 (2009).

2013 (1)

F. Ponzini, L. Giorgi, A. Bianchi, and R. Sabella, “Centralized radio access networks over wavelength-division multiplexing: a plug-and-play implementation,” IEEE Commun. Mag. 51(9), 94–99 (2013).
[Crossref]

2012 (2)

2010 (3)

A. Ghosh, R. Ratasuk, B. Mondal, B. Managalvedhe, and T. Thomas, “LTE-advanced: next-generation wireless broadband technology,” IEEE Wireless Commun. 17(3), 10–22 (2010).
[Crossref]

S. M. Kim, “A study on the output power optimization of mobile WiMAX base station,” J. Kor. Inf. Commun. Soc. 35(4), 341–349 (2010).

G. Yuan, X. Zhang, W. Wang, and Y. Yang, “Carrier aggregation for LTE-Advanced mobile communication systems,” IEEE Commun. Mag. 48(2), 88–93 (2010).
[Crossref]

2009 (1)

2008 (1)

W. Hofmann, E. Wong, G. Böhm, M. Ortsiefer, N. H. Zhu, and M. C. Amann, “1.55-μm VCSEL arrays for high-bandwidth WDM-PONs,” IEEE Photon. Technol. Lett. 20(4), 291–293 (2008).
[Crossref]

2005 (3)

W. Lee, S.-H. Cho, J. Park, B. K. Kim, and B. Kim, “Noise suppression of spectrum-sliced WDM-PON light sources using FP-LD,” ETRI J. 27(3), 334–336 (2005).
[Crossref]

K. Sato, S. Kuwahara, and Y. Miyamoto, “Chirp characteristics of 40-Gb/s directly modulated distributed-feedback laser diodes,” J. Lightwave Technol. 23(11), 3790–3797 (2005).
[Crossref]

N. Nishiyama, C. Caneau, S. Tsuda, G. Guryanov, M. Hu, R. Bhat, and C.-E. Zah, “10-Gb/s error-free transmission under optical reflection using isolator-free 1.3-μm InP-based vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 17(8), 1605–1607 (2005).
[Crossref]

2004 (1)

J.-H. Kim, B.-S. Yoo, J.-H. Shin, W.-S. Han, O.-K. Kwon, Y.-G. Ju, and H.-W. Song, “Fabrication method of densely spaced 1.55-μm multiple-wavelength vertical-cavity surface-emitting laser array structure for the application of dense wavelength division multiplexing,” Jap. J. Appl. Phys. 43(1), 137–139 (2004).
[Crossref]

2001 (2)

H. J. Unold, S. W. Z. Mahmoud, R. Jager, M. Grabherr, R. Michalzik, and K. J. Ebeling, “Large-area single-mode VCSELs and the self-aligned surface relief,” IEEE J. Sel. Top. Quantum Electron. 7(2), 386–392 (2001).
[Crossref]

A. Karim, J. Piprek, P. Abraham, D. Lofgreen, Y.-J. Chiu, and J. E. Bowers, “1.55-μm vertical-cavity laser arrays for wavelength-division multiplexing,” IEEE J. Sel. Top. Quantum Electron. 7(2), 178–183 (2001).
[Crossref]

1997 (1)

G. G. Ortiz, S. Q. Luong, S. Z. Sun, J. Cheng, H. Q. Hou, G. A. Vawter, and B. E. Hammons, “Monolithic, multiple-wavelength vertical-cavity surface-emitting laser arrays by surface-controlled MOCVD growth rate enhancement and reduction,” IEEE Photon. Technol. Lett. 9(8), 1069–1071 (1997).

1996 (1)

H. Saito, I. Ogura, and Y. Sugimoto, “Uniform CW operation of multiple-wavelength vertical-cavity surface-emitting lasers fabricated by mask molecular beam epitaxy,” IEEE Photon. Technol. Lett. 8(9), 1118–1120 (1996).
[Crossref]

1995 (1)

K. Yamada, K. Nakamura, Y. Matsui, T. Kunii, and Y. Ogawa, “Negative-chirp electroabsorption modulator using low-wavelength detuning,” IEEE Photon. Technol. Lett. 7(10), 1157–1158 (1995).
[Crossref]

1994 (1)

F. Koyama, T. Mukaihara, Y. Hayashi, N. Ohnoki, N. Hatori, and K. Iga, “Two-dimensional mutiwavelength surface emitting laser arrays fabricated by nonplanar MOCVD,” Electron. Lett. 30(23), 1947–1948 (1994).
[Crossref]

1990 (1)

C. J. Chang-Hasnain, M. W. Maeda, N. G. Stoffel, J. P. Harbison, L. T. Florez, and J. Jewell, “Surface emitting laser arrays with uniformly separated wavelengths,” Electron. Lett. 26(13), 940–942 (1990).
[Crossref]

Abraham, P.

A. Karim, J. Piprek, P. Abraham, D. Lofgreen, Y.-J. Chiu, and J. E. Bowers, “1.55-μm vertical-cavity laser arrays for wavelength-division multiplexing,” IEEE J. Sel. Top. Quantum Electron. 7(2), 178–183 (2001).
[Crossref]

Amann, M. C.

W. Hofmann, E. Wong, G. Böhm, M. Ortsiefer, N. H. Zhu, and M. C. Amann, “1.55-μm VCSEL arrays for high-bandwidth WDM-PONs,” IEEE Photon. Technol. Lett. 20(4), 291–293 (2008).
[Crossref]

Bhat, R.

