Abstract

We demonstrate the first all-fiber mode-group-selective photonic lantern using multimode graded-index fibers. Mode selectivity for mode groups LP01, LP11 and LP21+LP02 is 20-dB, 10-dB and 7-dB respectively. The insertion loss when butt coupled to multimode graded-index fiber is below 0.6-dB. The use of the multimode graded-index fibers in the taper can significantly reduce the adiabaticity requirement.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mode-selective photonic lanterns for space-division multiplexing

Sergio G. Leon-Saval, Nicolas K. Fontaine, Joel R. Salazar-Gil, Burcu Ercan, Roland Ryf, and Joss Bland-Hawthorn
Opt. Express 22(1) 1036-1044 (2014)

All-fiber few-mode multicore photonic lantern mode multiplexer

Z. Sanjabi Eznaveh, J. E. Antonio-Lopez, J. C. Alvarado Zacarias, A. Schülzgen, C. M. Okonkwo, and R. Amezcua Correa
Opt. Express 25(14) 16701-16707 (2017)

Design of highly mode group selective photonic lanterns with geometric optimization

Li Shen, Lin Gan, Liang Huo, Chen Yang, Weijun Tong, Songnian Fu, Ming Tang, and Deming Liu
Appl. Opt. 57(24) 7065-7069 (2018)

References

  • View by:
  • |
  • |
  • |

  1. R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
    [Crossref]
  2. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
    [Crossref]
  3. R. Ryf, S. Randel, A. H. Gnauck, C. A. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R.-J. Essiambre, P. J. Winzer, D. W. Peckham, A. McCurdy, and R. Lingle, “Mode-division multiplexing over 96 km of few-mode fiber using coherent 6 × 6 MIMO processing,” J. Lightwave Technol. 30(4), 521–531 (2012).
    [Crossref]
  4. N. Bai, E. Ip, Y.-K. Huang, E. Mateo, F. Yaman, M.-J. Li, S. Bickham, S. Ten, J. Liñares, C. Montero, V. Moreno, X. Prieto, V. Tse, K. Man Chung, A. P. T. Lau, H.-Y. Tam, C. Lu, Y. Luo, G.-D. Peng, G. Li, and T. Wang, “Mode-division multiplexed transmission with inline few-mode fiber amplifier,” Opt. Express 20(3), 2668–2680 (2012).
    [Crossref] [PubMed]
  5. R. Ryf, R. Essiambre, A. Gnauck, S. Randel, M. A. Mestre, C. Schmidt, P. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, T. Hayashi, T. Taru, and T. Sasaki, “Space-division multiplexed transmission over 4200 km 3-core microstructured fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper PDP5C.2.
    [Crossref]
  6. B. Zhu, T. F. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M. F. Yan, J. M. Fini, E. M. Monberg, and F. V. Dimarcello, “112-Tb/s space-division multiplexed DWDM transmission with 14-b/s/Hz aggregate spectral efficiency over a 76.8-km seven-core fiber,” Opt. Express 19(17), 16665–16671 (2011).
    [Crossref] [PubMed]
  7. J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, and M. Watanabe, “109-Tb/s (7x97x172-Gb/s) SDM/WDM/PDM) QPSK transmission through 16.8-km homogeneous multicore fiber”, in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB6.
    [Crossref]
  8. N. K. Fontaine, R. Ryf, J. Bland-Hawthorn, and S. G. Leon-Saval, “Geometric requirements for photonic lanterns in space division multiplexing,” Opt. Express 20(24), 27123–27132 (2012).
    [Crossref] [PubMed]
  9. B. Huang, C. Xia, G. Matz, N. Bai, and G. Li, “Structured directional coupler pair for multiplexing of degenerate modes,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper JW2A.25.
    [Crossref]
  10. N. Riesen and J. D. Love, “Weakly-guiding mode-selective fiber couplers,” Quantum Electronics, IEEE Journal of 48(7), 941–945 (2012).
    [Crossref]
  11. N. Riesen, J. D. Love, and J. W. Arkwright, “Few-core spatial-mode multiplexers/demultiplexers based on evanescent coupling,” Photonics Technology Letters, IEEE 25(14), 1324–1327 (2013).
    [Crossref]
  12. R. Ryf, N. K. Fontaine, M. Montoliu, S. Randel, B. Ercan, H. Chen, S. Chandrasekhar, A. Gnauck, S. G. Leon-Saval, J. Bland-Hawthorn, J. R. Salazar Gil, Y. Sun, and R. Lingle, “Photonic-lantern-based mode multiplexers for few-mode-fiber transmission,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper W4J.2.
    [Crossref]
  13. S. G. Leon-Saval, N. K. Fontaine, J. R. Salazar-Gil, B. Ercan, R. Ryf, and J. Bland-Hawthorn, “Mode-selective photonic lanterns for space-division multiplexing,” Opt. Express 22(1), 1036–1044 (2014).
    [Crossref] [PubMed]
  14. N. K. Fontaine, S. G. Leon-Saval, R. Ryf, J. R. Salazar Gil, B. Ercan, and J. Bland-Hawthorn, “Mode selective dissimilar fiber photonic-lantern spatial multiplexers for few-mode fiber,” in Proceedings of European Conference on Optical Communication(2013), paper PD1.C.3.
    [Crossref]
  15. S. Yerolatsitis, I. Gris-Sánchez, and T. A. Birks, “Adiabatically-tapered fiber mode multiplexers,” Opt. Express 22(1), 608–617 (2014).
    [Crossref] [PubMed]
  16. C. Xia, A. M. Velazquez-Benitez, X. Liu, J. E. Antonio-Lopez, H. Wen, B. Zhu, R. Amezcua-Correa, and G. Li, “Demonstration of world's first few-mode GPON” in Proceedings of European Conference on Optical Communication (2014), paper PD.1.5.
  17. R. Ryf, N. K. Fontaine, B. Guan, B. Huang, M. Esmaeelpour, S. Randel, A. H. Gnauck, S. Chandrasekhar, A. Adamiecki, G. Raybon, R. W. Tkach, R. Shubochkin, Y. Sun, and R. Lingle, Jr., “305-km combined wavelength and mode-multiplexed transmission over conventional graded-index multimode fibre.” in Proceedings of European Conference on Optical Communication (2014), paper PD.3.5.
    [Crossref]
  18. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983), pp.407–413.
  19. N. K. Fontaine; “Characterization of multi-mode fibers and devices for MIMO communications”. Proc. SPIE 9009, Next-Generation Optical Communication: Components, Sub-Systems, and Systems III, 90090A.
  20. N. Fontaine, R. Ryf, M. Mestre, B. Guan, X. Palou, S. Randel, Y. Sun, L. Gruner-Nielsen, R. Jensen, and R. Lingle, “Characterization of space-division multiplexing systems using a swept-wavelength interferometer,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper OW1K.2.
    [Crossref]

