Abstract

Height induced coupling behavior between the plasmonic modes and diffraction orders were studied in the core-shell SiO2/Au nanocylinder arrays (NCAs) using finite difference time domain (FDTD) simulations. New lattice plasmon modes (LPMs) are observed in the structures with high aspect ratio. Specifically, parallel coupling between the plasmonic modes and diffraction orders is obtained here, which shows different coupling behavior from orthogonal LPMs. Electromagnetic (EM) field distributions indicate that horizontal propagation of the magnetic or electric field component is responsible for the generation of these orthogonal and parallel LPMs, respectively. Radiative loss could be effectively suppressed when the height increases. This is important for the applications of fluorescence enhancement and nano laser. Further studies confirm that the LPMs associated with the superstrate diffraction orders could be well maintained even when the Au coating is imperfect. The interference from the substrate associated LPMs could be eliminated by cutting off the corresponding diffraction waves by inducing a Si3N4 substrate. This study of coupling behavior in the core-shell NCAs enables a novel route to design and optimize the LPMs for applications of bio-sensing and nano laser.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarization switching between parallel and orthogonal collective resonances in arrays of metal nanoparticles

Alina Muravitskaya, Artur Movsesyan, Sergei Kostcheev, and Pierre-Michel Adam
J. Opt. Soc. Am. B 36(7) E65-E70 (2019)

Stepwise synthesis of cubic Au-AgCdS core-shell nanostructures with tunable plasmon resonances and fluorescence

Xiao-Li Liu, Shan Liang, Fan Nan, Yue-Yue Pan, Jun-Jun Shi, Li Zhou, Shuang-Feng Jia, Jian-Bo Wang, Xue-Feng Yu, and Qu-Quan Wang
Opt. Express 21(21) 24793-24798 (2013)

References

  • View by:
  • |
  • |
  • |

  1. N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
    [Crossref] [PubMed]
  2. E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
    [Crossref] [PubMed]
  3. L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. N. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
    [Crossref] [PubMed]
  4. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
    [Crossref] [PubMed]
  5. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
    [Crossref] [PubMed]
  6. K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
    [Crossref] [PubMed]
  7. J. Henson, J. DiMaria, E. Dimakis, T. D. Moustakas, and R. Paiella, “Plasmon-enhanced light emission based on lattice resonances of silver nanocylinder arrays,” Opt. Lett. 37(1), 79–81 (2012).
    [Crossref] [PubMed]
  8. S. Khatua, P. M. R. Paulo, H. Yuan, A. Gupta, P. Zijlstra, and M. Orrit, “Resonant plasmonic enhancement of single-molecule fluorescence by individual gold nanorods,” ACS Nano 8(5), 4440–4449 (2014).
    [Crossref] [PubMed]
  9. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
    [Crossref] [PubMed]
  10. R.-M. Ma, R. F. Oulton, V. J. Sorger, and X. Zhang, “Plasmon lasers: coherent light source at molecular scales,” Laser Photonics Rev. 7(1), 1–21 (2013).
    [Crossref]
  11. J. B. Khurgin and G. Sun, “Comparative analysis of spasers, vertical-cavity surface-emitting lasers and surface-plasmon-emitting diodes,” Nat. Photonics 8(6), 468–473 (2014).
    [Crossref]
  12. P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 601–626 (2008).
    [Crossref] [PubMed]
  13. A. J. Haes, C. L. Haynes, A. D. McFarland, G. C. Schatz, R. R. Van Duyne, and S. L. Zou, “Plasmonic materials for surface-enhanced sensing and spectroscopy,” MRS Bull. 30(05), 368–375 (2005).
    [Crossref]
  14. P. P. Patra, R. Chikkaraddy, R. P. N. Tripathi, A. Dasgupta, and G. V. P. Kumar, “Plasmofluidic single-molecule surface-enhanced Raman scattering from dynamic assembly of plasmonic nanoparticles,” Nat Commun 5, 4357 (2014).
    [Crossref] [PubMed]
  15. M. Meier, A. Wokaun, and P. F. Liao, “Enhanced fields on rough surfaces-dipolar interactions among particles of sizes exceeding the Rayleigh limit,” J. Opt. Soc. Am. B 2(6), 931–949 (1985).
    [Crossref]
  16. V. A. Markel, “Divergence of dipole sums and the nature of non-Lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres,” J. Phys. At. Mol. Opt. Phys. 38(7), L115–L121 (2005).
    [Crossref]
  17. V. A. Markel, “Coupled-dipole approach to scattering of light from a one-dimensional periodic dipole structure,” J. Mod. Opt. 40(11), 2281–2291 (1993).
    [Crossref]
  18. A. G. Nikitin, T. Nguyen, and H. Dallaporta, “Narrow plasmon resonances in diffractive arrays of gold nanoparticles in asymmetric environment: Experimental studies,” Appl. Phys. Lett. 102(22), 221116 (2013).
    [Crossref]
  19. A. G. Nikitin, A. V. Kabashin, and H. Dallaporta, “Plasmonic resonances in diffractive arrays of gold nanoantennas: near and far field effects,” Opt. Express 20(25), 27941–27952 (2012).
    [Crossref] [PubMed]
  20. S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. G. Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1, 021019 (2011).
  21. G. Vecchi, V. Giannini, and J. G. Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B 80(20), 201401 (2009).
    [Crossref]
  22. V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101(8), 087403 (2008).
    [Crossref] [PubMed]
  23. Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
    [Crossref]
  24. B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
    [Crossref] [PubMed]
  25. B. Špačková and J. Homola, “Sensing properties of lattice resonances of 2D metal nanoparticle arrays: An analytical model,” Opt. Express 21(22), 27490–27502 (2013).
    [Crossref] [PubMed]
  26. Y. Du, L. Shi, M. Hong, H. Li, D. Li, and M. Liu, “A surface plasmon resonance biosensor based on gold nanoparticle array,” Opt. Commun. 298, 232–236 (2013).
    [Crossref]
  27. P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5(6), 5151–5157 (2011).
    [Crossref] [PubMed]
  28. A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5(6), 4843–4849 (2011).
    [Crossref] [PubMed]
  29. W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
    [Crossref] [PubMed]
  30. W. Zhou, Y. Hua, M. D. Huntington, and T. W. Odom, “Delocalized lattice plasmon resonances show dispersive quality factors,” J. Phys. Chem. Lett. 3(10), 1381–1385 (2012).
    [Crossref]
  31. W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nat. Nanotechnol. 6(7), 423–427 (2011).
    [Crossref] [PubMed]
  32. F. van Beijnum, P. J. van Veldhoven, E. J. Geluk, M. J. A. de Dood, G. W. ’t Hooft, and M. P. van Exter, “Surface plasmon lasing observed in metal hole arrays,” Phys. Rev. Lett. 110(20), 206802 (2013).
    [Crossref] [PubMed]
  33. L. L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: Influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B 107(30), 7343–7350 (2003).
    [Crossref]
  34. S. L. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
    [Crossref] [PubMed]
  35. S. L. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys. 121(24), 12606–12612 (2004).
    [Crossref] [PubMed]
  36. B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
    [Crossref] [PubMed]
  37. C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
    [Crossref]
  38. B. Auguie, X. M. Bendana, W. L. Barnes, and F. J. Garcia de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. B 82(15), 155447 (2010).
    [Crossref]
  39. A. Vitrey, L. Aigouy, P. Prieto, J. M. García-Martín, and M. U. González, “Parallel collective resonances in arrays of gold nanorods,” Nano Lett. 14(4), 2079–2085 (2014).
    [Crossref] [PubMed]
  40. A. G. Nikitin, “Diffraction-induced subradiant transverse-magnetic lattice plasmon modes in metal nanoparticle arrays,” Appl. Phys. Lett. 104(6), 061107 (2014).
    [Crossref]
  41. L. Lin and Y. Yi, “Lattice plasmon resonance in core-shell SiO₂/Au nanocylinder arrays,” Opt. Lett. 39(16), 4823–4826 (2014).
    [Crossref] [PubMed]
  42. J. M. Steele, C. E. Moran, A. Lee, C. M. Aguirre, and N. J. Halas, “Metallodielectric gratings with subwavelength slots:Optical properties,” Phys. Rev. B 68(20), 205103 (2003).
    [Crossref]
  43. H. Gao, J. M. McMahon, M. H. Lee, J. Henzie, S. K. Gray, G. C. Schatz, and T. W. Odom, “Rayleigh anomaly-surface plasmon polariton resonances in palladium and gold subwavelength hole arrays,” Opt. Express 17(4), 2334–2340 (2009).
    [PubMed]

