Abstract

We have fabricated three dimensional photonic components such as waveguides and beam splitters from crystalline silicon using a process based on one or more ion irradiation steps with different energies and fluences, followed by electrochemical anodization and thermal annealing. We first demonstrate the fabrication of multilevel silicon waveguides and then extend this process to make multilevel beam splitters, in which three output waveguides are distributed over two depths. The dimensions of the waveguides can be defined within a range from 0.5 μm to several micrometers simply by varying the ion beam fluence.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Three-dimensional control of optical waveguide fabrication in silicon

Ee Jin Teo, Andrew A. Bettiol, Mark B. H. Breese, Pengyuan Yang, Goran Z. Mashanovich, William R. Headley, Graham T. Reed, and Daniel J. Blackwood
Opt. Express 16(2) 573-578 (2008)

Multilayer 3-D photonics in silicon

Prakash Koonath and Bahram Jalali
Opt. Express 15(20) 12686-12691 (2007)

Scalable 3D dense integration of photonics on bulk silicon

Nicolás Sherwood-Droz and Michal Lipson
Opt. Express 19(18) 17758-17765 (2011)

References

  • View by:
  • |
  • |
  • |

  1. Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon Photonics for Next Generation System Integration Platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
    [Crossref]
  2. L. Chen, K. Preston, S. Manipatruni, and M. Lipson, “Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors,” Opt. Express 17(17), 15248–15256 (2009).
    [Crossref] [PubMed]
  3. D. V. Tishinin, P. D. Dapkus, A. E. Bond, I. Kim, C. K. Lin, and J. O’Brien, “Vertical resonant couplers with precise coupling efficiency control fabricated by wafer bonding,” IEEE Photon. Technol. Lett. 11(8), 1003–1005 (1999).
    [Crossref]
  4. M. C. M. Lee and M. C. Wu, “Tunable coupling regimes of silicon microdisk resonators using MEMS actuators,” Opt. Express 14(11), 4703–4712 (2006).
    [Crossref] [PubMed]
  5. K. Worhoff, P. V. Lambeck, and A. Driessen, “Design, tolerance analysis, and fabrication of silicon oxynitride based planar optical waveguides for communication devices,” J. Lightwave Technol. 17(8), 1401–1407 (1999).
    [Crossref]
  6. N. Sherwood-Droz and M. Lipson, “Scalable 3D dense integration of photonics on bulk silicon,” Opt. Express 19(18), 17758–17765 (2011).
    [Crossref] [PubMed]
  7. S. J. Choi, K. Djordjev, C. Sang Jun, P. D. Dapkus, W. Lin, G. Griffel, R. Menna, and J. Connolly, “Microring resonators vertically coupled to buried heterostructure bus waveguides,” IEEE Photon. Technol. Lett. 16(3), 828–830 (2004).
    [Crossref]
  8. P. Koonath, T. Indukuri, and B. Jalali, “Add-drop filters utilizing vertically coupled microdisk resonators in silicon,” Appl. Phys. Lett. 86(9), 091102 (2005).
    [Crossref]
  9. P. Koonath and B. Jalali, “Multilayer 3-D photonics in silicon,” Opt. Express 15(20), 12686–12691 (2007).
    [Crossref] [PubMed]
  10. H. D. Liang, V. S. Kumar, J. F. Wu, and M. B. H. Breese, “Ion beam irradiation induced fabrication of vertical coupling waveguides,” Appl. Phys. Lett. 102(13), 131112 (2013).
    [Crossref]
  11. M. B. H. Breese, F. J. T. Champeaux, E. J. Teo, A. A. Bettiol, and D. J. Blackwood, “Hole transport through proton-irradiated p-type silicon wafers during electrochemical anodization,” Phys. Rev. B 73(3), 035428 (2006).