N. Nishiyama, C. Caneau, S. Tsuda, G. Guryanov, M. Hu, R. Bhat, and C.-E. Zah, “10-Gb/s error-free transmission under optical reflection using isolator-free 1.3-μm InP-based vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 17(8), 1605–1607 (2005).
[Crossref]

Bianchi, A.

F. Ponzini, L. Giorgi, A. Bianchi, and R. Sabella, “Centralized radio access networks over wavelength-division multiplexing: a plug-and-play implementation,” IEEE Commun. Mag. 51(9), 94–99 (2013).
[Crossref]

Böhm, G.

W. Hofmann, E. Wong, G. Böhm, M. Ortsiefer, N. H. Zhu, and M. C. Amann, “1.55-μm VCSEL arrays for high-bandwidth WDM-PONs,” IEEE Photon. Technol. Lett. 20(4), 291–293 (2008).
[Crossref]

Bowers, J. E.

A. Karim, J. Piprek, P. Abraham, D. Lofgreen, Y.-J. Chiu, and J. E. Bowers, “1.55-μm vertical-cavity laser arrays for wavelength-division multiplexing,” IEEE J. Sel. Top. Quantum Electron. 7(2), 178–183 (2001).
[Crossref]

Brenot, R.

Caneau, C.

N. Nishiyama, C. Caneau, S. Tsuda, G. Guryanov, M. Hu, R. Bhat, and C.-E. Zah, “10-Gb/s error-free transmission under optical reflection using isolator-free 1.3-μm InP-based vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 17(8), 1605–1607 (2005).
[Crossref]

Chang, G.-K.

Chang-Hasnain, C. J.

C. J. Chang-Hasnain, M. W. Maeda, N. G. Stoffel, J. P. Harbison, L. T. Florez, and J. Jewell, “Surface emitting laser arrays with uniformly separated wavelengths,” Electron. Lett. 26(13), 940–942 (1990).
[Crossref]

Cheng, J.

G. G. Ortiz, S. Q. Luong, S. Z. Sun, J. Cheng, H. Q. Hou, G. A. Vawter, and B. E. Hammons, “Monolithic, multiple-wavelength vertical-cavity surface-emitting laser arrays by surface-controlled MOCVD growth rate enhancement and reduction,” IEEE Photon. Technol. Lett. 9(8), 1069–1071 (1997).

Chiu, Y.-J.

A. Karim, J. Piprek, P. Abraham, D. Lofgreen, Y.-J. Chiu, and J. E. Bowers, “1.55-μm vertical-cavity laser arrays for wavelength-division multiplexing,” IEEE J. Sel. Top. Quantum Electron. 7(2), 178–183 (2001).
[Crossref]

Cho, S.-H.

W. Lee, S.-H. Cho, J. Park, B. K. Kim, and B. Kim, “Noise suppression of spectrum-sliced WDM-PON light sources using FP-LD,” ETRI J. 27(3), 334–336 (2005).
[Crossref]

S.-H. Cho, J. H. Lee, K. H. Doo, S. I. Myong, J. H. Lee, and S. S. Lee, “Experimental investigations of RIN of spectrally sliced ASE injected RSOA in WDM-PON for mobile fronthauling applications based on CPRI line rate option 3,” in Proceedings of the International Conference on ICT Convergence (ICTC), (2012), Paper VI-4.3.
[Crossref]

J. H. Lee, S.-H. Cho, K. H. Doo, S.-I. Myong, J. H. Lee, and S. S. Lee, “CPRI transceiver for mobile front-haul based on wavelength division multiplexing,” in Proceedings of the International Conference on ICT Convergence (ICTC), (2012), Paper VI-4.5.
[Crossref]

de Valicourt, G.

Doo, K. H.

J. H. Lee, S.-H. Cho, K. H. Doo, S.-I. Myong, J. H. Lee, and S. S. Lee, “CPRI transceiver for mobile front-haul based on wavelength division multiplexing,” in Proceedings of the International Conference on ICT Convergence (ICTC), (2012), Paper VI-4.5.
[Crossref]

S.-H. Cho, J. H. Lee, K. H. Doo, S. I. Myong, J. H. Lee, and S. S. Lee, “Experimental investigations of RIN of spectrally sliced ASE injected RSOA in WDM-PON for mobile fronthauling applications based on CPRI line rate option 3,” in Proceedings of the International Conference on ICT Convergence (ICTC), (2012), Paper VI-4.3.
[Crossref]

Ebeling, K. J.

H. J. Unold, S. W. Z. Mahmoud, R. Jager, M. Grabherr, R. Michalzik, and K. J. Ebeling, “Large-area single-mode VCSELs and the self-aligned surface relief,” IEEE J. Sel. Top. Quantum Electron. 7(2), 386–392 (2001).
[Crossref]

Florez, L. T.

C. J. Chang-Hasnain, M. W. Maeda, N. G. Stoffel, J. P. Harbison, L. T. Florez, and J. Jewell, “Surface emitting laser arrays with uniformly separated wavelengths,” Electron. Lett. 26(13), 940–942 (1990).
[Crossref]

Ghosh, A.

A. Ghosh, R. Ratasuk, B. Mondal, B. Managalvedhe, and T. Thomas, “LTE-advanced: next-generation wireless broadband technology,” IEEE Wireless Commun. 17(3), 10–22 (2010).
[Crossref]

Giorgi, L.