2014 (6)

S. Khatua, P. M. R. Paulo, H. Yuan, A. Gupta, P. Zijlstra, and M. Orrit, “Resonant plasmonic enhancement of single-molecule fluorescence by individual gold nanorods,” ACS Nano 8(5), 4440–4449 (2014).
[Crossref] [PubMed]

J. B. Khurgin and G. Sun, “Comparative analysis of spasers, vertical-cavity surface-emitting lasers and surface-plasmon-emitting diodes,” Nat. Photonics 8(6), 468–473 (2014).
[Crossref]

P. P. Patra, R. Chikkaraddy, R. P. N. Tripathi, A. Dasgupta, and G. V. P. Kumar, “Plasmofluidic single-molecule surface-enhanced Raman scattering from dynamic assembly of plasmonic nanoparticles,” Nat Commun 5, 4357 (2014).
[Crossref] [PubMed]

A. Vitrey, L. Aigouy, P. Prieto, J. M. García-Martín, and M. U. González, “Parallel collective resonances in arrays of gold nanorods,” Nano Lett. 14(4), 2079–2085 (2014).
[Crossref] [PubMed]

A. G. Nikitin, “Diffraction-induced subradiant transverse-magnetic lattice plasmon modes in metal nanoparticle arrays,” Appl. Phys. Lett. 104(6), 061107 (2014).
[Crossref]

L. Lin and Y. Yi, “Lattice plasmon resonance in core-shell SiO₂/Au nanocylinder arrays,” Opt. Lett. 39(16), 4823–4826 (2014).
[Crossref] [PubMed]

2013 (6)

R.-M. Ma, R. F. Oulton, V. J. Sorger, and X. Zhang, “Plasmon lasers: coherent light source at molecular scales,” Laser Photonics Rev. 7(1), 1–21 (2013).
[Crossref]

A. G. Nikitin, T. Nguyen, and H. Dallaporta, “Narrow plasmon resonances in diffractive arrays of gold nanoparticles in asymmetric environment: Experimental studies,” Appl. Phys. Lett. 102(22), 221116 (2013).
[Crossref]

B. Špačková and J. Homola, “Sensing properties of lattice resonances of 2D metal nanoparticle arrays: An analytical model,” Opt. Express 21(22), 27490–27502 (2013).
[Crossref] [PubMed]

Y. Du, L. Shi, M. Hong, H. Li, D. Li, and M. Liu, “A surface plasmon resonance biosensor based on gold nanoparticle array,” Opt. Commun. 298, 232–236 (2013).
[Crossref]

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[Crossref] [PubMed]

F. van Beijnum, P. J. van Veldhoven, E. J. Geluk, M. J. A. de Dood, G. W. ’t Hooft, and M. P. van Exter, “Surface plasmon lasing observed in metal hole arrays,” Phys. Rev. Lett. 110(20), 206802 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (6)

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. G. Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1, 021019 (2011).