    [Crossref]
  12. E. J. Teo, B. Q. Xiong, Y. S. Ow, M. B. H. Breese, and A. A. Bettiol, “Effects of oxide formation around core circumference of silicon-on-oxidized-porous-silicon strip waveguides,” Opt. Lett. 34(20), 3142–3144 (2009).
    [Crossref] [PubMed]
  13. J. Song, Z. Y. Dang, S. Azimi, M. B. H. Breese, J. Forneris, and E. Vittone, “On the Formation of 50 nm Diameter Free-Standing Silicon Wires Produced by Ion Irradiation,” ECS J. Solid State Sci. Technol. 1(2), 66–69 (2012).
    [Crossref]
  14. J. Song, S. Azimi, Z. Y. Dang, and M. B. H. Breese, “Integration of nano-scale components and supports in micromachined 3D silicon structures,” J. Micromech. Microeng. 24(4), 045008 (2014).
    [Crossref]
  15. S. Azimi, M. B. H. Breese, Z. Y. Dang, Y. Yan, Y. S. Ow, and A. A. Bettiol, “Fabrication of complex curved three-dimensional silicon microstructures using ion irradiation,” J. Micromech. Microeng. 22(1), 015015 (2012).
    [Crossref]
  16. S. Azimi, J. Song, Z. Y. Dang, H. D. Liang, and M. B. H. Breese, “Three-dimensional silicon micromachining,” J. Micromech. Microeng. 22(11), 113001 (2012).
    [Crossref]
  17. D. Mangaiyarkarasi, O. Y. Sheng, M. B. H. Breese, V. L. S. Fuh, and E. T. Xioasong, “Fabrication of large-area patterned porous silicon distributed Bragg reflectors,” Opt. Express 16(17), 12757–12763 (2008).
    [Crossref] [PubMed]
  18. V. Lehmann, Electrochemistry of Silicon: Instrumentation, Science, Materials and Applications, (Wiley-VCH, 2002).
  19. J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon Press, 2003).
  20. L. Lai and E. A. Irene, “Limiting Si/SiO2 interface roughness resulting from thermal oxidation,” J. Appl. Phys. 86(3), 1729–1735 (1999).
    [Crossref]
  21. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett. 26(23), 1888–1890 (2001).
    [Crossref] [PubMed]
  22. X. M. Zhang and A. M. Armani, “Suspended bridge-like silica 2×2 beam splitter on silicon,” Opt. Lett. 36(15), 3012–3014 (2011).
    [Crossref] [PubMed]
  23. W. Jia, J. Deng, H. Wu, X. Y. Li, and A. J. Danner, “Design and fabrication of high-efficiency photonic crystal power beam splitters,” Opt. Lett. 36(20), 4077–4079 (2011).
    [Crossref] [PubMed]
  24. I. Kiyat, A. Aydinli, and N. Dagli, “A Compact Silicon-on-Insulator Polarization Splitter,” IEEE Photon. Technol. Lett. 17(1), 100–102 (2005).
    [Crossref]
  25. A. Hosseini, S. Rahimi, X. Xu, D. Kwong, J. Covey, and R. T. Chen, “Ultracompact and fabrication-tolerant integrated polarization splitter,” Opt. Lett. 36(20), 4047–4049 (2011).
    [Crossref] [PubMed]
  26. L. M. Augustin, J. J. G. M. van der Tol, R. Hanfoug, W. J. M. de Laat, M. J. E. van de Moosdijk, P. W. L. van Dijk, Y.-S. Oei, and M. K. Smit, “A Single Etch-Step Fabrication-Tolerant Polarization Splitter,” J. Lightwave Technol. 25(3), 740–746 (2007).
    [Crossref]
  27. X. W. Guan, H. Wu, Y. C. Shi, and D. X. Dai, “Extremely small polarization beam splitter based on a multimode interference coupler with a silicon hybrid plasmonic waveguide,” Opt. Lett. 39(2), 259–262 (2014).
    [Crossref] [PubMed]
  28. E. J. Teo, A. A. Bettiol, P. Yang, M. B. H. Breese, B. Q. Xiong, G. Z. Mashanovich, W. R. Headley, and G. T. Reed, “Fabrication of low-loss silicon-on-oxidized-porous-silicon strip waveguide using focused proton-beam irradiation,” Opt. Lett. 34(5), 659–661 (2009).
    [Crossref] [PubMed]
  29. www.comsol.com