F. Ponzini, L. Giorgi, A. Bianchi, and R. Sabella, “Centralized radio access networks over wavelength-division multiplexing: a plug-and-play implementation,” IEEE Commun. Mag. 51(9), 94–99 (2013).
[Crossref]

Grabherr, M.

H. J. Unold, S. W. Z. Mahmoud, R. Jager, M. Grabherr, R. Michalzik, and K. J. Ebeling, “Large-area single-mode VCSELs and the self-aligned surface relief,” IEEE J. Sel. Top. Quantum Electron. 7(2), 386–392 (2001).
[Crossref]

Guryanov, G.

N. Nishiyama, C. Caneau, S. Tsuda, G. Guryanov, M. Hu, R. Bhat, and C.-E. Zah, “10-Gb/s error-free transmission under optical reflection using isolator-free 1.3-μm InP-based vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 17(8), 1605–1607 (2005).
[Crossref]

Hammons, B. E.

G. G. Ortiz, S. Q. Luong, S. Z. Sun, J. Cheng, H. Q. Hou, G. A. Vawter, and B. E. Hammons, “Monolithic, multiple-wavelength vertical-cavity surface-emitting laser arrays by surface-controlled MOCVD growth rate enhancement and reduction,” IEEE Photon. Technol. Lett. 9(8), 1069–1071 (1997).

Han, W.-S.

J.-H. Kim, B.-S. Yoo, J.-H. Shin, W.-S. Han, O.-K. Kwon, Y.-G. Ju, and H.-W. Song, “Fabrication method of densely spaced 1.55-μm multiple-wavelength vertical-cavity surface-emitting laser array structure for the application of dense wavelength division multiplexing,” Jap. J. Appl. Phys. 43(1), 137–139 (2004).
[Crossref]

Harbison, J. P.

C. J. Chang-Hasnain, M. W. Maeda, N. G. Stoffel, J. P. Harbison, L. T. Florez, and J. Jewell, “Surface emitting laser arrays with uniformly separated wavelengths,” Electron. Lett. 26(13), 940–942 (1990).
[Crossref]

Haris, M.

Hatori, N.

F. Koyama, T. Mukaihara, Y. Hayashi, N. Ohnoki, N. Hatori, and K. Iga, “Two-dimensional mutiwavelength surface emitting laser arrays fabricated by nonplanar MOCVD,” Electron. Lett. 30(23), 1947–1948 (1994).
[Crossref]

Hayashi, Y.

F. Koyama, T. Mukaihara, Y. Hayashi, N. Ohnoki, N. Hatori, and K. Iga, “Two-dimensional mutiwavelength surface emitting laser arrays fabricated by nonplanar MOCVD,” Electron. Lett. 30(23), 1947–1948 (1994).
[Crossref]

Hofmann, W.

W. Hofmann, E. Wong, G. Böhm, M. Ortsiefer, N. H. Zhu, and M. C. Amann, “1.55-μm VCSEL arrays for high-bandwidth WDM-PONs,” IEEE Photon. Technol. Lett. 20(4), 291–293 (2008).
[Crossref]

Hou, H. Q.

G. G. Ortiz, S. Q. Luong, S. Z. Sun, J. Cheng, H. Q. Hou, G. A. Vawter, and B. E. Hammons, “Monolithic, multiple-wavelength vertical-cavity surface-emitting laser arrays by surface-controlled MOCVD growth rate enhancement and reduction,” IEEE Photon. Technol. Lett. 9(8), 1069–1071 (1997).

Hu, M.

N. Nishiyama, C. Caneau, S. Tsuda, G. Guryanov, M. Hu, R. Bhat, and C.-E. Zah, “10-Gb/s error-free transmission under optical reflection using isolator-free 1.3-μm InP-based vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 17(8), 1605–1607 (2005).
[Crossref]

Huang, M.-F.

Iga, K.

F. Koyama, T. Mukaihara, Y. Hayashi, N. Ohnoki, N. Hatori, and K. Iga, “Two-dimensional mutiwavelength surface emitting laser arrays fabricated by nonplanar MOCVD,” Electron. Lett. 30(23), 1947–1948 (1994).
[Crossref]

Jager, R.

H. J. Unold, S. W. Z. Mahmoud, R. Jager, M. Grabherr, R. Michalzik, and K. J. Ebeling, “Large-area single-mode VCSELs and the self-aligned surface relief,” IEEE J. Sel. Top. Quantum Electron. 7(2), 386–392 (2001).
[Crossref]

Jewell, J.

C. J. Chang-Hasnain, M. W. Maeda, N. G. Stoffel, J. P. Harbison, L. T. Florez, and J. Jewell, “Surface emitting laser arrays with uniformly separated wavelengths,” Electron. Lett. 26(13), 940–942 (1990).
[Crossref]

Ji, P. N.

Jia, Z.

Ju, Y.-G.

J.-H. Kim, B.-S. Yoo, J.-H. Shin, W.-S. Han, O.-K. Kwon, Y.-G. Ju, and H.-W. Song, “Fabrication method of densely spaced 1.55-μm multiple-wavelength vertical-cavity surface-emitting laser array structure for the application of dense wavelength division multiplexing,” Jap. J. Appl. Phys. 43(1), 137–139 (2004).
[Crossref]

Karim, A.