2014 (2)

2013 (2)

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

N. Riesen, J. D. Love, and J. W. Arkwright, “Few-core spatial-mode multiplexers/demultiplexers based on evanescent coupling,” Photonics Technology Letters, IEEE 25(14), 1324–1327 (2013).
[Crossref]

2012 (4)

2011 (1)

2010 (1)

Arkwright, J. W.

N. Riesen, J. D. Love, and J. W. Arkwright, “Few-core spatial-mode multiplexers/demultiplexers based on evanescent coupling,” Photonics Technology Letters, IEEE 25(14), 1324–1327 (2013).
[Crossref]

Bai, N.

Bickham, S.

Birks, T. A.

Bland-Hawthorn, J.

Bolle, C. A.

Burrows, E. C.

Chandrasekhar, S.

Dimarcello, F. V.

Ercan, B.

Esmaeelpour, M.

Essiambre, R.-J.

Fini, J. M.

Fishteyn, M.

Fontaine, N. K.

Foschini, G. J.

Gnauck, A. H.

Goebel, B.

Gris-Sánchez, I.

Huang, Y.-K.

Ip, E.

Kramer, G.

Lau, A. P. T.

Leon-Saval, S. G.

Li, G.

Li, M.-J.

Liñares, J.

Lingle, R.

Liu, X.

Love, J. D.

N. Riesen, J. D. Love, and J. W. Arkwright, “Few-core spatial-mode multiplexers/demultiplexers based on evanescent coupling,” Photonics Technology Letters, IEEE 25(14), 1324–1327 (2013).
[Crossref]

N. Riesen and J. D. Love, “Weakly-guiding mode-selective fiber couplers,” Quantum Electronics, IEEE Journal of 48(7), 941–945 (2012).
[Crossref]

Lu, C.

Luo, Y.

Man Chung, K.

Mateo, E.

McCurdy, A.

Monberg, E. M.

Montero, C.

Moreno, V.

Mumtaz, S.

Nelson, L. E.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Peckham, D. W.

Peng, G.-D.

Prieto, X.

Randel, S.

Richardson, D. J.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Riesen, N.

N. Riesen, J. D. Love, and J. W. Arkwright, “Few-core spatial-mode multiplexers/demultiplexers based on evanescent coupling,” Photonics Technology Letters, IEEE 25(14), 1324–1327 (2013).
[Crossref]

N. Riesen and J. D. Love, “Weakly-guiding mode-selective fiber couplers,” Quantum Electronics, IEEE Journal of 48(7), 941–945 (2012).
[Crossref]

Ryf, R.

Salazar-Gil, J. R.

Sierra, A.

Tam, H.-Y.

Taunay, T. F.

Ten, S.

Tse, V.

Wang, T.

Winzer, P. J.

Yaman, F.

Yan, M. F.

Yerolatsitis, S.

Zhu, B.

