Abstract

Solar concentration has the potential to decrease the cost associated with solar cells by replacing the receiving surface aperture with cheaper optics that concentrate light onto a smaller cell aperture. However a mechanical tracker has to be added to the system to keep the concentrated light on the size reduced solar cell at all times. The tracking device itself uses energy to follow the sun’s position during the day. We have previously shown a mechanism for self-tracking that works by making use of the infrared energy of the solar spectrum, to activate a phase change material. In this paper, we show an implementation of a working 53 x 53 mm2 self-tracking system with an acceptance angle of 32° ( ± 16°). This paper describes the design optimizations and upscaling process to extend the proof-of-principle self-tracking mechanism to a working demonstration device including the incorporation of custom photodiodes for system characterization. The current version demonstrates an effective concentration of 3.5x (compared to 8x theoretical) over 80% of the desired acceptance angle. Further improvements are expected to increase the efficiency of the system and open the possibility to expand the device to concentrations as high as 200x (Cgeo = 400x, η = 50%, for a solar cell matched spectrum).

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Proof of principle demonstration of a self-tracking concentrator

Volker Zagolla, Eric Tremblay, and Christophe Moser
Opt. Express 22(S2) A498-A510 (2014)

Thermal phase change actuator for self-tracking solar concentration

E. J. Tremblay, D. Loterie, and C. Moser
Opt. Express 20(S6) A964-A976 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. M. Gordon, “Concentrator Optics,” in Concentrator Photovoltaics, A. L. Luque and V. M. Andreev, eds. (Springer, 2007), Ch. 6.
  2. R. Winston, J. C. Minano, W. T. Welford, and P. Benitez, Nonimaging Optics (Academic, 2004).
  3. B. M. Coughenour, T. Stalcup, B. Wheelwright, A. Geary, K. Hammer, and R. Angel, “Dish-based high concentration PV system with Köhler optics,” Opt. Express 22(S2Suppl 2), A211–A224 (2014).
    [Crossref] [PubMed]
  4. A. Plesniak, V. Garboushian, M. Liu, R. Gordon, and W. Bagienski, “An introduction to the Amonix 8700 solar power generator,” Proc. SPIE 8821, 88210D (2013).
    [Crossref]
  5. R. Swanson, “Photovoltaic Concentrators,” in Handbook of Photovoltaic Science, A. Luque, and S. Hegedus, eds. (John Wiley & Sons, Ltd, 2005), pp. 449–503.
  6. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 44),” Prog. Photovolt. Res. Appl. 22(7), 701–710 (2014).
    [Crossref]
  7. http://www.ise.fraunhofer.de/de/downloads/pdf-files/aktuelles/photovoltaics-report-in-englischer-sprache.pdf , last access 3.9.2014.
  8. J. M. Castro, D. Zhang, B. Myer, and R. K. Kostuk, “Energy collection efficiency of holographic planar solar concentrators,” Appl. Opt. 49(5), 858–870 (2010).
    [Crossref] [PubMed]
  9. R. Reisfeld and S. Neuman, “Planar solar energy converter and concentrator based on uranyl-doped glass,” Nature 274(5667), 144–145 (1978).
    [Crossref]
  10. R. Reisfeld, “New developments in luminescence for solar energy utilization,” Opt. Mater. 32(9), 850–856 (2010).
    [Crossref]
  11. L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Büchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi RRL 2(6), 257–259 (2008).
    [Crossref]
  12. J. H. Karp, E. J. Tremblay, and J. E. Ford, “Planar micro-optic solar concentrator,” Opt. Express 18(2), 1122–1133 (2010).
    [Crossref] [PubMed]
  13. F. Duerr, Y. Meuret, and H. Thienpont, “Tracking integration in concentrating photovoltaics using laterally moving optics,” Opt. Express 19(S3Suppl 3), A207–A218 (2011).
    [Crossref] [PubMed]
  14. J. M. Hallas, K. A. Baker, J. H. Karp, E. J. Tremblay, and J. E. Ford, “Two-axis solar tracking accomplished through small lateral translations,” Appl. Opt. 51(25), 6117–6124 (2012).
    [Crossref] [PubMed]
  15. M. J. Clifford and D. Eastwood, “Design of a novel passive solar tracker,” Sol. Energy 77(3), 269–280 (2004).
    [Crossref]
  16. http://www.zomeworks.com/photovoltaic-tracking-racks/ , last access 27.08.2014.
  17. K. A. Baker, J. H. Karp, E. J. Tremblay, J. M. Hallas, and J. E. Ford, “Reactive self-tracking solar concentrators: concept, design, and initial materials characterization,” Appl. Opt. 51(8), 1086–1094 (2012).
    [Crossref] [PubMed]
  18. Glint Photonics, http://www.glintphotonics.com/#!technology/c7mg , last access 27.08.2014.
  19. P. Schmaelzle and G. Whiting, “Lower critical solution temperature (LCST) polymers as a self-adaptive alternative to mechanical tracking for solar energy harvesting devices,” MRS Fall Meeting & Exhibit (2010).
  20. M. Stefancich, C. Maragliano, M. Chiesa, S. Lilliu, M. Dahlem, and A. Silvernail, “Optofluidic approaches to stationary tracking optical concentrator systems,” Proc. SPIE 8834, 88340C (2013).
    [Crossref]
  21. V. Zagolla, E. Tremblay, and C. Moser, “Light induced fluidic waveguide coupling,” Opt. Express 20(S6), A924–A931 (2012).
    [Crossref]
  22. V. Zagolla, E. Tremblay, and C. Moser, “Efficiency of a micro-bubble reflector based, self-adaptive waveguide solar concentrator,” Proc. SPIE 8620, 862010 (2013).
    [Crossref]
  23. E. J. Tremblay, D. Loterie, and C. Moser, “Thermal phase change actuator for self-tracking solar concentration,” Opt. Express 20(S6), A964–A976 (2012).
    [Crossref]
  24. V. Zagolla, E. Tremblay, and C. Moser, “Proof of principle demonstration of a self-tracking concentrator,” Opt. Express 22(S2Suppl 2), A498–A510 (2014).
    [Crossref] [PubMed]
  25. E. T. Carlen and C. H. Mastrangelo, “Electrothermally activated paraffin microactuators,” J. Microelectromech. Syst. 11(3), 165–174 (2002).
    [Crossref]
  26. H. J. Sant, T. Ho, and B. K. Gale, “An in situ heater for a phase-change-material-based actuation system,” J. Micromech. Microeng. 20(8), 085039 (2010).
    [Crossref]
  27. https://cmi.epfl.ch/etch/UTF.php , last access 27.08.2014.
  28. S. Faÿ, L. Feitknecht, R. Schlüchter, U. Kroll, E. Vallat-Sauvain, and A. Shah, “Rough ZnO layers by LP-CVD process and their effect in improving performances of amorphous and microcrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 90(18-19), 2960–2967 (2006).
    [Crossref]
  29. https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma-Aldrich/Product_Information_Sheet/199664pis.pdf , last access 27.08.2014.

