Abstract

We demonstrated photoelectrochemical cells (PECs) with dodecagon faceted AlGaN/n-GaN heterostructure electrode for H2 generation, where the AlGaN/n-GaN heterostructure has a linear gradient Al composition (LGAC). The separation efficiency of the photo-generated electron–hole pairs in the electrode performs a key function in the H2 generation efficiency of PEC cells. The linear gradient Al composition, AlGaN, could create more internal field and light absorption because of the linear graded band gap. Therefore, the zero-bias photocurrent density of PEC cells with dodecagon facet LGAC AlGaN/n-GaN heterostructure electrode is around 5.9 times larger than that of dodecagon faceted n-GaN electrode.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Ida, K. Yamada, T. Matsunaga, H. Hagiwara, Y. Matsumoto, and T. Ishihara, “Preparation of p-type CaFe2O4 photocathodes for producing hydrogen from water,” J. Am. Chem. Soc. 132(49), 17343–17345 (2010).
    [Crossref] [PubMed]
  2. J. Z. Zhang, “Metal oxide nanomaterials for solar hydrogen generation from photoelectrochemical water splitting,” MRS Bull. 36(1), 48–55 (2011).
    [Crossref]
  3. A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature 238(5358), 37–38 (1972).
    [Crossref] [PubMed]
  4. A. Wolcott, W. A. Smith, T. R. Kuykendall, Y. Zhao, and J. Z. Zhang, “Photoelectrochemical Study of Nanostructured ZnO Thin Films for Hydrogen Generation from Water Splitting,” Adv. Funct. Mater. 19(12), 1849–1856 (2009).
    [Crossref]
  5. K. Fujii, T. K. Karasawa, and K. Ohkawa, “Hydrogen Gas Generation by Splitting Aqueous Water Using n-Type GaN Photoelectrode with Anodic Oxidation,” Jpn. J. Appl. Phys. 44(18), L543–L545 (2005).
    [Crossref]
  6. S. Y. Liu, J. K. Sheu, C. K. Tseng, J. C. Ye, K. H. Chang, M. L. Lee, and W. C. Lai, “Improved hydrogen gas generation rate of n-GaN photoelectrode with SiO2 Protection layer on the ohmic contacts from the electrolyte,” J. Electrochem. Soc. 157(2), B266–B268 (2010).
    [Crossref]
  7. J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. C. Liu, and C. M. Chang, “Indium tin oxide ohmic contact to highly doped n-GaN,” Solid-State Electron. 43(11), 2081–2084 (1999).
    [Crossref]
  8. Q. Ding, F. Meng, C. R. English, M. Cabán-Acevedo, M. J. Shearer, D. Liang, A. S. Daniel, R. J. Hamers, and S. Jin, “Efficient Photoelectrochemical Hydrogen Generation Using Heterostructures of Si And Chemically Exfoliated Metallic Mos2,” J. Am. Chem. Soc. 136(24), 8504–8507 (2014).
    [Crossref] [PubMed]
  9. B. Kaiser, D. Fertig, J. Ziegler, J. Klett, S. Hoch, and W. Jaegermann, “Solar Hydrogen Generation with Wide-Band-Gap Semiconductors: Gap(100) Photoelectrodes and Surface Modification,” ChemPhysChem 13(12), 3053–3060 (2012).
    [Crossref] [PubMed]
  10. A. Pareek, R. Purbia, P. Paik, N. Y. Hebalkar, H. G. Kim, and P. H. Borse, “Stabilizing effect in nano-titania functionalized CdS photoanode for sustained hydrogen generation,” Int. J. Hydrogen Energy 39(9), 4170–4180 (2014).
    [Crossref]
  11. A. J. Nozik and R. Memming, “Physical chemistry of semiconductor-liquid interfaces,” J. Phys. Chem. 100(31), 13061–13078 (1996).
    [Crossref]
  12. I. Waki, D. Cohen, R. Lal, U. Mishra, S. P. DenBaars, and S. Nakamura, “Direct water photoelectrolysis with patterned n-GaN,” Appl. Phys. Lett. 91(9), 093519 (2007).
    [Crossref]
  13. J. Li, J. Y. Lin, and H. X. Jiang, “Direct hydrogen gas generation by using InGaN epilayers as working electrodes,” Appl. Phys. Lett. 93(16), 162107 (2008).
    [Crossref]
  14. J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1−xGaxN alloys,” Appl. Phys. Lett. 80(25), 4741 (2002).
    [Crossref]
  15. M. Ono, K. Fujii, T. Ito, Y. Iwaki, A. Hirako, T. Yao, and K. Ohkawa, “Photoelectrochemical reaction and H2 generation at zero bias optimized by carrier concentration of n-type GaN,” J. Chem. Phys. 126(5), 054708 (2007).
    [Crossref] [PubMed]
  16. I. Waki, D. Cohen, R. Lal, U. Mishra, S. P. DenBaars, and S. Nakamura, “Direct water photoelectrolysis with patterned n-GaN,” Appl. Phys. Lett. 91(9), 093519 (2007).
    [Crossref]
  17. S. Y. Liu, J. K. Sheu, J. C. Ye, S. J. Tu, C. K. Hsu, M. L. Lee, C. H. Kuo, and W. C. Lai, “Characterization of n-GaN with naturally textured surface for photoelectrochemical hydrogen generation,” J. Electrochem. Soc. 157(12), H1106–H1109 (2010).
    [Crossref]
  18. W. H. Tu, Y. K. Hsu, C. H. Yen, C. I. Wu, J. S. Hwang, L. C. Chen, and K. H. Chen, “Au nanoparticle modified GaN photoelectrode for photoelectrochemical hydrogen generation,” Electrochem. Commun. 13(6), 530–533 (2011).
    [Crossref]
  19. Y. G. Lin, Y. K. Hsu, A. M. Basilio, Y. T. Chen, K. H. Chen, and L. C. Chen, “Photoelectrochemical activity on Ga-polar and N-polar GaN surfaces for energy conversion,” Opt. Express 22(S1), A21–A27 (2014).
    [Crossref] [PubMed]
  20. S. Jung, S. N. Lee, K. S. Ahn, and H. Kim, “Surface Fermi Level Pinning of Semipolar (11̅22) n-type GaN Surfaces Grown on m-Plane Sapphire Substrates,” Electron. Mater. Lett. 9(5), 609–613 (2013).
    [Crossref]
  21. K. Fujii, Y. Iwaki, H. Masui, T. J. Baker, M. Iza, H. Sato, J. Kaeding, T. Yao, J. S. Speck, S. P. Denbaars, S. Nakamura, and K. Ohkawa, “Photoelectrochemical Properties of Nonpolar and Semipolar GaN,” Jpn. J. Appl. Phys. 46(10A), 6573–6578 (2007).
    [Crossref]
  22. K. Fujii, M. Ono, T. Ito, Y. Iwaki, A. Hirako, and K. Ohkawa, “Band-edge energies and photoelectrochemical properties of n-type AlxGa1-xN and InyGa1-y N alloys,” J. Electrochem. Soc. 154(2), B175–B179 (2007).
    [Crossref]
  23. Y. R. Wu, R. Shivaraman, K. C. Wang, and J. S. Speck, “Analyzing the physical properties of InGaN multiple quantum well light emitting diodes from nano scale structure,” Appl. Phys. Lett. 101(8), 083505 (2012).
    [Crossref]
  24. C. K. Li, M. Rosmeulen, E. Simoen, and Y. R. Wu, “Study on the Optimization for Current Spreading Effect of Lateral GaN/InGaN LEDs,” IEEE Trans. Electron. Dev. 61(2), 511–517 (2014).
    [Crossref]
  25. O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, and L. F. Eastman, “Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures,” J. Phys. Condens. Matter 14(13), 3399–3434 (2002).
    [Crossref]
  26. J. Simon, V. Protasenko, C. Lian, H. Xing, and D. Jena, “Polarization-Induced Hole Doping in Wide-Band-Gap Uniaxial Semiconductor Heterostructures,” Science 327(5961), 60–64 (2010).
    [Crossref] [PubMed]
  27. Z.-H. Zhang, W. Liu, Z. Ju, S. T. Tan, Y. Ji, Z. Kyaw, X. Zhang, L. Wang, X. W. Sun, and H. V. Demir, “Self-screening of the quantum confined Stark effect by the polarization induced bulk charges in the quantum barriers,” Appl. Phys. Lett. 104(24), 243501 (2014).
    [Crossref]
  28. Z. H. Zhang, W. Liu, Z. Ju, S. T. Tan, Y. Ji, Z. Kyaw, X. Zhang, L. Wang, X. W. Sun, and H. V. Demir, “InGaN/GaN multiple-quantum-well light-emitting diodes with a grading InN composition suppressing the Auger recombination,” Appl. Phys. Lett. 105(3), 033506 (2014).
    [Crossref]
  29. Z.-H. Zhang, S. T. Tan, Z. Kyaw, W. Liu, Y. Ji, Z. Ju, X. Zhang, X. W. Sun, and H. V. Demir, “p-doping-free InGaN/GaN light-emitting diode driven by three-dimensional hole gas,” Appl. Phys. Lett. 103(26), 263501 (2013).
    [Crossref]
  30. Z.-H. Zhang, W. Liu, Z. Ju, S. T. Tan, Y. Ji, X. Zhang, L. Wang, Z. Kyaw, X. W. Sun, and H. V. Demir, “Polarization self-screening in [0001] oriented InGaN/GaN light-emitting diodes for improving the electron injection efficiency,” Appl. Phys. Lett. 104(25), 251108 (2014).
    [Crossref]
  31. Y. Zhao, R. M. Farrell, Y. R. Wu, and J. S. Speck, “Valence band states and polarized optical emission from nonpolar and semipolar III-nitride quantum well optoelectronic devices,” Jpn. J. Appl. Phys. 53(10), 100206 (2014).
    [Crossref]
  32. H.-H. Huang and Y.-R. Wu, “Light Emission Polarization Properties of Semipolar InGaN/GaN Quantum Well,” J. Appl. Phys. 107(5), 053112 (2010).
    [Crossref]

2014 (8)

Q. Ding, F. Meng, C. R. English, M. Cabán-Acevedo, M. J. Shearer, D. Liang, A. S. Daniel, R. J. Hamers, and S. Jin, “Efficient Photoelectrochemical Hydrogen Generation Using Heterostructures of Si And Chemically Exfoliated Metallic Mos2,” J. Am. Chem. Soc. 136(24), 8504–8507 (2014).
[Crossref] [PubMed]

A. Pareek, R. Purbia, P. Paik, N. Y. Hebalkar, H. G. Kim, and P. H. Borse, “Stabilizing effect in nano-titania functionalized CdS photoanode for sustained hydrogen generation,” Int. J. Hydrogen Energy 39(9), 4170–4180 (2014).
[Crossref]

Y. G. Lin, Y. K. Hsu, A. M. Basilio, Y. T. Chen, K. H. Chen, and L. C. Chen, “Photoelectrochemical activity on Ga-polar and N-polar GaN surfaces for energy conversion,” Opt. Express 22(S1), A21–A27 (2014).
[Crossref] [PubMed]

C. K. Li, M. Rosmeulen, E. Simoen, and Y. R. Wu, “Study on the Optimization for Current Spreading Effect of Lateral GaN/InGaN LEDs,” IEEE Trans. Electron. Dev. 61(2), 511–517 (2014).
[Crossref]

