Abstract

The symmetry in action and reaction between interacting particulate matter breaks down when the interaction is mediated by an out-of-equilibrium environment. Nevertheless, even in this case, the space translational invariance still imposes the conservation of canonical momentum. Here we show that optical binding of an asymmetric material system can result in non-reciprocal interactions between constituents. We demonstrate that a non-conservative force applies to the center of mass of an optically bound dimer of dissimilar particles, which leads to an unexpected action in the transversal direction. The sign and the magnitude of this positional force depend on the abrupt phase transitions in the properties of the asymmetric dimer.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Experimental and theoretical determination of optical binding forces

O. Brzobohatý, T. Čižmár, V. Karásek, M. Šiler, K. Dholakia, and P. Zemánek
Opt. Express 18(24) 25389-25402 (2010)

Selective particle trapping and optical binding in the evanescent field of an optical nanofiber

M. C. Frawley, I. Gusachenko, V. G. Truong, M. Sergides, and S. Nic Chormaic
Opt. Express 22(13) 16322-16334 (2014)

Optical binding between dielectric particles

Samarendra Kumar Mohanty, Joseph Thomas Andrews, and Pradeep Kumar Gupta
Opt. Express 12(12) 2746-2753 (2004)

References

  • View by:
  • |
  • |
  • |

  1. M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63(12), 1233–1236 (1989).
    [Crossref] [PubMed]
  2. T. Čižmár, L. C. Dávila Romero, K. Dholakia, and D. L. Andrews, “Multiple optical trapping and binding: new routes to self-assembly,” J. Phys. At. Mol. Opt. Phys. 43(10), 102001 (2010).
    [Crossref]
  3. K. Dholakia and P. Zemánek, “Gripped by light: optical binding,” Rev. Mod. Phys. 82(2), 1767–1791 (2010).
    [Crossref]
  4. L. C. Dávila Romero, J. Rodríguez, and D. L. Andrews, “Electrodynamic mechanism and array stability in optical binding,” Opt. Commun. 281(4), 865–870 (2008).
    [Crossref]
  5. N. Obara and M. Baba, “Analysis of electromagnetic propulsion on a two-electric-dipole system,” Electron. Comm. JPN 2 83(4), 31–39 (2000).
  6. V. Karásek and P. Zemánek, “Optical binding of unlike particles,” Proc. SPIE 8697, 86970T (2012).
    [Crossref]
  7. D. Haefner, S. Sukhov, and A. Dogariu, “Conservative and nonconservative torques in optical binding,” Phys. Rev. Lett. 103(17), 173602 (2009).
    [Crossref] [PubMed]
  8. F. Borghese, P. Denti, and R. Saija, Scattering from Model Nonspherical Particles: Theory and Applications to Environmental Physics (Springer, 2007) Chap.3.
  9. G. A. Swartzlander, T. J. Peterson, A. B. Artusio-Glimpse, and A. D. Raisanen, “Stable optical lift,” Nat. Photonics 5(1), 48–51 (2011).
    [Crossref]
  10. S. B. Wang and C. T. Chan, “Lateral optical force on chiral particles near a surface,” Nature Commun. 5, 3307 (2014).
    [Crossref]
  11. S. Sukhov and A. Dogariu, “Negative nonconservative forces: optical “tractor beams” for arbitrary objects,” Phys. Rev. Lett. 107(20), 203602 (2011).
    [Crossref] [PubMed]
  12. F. Depasse and J.-M. Vigoureux, “Optical binding force between two Rayleigh particles,” J. Phys. D Appl. Phys. 27(5), 914–919 (1994).
    [Crossref]
  13. A. Ashkin and J. P. Gordon, “Stability of radiation-pressure particle traps: an optical Earnshaw theorem,” Opt. Lett. 8(10), 511–513 (1983).
    [Crossref] [PubMed]
  14. P. C. Chaumet and M. Nieto-Vesperinas, “Time-averaged total force on a dipolar sphere in an electromagnetic field,” Opt. Lett. 25(15), 1065–1067 (2000).
    [Crossref] [PubMed]
  15. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  16. B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
    [Crossref]
  17. R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261(2), 368–375 (2006).
    [Crossref]
  18. D. W. Mackowski and M. I. Mishchenko, “A multiple sphere T-matrix Fortran code for use on parallel computer clusters,” J. Quant. Spectrosc. Radiat. Transf. 112(13), 2182–2192 (2011).
    [Crossref]
  19. J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, 1975).