2014 (3)

2013 (3)

M. Stefancich, C. Maragliano, M. Chiesa, S. Lilliu, M. Dahlem, and A. Silvernail, “Optofluidic approaches to stationary tracking optical concentrator systems,” Proc. SPIE 8834, 88340C (2013).
[Crossref]

V. Zagolla, E. Tremblay, and C. Moser, “Efficiency of a micro-bubble reflector based, self-adaptive waveguide solar concentrator,” Proc. SPIE 8620, 862010 (2013).
[Crossref]

A. Plesniak, V. Garboushian, M. Liu, R. Gordon, and W. Bagienski, “An introduction to the Amonix 8700 solar power generator,” Proc. SPIE 8821, 88210D (2013).
[Crossref]

2012 (4)

2011 (1)

2010 (4)

H. J. Sant, T. Ho, and B. K. Gale, “An in situ heater for a phase-change-material-based actuation system,” J. Micromech. Microeng. 20(8), 085039 (2010).
[Crossref]

J. H. Karp, E. J. Tremblay, and J. E. Ford, “Planar micro-optic solar concentrator,” Opt. Express 18(2), 1122–1133 (2010).
[Crossref] [PubMed]

J. M. Castro, D. Zhang, B. Myer, and R. K. Kostuk, “Energy collection efficiency of holographic planar solar concentrators,” Appl. Opt. 49(5), 858–870 (2010).
[Crossref] [PubMed]

R. Reisfeld, “New developments in luminescence for solar energy utilization,” Opt. Mater. 32(9), 850–856 (2010).
[Crossref]

2008 (1)

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Büchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi RRL 2(6), 257–259 (2008).
[Crossref]

2006 (1)

S. Faÿ, L. Feitknecht, R. Schlüchter, U. Kroll, E. Vallat-Sauvain, and A. Shah, “Rough ZnO layers by LP-CVD process and their effect in improving performances of amorphous and microcrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 90(18-19), 2960–2967 (2006).
[Crossref]