2014 (2)

J. Song, S. Azimi, Z. Y. Dang, and M. B. H. Breese, “Integration of nano-scale components and supports in micromachined 3D silicon structures,” J. Micromech. Microeng. 24(4), 045008 (2014).
[Crossref]

X. W. Guan, H. Wu, Y. C. Shi, and D. X. Dai, “Extremely small polarization beam splitter based on a multimode interference coupler with a silicon hybrid plasmonic waveguide,” Opt. Lett. 39(2), 259–262 (2014).
[Crossref] [PubMed]

2013 (2)

H. D. Liang, V. S. Kumar, J. F. Wu, and M. B. H. Breese, “Ion beam irradiation induced fabrication of vertical coupling waveguides,” Appl. Phys. Lett. 102(13), 131112 (2013).
[Crossref]

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon Photonics for Next Generation System Integration Platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
[Crossref]

2012 (3)

J. Song, Z. Y. Dang, S. Azimi, M. B. H. Breese, J. Forneris, and E. Vittone, “On the Formation of 50 nm Diameter Free-Standing Silicon Wires Produced by Ion Irradiation,” ECS J. Solid State Sci. Technol. 1(2), 66–69 (2012).
[Crossref]

S. Azimi, M. B. H. Breese, Z. Y. Dang, Y. Yan, Y. S. Ow, and A. A. Bettiol, “Fabrication of complex curved three-dimensional silicon microstructures using ion irradiation,” J. Micromech. Microeng. 22(1), 015015 (2012).
[Crossref]

S. Azimi, J. Song, Z. Y. Dang, H. D. Liang, and M. B. H. Breese, “Three-dimensional silicon micromachining,” J. Micromech. Microeng. 22(11), 113001 (2012).
[Crossref]

2011 (4)

2009 (3)

2008 (1)

2007 (2)

2006 (2)

M. C. M. Lee and M. C. Wu, “Tunable coupling regimes of silicon microdisk resonators using MEMS actuators,” Opt. Express 14(11), 4703–4712 (2006).
[Crossref] [PubMed]

M. B. H. Breese, F. J. T. Champeaux, E. J. Teo, A. A. Bettiol, and D. J. Blackwood, “Hole transport through proton-irradiated p-type silicon wafers during electrochemical anodization,” Phys. Rev. B 73(3), 035428 (2006).
[Crossref]

2005 (2)

P. Koonath, T. Indukuri, and B. Jalali, “Add-drop filters utilizing vertically coupled microdisk resonators in silicon,” Appl. Phys. Lett. 86(9), 091102 (2005).
[Crossref]

I. Kiyat, A. Aydinli, and N. Dagli, “A Compact Silicon-on-Insulator Polarization Splitter,” IEEE Photon. Technol. Lett. 17(1), 100–102 (2005).
[Crossref]

2004 (1)

S. J. Choi, K. Djordjev, C. Sang Jun, P. D. Dapkus, W. Lin, G. Griffel, R. Menna, and J. Connolly, “Microring resonators vertically coupled to buried heterostructure bus waveguides,” IEEE Photon. Technol. Lett. 16(3), 828–830 (2004).
[Crossref]

2001 (1)

1999 (3)

K. Worhoff, P. V. Lambeck, and A. Driessen, “Design, tolerance analysis, and fabrication of silicon oxynitride based planar optical waveguides for communication devices,” J. Lightwave Technol. 17(8), 1401–1407 (1999).
[Crossref]

D. V. Tishinin, P. D. Dapkus, A. E. Bond, I. Kim, C. K. Lin, and J. O’Brien, “Vertical resonant couplers with precise coupling efficiency control fabricated by wafer bonding,” IEEE Photon. Technol. Lett. 11(8), 1003–1005 (1999).
[Crossref]

L. Lai and E. A. Irene, “Limiting Si/SiO2 interface roughness resulting from thermal oxidation,” J. Appl. Phys. 86(3), 1729–1735 (1999).
[Crossref]

Arakawa, Y.

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon Photonics for Next Generation System Integration Platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
[Crossref]

Armani, A. M.

Augustin, L. M.

Aydinli, A.

I. Kiyat, A. Aydinli, and N. Dagli, “A Compact Silicon-on-Insulator Polarization Splitter,” IEEE Photon. Technol. Lett. 17(1), 100–102 (2005).
[Crossref]

Azimi, S.

J. Song, S. Azimi, Z. Y. Dang, and M. B. H. Breese, “Integration of nano-scale components and supports in micromachined 3D silicon structures,” J. Micromech. Microeng. 24(4), 045008 (2014).
[Crossref]

S. Azimi, M. B. H. Breese, Z. Y. Dang, Y. Yan, Y. S. Ow, and A. A. Bettiol, “Fabrication of complex curved three-dimensional silicon microstructures using ion irradiation,” J. Micromech. Microeng. 22(1), 015015 (2012).
[Crossref]

S. Azimi, J. Song, Z. Y. Dang, H. D. Liang, and M. B. H. Breese, “Three-dimensional silicon micromachining,” J. Micromech. Microeng. 22(11), 113001 (2012).
[Crossref]

J. Song, Z. Y. Dang, S. Azimi, M. B. H. Breese, J. Forneris, and E. Vittone, “On the Formation of 50 nm Diameter Free-Standing Silicon Wires Produced by Ion Irradiation,” ECS J. Solid State Sci. Technol. 1(2), 66–69 (2012).
[Crossref]

Bettiol, A. A.