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5(6), 5151–5157 (2011).
[Crossref] [PubMed]

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5(6), 4843–4849 (2011).
[Crossref] [PubMed]

W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nat. Nanotechnol. 6(7), 423–427 (2011).
[Crossref] [PubMed]

2010 (1)

B. Auguie, X. M. Bendana, W. L. Barnes, and F. J. Garcia de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. B 82(15), 155447 (2010).
[Crossref]

2009 (3)

G. Vecchi, V. Giannini, and J. G. Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B 80(20), 201401 (2009).
[Crossref]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

H. Gao, J. M. McMahon, M. H. Lee, J. Henzie, S. K. Gray, G. C. Schatz, and T. W. Odom, “Rayleigh anomaly-surface plasmon polariton resonances in palladium and gold subwavelength hole arrays,” Opt. Express 17(4), 2334–2340 (2009).
[PubMed]

2008 (5)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 601–626 (2008).
[Crossref] [PubMed]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101(8), 087403 (2008).
[Crossref] [PubMed]

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[Crossref]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref] [PubMed]

2007 (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

2005 (3)

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. N. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref] [PubMed]

A. J. Haes, C. L. Haynes, A. D. McFarland, G. C. Schatz, R. R. Van Duyne, and S. L. Zou, “Plasmonic materials for surface-enhanced sensing and spectroscopy,” MRS Bull. 30(05), 368–375 (2005).
[Crossref]

V. A. Markel, “Divergence of dipole sums and the nature of non-Lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres,” J. Phys. At. Mol. Opt. Phys. 38(7), L115–L121 (2005).
[Crossref]

2004 (3)

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
[Crossref] [PubMed]

S. L. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
[Crossref] [PubMed]

S. L. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys. 121(24), 12606–12612 (2004).
[Crossref] [PubMed]

2003 (3)

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[Crossref]

L. L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: Influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B 107(30), 7343–7350 (2003).
[Crossref]

J. M. Steele, C. E. Moran, A. Lee, C. M. Aguirre, and N. J. Halas, “Metallodielectric gratings with subwavelength slots:Optical properties,” Phys. Rev. B 68(20), 205103 (2003).
[Crossref]

2000 (1)

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[Crossref] [PubMed]

1993 (1)

V. A. Markel, “Coupled-dipole approach to scattering of light from a one-dimensional periodic dipole structure,” J. Mod. Opt. 40(11), 2281–2291 (1993).
[Crossref]

1985 (1)

’t Hooft, G. W.

F. van Beijnum, P. J. van Veldhoven, E. J. Geluk, M. J. A. de Dood, G. W. ’t Hooft, and M. P. van Exter, “Surface plasmon lasing observed in metal hole arrays,” Phys. Rev. Lett. 110(20), 206802 (2013).
[Crossref] [PubMed]

Abass, A.

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. G. Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1, 021019 (2011).

Aguirre, C. M.

J. M. Steele, C. E. Moran, A. Lee, C. M. Aguirre, and N. J. Halas, “Metallodielectric gratings with subwavelength slots:Optical properties,” Phys. Rev. B 68(20), 205103 (2003).
[Crossref]

Aigouy, L.

A. Vitrey, L. Aigouy, P. Prieto, J. M. García-Martín, and M. U. González, “Parallel collective resonances in arrays of gold nanorods,” Nano Lett. 14(4), 2079–2085 (2014).
[Crossref] [PubMed]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Arnedillo, M. L.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5(6), 4843–4849 (2011).
[Crossref] [PubMed]

Auguie, B.

B. Auguie, X. M. Bendana, W. L. Barnes, and F. J. Garcia de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. B 82(15), 155447 (2010).
[Crossref]

Auguié, B.

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref] [PubMed]

Aussenegg, F. R.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[Crossref] [PubMed]

Bakker, R.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Barnes, W. L.

B. Auguie, X. M. Bendana, W. L. Barnes, and F. J. Garcia de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. B 82(15), 155447 (2010).
[Crossref]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref] [PubMed]

Belgrave, A. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Bendana, X. M.

B. Auguie, X. M. Bendana, W. L. Barnes, and F. J. Garcia de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. B 82(15), 155447 (2010).
[Crossref]

Brongersma, S. H.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5(6), 5151–5157 (2011).
[Crossref] [PubMed]

Chang, S. H.

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. N. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref] [PubMed]

Chang, W. S.

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

Chichkov, B. N.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5(6), 4843–4849 (2011).
[Crossref] [PubMed]

Chikkaraddy, R.

P. P. Patra, R. Chikkaraddy, R. P. N. Tripathi, A. Dasgupta, and G. V. P. Kumar, “Plasmofluidic single-molecule surface-enhanced Raman scattering from dynamic assembly of plasmonic nanoparticles,” Nat Commun 5, 4357 (2014).
[Crossref] [PubMed]

Chu, Y.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[Crossref]

Co, D. T.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[Crossref] [PubMed]

Crego-Calama, M.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5(6), 5151–5157 (2011).
[Crossref] [PubMed]

Crozier, K. B.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[Crossref]

Dallaporta, H.

A. G. Nikitin, T. Nguyen, and H. Dallaporta, “Narrow plasmon resonances in diffractive arrays of gold nanoparticles in asymmetric environment: Experimental studies,” Appl. Phys. Lett. 102(22), 221116 (2013).
[Crossref]

A. G. Nikitin, A. V. Kabashin, and H. Dallaporta, “Plasmonic resonances in diffractive arrays of gold nanoantennas: near and far field effects,” Opt. Express 20(25), 27941–27952 (2012).
[Crossref] [PubMed]

Dasgupta, A.

