Abstract

We demonstrate the generation of Bessel beams using an acousto-optic array based on a liquid filled cavity surrounded by a cylindrical multi-element ultrasound transducer array. Conversion of a Gaussian laser mode into a Bessel beam with tunable order and position is shown. Also higher-order Bessel beams up to the fourth order are successfully generated with experimental results very closely matching simulations.

© 2015 Optical Society of America

Full Article  |  PDF Article
Related Articles
Integrated fluidic adaptive zoom lens

De-Ying Zhang, Nicole Justis, and Yu-Hwa Lo
Opt. Lett. 29(24) 2855-2857 (2004)

Axial-lateral parallel time domain OCT with an optical zoom lens and high order diffracted lights for variable imaging range

Yuuki Watanabe, Yasutoki. Takasugi, Kazuhiko Yamada, and Manabu Sato
Opt. Express 15(8) 5208-5217 (2007)

Programmable ultrashort-pulsed flying images

M. Bock, S. K. Das, and R. Grunwald
Opt. Express 17(9) 7465-7478 (2009)

References

  • View by:
  • |
  • |
  • |

  1. B. L. Ellerbroek, “First-order performance evaluation of adaptive-optics systems for atmospheric-turbulence compensation in extended-field-of-view astronomical telescopes,” J. Opt. Soc. Am. 11, 783–805 (1994).
    [Crossref]
  2. D. McGloin, “Optical tweezers: 20 years on,” Phil. Trans. Roy. Soc. A 364, 3521–3537 (2006).
    [Crossref]
  3. T. Cizmar, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010).
    [Crossref]
  4. J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
    [Crossref] [PubMed]
  5. M. Padgett and L. Allen, “The angular momentum of light: optical spanners and the rotational frequency shift,” Opt. Quant. Electron. 31, 1–12 (1999).
    [Crossref]
  6. X. Tsampoula, V. Garces-Chavez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91, 053902 (2007).
    [Crossref]
  7. J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a bessel light beam,” Opt. Commun. 197, 239–245 (2001).
    [Crossref]
  8. L. C. Thomson and J. Courtial, “Holographic shaping of generalized self-reconstructing light beams,” Opt. Commun. 281, 1217–1221 (2008).
    [Crossref]
  9. V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature (London) 419, 145–147 (2002).
    [Crossref]
  10. J. Arlt, K. Dholakia, J. Soneson, and E. M. Wright, “Optical dipole traps and atomic waveguides based on bessel light beams,” Phys. Rev. A 63, 063602 (2001).
    [Crossref]
  11. T. Wulle and S. Herminghaus, “Nonlinear optics of bessel beams,” Phys. Rev. Lett. 70, 1401–1404 (1993).
    [Crossref] [PubMed]
  12. A. Novitsky, C.-W. Qiu, and H. Wang, “Single gradientless light beam drags particles as tractor beams,” Phys. Rev. Lett. 107, 203601 (2011).
    [Crossref] [PubMed]
  13. J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photon. 5, 531–534 (2011).
    [Crossref]
  14. O. Brzobohaty, V. Karasek, M. Siler, L. Chvatal, T. Cizmar, and P. Zemanek, “Experimental demonstration of optical transport, sorting and self-arrangement using a /‘tractor beam/’,” Nat. Photonics 7, 123–127 (2013).
    [Crossref]
  15. J. Durnin, “Exact solutions for nondiffracting beams. i. the scalar theory,” J. Opt. Soc. Am. 4, 651–654 (1987).
    [Crossref]
  16. J. H. McLeod, “The axicon: A new type of optical element,” J. Opt. Soc. Am. 44, 592 (1954).
    [Crossref]
  17. G. Indebetouw, “Nondiffracting optical fields: some remarks on their analysis and synthesis,” J. Opt. Soc. Am. 6, 150–152 (1989).
    [Crossref]
  18. A. J. Cox and D. C. Dibble, “Nondiffracting beam from a spatially filtered fabry-perot resonator,” J. Opt. Soc. Am. 9, 282–286 (1992).
    [Crossref]
  19. A. Vasara, J. Turunen, and A. T. Friberg, “Realization of general nondiffracting beams with computer-generated holograms,” J. Opt. Soc. Am. 6, 1748–1754 (1989).
    [Crossref]
  20. J. A. Davis, E. Carcole, and D. M. Cottrell, “Nondiffracting interference patterns generated with programmable spatial light modulators,” Appl. Opt. 35, 599–602 (1996).
    [Crossref] [PubMed]
  21. E. McLeod, A. B. Hopkins, and C. B. Arnold, “Multiscale bessel beams generated by a tunable acoustic gradient index of refraction lens,” Opt. Lett. 31, 3155–3157 (2006).
    [Crossref] [PubMed]
  22. T. Čižmár, H. I. C. Dalgarno, P. C. Ashok, F. J. Gunn-Moore, and K. Dholakia, “Optical aberration compensation in a multiplexed optical trapping system,” J. Opt. 13, 044008 (2011).
    [Crossref]
  23. P. S. Hilaire, S. A. Benton, and M. Lucente, “Synthetic aperture synthetic aperture holography: a novel approach to three-dimensional displays,” J. Opt. Soc. Am. 9, 1969 (1992).
    [Crossref]
  24. F. Yaras, H. Kang, and L. Onural, “State of the art in holographic displays: A survey,” J. Disp. Technol. 6, 443–454 (2010).
    [Crossref]
  25. C. R. P. Courtney, B. W. Drinkwater, C. E. M. Demore, S. Cochran, A. Grinenko, and P. D. Wilcox, “Dexterous manipulation of microparticles using bessel-function acoustic pressure fields,” Appl. Phys. Lett. 102, 123508 (2013).
    [Crossref]
  26. A. Grinenko, P. D. Wilcox, C. R. P. Courtney, and B. W. Drinkwater, “Proof of principle study of ultrasonic particle manipulation by a circular array device,” Proc. Roy. Soc. A 468, 3571–3586 (2012).
    [Crossref]
  27. C. E. M. Demore, Z. Yang, A. Volovick, S. Cochran, M. P. MacDonald, and G. C. Spalding, “Mechanical evidence of the orbital angular momentum to energy ratio of vortex beams,” Phys. Rev. Lett. 108, 194301 (2012).
    [Crossref] [PubMed]
  28. M. P. J. Lavery, D. J. Robertson, A. Sponselli, J. Courtial, N. K. Steinhoff, G. A. Tyler, A. E. Willner, and M. J. Padgett, “Efficient measurement of an optical orbital-angular-momentum spectrum comprising more than 50 states,” New J. Phys. 15, 013024 (2013).
    [Crossref]
  29. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, 1964).
  30. E. McLeod and C. B. Arnold, “Mechanics and refractive power optimization of tunable acoustic gradient lenses,” J. Appl. Phys. 102, 033104 (2007).
    [Crossref]
  31. M. Born and E. Wolf, Principles of Optics (Cambridge University, 2003).