2004 (1)

M. J. Clifford and D. Eastwood, “Design of a novel passive solar tracker,” Sol. Energy 77(3), 269–280 (2004).
[Crossref]

2002 (1)

E. T. Carlen and C. H. Mastrangelo, “Electrothermally activated paraffin microactuators,” J. Microelectromech. Syst. 11(3), 165–174 (2002).
[Crossref]

1978 (1)

R. Reisfeld and S. Neuman, “Planar solar energy converter and concentrator based on uranyl-doped glass,” Nature 274(5667), 144–145 (1978).
[Crossref]

Angel, R.

Bagienski, W.

A. Plesniak, V. Garboushian, M. Liu, R. Gordon, and W. Bagienski, “An introduction to the Amonix 8700 solar power generator,” Proc. SPIE 8821, 88210D (2013).
[Crossref]

Baker, K. A.

Bende, E. E.

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Büchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi RRL 2(6), 257–259 (2008).
[Crossref]

Büchtemann, A.

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Büchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi RRL 2(6), 257–259 (2008).
[Crossref]

Budel, T.

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Büchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi RRL 2(6), 257–259 (2008).
[Crossref]

Burgers, A. R.

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Büchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi RRL 2(6), 257–259 (2008).
[Crossref]

Carlen, E. T.

E. T. Carlen and C. H. Mastrangelo, “Electrothermally activated paraffin microactuators,” J. Microelectromech. Syst. 11(3), 165–174 (2002).
[Crossref]

Castro, J. M.

Chiesa, M.

M. Stefancich, C. Maragliano, M. Chiesa, S. Lilliu, M. Dahlem, and A. Silvernail, “Optofluidic approaches to stationary tracking optical concentrator systems,” Proc. SPIE 8834, 88340C (2013).
[Crossref]

Clifford, M. J.

M. J. Clifford and D. Eastwood, “Design of a novel passive solar tracker,” Sol. Energy 77(3), 269–280 (2004).
[Crossref]

Coughenour, B. M.

Dahlem, M.

M. Stefancich, C. Maragliano, M. Chiesa, S. Lilliu, M. Dahlem, and A. Silvernail, “Optofluidic approaches to stationary tracking optical concentrator systems,” Proc. SPIE 8834, 88340C (2013).
[Crossref]

Duerr, F.

Dunlop, E. D.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 44),” Prog. Photovolt. Res. Appl. 22(7), 701–710 (2014).
[Crossref]

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Büchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi RRL 2(6), 257–259 (2008).
[Crossref]

Eastwood, D.

M. J. Clifford and D. Eastwood, “Design of a novel passive solar tracker,” Sol. Energy 77(3), 269–280 (2004).
[Crossref]

Emery, K.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 44),” Prog. Photovolt. Res. Appl. 22(7), 701–710 (2014).
[Crossref]

Faÿ, S.

S. Faÿ, L. Feitknecht, R. Schlüchter, U. Kroll, E. Vallat-Sauvain, and A. Shah, “Rough ZnO layers by LP-CVD process and their effect in improving performances of amorphous and microcrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 90(18-19), 2960–2967 (2006).
[Crossref]

Feitknecht, L.

S. Faÿ, L. Feitknecht, R. Schlüchter, U. Kroll, E. Vallat-Sauvain, and A. Shah, “Rough ZnO layers by LP-CVD process and their effect in improving performances of amorphous and microcrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 90(18-19), 2960–2967 (2006).
[Crossref]

Ford, J. E.

Gale, B. K.

H. J. Sant, T. Ho, and B. K. Gale, “An in situ heater for a phase-change-material-based actuation system,” J. Micromech. Microeng. 20(8), 085039 (2010).
[Crossref]

Garboushian, V.

A. Plesniak, V. Garboushian, M. Liu, R. Gordon, and W. Bagienski, “An introduction to the Amonix 8700 solar power generator,” Proc. SPIE 8821, 88210D (2013).
[Crossref]

Geary, A.

Gordon, R.

A. Plesniak, V. Garboushian, M. Liu, R. Gordon, and W. Bagienski, “An introduction to the Amonix 8700 solar power generator,” Proc. SPIE 8821, 88210D (2013).
[Crossref]

Green, M. A.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 44),” Prog. Photovolt. Res. Appl. 22(7), 701–710 (2014).
[Crossref]

Hallas, J. M.

Hammer, K.