2012 (1)

V. Karásek and P. Zemánek, “Optical binding of unlike particles,” Proc. SPIE 8697, 86970T (2012).
[Crossref]

2011 (3)

D. W. Mackowski and M. I. Mishchenko, “A multiple sphere T-matrix Fortran code for use on parallel computer clusters,” J. Quant. Spectrosc. Radiat. Transf. 112(13), 2182–2192 (2011).
[Crossref]

G. A. Swartzlander, T. J. Peterson, A. B. Artusio-Glimpse, and A. D. Raisanen, “Stable optical lift,” Nat. Photonics 5(1), 48–51 (2011).
[Crossref]

S. Sukhov and A. Dogariu, “Negative nonconservative forces: optical “tractor beams” for arbitrary objects,” Phys. Rev. Lett. 107(20), 203602 (2011).
[Crossref] [PubMed]

2010 (2)

T. Čižmár, L. C. Dávila Romero, K. Dholakia, and D. L. Andrews, “Multiple optical trapping and binding: new routes to self-assembly,” J. Phys. At. Mol. Opt. Phys. 43(10), 102001 (2010).
[Crossref]

K. Dholakia and P. Zemánek, “Gripped by light: optical binding,” Rev. Mod. Phys. 82(2), 1767–1791 (2010).
[Crossref]

2009 (1)

D. Haefner, S. Sukhov, and A. Dogariu, “Conservative and nonconservative torques in optical binding,” Phys. Rev. Lett. 103(17), 173602 (2009).
[Crossref] [PubMed]

2008 (1)

L. C. Dávila Romero, J. Rodríguez, and D. L. Andrews, “Electrodynamic mechanism and array stability in optical binding,” Opt. Commun. 281(4), 865–870 (2008).
[Crossref]

2006 (1)

R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261(2), 368–375 (2006).
[Crossref]

2000 (2)

P. C. Chaumet and M. Nieto-Vesperinas, “Time-averaged total force on a dipolar sphere in an electromagnetic field,” Opt. Lett. 25(15), 1065–1067 (2000).
[Crossref] [PubMed]

N. Obara and M. Baba, “Analysis of electromagnetic propulsion on a two-electric-dipole system,” Electron. Comm. JPN 2 83(4), 31–39 (2000).

1994 (1)

F. Depasse and J.-M. Vigoureux, “Optical binding force between two Rayleigh particles,” J. Phys. D Appl. Phys. 27(5), 914–919 (1994).
[Crossref]

1989 (1)

M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63(12), 1233–1236 (1989).
[Crossref] [PubMed]

1988 (1)

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[Crossref]

1983 (1)

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Andrews, D. L.

T. Čižmár, L. C. Dávila Romero, K. Dholakia, and D. L. Andrews, “Multiple optical trapping and binding: new routes to self-assembly,” J. Phys. At. Mol. Opt. Phys. 43(10), 102001 (2010).
[Crossref]

L. C. Dávila Romero, J. Rodríguez, and D. L. Andrews, “Electrodynamic mechanism and array stability in optical binding,” Opt. Commun. 281(4), 865–870 (2008).
[Crossref]

Artusio-Glimpse, A. B.

G. A. Swartzlander, T. J. Peterson, A. B. Artusio-Glimpse, and A. D. Raisanen, “Stable optical lift,” Nat. Photonics 5(1), 48–51 (2011).
[Crossref]

Ashkin, A.

Baba, M.

N. Obara and M. Baba, “Analysis of electromagnetic propulsion on a two-electric-dipole system,” Electron. Comm. JPN 2 83(4), 31–39 (2000).

Burns, M. M.

M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63(12), 1233–1236 (1989).
[Crossref] [PubMed]

Carminati, R.

R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261(2), 368–375 (2006).
[Crossref]

Chaumet, P. C.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Cižmár, T.

T. Čižmár, L. C. Dávila Romero, K. Dholakia, and D. L. Andrews, “Multiple optical trapping and binding: new routes to self-assembly,” J. Phys. At. Mol. Opt. Phys. 43(10), 102001 (2010).
[Crossref]

Dávila Romero, L. C.

T. Čižmár, L. C. Dávila Romero, K. Dholakia, and D. L. Andrews, “Multiple optical trapping and binding: new routes to self-assembly,” J. Phys. At. Mol. Opt. Phys. 43(10), 102001 (2010).
[Crossref]

L. C. Dávila Romero, J. Rodríguez, and D. L. Andrews, “Electrodynamic mechanism and array stability in optical binding,” Opt. Commun. 281(4), 865–870 (2008).
[Crossref]

Depasse, F.

F. Depasse and J.-M. Vigoureux, “Optical binding force between two Rayleigh particles,” J. Phys. D Appl. Phys. 27(5), 914–919 (1994).
[Crossref]

Dholakia, K.

K. Dholakia and P. Zemánek, “Gripped by light: optical binding,” Rev. Mod. Phys. 82(2), 1767–1791 (2010).
[Crossref]

T. Čižmár, L. C. Dávila Romero, K. Dholakia, and D. L. Andrews, “Multiple optical trapping and binding: new routes to self-assembly,” J. Phys. At. Mol. Opt. Phys. 43(10), 102001 (2010).
[Crossref]

Dogariu, A.