Z.-H. Zhang, W. Liu, Z. Ju, S. T. Tan, Y. Ji, Z. Kyaw, X. Zhang, L. Wang, X. W. Sun, and H. V. Demir, “Self-screening of the quantum confined Stark effect by the polarization induced bulk charges in the quantum barriers,” Appl. Phys. Lett. 104(24), 243501 (2014).
[Crossref]

Z. H. Zhang, W. Liu, Z. Ju, S. T. Tan, Y. Ji, Z. Kyaw, X. Zhang, L. Wang, X. W. Sun, and H. V. Demir, “InGaN/GaN multiple-quantum-well light-emitting diodes with a grading InN composition suppressing the Auger recombination,” Appl. Phys. Lett. 105(3), 033506 (2014).
[Crossref]

Z.-H. Zhang, W. Liu, Z. Ju, S. T. Tan, Y. Ji, X. Zhang, L. Wang, Z. Kyaw, X. W. Sun, and H. V. Demir, “Polarization self-screening in [0001] oriented InGaN/GaN light-emitting diodes for improving the electron injection efficiency,” Appl. Phys. Lett. 104(25), 251108 (2014).
[Crossref]

Y. Zhao, R. M. Farrell, Y. R. Wu, and J. S. Speck, “Valence band states and polarized optical emission from nonpolar and semipolar III-nitride quantum well optoelectronic devices,” Jpn. J. Appl. Phys. 53(10), 100206 (2014).
[Crossref]

2013 (2)

Z.-H. Zhang, S. T. Tan, Z. Kyaw, W. Liu, Y. Ji, Z. Ju, X. Zhang, X. W. Sun, and H. V. Demir, “p-doping-free InGaN/GaN light-emitting diode driven by three-dimensional hole gas,” Appl. Phys. Lett. 103(26), 263501 (2013).
[Crossref]

S. Jung, S. N. Lee, K. S. Ahn, and H. Kim, “Surface Fermi Level Pinning of Semipolar (11̅22) n-type GaN Surfaces Grown on m-Plane Sapphire Substrates,” Electron. Mater. Lett. 9(5), 609–613 (2013).
[Crossref]

2012 (2)

Y. R. Wu, R. Shivaraman, K. C. Wang, and J. S. Speck, “Analyzing the physical properties of InGaN multiple quantum well light emitting diodes from nano scale structure,” Appl. Phys. Lett. 101(8), 083505 (2012).
[Crossref]

B. Kaiser, D. Fertig, J. Ziegler, J. Klett, S. Hoch, and W. Jaegermann, “Solar Hydrogen Generation with Wide-Band-Gap Semiconductors: Gap(100) Photoelectrodes and Surface Modification,” ChemPhysChem 13(12), 3053–3060 (2012).
[Crossref] [PubMed]

2011 (2)

J. Z. Zhang, “Metal oxide nanomaterials for solar hydrogen generation from photoelectrochemical water splitting,” MRS Bull. 36(1), 48–55 (2011).
[Crossref]

W. H. Tu, Y. K. Hsu, C. H. Yen, C. I. Wu, J. S. Hwang, L. C. Chen, and K. H. Chen, “Au nanoparticle modified GaN photoelectrode for photoelectrochemical hydrogen generation,” Electrochem. Commun. 13(6), 530–533 (2011).
[Crossref]

2010 (5)

S. Y. Liu, J. K. Sheu, J. C. Ye, S. J. Tu, C. K. Hsu, M. L. Lee, C. H. Kuo, and W. C. Lai, “Characterization of n-GaN with naturally textured surface for photoelectrochemical hydrogen generation,” J. Electrochem. Soc. 157(12), H1106–H1109 (2010).
[Crossref]

J. Simon, V. Protasenko, C. Lian, H. Xing, and D. Jena, “Polarization-Induced Hole Doping in Wide-Band-Gap Uniaxial Semiconductor Heterostructures,” Science 327(5961), 60–64 (2010).
[Crossref] [PubMed]

H.-H. Huang and Y.-R. Wu, “Light Emission Polarization Properties of Semipolar InGaN/GaN Quantum Well,” J. Appl. Phys. 107(5), 053112 (2010).
[Crossref]

S. Y. Liu, J. K. Sheu, C. K. Tseng, J. C. Ye, K. H. Chang, M. L. Lee, and W. C. Lai, “Improved hydrogen gas generation rate of n-GaN photoelectrode with SiO2 Protection layer on the ohmic contacts from the electrolyte,” J. Electrochem. Soc. 157(2), B266–B268 (2010).
[Crossref]

S. Ida, K. Yamada, T. Matsunaga, H. Hagiwara, Y. Matsumoto, and T. Ishihara, “Preparation of p-type CaFe2O4 photocathodes for producing hydrogen from water,” J. Am. Chem. Soc. 132(49), 17343–17345 (2010).
[Crossref] [PubMed]

2009 (1)

A. Wolcott, W. A. Smith, T. R. Kuykendall, Y. Zhao, and J. Z. Zhang, “Photoelectrochemical Study of Nanostructured ZnO Thin Films for Hydrogen Generation from Water Splitting,” Adv. Funct. Mater. 19(12), 1849–1856 (2009).
[Crossref]

2008 (1)

J. Li, J. Y. Lin, and H. X. Jiang, “Direct hydrogen gas generation by using InGaN epilayers as working electrodes,” Appl. Phys. Lett. 93(16), 162107 (2008).
[Crossref]

2007 (5)

M. Ono, K. Fujii, T. Ito, Y. Iwaki, A. Hirako, T. Yao, and K. Ohkawa, “Photoelectrochemical reaction and H2 generation at zero bias optimized by carrier concentration of n-type GaN,” J. Chem. Phys. 126(5), 054708 (2007).
[Crossref] [PubMed]

I. Waki, D. Cohen, R. Lal, U. Mishra, S. P. DenBaars, and S. Nakamura, “Direct water photoelectrolysis with patterned n-GaN,” Appl. Phys. Lett. 91(9), 093519 (2007).
[Crossref]

I. Waki, D. Cohen, R. Lal, U. Mishra, S. P. DenBaars, and S. Nakamura, “Direct water photoelectrolysis with patterned n-GaN,” Appl. Phys. Lett. 91(9), 093519 (2007).
[Crossref]

K. Fujii, Y. Iwaki, H. Masui, T. J. Baker, M. Iza, H. Sato, J. Kaeding, T. Yao, J. S. Speck, S. P. Denbaars, S. Nakamura, and K. Ohkawa, “Photoelectrochemical Properties of Nonpolar and Semipolar GaN,” Jpn. J. Appl. Phys. 46(10A), 6573–6578 (2007).
[Crossref]

K. Fujii, M. Ono, T. Ito, Y. Iwaki, A. Hirako, and K. Ohkawa, “Band-edge energies and photoelectrochemical properties of n-type AlxGa1-xN and InyGa1-y N alloys,” J. Electrochem. Soc. 154(2), B175–B179 (2007).
[Crossref]

2005 (1)

K. Fujii, T. K. Karasawa, and K. Ohkawa, “Hydrogen Gas Generation by Splitting Aqueous Water Using n-Type GaN Photoelectrode with Anodic Oxidation,” Jpn. J. Appl. Phys. 44(18), L543–L545 (2005).
[Crossref]

2002 (2)

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1−xGaxN alloys,” Appl. Phys. Lett. 80(25), 4741 (2002).
[Crossref]

O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, and L. F. Eastman, “Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures,” J. Phys. Condens. Matter 14(13), 3399–3434 (2002).
[Crossref]

1999 (1)

J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. C. Liu, and C. M. Chang, “Indium tin oxide ohmic contact to highly doped n-GaN,” Solid-State Electron. 43(11), 2081–2084 (1999).
[Crossref]

1996 (1)

A. J. Nozik and R. Memming, “Physical chemistry of semiconductor-liquid interfaces,” J. Phys. Chem. 100(31), 13061–13078 (1996).
[Crossref]

1972 (1)

A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature 238(5358), 37–38 (1972).
[Crossref] [PubMed]

Ager, J. W.

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1−xGaxN alloys,” Appl. Phys. Lett. 80(25), 4741 (2002).
[Crossref]

Ahn, K. S.

S. Jung, S. N. Lee, K. S. Ahn, and H. Kim, “Surface Fermi Level Pinning of Semipolar (11̅22) n-type GaN Surfaces Grown on m-Plane Sapphire Substrates,” Electron. Mater. Lett. 9(5), 609–613 (2013).
[Crossref]

Ambacher, O.

O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, and L. F. Eastman, “Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures,” J. Phys. Condens. Matter 14(13), 3399–3434 (2002).
[Crossref]

Baker, T. J.

K. Fujii, Y. Iwaki, H. Masui, T. J. Baker, M. Iza, H. Sato, J. Kaeding, T. Yao, J. S. Speck, S. P. Denbaars, S. Nakamura, and K. Ohkawa, “Photoelectrochemical Properties of Nonpolar and Semipolar GaN,” Jpn. J. Appl. Phys. 46(10A), 6573–6578 (2007).
[Crossref]

Basilio, A. M.

Bernardini, F.

O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, and L. F. Eastman, “Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures,” J. Phys. Condens. Matter 14(13), 3399–3434 (2002).
[Crossref]

Borse, P. H.

A. Pareek, R. Purbia, P. Paik, N. Y. Hebalkar, H. G. Kim, and P. H. Borse, “Stabilizing effect in nano-titania functionalized CdS photoanode for sustained hydrogen generation,” Int. J. Hydrogen Energy 39(9), 4170–4180 (2014).
[Crossref]

Cabán-Acevedo, M.

Q. Ding, F. Meng, C. R. English, M. Cabán-Acevedo, M. J. Shearer, D. Liang, A. S. Daniel, R. J. Hamers, and S. Jin, “Efficient Photoelectrochemical Hydrogen Generation Using Heterostructures of Si And Chemically Exfoliated Metallic Mos2,” J. Am. Chem. Soc. 136(24), 8504–8507 (2014).
[Crossref] [PubMed]

Chang, C. M.

J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. C. Liu, and C. M. Chang, “Indium tin oxide ohmic contact to highly doped n-GaN,” Solid-State Electron. 43(11), 2081–2084 (1999).
[Crossref]

Chang, K. H.

S. Y. Liu, J. K. Sheu, C. K. Tseng, J. C. Ye, K. H. Chang, M. L. Lee, and W. C. Lai, “Improved hydrogen gas generation rate of n-GaN photoelectrode with SiO2 Protection layer on the ohmic contacts from the electrolyte,” J. Electrochem. Soc. 157(2), B266–B268 (2010).
[Crossref]

Chen, K. H.

Y. G. Lin, Y. K. Hsu, A. M. Basilio, Y. T. Chen, K. H. Chen, and L. C. Chen, “Photoelectrochemical activity on Ga-polar and N-polar GaN surfaces for energy conversion,” Opt. Express 22(S1), A21–A27 (2014).
[Crossref] [PubMed]

W. H. Tu, Y. K. Hsu, C. H. Yen, C. I. Wu, J. S. Hwang, L. C. Chen, and K. H. Chen, “Au nanoparticle modified GaN photoelectrode for photoelectrochemical hydrogen generation,” Electrochem. Commun. 13(6), 530–533 (2011).
[Crossref]

Chen, L. C.