A. Karim, J. Piprek, P. Abraham, D. Lofgreen, Y.-J. Chiu, and J. E. Bowers, “1.55-μm vertical-cavity laser arrays for wavelength-division multiplexing,” IEEE J. Sel. Top. Quantum Electron. 7(2), 178–183 (2001).
[Crossref]

Kim, B.

W. Lee, S.-H. Cho, J. Park, B. K. Kim, and B. Kim, “Noise suppression of spectrum-sliced WDM-PON light sources using FP-LD,” ETRI J. 27(3), 334–336 (2005).
[Crossref]

Kim, B. K.

W. Lee, S.-H. Cho, J. Park, B. K. Kim, and B. Kim, “Noise suppression of spectrum-sliced WDM-PON light sources using FP-LD,” ETRI J. 27(3), 334–336 (2005).
[Crossref]

Kim, J.-H.

J.-H. Kim, B.-S. Yoo, J.-H. Shin, W.-S. Han, O.-K. Kwon, Y.-G. Ju, and H.-W. Song, “Fabrication method of densely spaced 1.55-μm multiple-wavelength vertical-cavity surface-emitting laser array structure for the application of dense wavelength division multiplexing,” Jap. J. Appl. Phys. 43(1), 137–139 (2004).
[Crossref]

Kim, S. M.

S. M. Kim, “A study on the output power optimization of mobile WiMAX base station,” J. Kor. Inf. Commun. Soc. 35(4), 341–349 (2010).

Koyama, F.

F. Koyama, T. Mukaihara, Y. Hayashi, N. Ohnoki, N. Hatori, and K. Iga, “Two-dimensional mutiwavelength surface emitting laser arrays fabricated by nonplanar MOCVD,” Electron. Lett. 30(23), 1947–1948 (1994).
[Crossref]

Kunii, T.

K. Yamada, K. Nakamura, Y. Matsui, T. Kunii, and Y. Ogawa, “Negative-chirp electroabsorption modulator using low-wavelength detuning,” IEEE Photon. Technol. Lett. 7(10), 1157–1158 (1995).
[Crossref]

Kuwahara, S.

Kwon, O.-K.

J.-H. Kim, B.-S. Yoo, J.-H. Shin, W.-S. Han, O.-K. Kwon, Y.-G. Ju, and H.-W. Song, “Fabrication method of densely spaced 1.55-μm multiple-wavelength vertical-cavity surface-emitting laser array structure for the application of dense wavelength division multiplexing,” Jap. J. Appl. Phys. 43(1), 137–139 (2004).
[Crossref]

Lee, J. H.

J. H. Lee, S.-H. Cho, K. H. Doo, S.-I. Myong, J. H. Lee, and S. S. Lee, “CPRI transceiver for mobile front-haul based on wavelength division multiplexing,” in Proceedings of the International Conference on ICT Convergence (ICTC), (2012), Paper VI-4.5.
[Crossref]

S.-H. Cho, J. H. Lee, K. H. Doo, S. I. Myong, J. H. Lee, and S. S. Lee, “Experimental investigations of RIN of spectrally sliced ASE injected RSOA in WDM-PON for mobile fronthauling applications based on CPRI line rate option 3,” in Proceedings of the International Conference on ICT Convergence (ICTC), (2012), Paper VI-4.3.
[Crossref]

J. H. Lee, S.-H. Cho, K. H. Doo, S.-I. Myong, J. H. Lee, and S. S. Lee, “CPRI transceiver for mobile front-haul based on wavelength division multiplexing,” in Proceedings of the International Conference on ICT Convergence (ICTC), (2012), Paper VI-4.5.
[Crossref]

S.-H. Cho, J. H. Lee, K. H. Doo, S. I. Myong, J. H. Lee, and S. S. Lee, “Experimental investigations of RIN of spectrally sliced ASE injected RSOA in WDM-PON for mobile fronthauling applications based on CPRI line rate option 3,” in Proceedings of the International Conference on ICT Convergence (ICTC), (2012), Paper VI-4.3.
[Crossref]

Lee, S. S.

J. H. Lee, S.-H. Cho, K. H. Doo, S.-I. Myong, J. H. Lee, and S. S. Lee, “CPRI transceiver for mobile front-haul based on wavelength division multiplexing,” in Proceedings of the International Conference on ICT Convergence (ICTC), (2012), Paper VI-4.5.
[Crossref]

S.-H. Cho, J. H. Lee, K. H. Doo, S. I. Myong, J. H. Lee, and S. S. Lee, “Experimental investigations of RIN of spectrally sliced ASE injected RSOA in WDM-PON for mobile fronthauling applications based on CPRI line rate option 3,” in Proceedings of the International Conference on ICT Convergence (ICTC), (2012), Paper VI-4.3.
[Crossref]

Lee, W.

W. Lee, S.-H. Cho, J. Park, B. K. Kim, and B. Kim, “Noise suppression of spectrum-sliced WDM-PON light sources using FP-LD,” ETRI J. 27(3), 334–336 (2005).
[Crossref]

Liu, D.

Lofgreen, D.

A. Karim, J. Piprek, P. Abraham, D. Lofgreen, Y.-J. Chiu, and J. E. Bowers, “1.55-μm vertical-cavity laser arrays for wavelength-division multiplexing,” IEEE J. Sel. Top. Quantum Electron. 7(2), 178–183 (2001).
[Crossref]

Luong, S. Q.