J. Lightwave Technol. (2)

Nat. Photonics (1)

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Opt. Express (5)

Photonics Technology Letters, IEEE (1)

N. Riesen, J. D. Love, and J. W. Arkwright, “Few-core spatial-mode multiplexers/demultiplexers based on evanescent coupling,” Photonics Technology Letters, IEEE 25(14), 1324–1327 (2013).
[Crossref]

Quantum Electronics, IEEE Journal of (1)

N. Riesen and J. D. Love, “Weakly-guiding mode-selective fiber couplers,” Quantum Electronics, IEEE Journal of 48(7), 941–945 (2012).
[Crossref]

Other (10)

R. Ryf, N. K. Fontaine, M. Montoliu, S. Randel, B. Ercan, H. Chen, S. Chandrasekhar, A. Gnauck, S. G. Leon-Saval, J. Bland-Hawthorn, J. R. Salazar Gil, Y. Sun, and R. Lingle, “Photonic-lantern-based mode multiplexers for few-mode-fiber transmission,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper W4J.2.
[Crossref]

N. K. Fontaine, S. G. Leon-Saval, R. Ryf, J. R. Salazar Gil, B. Ercan, and J. Bland-Hawthorn, “Mode selective dissimilar fiber photonic-lantern spatial multiplexers for few-mode fiber,” in Proceedings of European Conference on Optical Communication(2013), paper PD1.C.3.
[Crossref]

C. Xia, A. M. Velazquez-Benitez, X. Liu, J. E. Antonio-Lopez, H. Wen, B. Zhu, R. Amezcua-Correa, and G. Li, “Demonstration of world's first few-mode GPON” in Proceedings of European Conference on Optical Communication (2014), paper PD.1.5.

R. Ryf, N. K. Fontaine, B. Guan, B. Huang, M. Esmaeelpour, S. Randel, A. H. Gnauck, S. Chandrasekhar, A. Adamiecki, G. Raybon, R. W. Tkach, R. Shubochkin, Y. Sun, and R. Lingle, Jr., “305-km combined wavelength and mode-multiplexed transmission over conventional graded-index multimode fibre.” in Proceedings of European Conference on Optical Communication (2014), paper PD.3.5.
[Crossref]

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983), pp.407–413.

N. K. Fontaine; “Characterization of multi-mode fibers and devices for MIMO communications”. Proc. SPIE 9009, Next-Generation Optical Communication: Components, Sub-Systems, and Systems III, 90090A.

N. Fontaine, R. Ryf, M. Mestre, B. Guan, X. Palou, S. Randel, Y. Sun, L. Gruner-Nielsen, R. Jensen, and R. Lingle, “Characterization of space-division multiplexing systems using a swept-wavelength interferometer,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper OW1K.2.
[Crossref]

B. Huang, C. Xia, G. Matz, N. Bai, and G. Li, “Structured directional coupler pair for multiplexing of degenerate modes,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper JW2A.25.
[Crossref]

J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, and M. Watanabe, “109-Tb/s (7x97x172-Gb/s) SDM/WDM/PDM) QPSK transmission through 16.8-km homogeneous multicore fiber”, in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB6.
[Crossref]

R. Ryf, R. Essiambre, A. Gnauck, S. Randel, M. A. Mestre, C. Schmidt, P. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, T. Hayashi, T. Taru, and T. Sasaki, “Space-division multiplexed transmission over 4200 km 3-core microstructured fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper PDP5C.2.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Differential group delay compensator for the first three mode-groups of a GI-MMF.
Fig. 2
Fig. 2 Fiber photonic lantern based SMUX
Fig. 3
Fig. 3 (a) Refractive index profile of MMFs. Step index MMF (red), α=2 graded index MMF (green), α=0.5 graded index MMF(blue). (b) Effective area of the fundamental mode of different fibers in the taper. Step index MMF (red), α=2 graded index MMF (green), α=0.5 graded index MMF(blue). The black line represents the effective area of SSMF (80 μm2).
Fig. 4
Fig. 4 (a) Six-fiber lantern index profile with 3 types of dissimilar cores (1, 2 and 3). (b) Propagation constants and (c) intensity of the modes at different stages of the taper.
Fig. 5
Fig. 5 (a) End facet of the mode group selective lantern supporting two mode groups. (b) Near field intensity profile. (c) Intensity profiles after 50-m of GI-MMF when illuminated with a C-band broadband source.
Fig. 6
Fig. 6 (a) End facet of the mode group selective lantern supporting three mode groups. (b) Near field mode profile. (c) Mode profiles after 50-m of GI-MMF when illuminated with a C-band broadband source.
Fig. 7
Fig. 7 Full transfer matrix for the three mode-group MGS-PL (6 spatial modes). Crosstalk between groups are indicated by red cells. Cell blocks on the diagonal are the signal cells. The two mode group MGS-PL matrix is a subset of the 6 × 6 matrix.
Fig. 8
Fig. 8 Summation of signal and crosstalk cells from the reflection transfer matrix for mode group selective lantern supporting two mode groups.
Fig. 9
Fig. 9 Summation of signal and crosstalk cells from reflection transfer matrix for mode group selective lantern supporting three mode groups.

Tables (1)

Tables Icon

Table 1 Parameters of mode group selective lanterns.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

| 2π β 1 β 2 dρ dz ψ 1 ψ 2 ρ dA |1

Metrics