Y. G. Lin, Y. K. Hsu, A. M. Basilio, Y. T. Chen, K. H. Chen, and L. C. Chen, “Photoelectrochemical activity on Ga-polar and N-polar GaN surfaces for energy conversion,” Opt. Express 22(S1), A21–A27 (2014).
[Crossref] [PubMed]

W. H. Tu, Y. K. Hsu, C. H. Yen, C. I. Wu, J. S. Hwang, L. C. Chen, and K. H. Chen, “Au nanoparticle modified GaN photoelectrode for photoelectrochemical hydrogen generation,” Electrochem. Commun. 13(6), 530–533 (2011).
[Crossref]

Chen, Y. T.

Chi, G. C.

J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. C. Liu, and C. M. Chang, “Indium tin oxide ohmic contact to highly doped n-GaN,” Solid-State Electron. 43(11), 2081–2084 (1999).
[Crossref]

Cohen, D.

I. Waki, D. Cohen, R. Lal, U. Mishra, S. P. DenBaars, and S. Nakamura, “Direct water photoelectrolysis with patterned n-GaN,” Appl. Phys. Lett. 91(9), 093519 (2007).
[Crossref]

I. Waki, D. Cohen, R. Lal, U. Mishra, S. P. DenBaars, and S. Nakamura, “Direct water photoelectrolysis with patterned n-GaN,” Appl. Phys. Lett. 91(9), 093519 (2007).
[Crossref]

Daniel, A. S.

Q. Ding, F. Meng, C. R. English, M. Cabán-Acevedo, M. J. Shearer, D. Liang, A. S. Daniel, R. J. Hamers, and S. Jin, “Efficient Photoelectrochemical Hydrogen Generation Using Heterostructures of Si And Chemically Exfoliated Metallic Mos2,” J. Am. Chem. Soc. 136(24), 8504–8507 (2014).
[Crossref] [PubMed]

Demir, H. V.

Z.-H. Zhang, W. Liu, Z. Ju, S. T. Tan, Y. Ji, X. Zhang, L. Wang, Z. Kyaw, X. W. Sun, and H. V. Demir, “Polarization self-screening in [0001] oriented InGaN/GaN light-emitting diodes for improving the electron injection efficiency,” Appl. Phys. Lett. 104(25), 251108 (2014).
[Crossref]

Z.-H. Zhang, W. Liu, Z. Ju, S. T. Tan, Y. Ji, Z. Kyaw, X. Zhang, L. Wang, X. W. Sun, and H. V. Demir, “Self-screening of the quantum confined Stark effect by the polarization induced bulk charges in the quantum barriers,” Appl. Phys. Lett. 104(24), 243501 (2014).
[Crossref]

Z. H. Zhang, W. Liu, Z. Ju, S. T. Tan, Y. Ji, Z. Kyaw, X. Zhang, L. Wang, X. W. Sun, and H. V. Demir, “InGaN/GaN multiple-quantum-well light-emitting diodes with a grading InN composition suppressing the Auger recombination,” Appl. Phys. Lett. 105(3), 033506 (2014).
[Crossref]

Z.-H. Zhang, S. T. Tan, Z. Kyaw, W. Liu, Y. Ji, Z. Ju, X. Zhang, X. W. Sun, and H. V. Demir, “p-doping-free InGaN/GaN light-emitting diode driven by three-dimensional hole gas,” Appl. Phys. Lett. 103(26), 263501 (2013).
[Crossref]

DenBaars, S. P.

I. Waki, D. Cohen, R. Lal, U. Mishra, S. P. DenBaars, and S. Nakamura, “Direct water photoelectrolysis with patterned n-GaN,” Appl. Phys. Lett. 91(9), 093519 (2007).
[Crossref]

I. Waki, D. Cohen, R. Lal, U. Mishra, S. P. DenBaars, and S. Nakamura, “Direct water photoelectrolysis with patterned n-GaN,” Appl. Phys. Lett. 91(9), 093519 (2007).
[Crossref]

K. Fujii, Y. Iwaki, H. Masui, T. J. Baker, M. Iza, H. Sato, J. Kaeding, T. Yao, J. S. Speck, S. P. Denbaars, S. Nakamura, and K. Ohkawa, “Photoelectrochemical Properties of Nonpolar and Semipolar GaN,” Jpn. J. Appl. Phys. 46(10A), 6573–6578 (2007).
[Crossref]

Ding, Q.

Q. Ding, F. Meng, C. R. English, M. Cabán-Acevedo, M. J. Shearer, D. Liang, A. S. Daniel, R. J. Hamers, and S. Jin, “Efficient Photoelectrochemical Hydrogen Generation Using Heterostructures of Si And Chemically Exfoliated Metallic Mos2,” J. Am. Chem. Soc. 136(24), 8504–8507 (2014).
[Crossref] [PubMed]

Eastman, L. F.

O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, and L. F. Eastman, “Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures,” J. Phys. Condens. Matter 14(13), 3399–3434 (2002).
[Crossref]

Eickhoff, M.

O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, and L. F. Eastman, “Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures,” J. Phys. Condens. Matter 14(13), 3399–3434 (2002).
[Crossref]

English, C. R.

Q. Ding, F. Meng, C. R. English, M. Cabán-Acevedo, M. J. Shearer, D. Liang, A. S. Daniel, R. J. Hamers, and S. Jin, “Efficient Photoelectrochemical Hydrogen Generation Using Heterostructures of Si And Chemically Exfoliated Metallic Mos2,” J. Am. Chem. Soc. 136(24), 8504–8507 (2014).
[Crossref] [PubMed]

Farrell, R. M.

Y. Zhao, R. M. Farrell, Y. R. Wu, and J. S. Speck, “Valence band states and polarized optical emission from nonpolar and semipolar III-nitride quantum well optoelectronic devices,” Jpn. J. Appl. Phys. 53(10), 100206 (2014).
[Crossref]

Fertig, D.

B. Kaiser, D. Fertig, J. Ziegler, J. Klett, S. Hoch, and W. Jaegermann, “Solar Hydrogen Generation with Wide-Band-Gap Semiconductors: Gap(100) Photoelectrodes and Surface Modification,” ChemPhysChem 13(12), 3053–3060 (2012).
[Crossref] [PubMed]

Fiorentini, V.

O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, and L. F. Eastman, “Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures,” J. Phys. Condens. Matter 14(13), 3399–3434 (2002).
[Crossref]

Fujii, K.

K. Fujii, M. Ono, T. Ito, Y. Iwaki, A. Hirako, and K. Ohkawa, “Band-edge energies and photoelectrochemical properties of n-type AlxGa1-xN and InyGa1-y N alloys,” J. Electrochem. Soc. 154(2), B175–B179 (2007).
[Crossref]

M. Ono, K. Fujii, T. Ito, Y. Iwaki, A. Hirako, T. Yao, and K. Ohkawa, “Photoelectrochemical reaction and H2 generation at zero bias optimized by carrier concentration of n-type GaN,” J. Chem. Phys. 126(5), 054708 (2007).
[Crossref] [PubMed]

K. Fujii, Y. Iwaki, H. Masui, T. J. Baker, M. Iza, H. Sato, J. Kaeding, T. Yao, J. S. Speck, S. P. Denbaars, S. Nakamura, and K. Ohkawa, “Photoelectrochemical Properties of Nonpolar and Semipolar GaN,” Jpn. J. Appl. Phys. 46(10A), 6573–6578 (2007).
[Crossref]

K. Fujii, T. K. Karasawa, and K. Ohkawa, “Hydrogen Gas Generation by Splitting Aqueous Water Using n-Type GaN Photoelectrode with Anodic Oxidation,” Jpn. J. Appl. Phys. 44(18), L543–L545 (2005).
[Crossref]

Fujishima, A.

A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature 238(5358), 37–38 (1972).
[Crossref] [PubMed]

Hagiwara, H.

S. Ida, K. Yamada, T. Matsunaga, H. Hagiwara, Y. Matsumoto, and T. Ishihara, “Preparation of p-type CaFe2O4 photocathodes for producing hydrogen from water,” J. Am. Chem. Soc. 132(49), 17343–17345 (2010).
[Crossref] [PubMed]

Haller, E. E.

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1−xGaxN alloys,” Appl. Phys. Lett. 80(25), 4741 (2002).
[Crossref]

Hamers, R. J.

Q. Ding, F. Meng, C. R. English, M. Cabán-Acevedo, M. J. Shearer, D. Liang, A. S. Daniel, R. J. Hamers, and S. Jin, “Efficient Photoelectrochemical Hydrogen Generation Using Heterostructures of Si And Chemically Exfoliated Metallic Mos2,” J. Am. Chem. Soc. 136(24), 8504–8507 (2014).
[Crossref] [PubMed]

Hebalkar, N. Y.

A. Pareek, R. Purbia, P. Paik, N. Y. Hebalkar, H. G. Kim, and P. H. Borse, “Stabilizing effect in nano-titania functionalized CdS photoanode for sustained hydrogen generation,” Int. J. Hydrogen Energy 39(9), 4170–4180 (2014).
[Crossref]

Hermann, M.

O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, and L. F. Eastman, “Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures,” J. Phys. Condens. Matter 14(13), 3399–3434 (2002).
[Crossref]

Hirako, A.

K. Fujii, M. Ono, T. Ito, Y. Iwaki, A. Hirako, and K. Ohkawa, “Band-edge energies and photoelectrochemical properties of n-type AlxGa1-xN and InyGa1-y N alloys,” J. Electrochem. Soc. 154(2), B175–B179 (2007).
[Crossref]

M. Ono, K. Fujii, T. Ito, Y. Iwaki, A. Hirako, T. Yao, and K. Ohkawa, “Photoelectrochemical reaction and H2 generation at zero bias optimized by carrier concentration of n-type GaN,” J. Chem. Phys. 126(5), 054708 (2007).
[Crossref] [PubMed]

Hoch, S.

B. Kaiser, D. Fertig, J. Ziegler, J. Klett, S. Hoch, and W. Jaegermann, “Solar Hydrogen Generation with Wide-Band-Gap Semiconductors: Gap(100) Photoelectrodes and Surface Modification,” ChemPhysChem 13(12), 3053–3060 (2012).
[Crossref] [PubMed]

Honda, K.

A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature 238(5358), 37–38 (1972).
[Crossref] [PubMed]

Hsu, C. K.

S. Y. Liu, J. K. Sheu, J. C. Ye, S. J. Tu, C. K. Hsu, M. L. Lee, C. H. Kuo, and W. C. Lai, “Characterization of n-GaN with naturally textured surface for photoelectrochemical hydrogen generation,” J. Electrochem. Soc. 157(12), H1106–H1109 (2010).
[Crossref]

Hsu, Y. K.

Y. G. Lin, Y. K. Hsu, A. M. Basilio, Y. T. Chen, K. H. Chen, and L. C. Chen, “Photoelectrochemical activity on Ga-polar and N-polar GaN surfaces for energy conversion,” Opt. Express 22(S1), A21–A27 (2014).
[Crossref] [PubMed]

W. H. Tu, Y. K. Hsu, C. H. Yen, C. I. Wu, J. S. Hwang, L. C. Chen, and K. H. Chen, “Au nanoparticle modified GaN photoelectrode for photoelectrochemical hydrogen generation,” Electrochem. Commun. 13(6), 530–533 (2011).
[Crossref]

Huang, H.-H.

H.-H. Huang and Y.-R. Wu, “Light Emission Polarization Properties of Semipolar InGaN/GaN Quantum Well,” J. Appl. Phys. 107(5), 053112 (2010).
[Crossref]

Hwang, J. S.