G. G. Ortiz, S. Q. Luong, S. Z. Sun, J. Cheng, H. Q. Hou, G. A. Vawter, and B. E. Hammons, “Monolithic, multiple-wavelength vertical-cavity surface-emitting laser arrays by surface-controlled MOCVD growth rate enhancement and reduction,” IEEE Photon. Technol. Lett. 9(8), 1069–1071 (1997).

Ma, Y.

Maeda, M. W.

C. J. Chang-Hasnain, M. W. Maeda, N. G. Stoffel, J. P. Harbison, L. T. Florez, and J. Jewell, “Surface emitting laser arrays with uniformly separated wavelengths,” Electron. Lett. 26(13), 940–942 (1990).
[Crossref]

Mahmoud, S. W. Z.

H. J. Unold, S. W. Z. Mahmoud, R. Jager, M. Grabherr, R. Michalzik, and K. J. Ebeling, “Large-area single-mode VCSELs and the self-aligned surface relief,” IEEE J. Sel. Top. Quantum Electron. 7(2), 386–392 (2001).
[Crossref]

Managalvedhe, B.

A. Ghosh, R. Ratasuk, B. Mondal, B. Managalvedhe, and T. Thomas, “LTE-advanced: next-generation wireless broadband technology,” IEEE Wireless Commun. 17(3), 10–22 (2010).
[Crossref]

Marazzi, L.

Martinelli, M.

Matsui, Y.

K. Yamada, K. Nakamura, Y. Matsui, T. Kunii, and Y. Ogawa, “Negative-chirp electroabsorption modulator using low-wavelength detuning,” IEEE Photon. Technol. Lett. 7(10), 1157–1158 (1995).
[Crossref]

Michalzik, R.

H. J. Unold, S. W. Z. Mahmoud, R. Jager, M. Grabherr, R. Michalzik, and K. J. Ebeling, “Large-area single-mode VCSELs and the self-aligned surface relief,” IEEE J. Sel. Top. Quantum Electron. 7(2), 386–392 (2001).
[Crossref]

Miyamoto, Y.

Mondal, B.

A. Ghosh, R. Ratasuk, B. Mondal, B. Managalvedhe, and T. Thomas, “LTE-advanced: next-generation wireless broadband technology,” IEEE Wireless Commun. 17(3), 10–22 (2010).
[Crossref]

Mukaihara, T.

F. Koyama, T. Mukaihara, Y. Hayashi, N. Ohnoki, N. Hatori, and K. Iga, “Two-dimensional mutiwavelength surface emitting laser arrays fabricated by nonplanar MOCVD,” Electron. Lett. 30(23), 1947–1948 (1994).
[Crossref]

Myong, S. I.

S.-H. Cho, J. H. Lee, K. H. Doo, S. I. Myong, J. H. Lee, and S. S. Lee, “Experimental investigations of RIN of spectrally sliced ASE injected RSOA in WDM-PON for mobile fronthauling applications based on CPRI line rate option 3,” in Proceedings of the International Conference on ICT Convergence (ICTC), (2012), Paper VI-4.3.
[Crossref]

Myong, S.-I.

J. H. Lee, S.-H. Cho, K. H. Doo, S.-I. Myong, J. H. Lee, and S. S. Lee, “CPRI transceiver for mobile front-haul based on wavelength division multiplexing,” in Proceedings of the International Conference on ICT Convergence (ICTC), (2012), Paper VI-4.5.
[Crossref]

Nakamura, K.

K. Yamada, K. Nakamura, Y. Matsui, T. Kunii, and Y. Ogawa, “Negative-chirp electroabsorption modulator using low-wavelength detuning,” IEEE Photon. Technol. Lett. 7(10), 1157–1158 (1995).
[Crossref]

Nishiyama, N.

N. Nishiyama, C. Caneau, S. Tsuda, G. Guryanov, M. Hu, R. Bhat, and C.-E. Zah, “10-Gb/s error-free transmission under optical reflection using isolator-free 1.3-μm InP-based vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 17(8), 1605–1607 (2005).
[Crossref]

Ogawa, Y.

K. Yamada, K. Nakamura, Y. Matsui, T. Kunii, and Y. Ogawa, “Negative-chirp electroabsorption modulator using low-wavelength detuning,” IEEE Photon. Technol. Lett. 7(10), 1157–1158 (1995).
[Crossref]

Ogura, I.

H. Saito, I. Ogura, and Y. Sugimoto, “Uniform CW operation of multiple-wavelength vertical-cavity surface-emitting lasers fabricated by mask molecular beam epitaxy,” IEEE Photon. Technol. Lett. 8(9), 1118–1120 (1996).
[Crossref]

Ohnoki, N.

F. Koyama, T. Mukaihara, Y. Hayashi, N. Ohnoki, N. Hatori, and K. Iga, “Two-dimensional mutiwavelength surface emitting laser arrays fabricated by nonplanar MOCVD,” Electron. Lett. 30(23), 1947–1948 (1994).
[Crossref]

Ortiz, G. G.

G. G. Ortiz, S. Q. Luong, S. Z. Sun, J. Cheng, H. Q. Hou, G. A. Vawter, and B. E. Hammons, “Monolithic, multiple-wavelength vertical-cavity surface-emitting laser arrays by surface-controlled MOCVD growth rate enhancement and reduction,” IEEE Photon. Technol. Lett. 9(8), 1069–1071 (1997).

Ortsiefer, M.