2013 (3)

O. Brzobohaty, V. Karasek, M. Siler, L. Chvatal, T. Cizmar, and P. Zemanek, “Experimental demonstration of optical transport, sorting and self-arrangement using a /‘tractor beam/’,” Nat. Photonics 7, 123–127 (2013).
[Crossref]

C. R. P. Courtney, B. W. Drinkwater, C. E. M. Demore, S. Cochran, A. Grinenko, and P. D. Wilcox, “Dexterous manipulation of microparticles using bessel-function acoustic pressure fields,” Appl. Phys. Lett. 102, 123508 (2013).
[Crossref]

M. P. J. Lavery, D. J. Robertson, A. Sponselli, J. Courtial, N. K. Steinhoff, G. A. Tyler, A. E. Willner, and M. J. Padgett, “Efficient measurement of an optical orbital-angular-momentum spectrum comprising more than 50 states,” New J. Phys. 15, 013024 (2013).
[Crossref]

2012 (2)

A. Grinenko, P. D. Wilcox, C. R. P. Courtney, and B. W. Drinkwater, “Proof of principle study of ultrasonic particle manipulation by a circular array device,” Proc. Roy. Soc. A 468, 3571–3586 (2012).
[Crossref]

C. E. M. Demore, Z. Yang, A. Volovick, S. Cochran, M. P. MacDonald, and G. C. Spalding, “Mechanical evidence of the orbital angular momentum to energy ratio of vortex beams,” Phys. Rev. Lett. 108, 194301 (2012).
[Crossref] [PubMed]

2011 (3)

T. Čižmár, H. I. C. Dalgarno, P. C. Ashok, F. J. Gunn-Moore, and K. Dholakia, “Optical aberration compensation in a multiplexed optical trapping system,” J. Opt. 13, 044008 (2011).
[Crossref]

A. Novitsky, C.-W. Qiu, and H. Wang, “Single gradientless light beam drags particles as tractor beams,” Phys. Rev. Lett. 107, 203601 (2011).
[Crossref] [PubMed]

J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photon. 5, 531–534 (2011).
[Crossref]

2010 (2)

T. Cizmar, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010).
[Crossref]

F. Yaras, H. Kang, and L. Onural, “State of the art in holographic displays: A survey,” J. Disp. Technol. 6, 443–454 (2010).
[Crossref]

2008 (1)

L. C. Thomson and J. Courtial, “Holographic shaping of generalized self-reconstructing light beams,” Opt. Commun. 281, 1217–1221 (2008).
[Crossref]

2007 (2)

X. Tsampoula, V. Garces-Chavez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91, 053902 (2007).
[Crossref]

E. McLeod and C. B. Arnold, “Mechanics and refractive power optimization of tunable acoustic gradient lenses,” J. Appl. Phys. 102, 033104 (2007).
[Crossref]

2006 (2)

2002 (1)

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature (London) 419, 145–147 (2002).
[Crossref]

2001 (2)