P. P. Patra, R. Chikkaraddy, R. P. N. Tripathi, A. Dasgupta, and G. V. P. Kumar, “Plasmofluidic single-molecule surface-enhanced Raman scattering from dynamic assembly of plasmonic nanoparticles,” Nat Commun 5, 4357 (2014).
[Crossref] [PubMed]

de Dood, M. J. A.

F. van Beijnum, P. J. van Veldhoven, E. J. Geluk, M. J. A. de Dood, G. W. ’t Hooft, and M. P. van Exter, “Surface plasmon lasing observed in metal hole arrays,” Phys. Rev. Lett. 110(20), 206802 (2013).
[Crossref] [PubMed]

Dieringer, J. A.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 601–626 (2008).
[Crossref] [PubMed]

Dimakis, E.

DiMaria, J.

Ditlbacher, H.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[Crossref] [PubMed]

Dridi, M.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[Crossref] [PubMed]

Du, Y.

Y. Du, L. Shi, M. Hong, H. Li, D. Li, and M. Liu, “A surface plasmon resonance biosensor based on gold nanoparticle array,” Opt. Commun. 298, 232–236 (2013).
[Crossref]

Evlyukhin, A. B.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5(6), 4843–4849 (2011).
[Crossref] [PubMed]

Gao, H.

Garcia de Abajo, F. J.

B. Auguie, X. M. Bendana, W. L. Barnes, and F. J. Garcia de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. B 82(15), 155447 (2010).
[Crossref]

García-Martín, J. M.

A. Vitrey, L. Aigouy, P. Prieto, J. M. García-Martín, and M. U. González, “Parallel collective resonances in arrays of gold nanorods,” Nano Lett. 14(4), 2079–2085 (2014).
[Crossref] [PubMed]

Geluk, E. J.

F. van Beijnum, P. J. van Veldhoven, E. J. Geluk, M. J. A. de Dood, G. W. ’t Hooft, and M. P. van Exter, “Surface plasmon lasing observed in metal hole arrays,” Phys. Rev. Lett. 110(20), 206802 (2013).
[Crossref] [PubMed]

Giannini, V.

G. Vecchi, V. Giannini, and J. G. Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B 80(20), 201401 (2009).
[Crossref]

Gómez Rivas, J.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5(6), 5151–5157 (2011).
[Crossref] [PubMed]

Gonçalves, M. R.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5(6), 4843–4849 (2011).
[Crossref] [PubMed]

González, M. U.

A. Vitrey, L. Aigouy, P. Prieto, J. M. García-Martín, and M. U. González, “Parallel collective resonances in arrays of gold nanorods,” Nano Lett. 14(4), 2079–2085 (2014).
[Crossref] [PubMed]

Gray, S. K.

Grigorenko, A. N.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101(8), 087403 (2008).
[Crossref] [PubMed]

Gunnarsson, L.

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[Crossref]

Gupta, A.

S. Khatua, P. M. R. Paulo, H. Yuan, A. Gupta, P. Zijlstra, and M. Orrit, “Resonant plasmonic enhancement of single-molecule fluorescence by individual gold nanorods,” ACS Nano 8(5), 4440–4449 (2014).
[Crossref] [PubMed]

Haes, A. J.

A. J. Haes, C. L. Haynes, A. D. McFarland, G. C. Schatz, R. R. Van Duyne, and S. L. Zou, “Plasmonic materials for surface-enhanced sensing and spectroscopy,” MRS Bull. 30(05), 368–375 (2005).
[Crossref]

Hafner, J. H.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

Halas, N. J.

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

J. M. Steele, C. E. Moran, A. Lee, C. M. Aguirre, and N. J. Halas, “Metallodielectric gratings with subwavelength slots:Optical properties,” Phys. Rev. B 68(20), 205103 (2003).
[Crossref]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Hao, E.

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
[Crossref] [PubMed]

Haynes, C. L.

A. J. Haes, C. L. Haynes, A. D. McFarland, G. C. Schatz, R. R. Van Duyne, and S. L. Zou, “Plasmonic materials for surface-enhanced sensing and spectroscopy,” MRS Bull. 30(05), 368–375 (2005).
[Crossref]

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[Crossref]

Henson, J.

Henzie, J.

Herz, E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Homola, J.

Hong, M.

Y. Du, L. Shi, M. Hong, H. Li, D. Li, and M. Liu, “A surface plasmon resonance biosensor based on gold nanoparticle array,” Opt. Commun. 298, 232–236 (2013).
[Crossref]

Hua, Y.

W. Zhou, Y. Hua, M. D. Huntington, and T. W. Odom, “Delocalized lattice plasmon resonances show dispersive quality factors,” J. Phys. Chem. Lett. 3(10), 1381–1385 (2012).
[Crossref]

Huntington, M. D.

W. Zhou, Y. Hua, M. D. Huntington, and T. W. Odom, “Delocalized lattice plasmon resonances show dispersive quality factors,” J. Phys. Chem. Lett. 3(10), 1381–1385 (2012).
[Crossref]

Janel, N.

S. L. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
[Crossref] [PubMed]

Janssen, O. T. A.

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. G. Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1, 021019 (2011).

Kabashin, A. V.

Kall, M.

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[Crossref]

Kasemo, B.

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[Crossref]

Kelly, K. L.

L. L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: Influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B 107(30), 7343–7350 (2003).
[Crossref]

Khatua, S.

S. Khatua, P. M. R. Paulo, H. Yuan, A. Gupta, P. Zijlstra, and M. Orrit, “Resonant plasmonic enhancement of single-molecule fluorescence by individual gold nanorods,” ACS Nano 8(5), 4440–4449 (2014).
[Crossref] [PubMed]

Khurgin, J. B.