S. Sukhov and A. Dogariu, “Negative nonconservative forces: optical “tractor beams” for arbitrary objects,” Phys. Rev. Lett. 107(20), 203602 (2011).
[Crossref] [PubMed]

D. Haefner, S. Sukhov, and A. Dogariu, “Conservative and nonconservative torques in optical binding,” Phys. Rev. Lett. 103(17), 173602 (2009).
[Crossref] [PubMed]

Draine, B. T.

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[Crossref]

Fournier, J.-M.

M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63(12), 1233–1236 (1989).
[Crossref] [PubMed]

Golovchenko, J. A.

M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63(12), 1233–1236 (1989).
[Crossref] [PubMed]

Gordon, J. P.

Greffet, J.-J.

R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261(2), 368–375 (2006).
[Crossref]

Haefner, D.

D. Haefner, S. Sukhov, and A. Dogariu, “Conservative and nonconservative torques in optical binding,” Phys. Rev. Lett. 103(17), 173602 (2009).
[Crossref] [PubMed]

Henkel, C.

R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261(2), 368–375 (2006).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Karásek, V.

V. Karásek and P. Zemánek, “Optical binding of unlike particles,” Proc. SPIE 8697, 86970T (2012).
[Crossref]

Mackowski, D. W.

D. W. Mackowski and M. I. Mishchenko, “A multiple sphere T-matrix Fortran code for use on parallel computer clusters,” J. Quant. Spectrosc. Radiat. Transf. 112(13), 2182–2192 (2011).
[Crossref]

Mishchenko, M. I.

D. W. Mackowski and M. I. Mishchenko, “A multiple sphere T-matrix Fortran code for use on parallel computer clusters,” J. Quant. Spectrosc. Radiat. Transf. 112(13), 2182–2192 (2011).
[Crossref]

Nieto-Vesperinas, M.

Obara, N.

N. Obara and M. Baba, “Analysis of electromagnetic propulsion on a two-electric-dipole system,” Electron. Comm. JPN 2 83(4), 31–39 (2000).

Peterson, T. J.

G. A. Swartzlander, T. J. Peterson, A. B. Artusio-Glimpse, and A. D. Raisanen, “Stable optical lift,” Nat. Photonics 5(1), 48–51 (2011).
[Crossref]

Raisanen, A. D.

G. A. Swartzlander, T. J. Peterson, A. B. Artusio-Glimpse, and A. D. Raisanen, “Stable optical lift,” Nat. Photonics 5(1), 48–51 (2011).
[Crossref]

Rodríguez, J.

L. C. Dávila Romero, J. Rodríguez, and D. L. Andrews, “Electrodynamic mechanism and array stability in optical binding,” Opt. Commun. 281(4), 865–870 (2008).
[Crossref]

Sukhov, S.

S. Sukhov and A. Dogariu, “Negative nonconservative forces: optical “tractor beams” for arbitrary objects,” Phys. Rev. Lett. 107(20), 203602 (2011).
[Crossref] [PubMed]

D. Haefner, S. Sukhov, and A. Dogariu, “Conservative and nonconservative torques in optical binding,” Phys. Rev. Lett. 103(17), 173602 (2009).
[Crossref] [PubMed]

Swartzlander, G. A.

G. A. Swartzlander, T. J. Peterson, A. B. Artusio-Glimpse, and A. D. Raisanen, “Stable optical lift,” Nat. Photonics 5(1), 48–51 (2011).
[Crossref]

Vigoureux, J. M.

R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261(2), 368–375 (2006).
[Crossref]

Vigoureux, J.-M.

F. Depasse and J.-M. Vigoureux, “Optical binding force between two Rayleigh particles,” J. Phys. D Appl. Phys. 27(5), 914–919 (1994).
[Crossref]

Zemánek, P.

V. Karásek and P. Zemánek, “Optical binding of unlike particles,” Proc. SPIE 8697, 86970T (2012).
[Crossref]

K. Dholakia and P. Zemánek, “Gripped by light: optical binding,” Rev. Mod. Phys. 82(2), 1767–1791 (2010).
[Crossref]

Astrophys. J. (1)

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[Crossref]

Electron. Comm. JPN 2 (1)

N. Obara and M. Baba, “Analysis of electromagnetic propulsion on a two-electric-dipole system,” Electron. Comm. JPN 2 83(4), 31–39 (2000).