S. Azimi, M. B. H. Breese, Z. Y. Dang, Y. Yan, Y. S. Ow, and A. A. Bettiol, “Fabrication of complex curved three-dimensional silicon microstructures using ion irradiation,” J. Micromech. Microeng. 22(1), 015015 (2012).
[Crossref]

E. J. Teo, B. Q. Xiong, Y. S. Ow, M. B. H. Breese, and A. A. Bettiol, “Effects of oxide formation around core circumference of silicon-on-oxidized-porous-silicon strip waveguides,” Opt. Lett. 34(20), 3142–3144 (2009).
[Crossref] [PubMed]

E. J. Teo, A. A. Bettiol, P. Yang, M. B. H. Breese, B. Q. Xiong, G. Z. Mashanovich, W. R. Headley, and G. T. Reed, “Fabrication of low-loss silicon-on-oxidized-porous-silicon strip waveguide using focused proton-beam irradiation,” Opt. Lett. 34(5), 659–661 (2009).
[Crossref] [PubMed]

M. B. H. Breese, F. J. T. Champeaux, E. J. Teo, A. A. Bettiol, and D. J. Blackwood, “Hole transport through proton-irradiated p-type silicon wafers during electrochemical anodization,” Phys. Rev. B 73(3), 035428 (2006).
[Crossref]

Blackwood, D. J.

M. B. H. Breese, F. J. T. Champeaux, E. J. Teo, A. A. Bettiol, and D. J. Blackwood, “Hole transport through proton-irradiated p-type silicon wafers during electrochemical anodization,” Phys. Rev. B 73(3), 035428 (2006).
[Crossref]

Bond, A. E.

D. V. Tishinin, P. D. Dapkus, A. E. Bond, I. Kim, C. K. Lin, and J. O’Brien, “Vertical resonant couplers with precise coupling efficiency control fabricated by wafer bonding,” IEEE Photon. Technol. Lett. 11(8), 1003–1005 (1999).
[Crossref]

Breese, M. B. H.

J. Song, S. Azimi, Z. Y. Dang, and M. B. H. Breese, “Integration of nano-scale components and supports in micromachined 3D silicon structures,” J. Micromech. Microeng. 24(4), 045008 (2014).
[Crossref]

H. D. Liang, V. S. Kumar, J. F. Wu, and M. B. H. Breese, “Ion beam irradiation induced fabrication of vertical coupling waveguides,” Appl. Phys. Lett. 102(13), 131112 (2013).
[Crossref]

J. Song, Z. Y. Dang, S. Azimi, M. B. H. Breese, J. Forneris, and E. Vittone, “On the Formation of 50 nm Diameter Free-Standing Silicon Wires Produced by Ion Irradiation,” ECS J. Solid State Sci. Technol. 1(2), 66–69 (2012).
[Crossref]

S. Azimi, M. B. H. Breese, Z. Y. Dang, Y. Yan, Y. S. Ow, and A. A. Bettiol, “Fabrication of complex curved three-dimensional silicon microstructures using ion irradiation,” J. Micromech. Microeng. 22(1), 015015 (2012).
[Crossref]

S. Azimi, J. Song, Z. Y. Dang, H. D. Liang, and M. B. H. Breese, “Three-dimensional silicon micromachining,” J. Micromech. Microeng. 22(11), 113001 (2012).
[Crossref]

E. J. Teo, A. A. Bettiol, P. Yang, M. B. H. Breese, B. Q. Xiong, G. Z. Mashanovich, W. R. Headley, and G. T. Reed, “Fabrication of low-loss silicon-on-oxidized-porous-silicon strip waveguide using focused proton-beam irradiation,” Opt. Lett. 34(5), 659–661 (2009).
[Crossref] [PubMed]

E. J. Teo, B. Q. Xiong, Y. S. Ow, M. B. H. Breese, and A. A. Bettiol, “Effects of oxide formation around core circumference of silicon-on-oxidized-porous-silicon strip waveguides,” Opt. Lett. 34(20), 3142–3144 (2009).
[Crossref] [PubMed]

D. Mangaiyarkarasi, O. Y. Sheng, M. B. H. Breese, V. L. S. Fuh, and E. T. Xioasong, “Fabrication of large-area patterned porous silicon distributed Bragg reflectors,” Opt. Express 16(17), 12757–12763 (2008).
[Crossref] [PubMed]

M. B. H. Breese, F. J. T. Champeaux, E. J. Teo, A. A. Bettiol, and D. J. Blackwood, “Hole transport through proton-irradiated p-type silicon wafers during electrochemical anodization,” Phys. Rev. B 73(3), 035428 (2006).
[Crossref]

Cerrina, F.

Champeaux, F. J. T.

M. B. H. Breese, F. J. T. Champeaux, E. J. Teo, A. A. Bettiol, and D. J. Blackwood, “Hole transport through proton-irradiated p-type silicon wafers during electrochemical anodization,” Phys. Rev. B 73(3), 035428 (2006).
[Crossref]

Chen, L.

Chen, R. T.

Choi, S. J.

S. J. Choi, K. Djordjev, C. Sang Jun, P. D. Dapkus, W. Lin, G. Griffel, R. Menna, and J. Connolly, “Microring resonators vertically coupled to buried heterostructure bus waveguides,” IEEE Photon. Technol. Lett. 16(3), 828–830 (2004).
[Crossref]

Connolly, J.