J. Arlt, K. Dholakia, J. Soneson, and E. M. Wright, “Optical dipole traps and atomic waveguides based on bessel light beams,” Phys. Rev. A 63, 063602 (2001).
[Crossref]

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a bessel light beam,” Opt. Commun. 197, 239–245 (2001).
[Crossref]

1999 (1)

M. Padgett and L. Allen, “The angular momentum of light: optical spanners and the rotational frequency shift,” Opt. Quant. Electron. 31, 1–12 (1999).
[Crossref]

1996 (1)

1994 (1)

B. L. Ellerbroek, “First-order performance evaluation of adaptive-optics systems for atmospheric-turbulence compensation in extended-field-of-view astronomical telescopes,” J. Opt. Soc. Am. 11, 783–805 (1994).
[Crossref]

1993 (1)

T. Wulle and S. Herminghaus, “Nonlinear optics of bessel beams,” Phys. Rev. Lett. 70, 1401–1404 (1993).
[Crossref] [PubMed]

1992 (2)

A. J. Cox and D. C. Dibble, “Nondiffracting beam from a spatially filtered fabry-perot resonator,” J. Opt. Soc. Am. 9, 282–286 (1992).
[Crossref]

P. S. Hilaire, S. A. Benton, and M. Lucente, “Synthetic aperture synthetic aperture holography: a novel approach to three-dimensional displays,” J. Opt. Soc. Am. 9, 1969 (1992).
[Crossref]

1989 (2)

A. Vasara, J. Turunen, and A. T. Friberg, “Realization of general nondiffracting beams with computer-generated holograms,” J. Opt. Soc. Am. 6, 1748–1754 (1989).
[Crossref]

G. Indebetouw, “Nondiffracting optical fields: some remarks on their analysis and synthesis,” J. Opt. Soc. Am. 6, 150–152 (1989).
[Crossref]

1987 (2)

J. Durnin, “Exact solutions for nondiffracting beams. i. the scalar theory,” J. Opt. Soc. Am. 4, 651–654 (1987).
[Crossref]

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[Crossref] [PubMed]

1954 (1)

Abramowitz, M.

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, 1964).

Agate, B.

X. Tsampoula, V. Garces-Chavez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91, 053902 (2007).
[Crossref]

Allen, L.

M. Padgett and L. Allen, “The angular momentum of light: optical spanners and the rotational frequency shift,” Opt. Quant. Electron. 31, 1–12 (1999).
[Crossref]

Arlt, J.

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a bessel light beam,” Opt. Commun. 197, 239–245 (2001).
[Crossref]

J. Arlt, K. Dholakia, J. Soneson, and E. M. Wright, “Optical dipole traps and atomic waveguides based on bessel light beams,” Phys. Rev. A 63, 063602 (2001).
[Crossref]

Arnold, C. B.

E. McLeod and C. B. Arnold, “Mechanics and refractive power optimization of tunable acoustic gradient lenses,” J. Appl. Phys. 102, 033104 (2007).
[Crossref]

E. McLeod, A. B. Hopkins, and C. B. Arnold, “Multiscale bessel beams generated by a tunable acoustic gradient index of refraction lens,” Opt. Lett. 31, 3155–3157 (2006).
[Crossref] [PubMed]

Ashok, P. C.

T. Čižmár, H. I. C. Dalgarno, P. C. Ashok, F. J. Gunn-Moore, and K. Dholakia, “Optical aberration compensation in a multiplexed optical trapping system,” J. Opt. 13, 044008 (2011).
[Crossref]

Benton, S. A.

P. S. Hilaire, S. A. Benton, and M. Lucente, “Synthetic aperture synthetic aperture holography: a novel approach to three-dimensional displays,” J. Opt. Soc. Am. 9, 1969 (1992).
[Crossref]

Born, M.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 2003).

Brown, C. T. A.

X. Tsampoula, V. Garces-Chavez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91, 053902 (2007).
[Crossref]

Brzobohaty, O.

O. Brzobohaty, V. Karasek, M. Siler, L. Chvatal, T. Cizmar, and P. Zemanek, “Experimental demonstration of optical transport, sorting and self-arrangement using a /‘tractor beam/’,” Nat. Photonics 7, 123–127 (2013).
[Crossref]

Carcole, E.

Chan, C. T.

J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photon. 5, 531–534 (2011).
[Crossref]

Chen, J.

J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photon. 5, 531–534 (2011).
[Crossref]

Chvatal, L.

O. Brzobohaty, V. Karasek, M. Siler, L. Chvatal, T. Cizmar, and P. Zemanek, “Experimental demonstration of optical transport, sorting and self-arrangement using a /‘tractor beam/’,” Nat. Photonics 7, 123–127 (2013).
[Crossref]

Cizmar, T.

O. Brzobohaty, V. Karasek, M. Siler, L. Chvatal, T. Cizmar, and P. Zemanek, “Experimental demonstration of optical transport, sorting and self-arrangement using a /‘tractor beam/’,” Nat. Photonics 7, 123–127 (2013).
[Crossref]

T. Cizmar, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010).
[Crossref]

Cižmár, T.