J. B. Khurgin and G. Sun, “Comparative analysis of spasers, vertical-cavity surface-emitting lasers and surface-plasmon-emitting diodes,” Nat. Photonics 8(6), 468–473 (2014).
[Crossref]

Kim, C. H.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[Crossref] [PubMed]

Kiyan, R.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5(6), 4843–4849 (2011).
[Crossref] [PubMed]

Koroleva, A.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5(6), 4843–4849 (2011).
[Crossref] [PubMed]

Kravets, V. G.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101(8), 087403 (2008).
[Crossref] [PubMed]

Krenn, J. R.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[Crossref] [PubMed]

Kumar, G. V. P.

P. P. Patra, R. Chikkaraddy, R. P. N. Tripathi, A. Dasgupta, and G. V. P. Kumar, “Plasmofluidic single-molecule surface-enhanced Raman scattering from dynamic assembly of plasmonic nanoparticles,” Nat Commun 5, 4357 (2014).
[Crossref] [PubMed]

Kuznetsov, A. I.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5(6), 4843–4849 (2011).
[Crossref] [PubMed]

Lal, S.

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

Lamprecht, B.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[Crossref] [PubMed]

Lechner, R. T.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[Crossref] [PubMed]

Lee, A.

J. M. Steele, C. E. Moran, A. Lee, C. M. Aguirre, and N. J. Halas, “Metallodielectric gratings with subwavelength slots:Optical properties,” Phys. Rev. B 68(20), 205103 (2003).
[Crossref]

Lee, M. H.

Leitner, A.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[Crossref] [PubMed]

Li, D.

Y. Du, L. Shi, M. Hong, H. Li, D. Li, and M. Liu, “A surface plasmon resonance biosensor based on gold nanoparticle array,” Opt. Commun. 298, 232–236 (2013).
[Crossref]

Li, H.

Y. Du, L. Shi, M. Hong, H. Li, D. Li, and M. Liu, “A surface plasmon resonance biosensor based on gold nanoparticle array,” Opt. Commun. 298, 232–236 (2013).
[Crossref]

Liao, P. F.

Lin, L.

Link, S.

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

Liu, M.

Y. Du, L. Shi, M. Hong, H. Li, D. Li, and M. Liu, “A surface plasmon resonance biosensor based on gold nanoparticle array,” Opt. Commun. 298, 232–236 (2013).
[Crossref]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Ma, R.-M.

R.-M. Ma, R. F. Oulton, V. J. Sorger, and X. Zhang, “Plasmon lasers: coherent light source at molecular scales,” Laser Photonics Rev. 7(1), 1–21 (2013).
[Crossref]

Maes, B.

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. G. Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1, 021019 (2011).

Markel, V. A.

V. A. Markel, “Divergence of dipole sums and the nature of non-Lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres,” J. Phys. At. Mol. Opt. Phys. 38(7), L115–L121 (2005).
[Crossref]

V. A. Markel, “Coupled-dipole approach to scattering of light from a one-dimensional periodic dipole structure,” J. Mod. Opt. 40(11), 2281–2291 (1993).
[Crossref]

Marti, O.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5(6), 4843–4849 (2011).
[Crossref] [PubMed]

Mayer, K. M.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

McFarland, A. D.

A. J. Haes, C. L. Haynes, A. D. McFarland, G. C. Schatz, R. R. Van Duyne, and S. L. Zou, “Plasmonic materials for surface-enhanced sensing and spectroscopy,” MRS Bull. 30(05), 368–375 (2005).
[Crossref]

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[Crossref]

McMahon, J. M.

Meier, M.

Moran, C. E.

J. M. Steele, C. E. Moran, A. Lee, C. M. Aguirre, and N. J. Halas, “Metallodielectric gratings with subwavelength slots:Optical properties,” Phys. Rev. B 68(20), 205103 (2003).
[Crossref]

Moustakas, T. D.

Narimanov, E. E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Nguyen, T.

A. G. Nikitin, T. Nguyen, and H. Dallaporta, “Narrow plasmon resonances in diffractive arrays of gold nanoparticles in asymmetric environment: Experimental studies,” Appl. Phys. Lett. 102(22), 221116 (2013).
[Crossref]

Nikitin, A. G.

A. G. Nikitin, “Diffraction-induced subradiant transverse-magnetic lattice plasmon modes in metal nanoparticle arrays,” Appl. Phys. Lett. 104(6), 061107 (2014).
[Crossref]

A. G. Nikitin, T. Nguyen, and H. Dallaporta, “Narrow plasmon resonances in diffractive arrays of gold nanoparticles in asymmetric environment: Experimental studies,” Appl. Phys. Lett. 102(22), 221116 (2013).
[Crossref]

A. G. Nikitin, A. V. Kabashin, and H. Dallaporta, “Plasmonic resonances in diffractive arrays of gold nanoantennas: near and far field effects,” Opt. Express 20(25), 27941–27952 (2012).
[Crossref] [PubMed]

Noginov, M. A.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Nordlander, P.

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

Odom, T. W.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[Crossref] [PubMed]

W. Zhou, Y. Hua, M. D. Huntington, and T. W. Odom, “Delocalized lattice plasmon resonances show dispersive quality factors,” J. Phys. Chem. Lett. 3(10), 1381–1385 (2012).
[Crossref]

W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nat. Nanotechnol. 6(7), 423–427 (2011).
[Crossref] [PubMed]

H. Gao, J. M. McMahon, M. H. Lee, J. Henzie, S. K. Gray, G. C. Schatz, and T. W. Odom, “Rayleigh anomaly-surface plasmon polariton resonances in palladium and gold subwavelength hole arrays,” Opt. Express 17(4), 2334–2340 (2009).
[PubMed]

Offermans, P.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5(6), 5151–5157 (2011).
[Crossref] [PubMed]

Orrit, M.