W. Hofmann, E. Wong, G. Böhm, M. Ortsiefer, N. H. Zhu, and M. C. Amann, “1.55-μm VCSEL arrays for high-bandwidth WDM-PONs,” IEEE Photon. Technol. Lett. 20(4), 291–293 (2008).
[Crossref]

Park, J.

W. Lee, S.-H. Cho, J. Park, B. K. Kim, and B. Kim, “Noise suppression of spectrum-sliced WDM-PON light sources using FP-LD,” ETRI J. 27(3), 334–336 (2005).
[Crossref]

Parolari, P.

Piprek, J.

A. Karim, J. Piprek, P. Abraham, D. Lofgreen, Y.-J. Chiu, and J. E. Bowers, “1.55-μm vertical-cavity laser arrays for wavelength-division multiplexing,” IEEE J. Sel. Top. Quantum Electron. 7(2), 178–183 (2001).
[Crossref]

Ponzini, F.

F. Ponzini, L. Giorgi, A. Bianchi, and R. Sabella, “Centralized radio access networks over wavelength-division multiplexing: a plug-and-play implementation,” IEEE Commun. Mag. 51(9), 94–99 (2013).
[Crossref]

Ratasuk, R.

A. Ghosh, R. Ratasuk, B. Mondal, B. Managalvedhe, and T. Thomas, “LTE-advanced: next-generation wireless broadband technology,” IEEE Wireless Commun. 17(3), 10–22 (2010).
[Crossref]

Sabella, R.

F. Ponzini, L. Giorgi, A. Bianchi, and R. Sabella, “Centralized radio access networks over wavelength-division multiplexing: a plug-and-play implementation,” IEEE Commun. Mag. 51(9), 94–99 (2013).
[Crossref]

Saito, H.

H. Saito, I. Ogura, and Y. Sugimoto, “Uniform CW operation of multiple-wavelength vertical-cavity surface-emitting lasers fabricated by mask molecular beam epitaxy,” IEEE Photon. Technol. Lett. 8(9), 1118–1120 (1996).
[Crossref]

Sato, K.

Shin, J.-H.

J.-H. Kim, B.-S. Yoo, J.-H. Shin, W.-S. Han, O.-K. Kwon, Y.-G. Ju, and H.-W. Song, “Fabrication method of densely spaced 1.55-μm multiple-wavelength vertical-cavity surface-emitting laser array structure for the application of dense wavelength division multiplexing,” Jap. J. Appl. Phys. 43(1), 137–139 (2004).
[Crossref]

Song, H.-W.

J.-H. Kim, B.-S. Yoo, J.-H. Shin, W.-S. Han, O.-K. Kwon, Y.-G. Ju, and H.-W. Song, “Fabrication method of densely spaced 1.55-μm multiple-wavelength vertical-cavity surface-emitting laser array structure for the application of dense wavelength division multiplexing,” Jap. J. Appl. Phys. 43(1), 137–139 (2004).
[Crossref]

Stoffel, N. G.

C. J. Chang-Hasnain, M. W. Maeda, N. G. Stoffel, J. P. Harbison, L. T. Florez, and J. Jewell, “Surface emitting laser arrays with uniformly separated wavelengths,” Electron. Lett. 26(13), 940–942 (1990).
[Crossref]

Sugimoto, Y.

H. Saito, I. Ogura, and Y. Sugimoto, “Uniform CW operation of multiple-wavelength vertical-cavity surface-emitting lasers fabricated by mask molecular beam epitaxy,” IEEE Photon. Technol. Lett. 8(9), 1118–1120 (1996).
[Crossref]

Sun, S. Z.

G. G. Ortiz, S. Q. Luong, S. Z. Sun, J. Cheng, H. Q. Hou, G. A. Vawter, and B. E. Hammons, “Monolithic, multiple-wavelength vertical-cavity surface-emitting laser arrays by surface-controlled MOCVD growth rate enhancement and reduction,” IEEE Photon. Technol. Lett. 9(8), 1069–1071 (1997).

Thomas, T.

A. Ghosh, R. Ratasuk, B. Mondal, B. Managalvedhe, and T. Thomas, “LTE-advanced: next-generation wireless broadband technology,” IEEE Wireless Commun. 17(3), 10–22 (2010).
[Crossref]

Tsuda, S.

N. Nishiyama, C. Caneau, S. Tsuda, G. Guryanov, M. Hu, R. Bhat, and C.-E. Zah, “10-Gb/s error-free transmission under optical reflection using isolator-free 1.3-μm InP-based vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 17(8), 1605–1607 (2005).
[Crossref]

Unold, H. J.

H. J. Unold, S. W. Z. Mahmoud, R. Jager, M. Grabherr, R. Michalzik, and K. J. Ebeling, “Large-area single-mode VCSELs and the self-aligned surface relief,” IEEE J. Sel. Top. Quantum Electron. 7(2), 386–392 (2001).
[Crossref]

Vawter, G. A.

G. G. Ortiz, S. Q. Luong, S. Z. Sun, J. Cheng, H. Q. Hou, G. A. Vawter, and B. E. Hammons, “Monolithic, multiple-wavelength vertical-cavity surface-emitting laser arrays by surface-controlled MOCVD growth rate enhancement and reduction,” IEEE Photon. Technol. Lett. 9(8), 1069–1071 (1997).

Wang, T.

Wang, W.