W. H. Tu, Y. K. Hsu, C. H. Yen, C. I. Wu, J. S. Hwang, L. C. Chen, and K. H. Chen, “Au nanoparticle modified GaN photoelectrode for photoelectrochemical hydrogen generation,” Electrochem. Commun. 13(6), 530–533 (2011).
[Crossref]

Ida, S.

S. Ida, K. Yamada, T. Matsunaga, H. Hagiwara, Y. Matsumoto, and T. Ishihara, “Preparation of p-type CaFe2O4 photocathodes for producing hydrogen from water,” J. Am. Chem. Soc. 132(49), 17343–17345 (2010).
[Crossref] [PubMed]

Ishihara, T.

S. Ida, K. Yamada, T. Matsunaga, H. Hagiwara, Y. Matsumoto, and T. Ishihara, “Preparation of p-type CaFe2O4 photocathodes for producing hydrogen from water,” J. Am. Chem. Soc. 132(49), 17343–17345 (2010).
[Crossref] [PubMed]

Ito, T.

M. Ono, K. Fujii, T. Ito, Y. Iwaki, A. Hirako, T. Yao, and K. Ohkawa, “Photoelectrochemical reaction and H2 generation at zero bias optimized by carrier concentration of n-type GaN,” J. Chem. Phys. 126(5), 054708 (2007).
[Crossref] [PubMed]

K. Fujii, M. Ono, T. Ito, Y. Iwaki, A. Hirako, and K. Ohkawa, “Band-edge energies and photoelectrochemical properties of n-type AlxGa1-xN and InyGa1-y N alloys,” J. Electrochem. Soc. 154(2), B175–B179 (2007).
[Crossref]

Iwaki, Y.

K. Fujii, M. Ono, T. Ito, Y. Iwaki, A. Hirako, and K. Ohkawa, “Band-edge energies and photoelectrochemical properties of n-type AlxGa1-xN and InyGa1-y N alloys,” J. Electrochem. Soc. 154(2), B175–B179 (2007).
[Crossref]

M. Ono, K. Fujii, T. Ito, Y. Iwaki, A. Hirako, T. Yao, and K. Ohkawa, “Photoelectrochemical reaction and H2 generation at zero bias optimized by carrier concentration of n-type GaN,” J. Chem. Phys. 126(5), 054708 (2007).
[Crossref] [PubMed]

K. Fujii, Y. Iwaki, H. Masui, T. J. Baker, M. Iza, H. Sato, J. Kaeding, T. Yao, J. S. Speck, S. P. Denbaars, S. Nakamura, and K. Ohkawa, “Photoelectrochemical Properties of Nonpolar and Semipolar GaN,” Jpn. J. Appl. Phys. 46(10A), 6573–6578 (2007).
[Crossref]

Iza, M.

K. Fujii, Y. Iwaki, H. Masui, T. J. Baker, M. Iza, H. Sato, J. Kaeding, T. Yao, J. S. Speck, S. P. Denbaars, S. Nakamura, and K. Ohkawa, “Photoelectrochemical Properties of Nonpolar and Semipolar GaN,” Jpn. J. Appl. Phys. 46(10A), 6573–6578 (2007).
[Crossref]

Jaegermann, W.

B. Kaiser, D. Fertig, J. Ziegler, J. Klett, S. Hoch, and W. Jaegermann, “Solar Hydrogen Generation with Wide-Band-Gap Semiconductors: Gap(100) Photoelectrodes and Surface Modification,” ChemPhysChem 13(12), 3053–3060 (2012).
[Crossref] [PubMed]

Jena, D.

J. Simon, V. Protasenko, C. Lian, H. Xing, and D. Jena, “Polarization-Induced Hole Doping in Wide-Band-Gap Uniaxial Semiconductor Heterostructures,” Science 327(5961), 60–64 (2010).
[Crossref] [PubMed]

Ji, Y.

Z.-H. Zhang, W. Liu, Z. Ju, S. T. Tan, Y. Ji, X. Zhang, L. Wang, Z. Kyaw, X. W. Sun, and H. V. Demir, “Polarization self-screening in [0001] oriented InGaN/GaN light-emitting diodes for improving the electron injection efficiency,” Appl. Phys. Lett. 104(25), 251108 (2014).
[Crossref]

Z.-H. Zhang, W. Liu, Z. Ju, S. T. Tan, Y. Ji, Z. Kyaw, X. Zhang, L. Wang, X. W. Sun, and H. V. Demir, “Self-screening of the quantum confined Stark effect by the polarization induced bulk charges in the quantum barriers,” Appl. Phys. Lett. 104(24), 243501 (2014).
[Crossref]

Z. H. Zhang, W. Liu, Z. Ju, S. T. Tan, Y. Ji, Z. Kyaw, X. Zhang, L. Wang, X. W. Sun, and H. V. Demir, “InGaN/GaN multiple-quantum-well light-emitting diodes with a grading InN composition suppressing the Auger recombination,” Appl. Phys. Lett. 105(3), 033506 (2014).
[Crossref]

Z.-H. Zhang, S. T. Tan, Z. Kyaw, W. Liu, Y. Ji, Z. Ju, X. Zhang, X. W. Sun, and H. V. Demir, “p-doping-free InGaN/GaN light-emitting diode driven by three-dimensional hole gas,” Appl. Phys. Lett. 103(26), 263501 (2013).
[Crossref]

Jiang, H. X.

J. Li, J. Y. Lin, and H. X. Jiang, “Direct hydrogen gas generation by using InGaN epilayers as working electrodes,” Appl. Phys. Lett. 93(16), 162107 (2008).
[Crossref]

Jin, S.

Q. Ding, F. Meng, C. R. English, M. Cabán-Acevedo, M. J. Shearer, D. Liang, A. S. Daniel, R. J. Hamers, and S. Jin, “Efficient Photoelectrochemical Hydrogen Generation Using Heterostructures of Si And Chemically Exfoliated Metallic Mos2,” J. Am. Chem. Soc. 136(24), 8504–8507 (2014).
[Crossref] [PubMed]

Jou, M. J.

J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. C. Liu, and C. M. Chang, “Indium tin oxide ohmic contact to highly doped n-GaN,” Solid-State Electron. 43(11), 2081–2084 (1999).
[Crossref]

Ju, Z.

Z.-H. Zhang, W. Liu, Z. Ju, S. T. Tan, Y. Ji, X. Zhang, L. Wang, Z. Kyaw, X. W. Sun, and H. V. Demir, “Polarization self-screening in [0001] oriented InGaN/GaN light-emitting diodes for improving the electron injection efficiency,” Appl. Phys. Lett. 104(25), 251108 (2014).
[Crossref]

Z. H. Zhang, W. Liu, Z. Ju, S. T. Tan, Y. Ji, Z. Kyaw, X. Zhang, L. Wang, X. W. Sun, and H. V. Demir, “InGaN/GaN multiple-quantum-well light-emitting diodes with a grading InN composition suppressing the Auger recombination,” Appl. Phys. Lett. 105(3), 033506 (2014).
[Crossref]

Z.-H. Zhang, W. Liu, Z. Ju, S. T. Tan, Y. Ji, Z. Kyaw, X. Zhang, L. Wang, X. W. Sun, and H. V. Demir, “Self-screening of the quantum confined Stark effect by the polarization induced bulk charges in the quantum barriers,” Appl. Phys. Lett. 104(24), 243501 (2014).
[Crossref]

Z.-H. Zhang, S. T. Tan, Z. Kyaw, W. Liu, Y. Ji, Z. Ju, X. Zhang, X. W. Sun, and H. V. Demir, “p-doping-free InGaN/GaN light-emitting diode driven by three-dimensional hole gas,” Appl. Phys. Lett. 103(26), 263501 (2013).
[Crossref]

Jung, S.

S. Jung, S. N. Lee, K. S. Ahn, and H. Kim, “Surface Fermi Level Pinning of Semipolar (11̅22) n-type GaN Surfaces Grown on m-Plane Sapphire Substrates,” Electron. Mater. Lett. 9(5), 609–613 (2013).
[Crossref]

Kaeding, J.

K. Fujii, Y. Iwaki, H. Masui, T. J. Baker, M. Iza, H. Sato, J. Kaeding, T. Yao, J. S. Speck, S. P. Denbaars, S. Nakamura, and K. Ohkawa, “Photoelectrochemical Properties of Nonpolar and Semipolar GaN,” Jpn. J. Appl. Phys. 46(10A), 6573–6578 (2007).
[Crossref]

Kaiser, B.

B. Kaiser, D. Fertig, J. Ziegler, J. Klett, S. Hoch, and W. Jaegermann, “Solar Hydrogen Generation with Wide-Band-Gap Semiconductors: Gap(100) Photoelectrodes and Surface Modification,” ChemPhysChem 13(12), 3053–3060 (2012).
[Crossref] [PubMed]

Karasawa, T. K.

K. Fujii, T. K. Karasawa, and K. Ohkawa, “Hydrogen Gas Generation by Splitting Aqueous Water Using n-Type GaN Photoelectrode with Anodic Oxidation,” Jpn. J. Appl. Phys. 44(18), L543–L545 (2005).
[Crossref]

Kim, H.

S. Jung, S. N. Lee, K. S. Ahn, and H. Kim, “Surface Fermi Level Pinning of Semipolar (11̅22) n-type GaN Surfaces Grown on m-Plane Sapphire Substrates,” Electron. Mater. Lett. 9(5), 609–613 (2013).
[Crossref]

Kim, H. G.

A. Pareek, R. Purbia, P. Paik, N. Y. Hebalkar, H. G. Kim, and P. H. Borse, “Stabilizing effect in nano-titania functionalized CdS photoanode for sustained hydrogen generation,” Int. J. Hydrogen Energy 39(9), 4170–4180 (2014).
[Crossref]

Klett, J.

B. Kaiser, D. Fertig, J. Ziegler, J. Klett, S. Hoch, and W. Jaegermann, “Solar Hydrogen Generation with Wide-Band-Gap Semiconductors: Gap(100) Photoelectrodes and Surface Modification,” ChemPhysChem 13(12), 3053–3060 (2012).
[Crossref] [PubMed]

Kuo, C. H.

S. Y. Liu, J. K. Sheu, J. C. Ye, S. J. Tu, C. K. Hsu, M. L. Lee, C. H. Kuo, and W. C. Lai, “Characterization of n-GaN with naturally textured surface for photoelectrochemical hydrogen generation,” J. Electrochem. Soc. 157(12), H1106–H1109 (2010).
[Crossref]

Kuykendall, T. R.

A. Wolcott, W. A. Smith, T. R. Kuykendall, Y. Zhao, and J. Z. Zhang, “Photoelectrochemical Study of Nanostructured ZnO Thin Films for Hydrogen Generation from Water Splitting,” Adv. Funct. Mater. 19(12), 1849–1856 (2009).
[Crossref]

Kyaw, Z.