S. Khatua, P. M. R. Paulo, H. Yuan, A. Gupta, P. Zijlstra, and M. Orrit, “Resonant plasmonic enhancement of single-molecule fluorescence by individual gold nanorods,” ACS Nano 8(5), 4440–4449 (2014).
[Crossref] [PubMed]

Oulton, R. F.

R.-M. Ma, R. F. Oulton, V. J. Sorger, and X. Zhang, “Plasmon lasers: coherent light source at molecular scales,” Laser Photonics Rev. 7(1), 1–21 (2013).
[Crossref]

Paiella, R.

Patra, P. P.

P. P. Patra, R. Chikkaraddy, R. P. N. Tripathi, A. Dasgupta, and G. V. P. Kumar, “Plasmofluidic single-molecule surface-enhanced Raman scattering from dynamic assembly of plasmonic nanoparticles,” Nat Commun 5, 4357 (2014).
[Crossref] [PubMed]

Paulo, P. M. R.

S. Khatua, P. M. R. Paulo, H. Yuan, A. Gupta, P. Zijlstra, and M. Orrit, “Resonant plasmonic enhancement of single-molecule fluorescence by individual gold nanorods,” ACS Nano 8(5), 4440–4449 (2014).
[Crossref] [PubMed]

Prieto, P.

A. Vitrey, L. Aigouy, P. Prieto, J. M. García-Martín, and M. U. González, “Parallel collective resonances in arrays of gold nanorods,” Nano Lett. 14(4), 2079–2085 (2014).
[Crossref] [PubMed]

Prikulis, J.

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[Crossref]

Reinhardt, C.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5(6), 4843–4849 (2011).
[Crossref] [PubMed]

Rivas, J. G.

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. G. Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1, 021019 (2011).

G. Vecchi, V. Giannini, and J. G. Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B 80(20), 201401 (2009).
[Crossref]

Rodriguez, S. R. K.

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. G. Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1, 021019 (2011).

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5(6), 5151–5157 (2011).
[Crossref] [PubMed]

Schaafsma, M. C.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5(6), 5151–5157 (2011).
[Crossref] [PubMed]

Schatz, G. C.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[Crossref] [PubMed]

H. Gao, J. M. McMahon, M. H. Lee, J. Henzie, S. K. Gray, G. C. Schatz, and T. W. Odom, “Rayleigh anomaly-surface plasmon polariton resonances in palladium and gold subwavelength hole arrays,” Opt. Express 17(4), 2334–2340 (2009).
[PubMed]

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. N. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref] [PubMed]

A. J. Haes, C. L. Haynes, A. D. McFarland, G. C. Schatz, R. R. Van Duyne, and S. L. Zou, “Plasmonic materials for surface-enhanced sensing and spectroscopy,” MRS Bull. 30(05), 368–375 (2005).
[Crossref]

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
[Crossref] [PubMed]

S. L. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
[Crossref] [PubMed]

S. L. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys. 121(24), 12606–12612 (2004).
[Crossref] [PubMed]

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[Crossref]

L. L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: Influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B 107(30), 7343–7350 (2003).
[Crossref]

Schedin, F.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101(8), 087403 (2008).
[Crossref] [PubMed]

Schider, G.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[Crossref] [PubMed]

Schonbrun, E.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[Crossref]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 601–626 (2008).
[Crossref] [PubMed]

Shalaev, V. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Sherry, L. J.

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. N. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref] [PubMed]

Shi, L.

Y. Du, L. Shi, M. Hong, H. Li, D. Li, and M. Liu, “A surface plasmon resonance biosensor based on gold nanoparticle array,” Opt. Commun. 298, 232–236 (2013).
[Crossref]

Sorger, V. J.

R.-M. Ma, R. F. Oulton, V. J. Sorger, and X. Zhang, “Plasmon lasers: coherent light source at molecular scales,” Laser Photonics Rev. 7(1), 1–21 (2013).
[Crossref]

Špacková, B.

Steele, J. M.

J. M. Steele, C. E. Moran, A. Lee, C. M. Aguirre, and N. J. Halas, “Metallodielectric gratings with subwavelength slots:Optical properties,” Phys. Rev. B 68(20), 205103 (2003).
[Crossref]

Stiles, P. L.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 601–626 (2008).
[Crossref] [PubMed]

Stout, S.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Suh, J. Y.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[Crossref] [PubMed]

Sun, G.

J. B. Khurgin and G. Sun, “Comparative analysis of spasers, vertical-cavity surface-emitting lasers and surface-plasmon-emitting diodes,” Nat. Photonics 8(6), 468–473 (2014).
[Crossref]

Suteewong, T.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Tripathi, R. P. N.

P. P. Patra, R. Chikkaraddy, R. P. N. Tripathi, A. Dasgupta, and G. V. P. Kumar, “Plasmofluidic single-molecule surface-enhanced Raman scattering from dynamic assembly of plasmonic nanoparticles,” Nat Commun 5, 4357 (2014).
[Crossref] [PubMed]

van Beijnum, F.

F. van Beijnum, P. J. van Veldhoven, E. J. Geluk, M. J. A. de Dood, G. W. ’t Hooft, and M. P. van Exter, “Surface plasmon lasing observed in metal hole arrays,” Phys. Rev. Lett. 110(20), 206802 (2013).
[Crossref] [PubMed]

Van Duyne, R. P.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 601–626 (2008).
[Crossref] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. N. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref] [PubMed]

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[Crossref]

Van Duyne, R. R.

A. J. Haes, C. L. Haynes, A. D. McFarland, G. C. Schatz, R. R. Van Duyne, and S. L. Zou, “Plasmonic materials for surface-enhanced sensing and spectroscopy,” MRS Bull. 30(05), 368–375 (2005).
[Crossref]

van Exter, M. P.