Hishikawa, Y.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 44),” Prog. Photovolt. Res. Appl. 22(7), 701–710 (2014).
[Crossref]

Ho, T.

H. J. Sant, T. Ho, and B. K. Gale, “An in situ heater for a phase-change-material-based actuation system,” J. Micromech. Microeng. 20(8), 085039 (2010).
[Crossref]

Karp, J. H.

Kenny, R. P.

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Büchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi RRL 2(6), 257–259 (2008).
[Crossref]

Kostuk, R. K.

Kroll, U.

S. Faÿ, L. Feitknecht, R. Schlüchter, U. Kroll, E. Vallat-Sauvain, and A. Shah, “Rough ZnO layers by LP-CVD process and their effect in improving performances of amorphous and microcrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 90(18-19), 2960–2967 (2006).
[Crossref]

Lilliu, S.

M. Stefancich, C. Maragliano, M. Chiesa, S. Lilliu, M. Dahlem, and A. Silvernail, “Optofluidic approaches to stationary tracking optical concentrator systems,” Proc. SPIE 8834, 88340C (2013).
[Crossref]

Liu, M.

A. Plesniak, V. Garboushian, M. Liu, R. Gordon, and W. Bagienski, “An introduction to the Amonix 8700 solar power generator,” Proc. SPIE 8821, 88210D (2013).
[Crossref]

Loterie, D.

Maragliano, C.

M. Stefancich, C. Maragliano, M. Chiesa, S. Lilliu, M. Dahlem, and A. Silvernail, “Optofluidic approaches to stationary tracking optical concentrator systems,” Proc. SPIE 8834, 88340C (2013).
[Crossref]

Mastrangelo, C. H.

E. T. Carlen and C. H. Mastrangelo, “Electrothermally activated paraffin microactuators,” J. Microelectromech. Syst. 11(3), 165–174 (2002).
[Crossref]

Meuret, Y.

Moser, C.

Myer, B.

Neuman, S.

R. Reisfeld and S. Neuman, “Planar solar energy converter and concentrator based on uranyl-doped glass,” Nature 274(5667), 144–145 (1978).
[Crossref]

Plesniak, A.

A. Plesniak, V. Garboushian, M. Liu, R. Gordon, and W. Bagienski, “An introduction to the Amonix 8700 solar power generator,” Proc. SPIE 8821, 88210D (2013).
[Crossref]

Pravettoni, M.

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Büchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi RRL 2(6), 257–259 (2008).
[Crossref]

Reisfeld, R.

R. Reisfeld, “New developments in luminescence for solar energy utilization,” Opt. Mater. 32(9), 850–856 (2010).
[Crossref]

R. Reisfeld and S. Neuman, “Planar solar energy converter and concentrator based on uranyl-doped glass,” Nature 274(5667), 144–145 (1978).
[Crossref]

Sant, H. J.

H. J. Sant, T. Ho, and B. K. Gale, “An in situ heater for a phase-change-material-based actuation system,” J. Micromech. Microeng. 20(8), 085039 (2010).
[Crossref]

Schlüchter, R.

S. Faÿ, L. Feitknecht, R. Schlüchter, U. Kroll, E. Vallat-Sauvain, and A. Shah, “Rough ZnO layers by LP-CVD process and their effect in improving performances of amorphous and microcrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 90(18-19), 2960–2967 (2006).
[Crossref]

Shah, A.

S. Faÿ, L. Feitknecht, R. Schlüchter, U. Kroll, E. Vallat-Sauvain, and A. Shah, “Rough ZnO layers by LP-CVD process and their effect in improving performances of amorphous and microcrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 90(18-19), 2960–2967 (2006).
[Crossref]

Silvernail, A.

M. Stefancich, C. Maragliano, M. Chiesa, S. Lilliu, M. Dahlem, and A. Silvernail, “Optofluidic approaches to stationary tracking optical concentrator systems,” Proc. SPIE 8834, 88340C (2013).
[Crossref]

Slooff, L. H.

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Büchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi RRL 2(6), 257–259 (2008).
[Crossref]

Stalcup, T.

Stefancich, M.

M. Stefancich, C. Maragliano, M. Chiesa, S. Lilliu, M. Dahlem, and A. Silvernail, “Optofluidic approaches to stationary tracking optical concentrator systems,” Proc. SPIE 8834, 88340C (2013).
[Crossref]

Thienpont, H.

Tremblay, E.

Tremblay, E. J.

Vallat-Sauvain, E.