G. Yuan, X. Zhang, W. Wang, and Y. Yang, “Carrier aggregation for LTE-Advanced mobile communication systems,” IEEE Commun. Mag. 48(2), 88–93 (2010).
[Crossref]

Wang, X.

Wong, E.

W. Hofmann, E. Wong, G. Böhm, M. Ortsiefer, N. H. Zhu, and M. C. Amann, “1.55-μm VCSEL arrays for high-bandwidth WDM-PONs,” IEEE Photon. Technol. Lett. 20(4), 291–293 (2008).
[Crossref]

Yamada, K.

K. Yamada, K. Nakamura, Y. Matsui, T. Kunii, and Y. Ogawa, “Negative-chirp electroabsorption modulator using low-wavelength detuning,” IEEE Photon. Technol. Lett. 7(10), 1157–1158 (1995).
[Crossref]

Yang, Y.

G. Yuan, X. Zhang, W. Wang, and Y. Yang, “Carrier aggregation for LTE-Advanced mobile communication systems,” IEEE Commun. Mag. 48(2), 88–93 (2010).
[Crossref]

Yoo, B.-S.

J.-H. Kim, B.-S. Yoo, J.-H. Shin, W.-S. Han, O.-K. Kwon, Y.-G. Ju, and H.-W. Song, “Fabrication method of densely spaced 1.55-μm multiple-wavelength vertical-cavity surface-emitting laser array structure for the application of dense wavelength division multiplexing,” Jap. J. Appl. Phys. 43(1), 137–139 (2004).
[Crossref]

Yu, J.

Yuan, G.

G. Yuan, X. Zhang, W. Wang, and Y. Yang, “Carrier aggregation for LTE-Advanced mobile communication systems,” IEEE Commun. Mag. 48(2), 88–93 (2010).
[Crossref]

Zah, C.-E.

N. Nishiyama, C. Caneau, S. Tsuda, G. Guryanov, M. Hu, R. Bhat, and C.-E. Zah, “10-Gb/s error-free transmission under optical reflection using isolator-free 1.3-μm InP-based vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 17(8), 1605–1607 (2005).
[Crossref]

Zhang, X.

G. Yuan, X. Zhang, W. Wang, and Y. Yang, “Carrier aggregation for LTE-Advanced mobile communication systems,” IEEE Commun. Mag. 48(2), 88–93 (2010).
[Crossref]

Zhu, N. H.

W. Hofmann, E. Wong, G. Böhm, M. Ortsiefer, N. H. Zhu, and M. C. Amann, “1.55-μm VCSEL arrays for high-bandwidth WDM-PONs,” IEEE Photon. Technol. Lett. 20(4), 291–293 (2008).
[Crossref]

Electron. Lett. (2)

C. J. Chang-Hasnain, M. W. Maeda, N. G. Stoffel, J. P. Harbison, L. T. Florez, and J. Jewell, “Surface emitting laser arrays with uniformly separated wavelengths,” Electron. Lett. 26(13), 940–942 (1990).
[Crossref]

F. Koyama, T. Mukaihara, Y. Hayashi, N. Ohnoki, N. Hatori, and K. Iga, “Two-dimensional mutiwavelength surface emitting laser arrays fabricated by nonplanar MOCVD,” Electron. Lett. 30(23), 1947–1948 (1994).
[Crossref]

ETRI J. (1)

W. Lee, S.-H. Cho, J. Park, B. K. Kim, and B. Kim, “Noise suppression of spectrum-sliced WDM-PON light sources using FP-LD,” ETRI J. 27(3), 334–336 (2005).
[Crossref]

IEEE Commun. Mag. (2)

G. Yuan, X. Zhang, W. Wang, and Y. Yang, “Carrier aggregation for LTE-Advanced mobile communication systems,” IEEE Commun. Mag. 48(2), 88–93 (2010).
[Crossref]

F. Ponzini, L. Giorgi, A. Bianchi, and R. Sabella, “Centralized radio access networks over wavelength-division multiplexing: a plug-and-play implementation,” IEEE Commun. Mag. 51(9), 94–99 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

A. Karim, J. Piprek, P. Abraham, D. Lofgreen, Y.-J. Chiu, and J. E. Bowers, “1.55-μm vertical-cavity laser arrays for wavelength-division multiplexing,” IEEE J. Sel. Top. Quantum Electron. 7(2), 178–183 (2001).
[Crossref]

H. J. Unold, S. W. Z. Mahmoud, R. Jager, M. Grabherr, R. Michalzik, and K. J. Ebeling, “Large-area single-mode VCSELs and the self-aligned surface relief,” IEEE J. Sel. Top. Quantum Electron. 7(2), 386–392 (2001).
[Crossref]

IEEE Photon. Technol. Lett. (5)

N. Nishiyama, C. Caneau, S. Tsuda, G. Guryanov, M. Hu, R. Bhat, and C.-E. Zah, “10-Gb/s error-free transmission under optical reflection using isolator-free 1.3-μm InP-based vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 17(8), 1605–1607 (2005).
[Crossref]

K. Yamada, K. Nakamura, Y. Matsui, T. Kunii, and Y. Ogawa, “Negative-chirp electroabsorption modulator using low-wavelength detuning,” IEEE Photon. Technol. Lett. 7(10), 1157–1158 (1995).
[Crossref]

G. G. Ortiz, S. Q. Luong, S. Z. Sun, J. Cheng, H. Q. Hou, G. A. Vawter, and B. E. Hammons, “Monolithic, multiple-wavelength vertical-cavity surface-emitting laser arrays by surface-controlled MOCVD growth rate enhancement and reduction,” IEEE Photon. Technol. Lett. 9(8), 1069–1071 (1997).