T. Čižmár, H. I. C. Dalgarno, P. C. Ashok, F. J. Gunn-Moore, and K. Dholakia, “Optical aberration compensation in a multiplexed optical trapping system,” J. Opt. 13, 044008 (2011).
[Crossref]

Cochran, S.

C. R. P. Courtney, B. W. Drinkwater, C. E. M. Demore, S. Cochran, A. Grinenko, and P. D. Wilcox, “Dexterous manipulation of microparticles using bessel-function acoustic pressure fields,” Appl. Phys. Lett. 102, 123508 (2013).
[Crossref]

C. E. M. Demore, Z. Yang, A. Volovick, S. Cochran, M. P. MacDonald, and G. C. Spalding, “Mechanical evidence of the orbital angular momentum to energy ratio of vortex beams,” Phys. Rev. Lett. 108, 194301 (2012).
[Crossref] [PubMed]

Comrie, M.

X. Tsampoula, V. Garces-Chavez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91, 053902 (2007).
[Crossref]

Cottrell, D. M.

Courtial, J.

M. P. J. Lavery, D. J. Robertson, A. Sponselli, J. Courtial, N. K. Steinhoff, G. A. Tyler, A. E. Willner, and M. J. Padgett, “Efficient measurement of an optical orbital-angular-momentum spectrum comprising more than 50 states,” New J. Phys. 15, 013024 (2013).
[Crossref]

L. C. Thomson and J. Courtial, “Holographic shaping of generalized self-reconstructing light beams,” Opt. Commun. 281, 1217–1221 (2008).
[Crossref]

Courtney, C. R. P.

C. R. P. Courtney, B. W. Drinkwater, C. E. M. Demore, S. Cochran, A. Grinenko, and P. D. Wilcox, “Dexterous manipulation of microparticles using bessel-function acoustic pressure fields,” Appl. Phys. Lett. 102, 123508 (2013).
[Crossref]

A. Grinenko, P. D. Wilcox, C. R. P. Courtney, and B. W. Drinkwater, “Proof of principle study of ultrasonic particle manipulation by a circular array device,” Proc. Roy. Soc. A 468, 3571–3586 (2012).
[Crossref]

Cox, A. J.

A. J. Cox and D. C. Dibble, “Nondiffracting beam from a spatially filtered fabry-perot resonator,” J. Opt. Soc. Am. 9, 282–286 (1992).
[Crossref]

Dalgarno, H. I. C.

T. Čižmár, H. I. C. Dalgarno, P. C. Ashok, F. J. Gunn-Moore, and K. Dholakia, “Optical aberration compensation in a multiplexed optical trapping system,” J. Opt. 13, 044008 (2011).
[Crossref]

Davis, J. A.

Demore, C. E. M.

C. R. P. Courtney, B. W. Drinkwater, C. E. M. Demore, S. Cochran, A. Grinenko, and P. D. Wilcox, “Dexterous manipulation of microparticles using bessel-function acoustic pressure fields,” Appl. Phys. Lett. 102, 123508 (2013).
[Crossref]

C. E. M. Demore, Z. Yang, A. Volovick, S. Cochran, M. P. MacDonald, and G. C. Spalding, “Mechanical evidence of the orbital angular momentum to energy ratio of vortex beams,” Phys. Rev. Lett. 108, 194301 (2012).
[Crossref] [PubMed]

Dholakia, K.

T. Čižmár, H. I. C. Dalgarno, P. C. Ashok, F. J. Gunn-Moore, and K. Dholakia, “Optical aberration compensation in a multiplexed optical trapping system,” J. Opt. 13, 044008 (2011).
[Crossref]

T. Cizmar, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010).
[Crossref]

X. Tsampoula, V. Garces-Chavez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91, 053902 (2007).
[Crossref]

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature (London) 419, 145–147 (2002).
[Crossref]

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a bessel light beam,” Opt. Commun. 197, 239–245 (2001).
[Crossref]

J. Arlt, K. Dholakia, J. Soneson, and E. M. Wright, “Optical dipole traps and atomic waveguides based on bessel light beams,” Phys. Rev. A 63, 063602 (2001).
[Crossref]

Dibble, D. C.

A. J. Cox and D. C. Dibble, “Nondiffracting beam from a spatially filtered fabry-perot resonator,” J. Opt. Soc. Am. 9, 282–286 (1992).
[Crossref]

Drinkwater, B. W.

C. R. P. Courtney, B. W. Drinkwater, C. E. M. Demore, S. Cochran, A. Grinenko, and P. D. Wilcox, “Dexterous manipulation of microparticles using bessel-function acoustic pressure fields,” Appl. Phys. Lett. 102, 123508 (2013).
[Crossref]

A. Grinenko, P. D. Wilcox, C. R. P. Courtney, and B. W. Drinkwater, “Proof of principle study of ultrasonic particle manipulation by a circular array device,” Proc. Roy. Soc. A 468, 3571–3586 (2012).
[Crossref]

Durnin, J.