F. van Beijnum, P. J. van Veldhoven, E. J. Geluk, M. J. A. de Dood, G. W. ’t Hooft, and M. P. van Exter, “Surface plasmon lasing observed in metal hole arrays,” Phys. Rev. Lett. 110(20), 206802 (2013).
[Crossref] [PubMed]

van Veldhoven, P. J.

F. van Beijnum, P. J. van Veldhoven, E. J. Geluk, M. J. A. de Dood, G. W. ’t Hooft, and M. P. van Exter, “Surface plasmon lasing observed in metal hole arrays,” Phys. Rev. Lett. 110(20), 206802 (2013).
[Crossref] [PubMed]

Vecchi, G.

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. G. Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1, 021019 (2011).

G. Vecchi, V. Giannini, and J. G. Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B 80(20), 201401 (2009).
[Crossref]

Vitrey, A.

A. Vitrey, L. Aigouy, P. Prieto, J. M. García-Martín, and M. U. González, “Parallel collective resonances in arrays of gold nanorods,” Nano Lett. 14(4), 2079–2085 (2014).
[Crossref] [PubMed]

Wasielewski, M. R.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[Crossref] [PubMed]

Wiesner, U.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Wiley, B. J.

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. N. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref] [PubMed]

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

Wokaun, A.

Xia, Y. N.

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. N. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref] [PubMed]

Yang, T.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[Crossref]

Yi, Y.

Yuan, H.

S. Khatua, P. M. R. Paulo, H. Yuan, A. Gupta, P. Zijlstra, and M. Orrit, “Resonant plasmonic enhancement of single-molecule fluorescence by individual gold nanorods,” ACS Nano 8(5), 4440–4449 (2014).
[Crossref] [PubMed]

Zhang, X.

R.-M. Ma, R. F. Oulton, V. J. Sorger, and X. Zhang, “Plasmon lasers: coherent light source at molecular scales,” Laser Photonics Rev. 7(1), 1–21 (2013).
[Crossref]

Zhang, Y.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5(6), 5151–5157 (2011).
[Crossref] [PubMed]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Zhao, L. L.

L. L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: Influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B 107(30), 7343–7350 (2003).
[Crossref]

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[Crossref]

Zhou, W.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[Crossref] [PubMed]

W. Zhou, Y. Hua, M. D. Huntington, and T. W. Odom, “Delocalized lattice plasmon resonances show dispersive quality factors,” J. Phys. Chem. Lett. 3(10), 1381–1385 (2012).
[Crossref]

W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nat. Nanotechnol. 6(7), 423–427 (2011).
[Crossref] [PubMed]

Zhu, G.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Zijlstra, P.

S. Khatua, P. M. R. Paulo, H. Yuan, A. Gupta, P. Zijlstra, and M. Orrit, “Resonant plasmonic enhancement of single-molecule fluorescence by individual gold nanorods,” ACS Nano 8(5), 4440–4449 (2014).
[Crossref] [PubMed]

Zou, S. L.

A. J. Haes, C. L. Haynes, A. D. McFarland, G. C. Schatz, R. R. Van Duyne, and S. L. Zou, “Plasmonic materials for surface-enhanced sensing and spectroscopy,” MRS Bull. 30(05), 368–375 (2005).
[Crossref]

S. L. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
[Crossref] [PubMed]

S. L. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys. 121(24), 12606–12612 (2004).
[Crossref] [PubMed]

ACS Nano (3)

S. Khatua, P. M. R. Paulo, H. Yuan, A. Gupta, P. Zijlstra, and M. Orrit, “Resonant plasmonic enhancement of single-molecule fluorescence by individual gold nanorods,” ACS Nano 8(5), 4440–4449 (2014).
[Crossref] [PubMed]

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5(6), 5151–5157 (2011).
[Crossref] [PubMed]

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5(6), 4843–4849 (2011).
[Crossref] [PubMed]

Annu Rev Anal Chem (Palo Alto Calif) (1)

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 601–626 (2008).
[Crossref] [PubMed]

Annu. Rev. Phys. Chem. (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

A. G. Nikitin, T. Nguyen, and H. Dallaporta, “Narrow plasmon resonances in diffractive arrays of gold nanoparticles in asymmetric environment: Experimental studies,” Appl. Phys. Lett. 102(22), 221116 (2013).
[Crossref]

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[Crossref]

A. G. Nikitin, “Diffraction-induced subradiant transverse-magnetic lattice plasmon modes in metal nanoparticle arrays,” Appl. Phys. Lett. 104(6), 061107 (2014).
[Crossref]

Chem. Rev. (2)

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

J. Chem. Phys. (3)

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
[Crossref] [PubMed]

S. L. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
[Crossref] [PubMed]

S. L. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys. 121(24), 12606–12612 (2004).
[Crossref] [PubMed]

J. Mod. Opt. (1)

V. A. Markel, “Coupled-dipole approach to scattering of light from a one-dimensional periodic dipole structure,” J. Mod. Opt. 40(11), 2281–2291 (1993).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. At. Mol. Opt. Phys. (1)

V. A. Markel, “Divergence of dipole sums and the nature of non-Lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres,” J. Phys. At. Mol. Opt. Phys. 38(7), L115–L121 (2005).
[Crossref]

J. Phys. Chem. B (2)

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[Crossref]

L. L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: Influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B 107(30), 7343–7350 (2003).
[Crossref]

J. Phys. Chem. Lett. (1)

W. Zhou, Y. Hua, M. D. Huntington, and T. W. Odom, “Delocalized lattice plasmon resonances show dispersive quality factors,” J. Phys. Chem. Lett. 3(10), 1381–1385 (2012).
[Crossref]

Laser Photonics Rev. (1)