S. J. Choi, K. Djordjev, C. Sang Jun, P. D. Dapkus, W. Lin, G. Griffel, R. Menna, and J. Connolly, “Microring resonators vertically coupled to buried heterostructure bus waveguides,” IEEE Photon. Technol. Lett. 16(3), 828–830 (2004).
[Crossref]

Covey, J.

Dagli, N.

I. Kiyat, A. Aydinli, and N. Dagli, “A Compact Silicon-on-Insulator Polarization Splitter,” IEEE Photon. Technol. Lett. 17(1), 100–102 (2005).
[Crossref]

Dai, D. X.

Dang, Z. Y.

J. Song, S. Azimi, Z. Y. Dang, and M. B. H. Breese, “Integration of nano-scale components and supports in micromachined 3D silicon structures,” J. Micromech. Microeng. 24(4), 045008 (2014).
[Crossref]

S. Azimi, M. B. H. Breese, Z. Y. Dang, Y. Yan, Y. S. Ow, and A. A. Bettiol, “Fabrication of complex curved three-dimensional silicon microstructures using ion irradiation,” J. Micromech. Microeng. 22(1), 015015 (2012).
[Crossref]

S. Azimi, J. Song, Z. Y. Dang, H. D. Liang, and M. B. H. Breese, “Three-dimensional silicon micromachining,” J. Micromech. Microeng. 22(11), 113001 (2012).
[Crossref]

J. Song, Z. Y. Dang, S. Azimi, M. B. H. Breese, J. Forneris, and E. Vittone, “On the Formation of 50 nm Diameter Free-Standing Silicon Wires Produced by Ion Irradiation,” ECS J. Solid State Sci. Technol. 1(2), 66–69 (2012).
[Crossref]

Danner, A. J.

Dapkus, P. D.

S. J. Choi, K. Djordjev, C. Sang Jun, P. D. Dapkus, W. Lin, G. Griffel, R. Menna, and J. Connolly, “Microring resonators vertically coupled to buried heterostructure bus waveguides,” IEEE Photon. Technol. Lett. 16(3), 828–830 (2004).
[Crossref]

D. V. Tishinin, P. D. Dapkus, A. E. Bond, I. Kim, C. K. Lin, and J. O’Brien, “Vertical resonant couplers with precise coupling efficiency control fabricated by wafer bonding,” IEEE Photon. Technol. Lett. 11(8), 1003–1005 (1999).
[Crossref]

de Laat, W. J. M.

Deng, J.

Djordjev, K.

S. J. Choi, K. Djordjev, C. Sang Jun, P. D. Dapkus, W. Lin, G. Griffel, R. Menna, and J. Connolly, “Microring resonators vertically coupled to buried heterostructure bus waveguides,” IEEE Photon. Technol. Lett. 16(3), 828–830 (2004).
[Crossref]

Driessen, A.

Forneris, J.

J. Song, Z. Y. Dang, S. Azimi, M. B. H. Breese, J. Forneris, and E. Vittone, “On the Formation of 50 nm Diameter Free-Standing Silicon Wires Produced by Ion Irradiation,” ECS J. Solid State Sci. Technol. 1(2), 66–69 (2012).
[Crossref]

Fuh, V. L. S.

Fujita, T.

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon Photonics for Next Generation System Integration Platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
[Crossref]

Griffel, G.

S. J. Choi, K. Djordjev, C. Sang Jun, P. D. Dapkus, W. Lin, G. Griffel, R. Menna, and J. Connolly, “Microring resonators vertically coupled to buried heterostructure bus waveguides,” IEEE Photon. Technol. Lett. 16(3), 828–830 (2004).
[Crossref]

Guan, X. W.

Hanfoug, R.

Headley, W. R.

Hosseini, A.

Indukuri, T.

P. Koonath, T. Indukuri, and B. Jalali, “Add-drop filters utilizing vertically coupled microdisk resonators in silicon,” Appl. Phys. Lett. 86(9), 091102 (2005).
[Crossref]

Irene, E. A.

L. Lai and E. A. Irene, “Limiting Si/SiO2 interface roughness resulting from thermal oxidation,” J. Appl. Phys. 86(3), 1729–1735 (1999).
[Crossref]

Jalali, B.

P. Koonath and B. Jalali, “Multilayer 3-D photonics in silicon,” Opt. Express 15(20), 12686–12691 (2007).
[Crossref] [PubMed]

P. Koonath, T. Indukuri, and B. Jalali, “Add-drop filters utilizing vertically coupled microdisk resonators in silicon,” Appl. Phys. Lett. 86(9), 091102 (2005).
[Crossref]

Jia, W.

Kim, I.