J. Phys. At. Mol. Opt. Phys. (1)

T. Čižmár, L. C. Dávila Romero, K. Dholakia, and D. L. Andrews, “Multiple optical trapping and binding: new routes to self-assembly,” J. Phys. At. Mol. Opt. Phys. 43(10), 102001 (2010).
[Crossref]

J. Phys. D Appl. Phys. (1)

F. Depasse and J.-M. Vigoureux, “Optical binding force between two Rayleigh particles,” J. Phys. D Appl. Phys. 27(5), 914–919 (1994).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (1)

D. W. Mackowski and M. I. Mishchenko, “A multiple sphere T-matrix Fortran code for use on parallel computer clusters,” J. Quant. Spectrosc. Radiat. Transf. 112(13), 2182–2192 (2011).
[Crossref]

Nat. Photonics (1)

G. A. Swartzlander, T. J. Peterson, A. B. Artusio-Glimpse, and A. D. Raisanen, “Stable optical lift,” Nat. Photonics 5(1), 48–51 (2011).
[Crossref]

Opt. Commun. (2)

R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261(2), 368–375 (2006).
[Crossref]

L. C. Dávila Romero, J. Rodríguez, and D. L. Andrews, “Electrodynamic mechanism and array stability in optical binding,” Opt. Commun. 281(4), 865–870 (2008).
[Crossref]

Opt. Lett. (2)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (3)

M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63(12), 1233–1236 (1989).
[Crossref] [PubMed]

D. Haefner, S. Sukhov, and A. Dogariu, “Conservative and nonconservative torques in optical binding,” Phys. Rev. Lett. 103(17), 173602 (2009).
[Crossref] [PubMed]

S. Sukhov and A. Dogariu, “Negative nonconservative forces: optical “tractor beams” for arbitrary objects,” Phys. Rev. Lett. 107(20), 203602 (2011).
[Crossref] [PubMed]

Proc. SPIE (1)

V. Karásek and P. Zemánek, “Optical binding of unlike particles,” Proc. SPIE 8697, 86970T (2012).
[Crossref]

Rev. Mod. Phys. (1)

K. Dholakia and P. Zemánek, “Gripped by light: optical binding,” Rev. Mod. Phys. 82(2), 1767–1791 (2010).
[Crossref]

Other (3)

F. Borghese, P. Denti, and R. Saija, Scattering from Model Nonspherical Particles: Theory and Applications to Environmental Physics (Springer, 2007) Chap.3.

S. B. Wang and C. T. Chan, “Lateral optical force on chiral particles near a surface,” Nature Commun. 5, 3307 (2014).
[Crossref]

J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, 1975).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Geometry of the optical bound system. Two dissimilar particles experience different forces F 1 F 2 when illuminated by an external field E 0 I . As a result, a transversal optical force F acts on the whole system (represented by semitransparent sphere).

Fig. 2
Fig. 2

Transverse component of optical forces acting on each of interacting particles within a dimer illuminated perpendicular to its axis by a plane wave (λ = 342nm) with electric field strength E = 106 V/m. Polarization of the wave is aligned perpendicular to the dimer’s axis. The dimer consists of dipolar, spherical particles of Au and Ag having 20nm in diameter. The green and red dots indicate the particle-particle separations of stable and unstable equilibriums, respectively. The insert shows the scattering diagram for particles in stable equilibrium. The scattering angle is measured with respect to the dimer’s axis (x-axis in Fig. 1).

Fig. 3
Fig. 3

Force acting on a center of mass of optically bound dissimilar particles and stable particle-particle separation of optical binding as functions of illumination field wavelength. Gold and silver particles are of equal diameter 20 nm and are placed in vacuum. External wave with electric field strength 106 V/m is polarized perpendicular to the dimer axis. Optical constants for gold and silver are taken from [15].

Fig. 4
Fig. 4

Transversal force on an optically bound dimer consisting of two nonabsorbing dielectric particles with refractive indices of 1.49 and 2.76 and varying radii. The force is evaluated at the first bounding positions corresponding to each particle size. The particles are placed in water (refractive index 1.33), the external field has a strength of 106 V/m and vacuum wavelength 532nm, and the polarization is perpendicular (hollow red squares) or parallel (filled blue squares) to the dimer’s axis.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

{ E 1 ( r 1 ) = E 0 I + G ( R ) α 2 E 2 ( r 2 ) E 2 ( r 2 ) = E 0 I + G ( R ) α 1 E 1 ( r 1 )
{ E 1 = E 0 I 1 + α 2 G 1 G 2 α 1 α 2 E 2 = E 0 I 1 + α 1 G 1 G 2 α 1 α 2
F = 1 2 j = 1 , 2 R e ( α j E j E j * r )
F = E 0 I 2 Im [ G r ] I m ( α 1 α 2 * ) + | α 2 | 2 I m ( α 1 G ) | α 1 | 2 I m ( α 2 G ) | 1 G 2 α 1 α 2 | 2
F = ε 2 k 2 Ω | f ( k ^ s = r ^ , k ^ I ) | 2 r ^ d Ω
Δ F = F 2 F 1 = 0
α = α 0 ( 1 2 i 3 1 4 π ε k 3 α 0 ) 1

Metrics