S. Faÿ, L. Feitknecht, R. Schlüchter, U. Kroll, E. Vallat-Sauvain, and A. Shah, “Rough ZnO layers by LP-CVD process and their effect in improving performances of amorphous and microcrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 90(18-19), 2960–2967 (2006).
[Crossref]

Warta, W.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 44),” Prog. Photovolt. Res. Appl. 22(7), 701–710 (2014).
[Crossref]

Wheelwright, B.

Zagolla, V.

Zhang, D.

Appl. Opt. (3)

J. Microelectromech. Syst. (1)

E. T. Carlen and C. H. Mastrangelo, “Electrothermally activated paraffin microactuators,” J. Microelectromech. Syst. 11(3), 165–174 (2002).
[Crossref]

J. Micromech. Microeng. (1)

H. J. Sant, T. Ho, and B. K. Gale, “An in situ heater for a phase-change-material-based actuation system,” J. Micromech. Microeng. 20(8), 085039 (2010).
[Crossref]

Nature (1)

R. Reisfeld and S. Neuman, “Planar solar energy converter and concentrator based on uranyl-doped glass,” Nature 274(5667), 144–145 (1978).
[Crossref]

Opt. Express (6)

Opt. Mater. (1)

R. Reisfeld, “New developments in luminescence for solar energy utilization,” Opt. Mater. 32(9), 850–856 (2010).
[Crossref]

Phys. Status Solidi RRL (1)

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Büchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi RRL 2(6), 257–259 (2008).
[Crossref]

Proc. SPIE (3)

A. Plesniak, V. Garboushian, M. Liu, R. Gordon, and W. Bagienski, “An introduction to the Amonix 8700 solar power generator,” Proc. SPIE 8821, 88210D (2013).
[Crossref]

M. Stefancich, C. Maragliano, M. Chiesa, S. Lilliu, M. Dahlem, and A. Silvernail, “Optofluidic approaches to stationary tracking optical concentrator systems,” Proc. SPIE 8834, 88340C (2013).
[Crossref]

V. Zagolla, E. Tremblay, and C. Moser, “Efficiency of a micro-bubble reflector based, self-adaptive waveguide solar concentrator,” Proc. SPIE 8620, 862010 (2013).
[Crossref]

Prog. Photovolt. Res. Appl. (1)

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 44),” Prog. Photovolt. Res. Appl. 22(7), 701–710 (2014).
[Crossref]

Sol. Energy (1)

M. J. Clifford and D. Eastwood, “Design of a novel passive solar tracker,” Sol. Energy 77(3), 269–280 (2004).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

S. Faÿ, L. Feitknecht, R. Schlüchter, U. Kroll, E. Vallat-Sauvain, and A. Shah, “Rough ZnO layers by LP-CVD process and their effect in improving performances of amorphous and microcrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 90(18-19), 2960–2967 (2006).
[Crossref]

Other (9)

https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma-Aldrich/Product_Information_Sheet/199664pis.pdf , last access 27.08.2014.

https://cmi.epfl.ch/etch/UTF.php , last access 27.08.2014.

http://www.zomeworks.com/photovoltaic-tracking-racks/ , last access 27.08.2014.

Glint Photonics, http://www.glintphotonics.com/#!technology/c7mg , last access 27.08.2014.

P. Schmaelzle and G. Whiting, “Lower critical solution temperature (LCST) polymers as a self-adaptive alternative to mechanical tracking for solar energy harvesting devices,” MRS Fall Meeting & Exhibit (2010).

http://www.ise.fraunhofer.de/de/downloads/pdf-files/aktuelles/photovoltaics-report-in-englischer-sprache.pdf , last access 3.9.2014.

R. Swanson, “Photovoltaic Concentrators,” in Handbook of Photovoltaic Science, A. Luque, and S. Hegedus, eds. (John Wiley & Sons, Ltd, 2005), pp. 449–503.

J. M. Gordon, “Concentrator Optics,” in Concentrator Photovoltaics, A. L. Luque and V. M. Andreev, eds. (Springer, 2007), Ch. 6.

R. Winston, J. C. Minano, W. T. Welford, and P. Benitez, Nonimaging Optics (Academic, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

There is a trade-off between concentration factor and acceptance angle [Eq. (1)]. For any given acceptance angle, there is an upper limit of possible concentration (orange area, n = 1.5). Due to this the field of CPV technologies is divided into three categories: High, medium, and low CPV. Our approach has a concentration factor that is to the right of the curve [Eq. (1)] due to its self-tracking mechanism, capable of reaching 300x geometric concentration with ± 16° acceptance angle (dark spot).