J. Durnin, “Exact solutions for nondiffracting beams. i. the scalar theory,” J. Opt. Soc. Am. 4, 651–654 (1987).
[Crossref]

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[Crossref] [PubMed]

Eberly, J. H.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[Crossref] [PubMed]

Ellerbroek, B. L.

B. L. Ellerbroek, “First-order performance evaluation of adaptive-optics systems for atmospheric-turbulence compensation in extended-field-of-view astronomical telescopes,” J. Opt. Soc. Am. 11, 783–805 (1994).
[Crossref]

Friberg, A. T.

A. Vasara, J. Turunen, and A. T. Friberg, “Realization of general nondiffracting beams with computer-generated holograms,” J. Opt. Soc. Am. 6, 1748–1754 (1989).
[Crossref]

Garces-Chavez, V.

X. Tsampoula, V. Garces-Chavez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91, 053902 (2007).
[Crossref]

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature (London) 419, 145–147 (2002).
[Crossref]

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a bessel light beam,” Opt. Commun. 197, 239–245 (2001).
[Crossref]

Grinenko, A.

C. R. P. Courtney, B. W. Drinkwater, C. E. M. Demore, S. Cochran, A. Grinenko, and P. D. Wilcox, “Dexterous manipulation of microparticles using bessel-function acoustic pressure fields,” Appl. Phys. Lett. 102, 123508 (2013).
[Crossref]

A. Grinenko, P. D. Wilcox, C. R. P. Courtney, and B. W. Drinkwater, “Proof of principle study of ultrasonic particle manipulation by a circular array device,” Proc. Roy. Soc. A 468, 3571–3586 (2012).
[Crossref]

Gunn-Moore, F.

X. Tsampoula, V. Garces-Chavez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91, 053902 (2007).
[Crossref]

Gunn-Moore, F. J.

T. Čižmár, H. I. C. Dalgarno, P. C. Ashok, F. J. Gunn-Moore, and K. Dholakia, “Optical aberration compensation in a multiplexed optical trapping system,” J. Opt. 13, 044008 (2011).
[Crossref]

Herminghaus, S.

T. Wulle and S. Herminghaus, “Nonlinear optics of bessel beams,” Phys. Rev. Lett. 70, 1401–1404 (1993).
[Crossref] [PubMed]

Hilaire, P. S.

P. S. Hilaire, S. A. Benton, and M. Lucente, “Synthetic aperture synthetic aperture holography: a novel approach to three-dimensional displays,” J. Opt. Soc. Am. 9, 1969 (1992).
[Crossref]

Hopkins, A. B.

Indebetouw, G.

G. Indebetouw, “Nondiffracting optical fields: some remarks on their analysis and synthesis,” J. Opt. Soc. Am. 6, 150–152 (1989).
[Crossref]

Kang, H.

F. Yaras, H. Kang, and L. Onural, “State of the art in holographic displays: A survey,” J. Disp. Technol. 6, 443–454 (2010).
[Crossref]

Karasek, V.

O. Brzobohaty, V. Karasek, M. Siler, L. Chvatal, T. Cizmar, and P. Zemanek, “Experimental demonstration of optical transport, sorting and self-arrangement using a /‘tractor beam/’,” Nat. Photonics 7, 123–127 (2013).
[Crossref]

Lavery, M. P. J.

M. P. J. Lavery, D. J. Robertson, A. Sponselli, J. Courtial, N. K. Steinhoff, G. A. Tyler, A. E. Willner, and M. J. Padgett, “Efficient measurement of an optical orbital-angular-momentum spectrum comprising more than 50 states,” New J. Phys. 15, 013024 (2013).
[Crossref]

Lin, Z.

J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photon. 5, 531–534 (2011).
[Crossref]

Lucente, M.

P. S. Hilaire, S. A. Benton, and M. Lucente, “Synthetic aperture synthetic aperture holography: a novel approach to three-dimensional displays,” J. Opt. Soc. Am. 9, 1969 (1992).
[Crossref]

MacDonald, M. P.

C. E. M. Demore, Z. Yang, A. Volovick, S. Cochran, M. P. MacDonald, and G. C. Spalding, “Mechanical evidence of the orbital angular momentum to energy ratio of vortex beams,” Phys. Rev. Lett. 108, 194301 (2012).
[Crossref] [PubMed]

Mazilu, M.

T. Cizmar, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010).
[Crossref]

McGloin, D.

D. McGloin, “Optical tweezers: 20 years on,” Phil. Trans. Roy. Soc. A 364, 3521–3537 (2006).
[Crossref]

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature (London) 419, 145–147 (2002).
[Crossref]

McLeod, E.

E. McLeod and C. B. Arnold, “Mechanics and refractive power optimization of tunable acoustic gradient lenses,” J. Appl. Phys. 102, 033104 (2007).
[Crossref]

E. McLeod, A. B. Hopkins, and C. B. Arnold, “Multiscale bessel beams generated by a tunable acoustic gradient index of refraction lens,” Opt. Lett. 31, 3155–3157 (2006).
[Crossref] [PubMed]

McLeod, J. H.