Z.-H. Zhang, W. Liu, Z. Ju, S. T. Tan, Y. Ji, Z. Kyaw, X. Zhang, L. Wang, X. W. Sun, and H. V. Demir, “Self-screening of the quantum confined Stark effect by the polarization induced bulk charges in the quantum barriers,” Appl. Phys. Lett. 104(24), 243501 (2014).
[Crossref]

Z. H. Zhang, W. Liu, Z. Ju, S. T. Tan, Y. Ji, Z. Kyaw, X. Zhang, L. Wang, X. W. Sun, and H. V. Demir, “InGaN/GaN multiple-quantum-well light-emitting diodes with a grading InN composition suppressing the Auger recombination,” Appl. Phys. Lett. 105(3), 033506 (2014).
[Crossref]

Z.-H. Zhang, W. Liu, Z. Ju, S. T. Tan, Y. Ji, X. Zhang, L. Wang, Z. Kyaw, X. W. Sun, and H. V. Demir, “Polarization self-screening in [0001] oriented InGaN/GaN light-emitting diodes for improving the electron injection efficiency,” Appl. Phys. Lett. 104(25), 251108 (2014).
[Crossref]

Z.-H. Zhang, S. T. Tan, Z. Kyaw, W. Liu, Y. Ji, Z. Ju, X. Zhang, X. W. Sun, and H. V. Demir, “p-doping-free InGaN/GaN light-emitting diode driven by three-dimensional hole gas,” Appl. Phys. Lett. 103(26), 263501 (2013).
[Crossref]

Lai, W. C.

S. Y. Liu, J. K. Sheu, C. K. Tseng, J. C. Ye, K. H. Chang, M. L. Lee, and W. C. Lai, “Improved hydrogen gas generation rate of n-GaN photoelectrode with SiO2 Protection layer on the ohmic contacts from the electrolyte,” J. Electrochem. Soc. 157(2), B266–B268 (2010).
[Crossref]

S. Y. Liu, J. K. Sheu, J. C. Ye, S. J. Tu, C. K. Hsu, M. L. Lee, C. H. Kuo, and W. C. Lai, “Characterization of n-GaN with naturally textured surface for photoelectrochemical hydrogen generation,” J. Electrochem. Soc. 157(12), H1106–H1109 (2010).
[Crossref]

Lal, R.

I. Waki, D. Cohen, R. Lal, U. Mishra, S. P. DenBaars, and S. Nakamura, “Direct water photoelectrolysis with patterned n-GaN,” Appl. Phys. Lett. 91(9), 093519 (2007).
[Crossref]

I. Waki, D. Cohen, R. Lal, U. Mishra, S. P. DenBaars, and S. Nakamura, “Direct water photoelectrolysis with patterned n-GaN,” Appl. Phys. Lett. 91(9), 093519 (2007).
[Crossref]

Lee, M. L.

S. Y. Liu, J. K. Sheu, C. K. Tseng, J. C. Ye, K. H. Chang, M. L. Lee, and W. C. Lai, “Improved hydrogen gas generation rate of n-GaN photoelectrode with SiO2 Protection layer on the ohmic contacts from the electrolyte,” J. Electrochem. Soc. 157(2), B266–B268 (2010).
[Crossref]

S. Y. Liu, J. K. Sheu, J. C. Ye, S. J. Tu, C. K. Hsu, M. L. Lee, C. H. Kuo, and W. C. Lai, “Characterization of n-GaN with naturally textured surface for photoelectrochemical hydrogen generation,” J. Electrochem. Soc. 157(12), H1106–H1109 (2010).
[Crossref]

Lee, S. N.

S. Jung, S. N. Lee, K. S. Ahn, and H. Kim, “Surface Fermi Level Pinning of Semipolar (11̅22) n-type GaN Surfaces Grown on m-Plane Sapphire Substrates,” Electron. Mater. Lett. 9(5), 609–613 (2013).
[Crossref]

Li, C. K.

C. K. Li, M. Rosmeulen, E. Simoen, and Y. R. Wu, “Study on the Optimization for Current Spreading Effect of Lateral GaN/InGaN LEDs,” IEEE Trans. Electron. Dev. 61(2), 511–517 (2014).
[Crossref]

Li, J.

J. Li, J. Y. Lin, and H. X. Jiang, “Direct hydrogen gas generation by using InGaN epilayers as working electrodes,” Appl. Phys. Lett. 93(16), 162107 (2008).
[Crossref]

Lian, C.

J. Simon, V. Protasenko, C. Lian, H. Xing, and D. Jena, “Polarization-Induced Hole Doping in Wide-Band-Gap Uniaxial Semiconductor Heterostructures,” Science 327(5961), 60–64 (2010).
[Crossref] [PubMed]

Liang, D.

Q. Ding, F. Meng, C. R. English, M. Cabán-Acevedo, M. J. Shearer, D. Liang, A. S. Daniel, R. J. Hamers, and S. Jin, “Efficient Photoelectrochemical Hydrogen Generation Using Heterostructures of Si And Chemically Exfoliated Metallic Mos2,” J. Am. Chem. Soc. 136(24), 8504–8507 (2014).
[Crossref] [PubMed]

Lin, J. Y.

J. Li, J. Y. Lin, and H. X. Jiang, “Direct hydrogen gas generation by using InGaN epilayers as working electrodes,” Appl. Phys. Lett. 93(16), 162107 (2008).
[Crossref]

Lin, Y. G.

Link, A.

O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, and L. F. Eastman, “Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures,” J. Phys. Condens. Matter 14(13), 3399–3434 (2002).
[Crossref]

Liu, C. C.

J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. C. Liu, and C. M. Chang, “Indium tin oxide ohmic contact to highly doped n-GaN,” Solid-State Electron. 43(11), 2081–2084 (1999).
[Crossref]

Liu, S. Y.

S. Y. Liu, J. K. Sheu, C. K. Tseng, J. C. Ye, K. H. Chang, M. L. Lee, and W. C. Lai, “Improved hydrogen gas generation rate of n-GaN photoelectrode with SiO2 Protection layer on the ohmic contacts from the electrolyte,” J. Electrochem. Soc. 157(2), B266–B268 (2010).
[Crossref]

S. Y. Liu, J. K. Sheu, J. C. Ye, S. J. Tu, C. K. Hsu, M. L. Lee, C. H. Kuo, and W. C. Lai, “Characterization of n-GaN with naturally textured surface for photoelectrochemical hydrogen generation,” J. Electrochem. Soc. 157(12), H1106–H1109 (2010).
[Crossref]

Liu, W.

Z.-H. Zhang, W. Liu, Z. Ju, S. T. Tan, Y. Ji, X. Zhang, L. Wang, Z. Kyaw, X. W. Sun, and H. V. Demir, “Polarization self-screening in [0001] oriented InGaN/GaN light-emitting diodes for improving the electron injection efficiency,” Appl. Phys. Lett. 104(25), 251108 (2014).
[Crossref]

Z. H. Zhang, W. Liu, Z. Ju, S. T. Tan, Y. Ji, Z. Kyaw, X. Zhang, L. Wang, X. W. Sun, and H. V. Demir, “InGaN/GaN multiple-quantum-well light-emitting diodes with a grading InN composition suppressing the Auger recombination,” Appl. Phys. Lett. 105(3), 033506 (2014).
[Crossref]

Z.-H. Zhang, W. Liu, Z. Ju, S. T. Tan, Y. Ji, Z. Kyaw, X. Zhang, L. Wang, X. W. Sun, and H. V. Demir, “Self-screening of the quantum confined Stark effect by the polarization induced bulk charges in the quantum barriers,” Appl. Phys. Lett. 104(24), 243501 (2014).
[Crossref]

Z.-H. Zhang, S. T. Tan, Z. Kyaw, W. Liu, Y. Ji, Z. Ju, X. Zhang, X. W. Sun, and H. V. Demir, “p-doping-free InGaN/GaN light-emitting diode driven by three-dimensional hole gas,” Appl. Phys. Lett. 103(26), 263501 (2013).
[Crossref]

Lu, H.

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1−xGaxN alloys,” Appl. Phys. Lett. 80(25), 4741 (2002).
[Crossref]

Majewski, J.

O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, and L. F. Eastman, “Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures,” J. Phys. Condens. Matter 14(13), 3399–3434 (2002).
[Crossref]

Masui, H.

K. Fujii, Y. Iwaki, H. Masui, T. J. Baker, M. Iza, H. Sato, J. Kaeding, T. Yao, J. S. Speck, S. P. Denbaars, S. Nakamura, and K. Ohkawa, “Photoelectrochemical Properties of Nonpolar and Semipolar GaN,” Jpn. J. Appl. Phys. 46(10A), 6573–6578 (2007).
[Crossref]

Matsumoto, Y.

S. Ida, K. Yamada, T. Matsunaga, H. Hagiwara, Y. Matsumoto, and T. Ishihara, “Preparation of p-type CaFe2O4 photocathodes for producing hydrogen from water,” J. Am. Chem. Soc. 132(49), 17343–17345 (2010).
[Crossref] [PubMed]

Matsunaga, T.

S. Ida, K. Yamada, T. Matsunaga, H. Hagiwara, Y. Matsumoto, and T. Ishihara, “Preparation of p-type CaFe2O4 photocathodes for producing hydrogen from water,” J. Am. Chem. Soc. 132(49), 17343–17345 (2010).
[Crossref] [PubMed]

Memming, R.

A. J. Nozik and R. Memming, “Physical chemistry of semiconductor-liquid interfaces,” J. Phys. Chem. 100(31), 13061–13078 (1996).
[Crossref]

Meng, F.

Q. Ding, F. Meng, C. R. English, M. Cabán-Acevedo, M. J. Shearer, D. Liang, A. S. Daniel, R. J. Hamers, and S. Jin, “Efficient Photoelectrochemical Hydrogen Generation Using Heterostructures of Si And Chemically Exfoliated Metallic Mos2,” J. Am. Chem. Soc. 136(24), 8504–8507 (2014).
[Crossref] [PubMed]

Mishra, U.

I. Waki, D. Cohen, R. Lal, U. Mishra, S. P. DenBaars, and S. Nakamura, “Direct water photoelectrolysis with patterned n-GaN,” Appl. Phys. Lett. 91(9), 093519 (2007).
[Crossref]

I. Waki, D. Cohen, R. Lal, U. Mishra, S. P. DenBaars, and S. Nakamura, “Direct water photoelectrolysis with patterned n-GaN,” Appl. Phys. Lett. 91(9), 093519 (2007).
[Crossref]

Miskys, C.

O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, and L. F. Eastman, “Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures,” J. Phys. Condens. Matter 14(13), 3399–3434 (2002).
[Crossref]

Nakamura, S.

K. Fujii, Y. Iwaki, H. Masui, T. J. Baker, M. Iza, H. Sato, J. Kaeding, T. Yao, J. S. Speck, S. P. Denbaars, S. Nakamura, and K. Ohkawa, “Photoelectrochemical Properties of Nonpolar and Semipolar GaN,” Jpn. J. Appl. Phys. 46(10A), 6573–6578 (2007).
[Crossref]

I. Waki, D. Cohen, R. Lal, U. Mishra, S. P. DenBaars, and S. Nakamura, “Direct water photoelectrolysis with patterned n-GaN,” Appl. Phys. Lett. 91(9), 093519 (2007).
[Crossref]

I. Waki, D. Cohen, R. Lal, U. Mishra, S. P. DenBaars, and S. Nakamura, “Direct water photoelectrolysis with patterned n-GaN,” Appl. Phys. Lett. 91(9), 093519 (2007).
[Crossref]

Nozik, A. J.

A. J. Nozik and R. Memming, “Physical chemistry of semiconductor-liquid interfaces,” J. Phys. Chem. 100(31), 13061–13078 (1996).
[Crossref]

Ohkawa, K.