R.-M. Ma, R. F. Oulton, V. J. Sorger, and X. Zhang, “Plasmon lasers: coherent light source at molecular scales,” Laser Photonics Rev. 7(1), 1–21 (2013).
[Crossref]

MRS Bull. (1)

A. J. Haes, C. L. Haynes, A. D. McFarland, G. C. Schatz, R. R. Van Duyne, and S. L. Zou, “Plasmonic materials for surface-enhanced sensing and spectroscopy,” MRS Bull. 30(05), 368–375 (2005).
[Crossref]

Nano Lett. (2)

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. N. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref] [PubMed]

A. Vitrey, L. Aigouy, P. Prieto, J. M. García-Martín, and M. U. González, “Parallel collective resonances in arrays of gold nanorods,” Nano Lett. 14(4), 2079–2085 (2014).
[Crossref] [PubMed]

Nat Commun (1)

P. P. Patra, R. Chikkaraddy, R. P. N. Tripathi, A. Dasgupta, and G. V. P. Kumar, “Plasmofluidic single-molecule surface-enhanced Raman scattering from dynamic assembly of plasmonic nanoparticles,” Nat Commun 5, 4357 (2014).
[Crossref] [PubMed]

Nat. Mater. (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nat. Nanotechnol. 6(7), 423–427 (2011).
[Crossref] [PubMed]

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[Crossref] [PubMed]

Nat. Photonics (1)

J. B. Khurgin and G. Sun, “Comparative analysis of spasers, vertical-cavity surface-emitting lasers and surface-plasmon-emitting diodes,” Nat. Photonics 8(6), 468–473 (2014).
[Crossref]

Nature (1)

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Opt. Commun. (1)

Y. Du, L. Shi, M. Hong, H. Li, D. Li, and M. Liu, “A surface plasmon resonance biosensor based on gold nanoparticle array,” Opt. Commun. 298, 232–236 (2013).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. B (3)

G. Vecchi, V. Giannini, and J. G. Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B 80(20), 201401 (2009).
[Crossref]

B. Auguie, X. M. Bendana, W. L. Barnes, and F. J. Garcia de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. B 82(15), 155447 (2010).
[Crossref]

J. M. Steele, C. E. Moran, A. Lee, C. M. Aguirre, and N. J. Halas, “Metallodielectric gratings with subwavelength slots:Optical properties,” Phys. Rev. B 68(20), 205103 (2003).
[Crossref]

Phys. Rev. Lett. (4)

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[Crossref] [PubMed]

F. van Beijnum, P. J. van Veldhoven, E. J. Geluk, M. J. A. de Dood, G. W. ’t Hooft, and M. P. van Exter, “Surface plasmon lasing observed in metal hole arrays,” Phys. Rev. Lett. 110(20), 206802 (2013).
[Crossref] [PubMed]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101(8), 087403 (2008).
[Crossref] [PubMed]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref] [PubMed]

Phys. Rev. X (1)

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. G. Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1, 021019 (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic view of (a) AuNP arrays and (b) core-shell SiO2/Au NCAs. d|| and d represents the lattice constants parallel or orthogonal to the external electric field. D is the diameter, which is 240 nm for AuNPs, and 200 nm for the SiO2 nanocylinders. h is the height, which is 70 nm for AuNPs, while varies from 50 nm to 400 nm for the SiO2 NCs. The thickness of Au layer for the core-shell NCAs is 20 nm.
Fig. 2
Fig. 2 Extinction spectra of AuNPs with D = 240 nm, h = 70 nm and (a) d|| = 500 nm, (b) d = 500 nm.
Fig. 3
Fig. 3 Extinction spectra for the core-shell SiO2/Au NCAs with D = 200 nm, d|| = 500 nm and (a) h = 400 nm (b) d = 1000 nm.
Fig. 4
Fig. 4 Extinction spectra for the core-shell SiO2/Au NCAs with D = 200 nm, d = 500 nm and (a) h = 400 nm (b) h = 50 nm (c) d|| = 800 nm (d) d|| = 1000 nm.
Fig. 5
Fig. 5 Electromagnetic field distributions through the NC center with D = 200 nm, h = 400 nm and (a), (b) d|| = 500 nm, d = 800 nm, λ = 1169 nm (c), (d) d|| = 500 nm, d = 1000 nm, λ = 1000 nm (e), (f) d|| = 800 nm, d = 500 nm, λ = 1169 nm (g), (h) d|| = 800 nm, d = 500 nm, λ = 800 nm.
Fig. 6
Fig. 6 Extinction, absorption and scattering spectra of the core-shell NCAs with different heights (a)-(e) d|| = 500 nm, d = 800 nm (f)-(j) d|| = 800 nm, d = 500 nm (k)-(o) d|| = 500 nm, d = 500 nm.
Fig. 7
Fig. 7 (a) Schematic view of the core-shell NCAs with imperfect Au coating and extinction spectra for the core-shell NCAs with imperfect Au coating when D = 200 nm, h = 400 nm and (b) d|| = 500 nm, Δh = 50 nm (c) d|| = 500 nm, Δh = 100 nm (d) d = 500 nm, Δh = 50 nm (e) d = 500 nm, Δh = 100 nm.
Fig. 8
Fig. 8 (a) Schematic view of core-shell SiO2/Au NCAs on the Si3N4 substrate with a SiO2 layer of 200 nm between them, and corresponding extinction spectra with D = 200 nm, h = 400 nm and (b) d|| = 500 nm, (c) d = 500 nm.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

k i,j || = k || +i a x e x +j a y e y
k i,j = (n λ ) 2 k i,j || 2
λ i,j R = n i 2 a x 2 + j 2 a y 2
λ i,0 R = n× a x | i |
λ 0,j R = n× a y | j |
σ ext =(1T)× d × d ||
σ abs =(1TR)× d × d ||
σ scat = σ ext σ abs

Metrics