Melville, H.

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature (London) 419, 145–147 (2002).
[Crossref]

Miceli, J. J.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[Crossref] [PubMed]

Ng, J.

J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photon. 5, 531–534 (2011).
[Crossref]

Novitsky, A.

A. Novitsky, C.-W. Qiu, and H. Wang, “Single gradientless light beam drags particles as tractor beams,” Phys. Rev. Lett. 107, 203601 (2011).
[Crossref] [PubMed]

Onural, L.

F. Yaras, H. Kang, and L. Onural, “State of the art in holographic displays: A survey,” J. Disp. Technol. 6, 443–454 (2010).
[Crossref]

Padgett, M.

M. Padgett and L. Allen, “The angular momentum of light: optical spanners and the rotational frequency shift,” Opt. Quant. Electron. 31, 1–12 (1999).
[Crossref]

Padgett, M. J.

M. P. J. Lavery, D. J. Robertson, A. Sponselli, J. Courtial, N. K. Steinhoff, G. A. Tyler, A. E. Willner, and M. J. Padgett, “Efficient measurement of an optical orbital-angular-momentum spectrum comprising more than 50 states,” New J. Phys. 15, 013024 (2013).
[Crossref]

Qiu, C.-W.

A. Novitsky, C.-W. Qiu, and H. Wang, “Single gradientless light beam drags particles as tractor beams,” Phys. Rev. Lett. 107, 203601 (2011).
[Crossref] [PubMed]

Robertson, D. J.

M. P. J. Lavery, D. J. Robertson, A. Sponselli, J. Courtial, N. K. Steinhoff, G. A. Tyler, A. E. Willner, and M. J. Padgett, “Efficient measurement of an optical orbital-angular-momentum spectrum comprising more than 50 states,” New J. Phys. 15, 013024 (2013).
[Crossref]

Sibbett, W.

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature (London) 419, 145–147 (2002).
[Crossref]

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a bessel light beam,” Opt. Commun. 197, 239–245 (2001).
[Crossref]

Siler, M.

O. Brzobohaty, V. Karasek, M. Siler, L. Chvatal, T. Cizmar, and P. Zemanek, “Experimental demonstration of optical transport, sorting and self-arrangement using a /‘tractor beam/’,” Nat. Photonics 7, 123–127 (2013).
[Crossref]

Soneson, J.

J. Arlt, K. Dholakia, J. Soneson, and E. M. Wright, “Optical dipole traps and atomic waveguides based on bessel light beams,” Phys. Rev. A 63, 063602 (2001).
[Crossref]

Spalding, G. C.

C. E. M. Demore, Z. Yang, A. Volovick, S. Cochran, M. P. MacDonald, and G. C. Spalding, “Mechanical evidence of the orbital angular momentum to energy ratio of vortex beams,” Phys. Rev. Lett. 108, 194301 (2012).
[Crossref] [PubMed]

Sponselli, A.

M. P. J. Lavery, D. J. Robertson, A. Sponselli, J. Courtial, N. K. Steinhoff, G. A. Tyler, A. E. Willner, and M. J. Padgett, “Efficient measurement of an optical orbital-angular-momentum spectrum comprising more than 50 states,” New J. Phys. 15, 013024 (2013).
[Crossref]

Stegun, I. A.

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, 1964).

Steinhoff, N. K.

M. P. J. Lavery, D. J. Robertson, A. Sponselli, J. Courtial, N. K. Steinhoff, G. A. Tyler, A. E. Willner, and M. J. Padgett, “Efficient measurement of an optical orbital-angular-momentum spectrum comprising more than 50 states,” New J. Phys. 15, 013024 (2013).
[Crossref]

Stevenson, D. J.

X. Tsampoula, V. Garces-Chavez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91, 053902 (2007).
[Crossref]

Thomson, L. C.

L. C. Thomson and J. Courtial, “Holographic shaping of generalized self-reconstructing light beams,” Opt. Commun. 281, 1217–1221 (2008).
[Crossref]

Tsampoula, X.

X. Tsampoula, V. Garces-Chavez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91, 053902 (2007).
[Crossref]

Turunen, J.

A. Vasara, J. Turunen, and A. T. Friberg, “Realization of general nondiffracting beams with computer-generated holograms,” J. Opt. Soc. Am. 6, 1748–1754 (1989).
[Crossref]

Tyler, G. A.

M. P. J. Lavery, D. J. Robertson, A. Sponselli, J. Courtial, N. K. Steinhoff, G. A. Tyler, A. E. Willner, and M. J. Padgett, “Efficient measurement of an optical orbital-angular-momentum spectrum comprising more than 50 states,” New J. Phys. 15, 013024 (2013).
[Crossref]

Vasara, A.

A. Vasara, J. Turunen, and A. T. Friberg, “Realization of general nondiffracting beams with computer-generated holograms,” J. Opt. Soc. Am. 6, 1748–1754 (1989).
[Crossref]

Volovick, A.