Fig. 2
Fig. 2

The three stages show the actuation and the self-tracking mechanism. In stage 1, the dichroic mirror splits the spectrum in two parts. The transmitted part (red; >750 nm) is transmitted and absorbed by the paraffin wax (black). In stage 2, the paraffin wax melts and expands upward, creating a coupling feature for the reflected light (yellow). As the sun moves throughout the day/season the focal spot changes and a different part of the actuator is activated (stage 3).

Fig. 3
Fig. 3

The combination of the two lenses yields a flat Petzval field curvature (blue) over the desired angular range in contrast to the use of a single plano-convex lens (a). The experimental results of the acceptance angle (b) agree with the simulation [Fig. 3(a)] corresponding to a reduction of the acceptance angle to from ± 23° to ± 16°.

Fig. 4
Fig. 4

(a) The lens arrays were created from one inch off-the-shelf lenses by milling the outer parts and leaving the center square. (b) The pair of lens arrays use a custom holder to keep them at the desired separation. Simulations indicate a reduction of the acceptance angle down to ± 16°.

Fig. 5
Fig. 5

The experimental measurements (red) of the beam size at different positions around the focus and at different angles, are similar to the simulation results (blue) and indicate a good agreement between the actual fabricated lens arrays and the virtual model in Zemax.

Fig. 6
Fig. 6

Left: relative efficiency curve. The baseline is given by the power detected by the photodiode positioned at the edge of the waveguide (see position (1) on right figure). The photodiodes can also be placed on top of the waveguide (pos. 2, pos. 3). A photodiode placed on the top of the waveguide, having a lateral dimension W > 2 mm shows a difference in collection efficiency less than 5%, with respect to a photodiode placed at the edge.

Fig. 7
Fig. 7

(a) Response of the short circuit current of the photodiode to different intensity levels has been experimentally verified to ensure the validity of the results. (b) Photograph of the 52x80 mm2 fused silica waveguide with Ag/Cr metallization at the edges and the front ZnO contact and µc-Si layers deposited by LPCVD and PECVD, respectively. Eight 2x5 mm2 photodiodes integrated at the extremity of the waveguide after ZnO back contact deposition, lift-off and RIE processes. (c) Spectral response of a reference photodiodes.

Fig. 8
Fig. 8

The actuator consists of the actuation array (a) filled with paraffin wax and the dichroic membrane on top that splits the spectrum in two parts (b).

Fig. 9
Fig. 9

The experimental device (b) was based on the simulation model (a). The simulation is then adapted to incorporate the same materials as used in the demonstration device for a full understanding of the performance. The top view shows the actuator unit numbering and photodiode numbering used during the experiments (c).

Fig. 10
Fig. 10

The experimental setup uses a motorized rotation and linear stage to record the short-circuit current response to any input. The incoming light on the device was changed in angle from −16° (Start) to + 16° (End). Every single unit (lens pair + actuator) was analyzed on its own and the response of all nine units summed up.

Fig. 11
Fig. 11

a) The maximum (actuated state) and minimum (non-actuated state) values of ISC for the unit 5 show actuation over an angular range of 16° (green area) indicated by a large difference of the two values. A perfect unit would show this behavior over the angular range ± 16°. b) The actuation dynamics show a rise in measured current after removing the hot mirror and a decline towards the previous value after inserting the hot mirror into the beam.

Fig. 12
Fig. 12

Measuring every unit on its own and adding the results up, shows an effective concentration just short of 4x (a). However, not all lenses participate actively. In comparison the added simulation results for the unit achieve close to 8x (b).

Fig. 13
Fig. 13

In contrast to Fig. 12 the erroneous terms due to constant coupling have been removed and the difference ISC,max - ISC,min plotted. Apart from unit 2, no unit performs over the desired angular range. However most perform well over a reduced angular ranges.

Fig. 14
Fig. 14

Photograph of the concentrator. The lens array is focuses on the actuator (not visible in the photograph) which couples light into the waveguide. Light hitting the scattering ZnO layer around the photodiodes is outcoupled and lost (reason this region is seen in the picture). Two micro-probes (front right) are used to measure the short-circuit current.

Fig. 15
Fig. 15

The five cases observable in the actuation results are displayed. Case 1-3 can be seen in Fig. 11(a) whereas case 5 only is visible in Fig. 11(b).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

C C max = n 2 sin 2 ( θ max,in )

Metrics