D. V. Tishinin, P. D. Dapkus, A. E. Bond, I. Kim, C. K. Lin, and J. O’Brien, “Vertical resonant couplers with precise coupling efficiency control fabricated by wafer bonding,” IEEE Photon. Technol. Lett. 11(8), 1003–1005 (1999).
[Crossref]

Kimerling, L. C.

Kiyat, I.

I. Kiyat, A. Aydinli, and N. Dagli, “A Compact Silicon-on-Insulator Polarization Splitter,” IEEE Photon. Technol. Lett. 17(1), 100–102 (2005).
[Crossref]

Koonath, P.

P. Koonath and B. Jalali, “Multilayer 3-D photonics in silicon,” Opt. Express 15(20), 12686–12691 (2007).
[Crossref] [PubMed]

P. Koonath, T. Indukuri, and B. Jalali, “Add-drop filters utilizing vertically coupled microdisk resonators in silicon,” Appl. Phys. Lett. 86(9), 091102 (2005).
[Crossref]

Kumar, V. S.

H. D. Liang, V. S. Kumar, J. F. Wu, and M. B. H. Breese, “Ion beam irradiation induced fabrication of vertical coupling waveguides,” Appl. Phys. Lett. 102(13), 131112 (2013).
[Crossref]

Kwong, D.

Lai, L.

L. Lai and E. A. Irene, “Limiting Si/SiO2 interface roughness resulting from thermal oxidation,” J. Appl. Phys. 86(3), 1729–1735 (1999).
[Crossref]

Lambeck, P. V.

Lee, K. K.

Lee, M. C. M.

Li, X. Y.

Liang, H. D.

H. D. Liang, V. S. Kumar, J. F. Wu, and M. B. H. Breese, “Ion beam irradiation induced fabrication of vertical coupling waveguides,” Appl. Phys. Lett. 102(13), 131112 (2013).
[Crossref]

S. Azimi, J. Song, Z. Y. Dang, H. D. Liang, and M. B. H. Breese, “Three-dimensional silicon micromachining,” J. Micromech. Microeng. 22(11), 113001 (2012).
[Crossref]

Lim, D. R.

Lin, C. K.

D. V. Tishinin, P. D. Dapkus, A. E. Bond, I. Kim, C. K. Lin, and J. O’Brien, “Vertical resonant couplers with precise coupling efficiency control fabricated by wafer bonding,” IEEE Photon. Technol. Lett. 11(8), 1003–1005 (1999).
[Crossref]

Lin, W.

S. J. Choi, K. Djordjev, C. Sang Jun, P. D. Dapkus, W. Lin, G. Griffel, R. Menna, and J. Connolly, “Microring resonators vertically coupled to buried heterostructure bus waveguides,” IEEE Photon. Technol. Lett. 16(3), 828–830 (2004).
[Crossref]

Lipson, M.

Mangaiyarkarasi, D.

Manipatruni, S.

Mashanovich, G. Z.

Menna, R.

S. J. Choi, K. Djordjev, C. Sang Jun, P. D. Dapkus, W. Lin, G. Griffel, R. Menna, and J. Connolly, “Microring resonators vertically coupled to buried heterostructure bus waveguides,” IEEE Photon. Technol. Lett. 16(3), 828–830 (2004).
[Crossref]

Nakamura, T.

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon Photonics for Next Generation System Integration Platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
[Crossref]

O’Brien, J.

D. V. Tishinin, P. D. Dapkus, A. E. Bond, I. Kim, C. K. Lin, and J. O’Brien, “Vertical resonant couplers with precise coupling efficiency control fabricated by wafer bonding,” IEEE Photon. Technol. Lett. 11(8), 1003–1005 (1999).
[Crossref]

Oei, Y.-S.

Ow, Y. S.

S. Azimi, M. B. H. Breese, Z. Y. Dang, Y. Yan, Y. S. Ow, and A. A. Bettiol, “Fabrication of complex curved three-dimensional silicon microstructures using ion irradiation,” J. Micromech. Microeng. 22(1), 015015 (2012).
[Crossref]

E. J. Teo, B. Q. Xiong, Y. S. Ow, M. B. H. Breese, and A. A. Bettiol, “Effects of oxide formation around core circumference of silicon-on-oxidized-porous-silicon strip waveguides,” Opt. Lett. 34(20), 3142–3144 (2009).
[Crossref] [PubMed]

Preston, K.

Rahimi, S.

Reed, G. T.

Sang Jun, C.

S. J. Choi, K. Djordjev, C. Sang Jun, P. D. Dapkus, W. Lin, G. Griffel, R. Menna, and J. Connolly, “Microring resonators vertically coupled to buried heterostructure bus waveguides,” IEEE Photon. Technol. Lett. 16(3), 828–830 (2004).
[Crossref]

Sheng, O. Y.