C. E. M. Demore, Z. Yang, A. Volovick, S. Cochran, M. P. MacDonald, and G. C. Spalding, “Mechanical evidence of the orbital angular momentum to energy ratio of vortex beams,” Phys. Rev. Lett. 108, 194301 (2012).
[Crossref] [PubMed]

Wang, H.

A. Novitsky, C.-W. Qiu, and H. Wang, “Single gradientless light beam drags particles as tractor beams,” Phys. Rev. Lett. 107, 203601 (2011).
[Crossref] [PubMed]

Wilcox, P. D.

C. R. P. Courtney, B. W. Drinkwater, C. E. M. Demore, S. Cochran, A. Grinenko, and P. D. Wilcox, “Dexterous manipulation of microparticles using bessel-function acoustic pressure fields,” Appl. Phys. Lett. 102, 123508 (2013).
[Crossref]

A. Grinenko, P. D. Wilcox, C. R. P. Courtney, and B. W. Drinkwater, “Proof of principle study of ultrasonic particle manipulation by a circular array device,” Proc. Roy. Soc. A 468, 3571–3586 (2012).
[Crossref]

Willner, A. E.

M. P. J. Lavery, D. J. Robertson, A. Sponselli, J. Courtial, N. K. Steinhoff, G. A. Tyler, A. E. Willner, and M. J. Padgett, “Efficient measurement of an optical orbital-angular-momentum spectrum comprising more than 50 states,” New J. Phys. 15, 013024 (2013).
[Crossref]

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 2003).

Wright, E. M.

J. Arlt, K. Dholakia, J. Soneson, and E. M. Wright, “Optical dipole traps and atomic waveguides based on bessel light beams,” Phys. Rev. A 63, 063602 (2001).
[Crossref]

Wulle, T.

T. Wulle and S. Herminghaus, “Nonlinear optics of bessel beams,” Phys. Rev. Lett. 70, 1401–1404 (1993).
[Crossref] [PubMed]

Yang, Z.

C. E. M. Demore, Z. Yang, A. Volovick, S. Cochran, M. P. MacDonald, and G. C. Spalding, “Mechanical evidence of the orbital angular momentum to energy ratio of vortex beams,” Phys. Rev. Lett. 108, 194301 (2012).
[Crossref] [PubMed]

Yaras, F.

F. Yaras, H. Kang, and L. Onural, “State of the art in holographic displays: A survey,” J. Disp. Technol. 6, 443–454 (2010).
[Crossref]

Zemanek, P.

O. Brzobohaty, V. Karasek, M. Siler, L. Chvatal, T. Cizmar, and P. Zemanek, “Experimental demonstration of optical transport, sorting and self-arrangement using a /‘tractor beam/’,” Nat. Photonics 7, 123–127 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

C. R. P. Courtney, B. W. Drinkwater, C. E. M. Demore, S. Cochran, A. Grinenko, and P. D. Wilcox, “Dexterous manipulation of microparticles using bessel-function acoustic pressure fields,” Appl. Phys. Lett. 102, 123508 (2013).
[Crossref]

X. Tsampoula, V. Garces-Chavez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91, 053902 (2007).
[Crossref]

J. Appl. Phys. (1)

E. McLeod and C. B. Arnold, “Mechanics and refractive power optimization of tunable acoustic gradient lenses,” J. Appl. Phys. 102, 033104 (2007).
[Crossref]

J. Disp. Technol. (1)

F. Yaras, H. Kang, and L. Onural, “State of the art in holographic displays: A survey,” J. Disp. Technol. 6, 443–454 (2010).
[Crossref]

J. Opt. (1)

T. Čižmár, H. I. C. Dalgarno, P. C. Ashok, F. J. Gunn-Moore, and K. Dholakia, “Optical aberration compensation in a multiplexed optical trapping system,” J. Opt. 13, 044008 (2011).
[Crossref]

J. Opt. Soc. Am. (7)

P. S. Hilaire, S. A. Benton, and M. Lucente, “Synthetic aperture synthetic aperture holography: a novel approach to three-dimensional displays,” J. Opt. Soc. Am. 9, 1969 (1992).
[Crossref]

J. Durnin, “Exact solutions for nondiffracting beams. i. the scalar theory,” J. Opt. Soc. Am. 4, 651–654 (1987).
[Crossref]

J. H. McLeod, “The axicon: A new type of optical element,” J. Opt. Soc. Am. 44, 592 (1954).
[Crossref]

G. Indebetouw, “Nondiffracting optical fields: some remarks on their analysis and synthesis,” J. Opt. Soc. Am. 6, 150–152 (1989).
[Crossref]

A. J. Cox and D. C. Dibble, “Nondiffracting beam from a spatially filtered fabry-perot resonator,” J. Opt. Soc. Am. 9, 282–286 (1992).
[Crossref]

A. Vasara, J. Turunen, and A. T. Friberg, “Realization of general nondiffracting beams with computer-generated holograms,” J. Opt. Soc. Am. 6, 1748–1754 (1989).
[Crossref]