M. Ono, K. Fujii, T. Ito, Y. Iwaki, A. Hirako, T. Yao, and K. Ohkawa, “Photoelectrochemical reaction and H2 generation at zero bias optimized by carrier concentration of n-type GaN,” J. Chem. Phys. 126(5), 054708 (2007).
[Crossref] [PubMed]

K. Fujii, Y. Iwaki, H. Masui, T. J. Baker, M. Iza, H. Sato, J. Kaeding, T. Yao, J. S. Speck, S. P. Denbaars, S. Nakamura, and K. Ohkawa, “Photoelectrochemical Properties of Nonpolar and Semipolar GaN,” Jpn. J. Appl. Phys. 46(10A), 6573–6578 (2007).
[Crossref]

K. Fujii, M. Ono, T. Ito, Y. Iwaki, A. Hirako, and K. Ohkawa, “Band-edge energies and photoelectrochemical properties of n-type AlxGa1-xN and InyGa1-y N alloys,” J. Electrochem. Soc. 154(2), B175–B179 (2007).
[Crossref]

K. Fujii, T. K. Karasawa, and K. Ohkawa, “Hydrogen Gas Generation by Splitting Aqueous Water Using n-Type GaN Photoelectrode with Anodic Oxidation,” Jpn. J. Appl. Phys. 44(18), L543–L545 (2005).
[Crossref]

Ono, M.

M. Ono, K. Fujii, T. Ito, Y. Iwaki, A. Hirako, T. Yao, and K. Ohkawa, “Photoelectrochemical reaction and H2 generation at zero bias optimized by carrier concentration of n-type GaN,” J. Chem. Phys. 126(5), 054708 (2007).
[Crossref] [PubMed]

K. Fujii, M. Ono, T. Ito, Y. Iwaki, A. Hirako, and K. Ohkawa, “Band-edge energies and photoelectrochemical properties of n-type AlxGa1-xN and InyGa1-y N alloys,” J. Electrochem. Soc. 154(2), B175–B179 (2007).
[Crossref]

Paik, P.

A. Pareek, R. Purbia, P. Paik, N. Y. Hebalkar, H. G. Kim, and P. H. Borse, “Stabilizing effect in nano-titania functionalized CdS photoanode for sustained hydrogen generation,” Int. J. Hydrogen Energy 39(9), 4170–4180 (2014).
[Crossref]

Pareek, A.

A. Pareek, R. Purbia, P. Paik, N. Y. Hebalkar, H. G. Kim, and P. H. Borse, “Stabilizing effect in nano-titania functionalized CdS photoanode for sustained hydrogen generation,” Int. J. Hydrogen Energy 39(9), 4170–4180 (2014).
[Crossref]

Protasenko, V.

J. Simon, V. Protasenko, C. Lian, H. Xing, and D. Jena, “Polarization-Induced Hole Doping in Wide-Band-Gap Uniaxial Semiconductor Heterostructures,” Science 327(5961), 60–64 (2010).
[Crossref] [PubMed]

Purbia, R.

A. Pareek, R. Purbia, P. Paik, N. Y. Hebalkar, H. G. Kim, and P. H. Borse, “Stabilizing effect in nano-titania functionalized CdS photoanode for sustained hydrogen generation,” Int. J. Hydrogen Energy 39(9), 4170–4180 (2014).
[Crossref]

Rosmeulen, M.

C. K. Li, M. Rosmeulen, E. Simoen, and Y. R. Wu, “Study on the Optimization for Current Spreading Effect of Lateral GaN/InGaN LEDs,” IEEE Trans. Electron. Dev. 61(2), 511–517 (2014).
[Crossref]

Sato, H.

K. Fujii, Y. Iwaki, H. Masui, T. J. Baker, M. Iza, H. Sato, J. Kaeding, T. Yao, J. S. Speck, S. P. Denbaars, S. Nakamura, and K. Ohkawa, “Photoelectrochemical Properties of Nonpolar and Semipolar GaN,” Jpn. J. Appl. Phys. 46(10A), 6573–6578 (2007).
[Crossref]

Schaff, B.

O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, and L. F. Eastman, “Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures,” J. Phys. Condens. Matter 14(13), 3399–3434 (2002).
[Crossref]

Schaff, W. J.

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1−xGaxN alloys,” Appl. Phys. Lett. 80(25), 4741 (2002).
[Crossref]

Shearer, M. J.

Q. Ding, F. Meng, C. R. English, M. Cabán-Acevedo, M. J. Shearer, D. Liang, A. S. Daniel, R. J. Hamers, and S. Jin, “Efficient Photoelectrochemical Hydrogen Generation Using Heterostructures of Si And Chemically Exfoliated Metallic Mos2,” J. Am. Chem. Soc. 136(24), 8504–8507 (2014).
[Crossref] [PubMed]

Sheu, J. K.

S. Y. Liu, J. K. Sheu, C. K. Tseng, J. C. Ye, K. H. Chang, M. L. Lee, and W. C. Lai, “Improved hydrogen gas generation rate of n-GaN photoelectrode with SiO2 Protection layer on the ohmic contacts from the electrolyte,” J. Electrochem. Soc. 157(2), B266–B268 (2010).
[Crossref]

S. Y. Liu, J. K. Sheu, J. C. Ye, S. J. Tu, C. K. Hsu, M. L. Lee, C. H. Kuo, and W. C. Lai, “Characterization of n-GaN with naturally textured surface for photoelectrochemical hydrogen generation,” J. Electrochem. Soc. 157(12), H1106–H1109 (2010).
[Crossref]

J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. C. Liu, and C. M. Chang, “Indium tin oxide ohmic contact to highly doped n-GaN,” Solid-State Electron. 43(11), 2081–2084 (1999).
[Crossref]

Shivaraman, R.

Y. R. Wu, R. Shivaraman, K. C. Wang, and J. S. Speck, “Analyzing the physical properties of InGaN multiple quantum well light emitting diodes from nano scale structure,” Appl. Phys. Lett. 101(8), 083505 (2012).
[Crossref]

Simoen, E.

C. K. Li, M. Rosmeulen, E. Simoen, and Y. R. Wu, “Study on the Optimization for Current Spreading Effect of Lateral GaN/InGaN LEDs,” IEEE Trans. Electron. Dev. 61(2), 511–517 (2014).
[Crossref]

Simon, J.

J. Simon, V. Protasenko, C. Lian, H. Xing, and D. Jena, “Polarization-Induced Hole Doping in Wide-Band-Gap Uniaxial Semiconductor Heterostructures,” Science 327(5961), 60–64 (2010).
[Crossref] [PubMed]

Smith, W. A.

A. Wolcott, W. A. Smith, T. R. Kuykendall, Y. Zhao, and J. Z. Zhang, “Photoelectrochemical Study of Nanostructured ZnO Thin Films for Hydrogen Generation from Water Splitting,” Adv. Funct. Mater. 19(12), 1849–1856 (2009).
[Crossref]

Speck, J. S.

Y. Zhao, R. M. Farrell, Y. R. Wu, and J. S. Speck, “Valence band states and polarized optical emission from nonpolar and semipolar III-nitride quantum well optoelectronic devices,” Jpn. J. Appl. Phys. 53(10), 100206 (2014).
[Crossref]

Y. R. Wu, R. Shivaraman, K. C. Wang, and J. S. Speck, “Analyzing the physical properties of InGaN multiple quantum well light emitting diodes from nano scale structure,” Appl. Phys. Lett. 101(8), 083505 (2012).
[Crossref]

K. Fujii, Y. Iwaki, H. Masui, T. J. Baker, M. Iza, H. Sato, J. Kaeding, T. Yao, J. S. Speck, S. P. Denbaars, S. Nakamura, and K. Ohkawa, “Photoelectrochemical Properties of Nonpolar and Semipolar GaN,” Jpn. J. Appl. Phys. 46(10A), 6573–6578 (2007).
[Crossref]

Stutzmann, M.

O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, and L. F. Eastman, “Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures,” J. Phys. Condens. Matter 14(13), 3399–3434 (2002).
[Crossref]

Su, Y. K.

J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. C. Liu, and C. M. Chang, “Indium tin oxide ohmic contact to highly doped n-GaN,” Solid-State Electron. 43(11), 2081–2084 (1999).
[Crossref]

Sun, X. W.

Z.-H. Zhang, W. Liu, Z. Ju, S. T. Tan, Y. Ji, X. Zhang, L. Wang, Z. Kyaw, X. W. Sun, and H. V. Demir, “Polarization self-screening in [0001] oriented InGaN/GaN light-emitting diodes for improving the electron injection efficiency,” Appl. Phys. Lett. 104(25), 251108 (2014).
[Crossref]

Z.-H. Zhang, W. Liu, Z. Ju, S. T. Tan, Y. Ji, Z. Kyaw, X. Zhang, L. Wang, X. W. Sun, and H. V. Demir, “Self-screening of the quantum confined Stark effect by the polarization induced bulk charges in the quantum barriers,” Appl. Phys. Lett. 104(24), 243501 (2014).
[Crossref]

Z. H. Zhang, W. Liu, Z. Ju, S. T. Tan, Y. Ji, Z. Kyaw, X. Zhang, L. Wang, X. W. Sun, and H. V. Demir, “InGaN/GaN multiple-quantum-well light-emitting diodes with a grading InN composition suppressing the Auger recombination,” Appl. Phys. Lett. 105(3), 033506 (2014).
[Crossref]

Z.-H. Zhang, S. T. Tan, Z. Kyaw, W. Liu, Y. Ji, Z. Ju, X. Zhang, X. W. Sun, and H. V. Demir, “p-doping-free InGaN/GaN light-emitting diode driven by three-dimensional hole gas,” Appl. Phys. Lett. 103(26), 263501 (2013).
[Crossref]

Tan, S. T.

Z.-H. Zhang, W. Liu, Z. Ju, S. T. Tan, Y. Ji, X. Zhang, L. Wang, Z. Kyaw, X. W. Sun, and H. V. Demir, “Polarization self-screening in [0001] oriented InGaN/GaN light-emitting diodes for improving the electron injection efficiency,” Appl. Phys. Lett. 104(25), 251108 (2014).
[Crossref]

Z. H. Zhang, W. Liu, Z. Ju, S. T. Tan, Y. Ji, Z. Kyaw, X. Zhang, L. Wang, X. W. Sun, and H. V. Demir, “InGaN/GaN multiple-quantum-well light-emitting diodes with a grading InN composition suppressing the Auger recombination,” Appl. Phys. Lett. 105(3), 033506 (2014).
[Crossref]

Z.-H. Zhang, W. Liu, Z. Ju, S. T. Tan, Y. Ji, Z. Kyaw, X. Zhang, L. Wang, X. W. Sun, and H. V. Demir, “Self-screening of the quantum confined Stark effect by the polarization induced bulk charges in the quantum barriers,” Appl. Phys. Lett. 104(24), 243501 (2014).
[Crossref]

Z.-H. Zhang, S. T. Tan, Z. Kyaw, W. Liu, Y. Ji, Z. Ju, X. Zhang, X. W. Sun, and H. V. Demir, “p-doping-free InGaN/GaN light-emitting diode driven by three-dimensional hole gas,” Appl. Phys. Lett. 103(26), 263501 (2013).
[Crossref]

Tilak, V.

O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, and L. F. Eastman, “Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures,” J. Phys. Condens. Matter 14(13), 3399–3434 (2002).
[Crossref]

Tseng, C. K.