W. Hofmann, E. Wong, G. Böhm, M. Ortsiefer, N. H. Zhu, and M. C. Amann, “1.55-μm VCSEL arrays for high-bandwidth WDM-PONs,” IEEE Photon. Technol. Lett. 20(4), 291–293 (2008).
[Crossref]

H. Saito, I. Ogura, and Y. Sugimoto, “Uniform CW operation of multiple-wavelength vertical-cavity surface-emitting lasers fabricated by mask molecular beam epitaxy,” IEEE Photon. Technol. Lett. 8(9), 1118–1120 (1996).
[Crossref]

IEEE Wireless Commun. (1)

A. Ghosh, R. Ratasuk, B. Mondal, B. Managalvedhe, and T. Thomas, “LTE-advanced: next-generation wireless broadband technology,” IEEE Wireless Commun. 17(3), 10–22 (2010).
[Crossref]

J. Kor. Inf. Commun. Soc. (1)

S. M. Kim, “A study on the output power optimization of mobile WiMAX base station,” J. Kor. Inf. Commun. Soc. 35(4), 341–349 (2010).

J. Lightwave Technol. (2)

Jap. J. Appl. Phys. (1)

J.-H. Kim, B.-S. Yoo, J.-H. Shin, W.-S. Han, O.-K. Kwon, Y.-G. Ju, and H.-W. Song, “Fabrication method of densely spaced 1.55-μm multiple-wavelength vertical-cavity surface-emitting laser array structure for the application of dense wavelength division multiplexing,” Jap. J. Appl. Phys. 43(1), 137–139 (2004).
[Crossref]

Opt. Express (2)

Other (6)

A. B. Ericsson, Huawei Technologies Co. Ltd, NEC Corporation, Alcatel Lucent, and Nokia Siemens Networks GmbH & Co. KG., “CPRI specification v6.0,” http://www.cpri.info/downloads/CPRI_v_6_0_2013-08-30.pdf .

J. H. Lee, S.-H. Cho, K. H. Doo, S.-I. Myong, J. H. Lee, and S. S. Lee, “CPRI transceiver for mobile front-haul based on wavelength division multiplexing,” in Proceedings of the International Conference on ICT Convergence (ICTC), (2012), Paper VI-4.5.
[Crossref]

P. Chanclou, A. Pizzinat, F. Leclech, T. L. Reedeker, Y. Lagadec, F. Saliou, B. Leguyader, L. Guillo, Q. Deniel, S. Gosselin, S. D. Le, T. Diallo, R. Brenot, F. Lelarge, L. Marazzi, P. Parolari, M. Martinelli, S. O’dull, A. Gebrewold, D. Hillerkuss, J. Leuthold, G. Gavioli, and P. Galli, “Optical fiber solution for mobile fronthaul to achieve cloud radio access network,” in Proceedings of the Future Network and Mobile Summit (FutureNetworkSummit), (2013), pp. 1–11.

S.-H. Cho, J. H. Lee, K. H. Doo, S. I. Myong, J. H. Lee, and S. S. Lee, “Experimental investigations of RIN of spectrally sliced ASE injected RSOA in WDM-PON for mobile fronthauling applications based on CPRI line rate option 3,” in Proceedings of the International Conference on ICT Convergence (ICTC), (2012), Paper VI-4.3.
[Crossref]

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (John Willey & Sons, 1995), Chap. 2.

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (John Willey & Sons, 1995), Chap. 5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Fabrication processes to obtain different lasing wavelengths from a single VCSEL array chip. Four different lasing wavelengths could be achieved through the selective etching technique using cavity control layers. The final VCSEL structure could be obtained after regrowth and cavity etching.
Fig. 2
Fig. 2 A topology of C-RAN optical links utilizing the proposed TOSA. One base station could be supported by the TOSA with a total capacity of 24.567 Gb/s.
Fig. 3
Fig. 3 Experimental setup based on a C-RAN optical link utilizing WDM technology. An EDFA is inserted after the remote node (RN) only for the purpose of optical eye measurement after transmission. A splitter is used after the isolator for simultaneous measurement of optical power and wavelength spectrum. The EDFA and splitter are not components of the C-RAN optical link.
Fig. 4
Fig. 4 (a) Four-wavelength TOSA with VCSEL array and (b) its evaluation board. An 8-pin TO-56 stem with FPCB was employed for the electrical signal, thermistor, and TEC. The temperature was controlled using an externally placed TEC controller.
Fig. 5
Fig. 5 (a) L–I curves and (b) wavelength variations as a function of bias current under modulation. The power and wavelength was simultaneously measured using a 1 × 2 optical coupler. The average wavelength spacing was 65 GHz at the same modulated bias current. Horizontal dashed lines in the right figure denote operating wavelengths of the TOSA after fine current control. The wavelengths are compatible with the ITU-T grid with 100-GHz channel spacing.
Fig. 6
Fig. 6 Spectra of four wavelengths from the proposed TOSA based on a VCSEL array. The 100-GHz wavelength spacing was obtained by fine current control within 1.4 mA difference between four VCSELs.
Fig. 7
Fig. 7 BER curves with data rate of 6.144 Gb/s and PRBS of 27-1. Solid and open symbol denotes the before and after transmission.

Metrics