B. L. Ellerbroek, “First-order performance evaluation of adaptive-optics systems for atmospheric-turbulence compensation in extended-field-of-view astronomical telescopes,” J. Opt. Soc. Am. 11, 783–805 (1994).
[Crossref]

Nat. Photon. (1)

J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photon. 5, 531–534 (2011).
[Crossref]

Nat. Photonics (2)

O. Brzobohaty, V. Karasek, M. Siler, L. Chvatal, T. Cizmar, and P. Zemanek, “Experimental demonstration of optical transport, sorting and self-arrangement using a /‘tractor beam/’,” Nat. Photonics 7, 123–127 (2013).
[Crossref]

T. Cizmar, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010).
[Crossref]

Nature (London) (1)

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature (London) 419, 145–147 (2002).
[Crossref]

New J. Phys. (1)

M. P. J. Lavery, D. J. Robertson, A. Sponselli, J. Courtial, N. K. Steinhoff, G. A. Tyler, A. E. Willner, and M. J. Padgett, “Efficient measurement of an optical orbital-angular-momentum spectrum comprising more than 50 states,” New J. Phys. 15, 013024 (2013).
[Crossref]

Opt. Commun. (2)

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a bessel light beam,” Opt. Commun. 197, 239–245 (2001).
[Crossref]

L. C. Thomson and J. Courtial, “Holographic shaping of generalized self-reconstructing light beams,” Opt. Commun. 281, 1217–1221 (2008).
[Crossref]

Opt. Lett. (1)

Opt. Quant. Electron. (1)

M. Padgett and L. Allen, “The angular momentum of light: optical spanners and the rotational frequency shift,” Opt. Quant. Electron. 31, 1–12 (1999).
[Crossref]

Phil. Trans. Roy. Soc. A (1)

D. McGloin, “Optical tweezers: 20 years on,” Phil. Trans. Roy. Soc. A 364, 3521–3537 (2006).
[Crossref]

Phys. Rev. A (1)

J. Arlt, K. Dholakia, J. Soneson, and E. M. Wright, “Optical dipole traps and atomic waveguides based on bessel light beams,” Phys. Rev. A 63, 063602 (2001).
[Crossref]

Phys. Rev. Lett. (4)

T. Wulle and S. Herminghaus, “Nonlinear optics of bessel beams,” Phys. Rev. Lett. 70, 1401–1404 (1993).
[Crossref] [PubMed]

A. Novitsky, C.-W. Qiu, and H. Wang, “Single gradientless light beam drags particles as tractor beams,” Phys. Rev. Lett. 107, 203601 (2011).
[Crossref] [PubMed]

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[Crossref] [PubMed]

C. E. M. Demore, Z. Yang, A. Volovick, S. Cochran, M. P. MacDonald, and G. C. Spalding, “Mechanical evidence of the orbital angular momentum to energy ratio of vortex beams,” Phys. Rev. Lett. 108, 194301 (2012).
[Crossref] [PubMed]

Proc. Roy. Soc. A (1)

A. Grinenko, P. D. Wilcox, C. R. P. Courtney, and B. W. Drinkwater, “Proof of principle study of ultrasonic particle manipulation by a circular array device,” Proc. Roy. Soc. A 468, 3571–3586 (2012).
[Crossref]

Other (2)

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, 1964).

M. Born and E. Wolf, Principles of Optics (Cambridge University, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Sketch of the optical setup: (1–3) laser and beam expansion system. A CPS196 adjustable focus ThorLabs 635nm diode laser (1) illuminates a ∅15μm pinhole (2) located in the back focal plane of f3 = 10cm lens (3); (4) the tunable acousto-optic hologram device; (5) R5 = 50cm spherical mirror; (6) 0.3 mm edge; (7) AF-S NIKKOR 70-300mm zoom lens and ThorLabs KM100T CCD camera.

Fig. 2
Fig. 2

Definition of coordinates systems used in Eq. (1).

Fig. 3
Fig. 3

intensity profiles of high-pass filtered Bessel beams of orders α = 1...4 produced in simulation (top) and obtained experimentally (bottom).

Fig. 4
Fig. 4

Cross sections of the detected J0 and J1 beam intensities.

Fig. 5
Fig. 5

The profiles of the J1 Bessel beam manipulated in two transverse directions.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

p ( x , y , t ) = p 0 J α ( k a r 2 ) e i α θ 2 i ω a t + | m | M A m J m ( k a r 1 ) e i m θ 1 i ω a t
E ( x , y , d ) = E 0 e i k d [ n 0 + n A ( x , y , t ) ]
n A ( x , y , t ) = n 0 4 + n 0 2 2 6 n 0 Re { p ¯ ( x , y , t ) }
E ( x , y , d ) = E 0 e i k n 0 d [ 1 + i k d n A ( x , y , t ) ] .
E ( x , y , z ) = i z λ 0 d x d y E ( x , y , d ) e i k | r r | | r r |
I ( X , Y ) | 1 2 π 0 2 π n ˜ A ( r , θ Δ θ ) d Δ θ | 2

Metrics