S. Y. Liu, J. K. Sheu, C. K. Tseng, J. C. Ye, K. H. Chang, M. L. Lee, and W. C. Lai, “Improved hydrogen gas generation rate of n-GaN photoelectrode with SiO2 Protection layer on the ohmic contacts from the electrolyte,” J. Electrochem. Soc. 157(2), B266–B268 (2010).
[Crossref]

Tu, S. J.

S. Y. Liu, J. K. Sheu, J. C. Ye, S. J. Tu, C. K. Hsu, M. L. Lee, C. H. Kuo, and W. C. Lai, “Characterization of n-GaN with naturally textured surface for photoelectrochemical hydrogen generation,” J. Electrochem. Soc. 157(12), H1106–H1109 (2010).
[Crossref]

Tu, W. H.

W. H. Tu, Y. K. Hsu, C. H. Yen, C. I. Wu, J. S. Hwang, L. C. Chen, and K. H. Chen, “Au nanoparticle modified GaN photoelectrode for photoelectrochemical hydrogen generation,” Electrochem. Commun. 13(6), 530–533 (2011).
[Crossref]

Waki, I.

I. Waki, D. Cohen, R. Lal, U. Mishra, S. P. DenBaars, and S. Nakamura, “Direct water photoelectrolysis with patterned n-GaN,” Appl. Phys. Lett. 91(9), 093519 (2007).
[Crossref]

I. Waki, D. Cohen, R. Lal, U. Mishra, S. P. DenBaars, and S. Nakamura, “Direct water photoelectrolysis with patterned n-GaN,” Appl. Phys. Lett. 91(9), 093519 (2007).
[Crossref]

Walukiewicz, W.

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1−xGaxN alloys,” Appl. Phys. Lett. 80(25), 4741 (2002).
[Crossref]

Wang, K. C.

Y. R. Wu, R. Shivaraman, K. C. Wang, and J. S. Speck, “Analyzing the physical properties of InGaN multiple quantum well light emitting diodes from nano scale structure,” Appl. Phys. Lett. 101(8), 083505 (2012).
[Crossref]

Wang, L.

Z.-H. Zhang, W. Liu, Z. Ju, S. T. Tan, Y. Ji, X. Zhang, L. Wang, Z. Kyaw, X. W. Sun, and H. V. Demir, “Polarization self-screening in [0001] oriented InGaN/GaN light-emitting diodes for improving the electron injection efficiency,” Appl. Phys. Lett. 104(25), 251108 (2014).
[Crossref]

Z.-H. Zhang, W. Liu, Z. Ju, S. T. Tan, Y. Ji, Z. Kyaw, X. Zhang, L. Wang, X. W. Sun, and H. V. Demir, “Self-screening of the quantum confined Stark effect by the polarization induced bulk charges in the quantum barriers,” Appl. Phys. Lett. 104(24), 243501 (2014).
[Crossref]

Z. H. Zhang, W. Liu, Z. Ju, S. T. Tan, Y. Ji, Z. Kyaw, X. Zhang, L. Wang, X. W. Sun, and H. V. Demir, “InGaN/GaN multiple-quantum-well light-emitting diodes with a grading InN composition suppressing the Auger recombination,” Appl. Phys. Lett. 105(3), 033506 (2014).
[Crossref]

Wolcott, A.

A. Wolcott, W. A. Smith, T. R. Kuykendall, Y. Zhao, and J. Z. Zhang, “Photoelectrochemical Study of Nanostructured ZnO Thin Films for Hydrogen Generation from Water Splitting,” Adv. Funct. Mater. 19(12), 1849–1856 (2009).
[Crossref]

Wu, C. I.

W. H. Tu, Y. K. Hsu, C. H. Yen, C. I. Wu, J. S. Hwang, L. C. Chen, and K. H. Chen, “Au nanoparticle modified GaN photoelectrode for photoelectrochemical hydrogen generation,” Electrochem. Commun. 13(6), 530–533 (2011).
[Crossref]

Wu, J.

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1−xGaxN alloys,” Appl. Phys. Lett. 80(25), 4741 (2002).
[Crossref]

Wu, Y. R.

C. K. Li, M. Rosmeulen, E. Simoen, and Y. R. Wu, “Study on the Optimization for Current Spreading Effect of Lateral GaN/InGaN LEDs,” IEEE Trans. Electron. Dev. 61(2), 511–517 (2014).
[Crossref]

Y. Zhao, R. M. Farrell, Y. R. Wu, and J. S. Speck, “Valence band states and polarized optical emission from nonpolar and semipolar III-nitride quantum well optoelectronic devices,” Jpn. J. Appl. Phys. 53(10), 100206 (2014).
[Crossref]

Y. R. Wu, R. Shivaraman, K. C. Wang, and J. S. Speck, “Analyzing the physical properties of InGaN multiple quantum well light emitting diodes from nano scale structure,” Appl. Phys. Lett. 101(8), 083505 (2012).
[Crossref]

Wu, Y.-R.

H.-H. Huang and Y.-R. Wu, “Light Emission Polarization Properties of Semipolar InGaN/GaN Quantum Well,” J. Appl. Phys. 107(5), 053112 (2010).
[Crossref]

Xing, H.

J. Simon, V. Protasenko, C. Lian, H. Xing, and D. Jena, “Polarization-Induced Hole Doping in Wide-Band-Gap Uniaxial Semiconductor Heterostructures,” Science 327(5961), 60–64 (2010).
[Crossref] [PubMed]

Yamada, K.

S. Ida, K. Yamada, T. Matsunaga, H. Hagiwara, Y. Matsumoto, and T. Ishihara, “Preparation of p-type CaFe2O4 photocathodes for producing hydrogen from water,” J. Am. Chem. Soc. 132(49), 17343–17345 (2010).
[Crossref] [PubMed]

Yao, T.

K. Fujii, Y. Iwaki, H. Masui, T. J. Baker, M. Iza, H. Sato, J. Kaeding, T. Yao, J. S. Speck, S. P. Denbaars, S. Nakamura, and K. Ohkawa, “Photoelectrochemical Properties of Nonpolar and Semipolar GaN,” Jpn. J. Appl. Phys. 46(10A), 6573–6578 (2007).
[Crossref]

M. Ono, K. Fujii, T. Ito, Y. Iwaki, A. Hirako, T. Yao, and K. Ohkawa, “Photoelectrochemical reaction and H2 generation at zero bias optimized by carrier concentration of n-type GaN,” J. Chem. Phys. 126(5), 054708 (2007).
[Crossref] [PubMed]

Ye, J. C.

S. Y. Liu, J. K. Sheu, J. C. Ye, S. J. Tu, C. K. Hsu, M. L. Lee, C. H. Kuo, and W. C. Lai, “Characterization of n-GaN with naturally textured surface for photoelectrochemical hydrogen generation,” J. Electrochem. Soc. 157(12), H1106–H1109 (2010).
[Crossref]

S. Y. Liu, J. K. Sheu, C. K. Tseng, J. C. Ye, K. H. Chang, M. L. Lee, and W. C. Lai, “Improved hydrogen gas generation rate of n-GaN photoelectrode with SiO2 Protection layer on the ohmic contacts from the electrolyte,” J. Electrochem. Soc. 157(2), B266–B268 (2010).
[Crossref]

Yen, C. H.

W. H. Tu, Y. K. Hsu, C. H. Yen, C. I. Wu, J. S. Hwang, L. C. Chen, and K. H. Chen, “Au nanoparticle modified GaN photoelectrode for photoelectrochemical hydrogen generation,” Electrochem. Commun. 13(6), 530–533 (2011).
[Crossref]

Yu, K. M.

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1−xGaxN alloys,” Appl. Phys. Lett. 80(25), 4741 (2002).
[Crossref]

Zhang, J. Z.

J. Z. Zhang, “Metal oxide nanomaterials for solar hydrogen generation from photoelectrochemical water splitting,” MRS Bull. 36(1), 48–55 (2011).
[Crossref]

A. Wolcott, W. A. Smith, T. R. Kuykendall, Y. Zhao, and J. Z. Zhang, “Photoelectrochemical Study of Nanostructured ZnO Thin Films for Hydrogen Generation from Water Splitting,” Adv. Funct. Mater. 19(12), 1849–1856 (2009).
[Crossref]

Zhang, X.

Z. H. Zhang, W. Liu, Z. Ju, S. T. Tan, Y. Ji, Z. Kyaw, X. Zhang, L. Wang, X. W. Sun, and H. V. Demir, “InGaN/GaN multiple-quantum-well light-emitting diodes with a grading InN composition suppressing the Auger recombination,” Appl. Phys. Lett. 105(3), 033506 (2014).
[Crossref]

Z.-H. Zhang, W. Liu, Z. Ju, S. T. Tan, Y. Ji, Z. Kyaw, X. Zhang, L. Wang, X. W. Sun, and H. V. Demir, “Self-screening of the quantum confined Stark effect by the polarization induced bulk charges in the quantum barriers,” Appl. Phys. Lett. 104(24), 243501 (2014).
[Crossref]

Z.-H. Zhang, W. Liu, Z. Ju, S. T. Tan, Y. Ji, X. Zhang, L. Wang, Z. Kyaw, X. W. Sun, and H. V. Demir, “Polarization self-screening in [0001] oriented InGaN/GaN light-emitting diodes for improving the electron injection efficiency,” Appl. Phys. Lett. 104(25), 251108 (2014).
[Crossref]

Z.-H. Zhang, S. T. Tan, Z. Kyaw, W. Liu, Y. Ji, Z. Ju, X. Zhang, X. W. Sun, and H. V. Demir, “p-doping-free InGaN/GaN light-emitting diode driven by three-dimensional hole gas,” Appl. Phys. Lett. 103(26), 263501 (2013).
[Crossref]

Zhang, Z. H.

Z. H. Zhang, W. Liu, Z. Ju, S. T. Tan, Y. Ji, Z. Kyaw, X. Zhang, L. Wang, X. W. Sun, and H. V. Demir, “InGaN/GaN multiple-quantum-well light-emitting diodes with a grading InN composition suppressing the Auger recombination,” Appl. Phys. Lett. 105(3), 033506 (2014).
[Crossref]

Zhang, Z.-H.

Z.-H. Zhang, W. Liu, Z. Ju, S. T. Tan, Y. Ji, X. Zhang, L. Wang, Z. Kyaw, X. W. Sun, and H. V. Demir, “Polarization self-screening in [0001] oriented InGaN/GaN light-emitting diodes for improving the electron injection efficiency,” Appl. Phys. Lett. 104(25), 251108 (2014).
[Crossref]

Z.-H. Zhang, W. Liu, Z. Ju, S. T. Tan, Y. Ji, Z. Kyaw, X. Zhang, L. Wang, X. W. Sun, and H. V. Demir, “Self-screening of the quantum confined Stark effect by the polarization induced bulk charges in the quantum barriers,” Appl. Phys. Lett. 104(24), 243501 (2014).
[Crossref]

Z.-H. Zhang, S. T. Tan, Z. Kyaw, W. Liu, Y. Ji, Z. Ju, X. Zhang, X. W. Sun, and H. V. Demir, “p-doping-free InGaN/GaN light-emitting diode driven by three-dimensional hole gas,” Appl. Phys. Lett. 103(26), 263501 (2013).
[Crossref]

Zhao, Y.