Sherwood-Droz, N.

Shi, Y. C.

Shin, J.

Smit, M. K.

Song, J.

J. Song, S. Azimi, Z. Y. Dang, and M. B. H. Breese, “Integration of nano-scale components and supports in micromachined 3D silicon structures,” J. Micromech. Microeng. 24(4), 045008 (2014).
[Crossref]

S. Azimi, J. Song, Z. Y. Dang, H. D. Liang, and M. B. H. Breese, “Three-dimensional silicon micromachining,” J. Micromech. Microeng. 22(11), 113001 (2012).
[Crossref]

J. Song, Z. Y. Dang, S. Azimi, M. B. H. Breese, J. Forneris, and E. Vittone, “On the Formation of 50 nm Diameter Free-Standing Silicon Wires Produced by Ion Irradiation,” ECS J. Solid State Sci. Technol. 1(2), 66–69 (2012).
[Crossref]

Teo, E. J.

Tishinin, D. V.

D. V. Tishinin, P. D. Dapkus, A. E. Bond, I. Kim, C. K. Lin, and J. O’Brien, “Vertical resonant couplers with precise coupling efficiency control fabricated by wafer bonding,” IEEE Photon. Technol. Lett. 11(8), 1003–1005 (1999).
[Crossref]

Urino, Y.

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon Photonics for Next Generation System Integration Platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
[Crossref]

van de Moosdijk, M. J. E.

van der Tol, J. J. G. M.

van Dijk, P. W. L.

Vittone, E.

J. Song, Z. Y. Dang, S. Azimi, M. B. H. Breese, J. Forneris, and E. Vittone, “On the Formation of 50 nm Diameter Free-Standing Silicon Wires Produced by Ion Irradiation,” ECS J. Solid State Sci. Technol. 1(2), 66–69 (2012).
[Crossref]

Worhoff, K.

Wu, H.

Wu, J. F.

H. D. Liang, V. S. Kumar, J. F. Wu, and M. B. H. Breese, “Ion beam irradiation induced fabrication of vertical coupling waveguides,” Appl. Phys. Lett. 102(13), 131112 (2013).
[Crossref]

Wu, M. C.

Xioasong, E. T.

Xiong, B. Q.

Xu, X.

Yan, Y.

S. Azimi, M. B. H. Breese, Z. Y. Dang, Y. Yan, Y. S. Ow, and A. A. Bettiol, “Fabrication of complex curved three-dimensional silicon microstructures using ion irradiation,” J. Micromech. Microeng. 22(1), 015015 (2012).
[Crossref]

Yang, P.

Zhang, X. M.

Appl. Phys. Lett. (2)

P. Koonath, T. Indukuri, and B. Jalali, “Add-drop filters utilizing vertically coupled microdisk resonators in silicon,” Appl. Phys. Lett. 86(9), 091102 (2005).
[Crossref]

H. D. Liang, V. S. Kumar, J. F. Wu, and M. B. H. Breese, “Ion beam irradiation induced fabrication of vertical coupling waveguides,” Appl. Phys. Lett. 102(13), 131112 (2013).
[Crossref]

ECS J. Solid State Sci. Technol. (1)

J. Song, Z. Y. Dang, S. Azimi, M. B. H. Breese, J. Forneris, and E. Vittone, “On the Formation of 50 nm Diameter Free-Standing Silicon Wires Produced by Ion Irradiation,” ECS J. Solid State Sci. Technol. 1(2), 66–69 (2012).
[Crossref]

IEEE Commun. Mag. (1)

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon Photonics for Next Generation System Integration Platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (3)

D. V. Tishinin, P. D. Dapkus, A. E. Bond, I. Kim, C. K. Lin, and J. O’Brien, “Vertical resonant couplers with precise coupling efficiency control fabricated by wafer bonding,” IEEE Photon. Technol. Lett. 11(8), 1003–1005 (1999).
[Crossref]

S. J. Choi, K. Djordjev, C. Sang Jun, P. D. Dapkus, W. Lin, G. Griffel, R. Menna, and J. Connolly, “Microring resonators vertically coupled to buried heterostructure bus waveguides,” IEEE Photon. Technol. Lett. 16(3), 828–830 (2004).
[Crossref]

I. Kiyat, A. Aydinli, and N. Dagli, “A Compact Silicon-on-Insulator Polarization Splitter,” IEEE Photon. Technol. Lett. 17(1), 100–102 (2005).
[Crossref]

J. Appl. Phys. (1)

L. Lai and E. A. Irene, “Limiting Si/SiO2 interface roughness resulting from thermal oxidation,” J. Appl. Phys. 86(3), 1729–1735 (1999).
[Crossref]