Y. Zhao, R. M. Farrell, Y. R. Wu, and J. S. Speck, “Valence band states and polarized optical emission from nonpolar and semipolar III-nitride quantum well optoelectronic devices,” Jpn. J. Appl. Phys. 53(10), 100206 (2014).
[Crossref]

A. Wolcott, W. A. Smith, T. R. Kuykendall, Y. Zhao, and J. Z. Zhang, “Photoelectrochemical Study of Nanostructured ZnO Thin Films for Hydrogen Generation from Water Splitting,” Adv. Funct. Mater. 19(12), 1849–1856 (2009).
[Crossref]

Ziegler, J.

B. Kaiser, D. Fertig, J. Ziegler, J. Klett, S. Hoch, and W. Jaegermann, “Solar Hydrogen Generation with Wide-Band-Gap Semiconductors: Gap(100) Photoelectrodes and Surface Modification,” ChemPhysChem 13(12), 3053–3060 (2012).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

A. Wolcott, W. A. Smith, T. R. Kuykendall, Y. Zhao, and J. Z. Zhang, “Photoelectrochemical Study of Nanostructured ZnO Thin Films for Hydrogen Generation from Water Splitting,” Adv. Funct. Mater. 19(12), 1849–1856 (2009).
[Crossref]

Appl. Phys. Lett. (9)

I. Waki, D. Cohen, R. Lal, U. Mishra, S. P. DenBaars, and S. Nakamura, “Direct water photoelectrolysis with patterned n-GaN,” Appl. Phys. Lett. 91(9), 093519 (2007).
[Crossref]

J. Li, J. Y. Lin, and H. X. Jiang, “Direct hydrogen gas generation by using InGaN epilayers as working electrodes,” Appl. Phys. Lett. 93(16), 162107 (2008).
[Crossref]

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1−xGaxN alloys,” Appl. Phys. Lett. 80(25), 4741 (2002).
[Crossref]

I. Waki, D. Cohen, R. Lal, U. Mishra, S. P. DenBaars, and S. Nakamura, “Direct water photoelectrolysis with patterned n-GaN,” Appl. Phys. Lett. 91(9), 093519 (2007).
[Crossref]

Y. R. Wu, R. Shivaraman, K. C. Wang, and J. S. Speck, “Analyzing the physical properties of InGaN multiple quantum well light emitting diodes from nano scale structure,” Appl. Phys. Lett. 101(8), 083505 (2012).
[Crossref]

Z.-H. Zhang, W. Liu, Z. Ju, S. T. Tan, Y. Ji, Z. Kyaw, X. Zhang, L. Wang, X. W. Sun, and H. V. Demir, “Self-screening of the quantum confined Stark effect by the polarization induced bulk charges in the quantum barriers,” Appl. Phys. Lett. 104(24), 243501 (2014).
[Crossref]

Z. H. Zhang, W. Liu, Z. Ju, S. T. Tan, Y. Ji, Z. Kyaw, X. Zhang, L. Wang, X. W. Sun, and H. V. Demir, “InGaN/GaN multiple-quantum-well light-emitting diodes with a grading InN composition suppressing the Auger recombination,” Appl. Phys. Lett. 105(3), 033506 (2014).
[Crossref]

Z.-H. Zhang, S. T. Tan, Z. Kyaw, W. Liu, Y. Ji, Z. Ju, X. Zhang, X. W. Sun, and H. V. Demir, “p-doping-free InGaN/GaN light-emitting diode driven by three-dimensional hole gas,” Appl. Phys. Lett. 103(26), 263501 (2013).
[Crossref]

Z.-H. Zhang, W. Liu, Z. Ju, S. T. Tan, Y. Ji, X. Zhang, L. Wang, Z. Kyaw, X. W. Sun, and H. V. Demir, “Polarization self-screening in [0001] oriented InGaN/GaN light-emitting diodes for improving the electron injection efficiency,” Appl. Phys. Lett. 104(25), 251108 (2014).
[Crossref]

ChemPhysChem (1)

B. Kaiser, D. Fertig, J. Ziegler, J. Klett, S. Hoch, and W. Jaegermann, “Solar Hydrogen Generation with Wide-Band-Gap Semiconductors: Gap(100) Photoelectrodes and Surface Modification,” ChemPhysChem 13(12), 3053–3060 (2012).
[Crossref] [PubMed]

Electrochem. Commun. (1)

W. H. Tu, Y. K. Hsu, C. H. Yen, C. I. Wu, J. S. Hwang, L. C. Chen, and K. H. Chen, “Au nanoparticle modified GaN photoelectrode for photoelectrochemical hydrogen generation,” Electrochem. Commun. 13(6), 530–533 (2011).
[Crossref]

Electron. Mater. Lett. (1)

S. Jung, S. N. Lee, K. S. Ahn, and H. Kim, “Surface Fermi Level Pinning of Semipolar (11̅22) n-type GaN Surfaces Grown on m-Plane Sapphire Substrates,” Electron. Mater. Lett. 9(5), 609–613 (2013).
[Crossref]

IEEE Trans. Electron. Dev. (1)

C. K. Li, M. Rosmeulen, E. Simoen, and Y. R. Wu, “Study on the Optimization for Current Spreading Effect of Lateral GaN/InGaN LEDs,” IEEE Trans. Electron. Dev. 61(2), 511–517 (2014).
[Crossref]

Int. J. Hydrogen Energy (1)

A. Pareek, R. Purbia, P. Paik, N. Y. Hebalkar, H. G. Kim, and P. H. Borse, “Stabilizing effect in nano-titania functionalized CdS photoanode for sustained hydrogen generation,” Int. J. Hydrogen Energy 39(9), 4170–4180 (2014).
[Crossref]

J. Am. Chem. Soc. (2)

S. Ida, K. Yamada, T. Matsunaga, H. Hagiwara, Y. Matsumoto, and T. Ishihara, “Preparation of p-type CaFe2O4 photocathodes for producing hydrogen from water,” J. Am. Chem. Soc. 132(49), 17343–17345 (2010).
[Crossref] [PubMed]

Q. Ding, F. Meng, C. R. English, M. Cabán-Acevedo, M. J. Shearer, D. Liang, A. S. Daniel, R. J. Hamers, and S. Jin, “Efficient Photoelectrochemical Hydrogen Generation Using Heterostructures of Si And Chemically Exfoliated Metallic Mos2,” J. Am. Chem. Soc. 136(24), 8504–8507 (2014).
[Crossref] [PubMed]

J. Appl. Phys. (1)

H.-H. Huang and Y.-R. Wu, “Light Emission Polarization Properties of Semipolar InGaN/GaN Quantum Well,” J. Appl. Phys. 107(5), 053112 (2010).
[Crossref]

J. Chem. Phys. (1)

M. Ono, K. Fujii, T. Ito, Y. Iwaki, A. Hirako, T. Yao, and K. Ohkawa, “Photoelectrochemical reaction and H2 generation at zero bias optimized by carrier concentration of n-type GaN,” J. Chem. Phys. 126(5), 054708 (2007).
[Crossref] [PubMed]

J. Electrochem. Soc. (3)

S. Y. Liu, J. K. Sheu, J. C. Ye, S. J. Tu, C. K. Hsu, M. L. Lee, C. H. Kuo, and W. C. Lai, “Characterization of n-GaN with naturally textured surface for photoelectrochemical hydrogen generation,” J. Electrochem. Soc. 157(12), H1106–H1109 (2010).
[Crossref]

S. Y. Liu, J. K. Sheu, C. K. Tseng, J. C. Ye, K. H. Chang, M. L. Lee, and W. C. Lai, “Improved hydrogen gas generation rate of n-GaN photoelectrode with SiO2 Protection layer on the ohmic contacts from the electrolyte,” J. Electrochem. Soc. 157(2), B266–B268 (2010).
[Crossref]

K. Fujii, M. Ono, T. Ito, Y. Iwaki, A. Hirako, and K. Ohkawa, “Band-edge energies and photoelectrochemical properties of n-type AlxGa1-xN and InyGa1-y N alloys,” J. Electrochem. Soc. 154(2), B175–B179 (2007).
[Crossref]

J. Phys. Chem. (1)

A. J. Nozik and R. Memming, “Physical chemistry of semiconductor-liquid interfaces,” J. Phys. Chem. 100(31), 13061–13078 (1996).
[Crossref]

J. Phys. Condens. Matter (1)

O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, and L. F. Eastman, “Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures,” J. Phys. Condens. Matter 14(13), 3399–3434 (2002).
[Crossref]

Jpn. J. Appl. Phys. (3)

K. Fujii, Y. Iwaki, H. Masui, T. J. Baker, M. Iza, H. Sato, J. Kaeding, T. Yao, J. S. Speck, S. P. Denbaars, S. Nakamura, and K. Ohkawa, “Photoelectrochemical Properties of Nonpolar and Semipolar GaN,” Jpn. J. Appl. Phys. 46(10A), 6573–6578 (2007).
[Crossref]

Y. Zhao, R. M. Farrell, Y. R. Wu, and J. S. Speck, “Valence band states and polarized optical emission from nonpolar and semipolar III-nitride quantum well optoelectronic devices,” Jpn. J. Appl. Phys. 53(10), 100206 (2014).
[Crossref]

K. Fujii, T. K. Karasawa, and K. Ohkawa, “Hydrogen Gas Generation by Splitting Aqueous Water Using n-Type GaN Photoelectrode with Anodic Oxidation,” Jpn. J. Appl. Phys. 44(18), L543–L545 (2005).
[Crossref]

MRS Bull. (1)

J. Z. Zhang, “Metal oxide nanomaterials for solar hydrogen generation from photoelectrochemical water splitting,” MRS Bull. 36(1), 48–55 (2011).
[Crossref]

Nature (1)

A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature 238(5358), 37–38 (1972).
[Crossref] [PubMed]

Opt. Express (1)

Science (1)

J. Simon, V. Protasenko, C. Lian, H. Xing, and D. Jena, “Polarization-Induced Hole Doping in Wide-Band-Gap Uniaxial Semiconductor Heterostructures,” Science 327(5961), 60–64 (2010).
[Crossref] [PubMed]

Solid-State Electron. (1)

J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. C. Liu, and C. M. Chang, “Indium tin oxide ohmic contact to highly doped n-GaN,” Solid-State Electron. 43(11), 2081–2084 (1999).
[Crossref]

Supplementary Material (1)

» Media 1: MP4 (11150 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Surface morphology SEM images of (a) faceted n-GaN, (b) CAC AlGaN/n-GaN, and (c) LGAC AlGaN/GaN electrode (d) The TEM cross-section image cut on the rough surface of the dodecagon faceted n-GaN structure and its corresponding SADP with z = [1-100]. (e) The TEM cross-section image cut on the smooth surface of the dodecagon faceted n-GaN structure and its corresponding SADP with z = [11–20].

Fig. 2
Fig. 2

(a) Dark and (b) illuminated current densities of PECs I, II, III, and IV as a function of Potential vs. Ag/AgCl (Vext).

Fig. 3
Fig. 3

Gas generation picture of the PECs I and IV under illumination. Left side of picture is PECs IV and right side of picture is PECs I. Both PECs are generating H2 gas at the Pt cathode (see Media 1).

Fig. 4
Fig. 4

Schematic (a) band diagrams, (b) Ec and Ev electric field of electrolyte and dodecagon faceted n-GaN, dodecagon faceted CAC AlGaN/n-GaN heterostructure, and dodecagon faceted LGAC AlGaN/n-GaN heterostructure electrodes interface.

Fig. 5
Fig. 5

Surface morphology SEM images of (a) PECs I, (b) PECs II, (c) PECs III, and (d) PECs IV after the Jp-Vext characteristics measurement.

Metrics