J. Lightwave Technol. (2)

J. Micromech. Microeng. (3)

J. Song, S. Azimi, Z. Y. Dang, and M. B. H. Breese, “Integration of nano-scale components and supports in micromachined 3D silicon structures,” J. Micromech. Microeng. 24(4), 045008 (2014).
[Crossref]

S. Azimi, M. B. H. Breese, Z. Y. Dang, Y. Yan, Y. S. Ow, and A. A. Bettiol, “Fabrication of complex curved three-dimensional silicon microstructures using ion irradiation,” J. Micromech. Microeng. 22(1), 015015 (2012).
[Crossref]

S. Azimi, J. Song, Z. Y. Dang, H. D. Liang, and M. B. H. Breese, “Three-dimensional silicon micromachining,” J. Micromech. Microeng. 22(11), 113001 (2012).
[Crossref]

Opt. Express (5)

Opt. Lett. (7)

E. J. Teo, B. Q. Xiong, Y. S. Ow, M. B. H. Breese, and A. A. Bettiol, “Effects of oxide formation around core circumference of silicon-on-oxidized-porous-silicon strip waveguides,” Opt. Lett. 34(20), 3142–3144 (2009).
[Crossref] [PubMed]

X. W. Guan, H. Wu, Y. C. Shi, and D. X. Dai, “Extremely small polarization beam splitter based on a multimode interference coupler with a silicon hybrid plasmonic waveguide,” Opt. Lett. 39(2), 259–262 (2014).
[Crossref] [PubMed]

E. J. Teo, A. A. Bettiol, P. Yang, M. B. H. Breese, B. Q. Xiong, G. Z. Mashanovich, W. R. Headley, and G. T. Reed, “Fabrication of low-loss silicon-on-oxidized-porous-silicon strip waveguide using focused proton-beam irradiation,” Opt. Lett. 34(5), 659–661 (2009).
[Crossref] [PubMed]

K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett. 26(23), 1888–1890 (2001).
[Crossref] [PubMed]

X. M. Zhang and A. M. Armani, “Suspended bridge-like silica 2×2 beam splitter on silicon,” Opt. Lett. 36(15), 3012–3014 (2011).
[Crossref] [PubMed]

W. Jia, J. Deng, H. Wu, X. Y. Li, and A. J. Danner, “Design and fabrication of high-efficiency photonic crystal power beam splitters,” Opt. Lett. 36(20), 4077–4079 (2011).
[Crossref] [PubMed]

A. Hosseini, S. Rahimi, X. Xu, D. Kwong, J. Covey, and R. T. Chen, “Ultracompact and fabrication-tolerant integrated polarization splitter,” Opt. Lett. 36(20), 4047–4049 (2011).
[Crossref] [PubMed]

Phys. Rev. B (1)

M. B. H. Breese, F. J. T. Champeaux, E. J. Teo, A. A. Bettiol, and D. J. Blackwood, “Hole transport through proton-irradiated p-type silicon wafers during electrochemical anodization,” Phys. Rev. B 73(3), 035428 (2006).
[Crossref]

Other (3)

V. Lehmann, Electrochemistry of Silicon: Instrumentation, Science, Materials and Applications, (Wiley-VCH, 2002).

J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon Press, 2003).

www.comsol.com

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Two-levels of waveguides formed by single energy irradiation through a patterned photoresist (yellow areas). (b), (c) cross-section SEMs of this structure after irradiation and anodization (d). Corresponding output image from cross-section by simultaneously coupling infrared light into all the waveguides

Fig. 2
Fig. 2

Level system formed by double energy irradiation through a mask (yellow areas). The end-of-range regions of the 650 keV protons (grey areas) and 300 keV helium ions (blue areas) is shown. (b),(c) cross-section SEMs of this structure after irradiation and anodization (d). Corresponding output image by simultaneously coupling light into all the waveguides.

Fig. 3
Fig. 3

(a) Optical micrograph of the splitter. (b) schematic of the ion beam irradiation patterning process: I1, the first irradiation to pattern the two lower waveguides; I2, the second irradiation to pattern the upper waveguide. (c) Plan view of scattered light image in TE mode.

Fig. 4
Fig. 4

SEM images of the splitter (a) top view of the structure, and cross section views of (b) the input, (d) the lower, and (e) the upper waveguides; and (c) a high resolution top view at the splitting portion.

Fig. 5
Fig. 5

(a) SEM of the three output ports; (b),(c) plan and cross-section view of light splitting. Note that (a) and (c) are on the same scale. SEMs of (d) upper and (e) lower output waveguides.

Tables (1)

Tables Icon

Table 1 Relationship between the proton fluence used to create the waveguides, their resulting dimensions, losses and splitting ratios.

Metrics