Abstract

This study proposed a planar solar concentrator featuring alignment-free total-internal-reflection (TIR) collectors and an innovative compound tracker. The compound tracker, combining a mechanical single-axis tracker and scrollable prism sheets, can achieve a performance on a par with dual-axis tracking while reducing the cost of the tracking system and increasing its robustness. The alignment-free TIR collectors are assembled on the waveguide without requiring alignment, so the planar concentrator is relatively easily manufactured and markedly increases the feasibility for use in large concentrators. Further, the identical TIR collector is applicable to various-sized waveguide slab without requiring modification, which facilitates flexibility regarding the size of the waveguide slab. In the simulation model, the thickness of the slab was 2 mm, and its maximal length reached 6 m. With an average angular tolerance of ±0.6°, and after considering both the Fresnel loss and the angular spread of the sun, the simulation indicates that the waveguide concentrator of a 1000-mm length provides the optical efficiencies of 62–77% at the irradiance concentrations of 387–688, and the one of a 2000-mm length provides the optical efficiencies of 52–64.5% at the irradiance concentrations of 645–1148. Alternatively, if a 100-mm horizontally staggered waveguide slab is collocated with the alignment-free TIR collectors, the optical efficiency would be greatly improved up to 91.5% at an irradiance concentration of 1098 (Cgeo = 1200X).

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Total internal reflection-based planar waveguide solar concentrator with symmetric air prisms as couplers

Peng Xie, Huichuan Lin, Yong Liu, and Baojun Li
Opt. Express 22(S6) A1389-A1398 (2014)

Theory and design of line-to-point focus solar concentrators with tracking secondary optics

Thomas Cooper, Gianluca Ambrosetti, Andrea Pedretti, and Aldo Steinfeld
Appl. Opt. 52(35) 8586-8616 (2013)

Compact, semi-passive beam steering prism array for solar concentrators

Cheng Zheng, Qiyuan Li, Gary Rosengarten, Evatt Hawkes, and Robert A. Taylor
Appl. Opt. 56(14) 4158-4167 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. C. Law, R. R. King, H. Yoon, M. J. Archer, A. Boca, C. M. Fetzer, S. Mesropian, T. Isshiki, M. Haddad, and K. M. Edmondson, “Future technology pathways of terrestrial III–V mulitjunction solar cells for concentrator photovoltaic systems,” Sol. Energy Mater. Sol. Cells 94(8), 1314–1318 (2010).
    [Crossref]
  2. K. K. Chong, S. L. Lau, T. K. Yew, and P. C. Tan, “Design and development in optics of concentrator photovoltaic system,” Renew. Sustain. Energy Rev. 19, 598–612 (2013).
    [Crossref]
  3. J. H. Karp, E. J. Tremblay, and J. E. Ford, “Planar micro-optic solar concentrator,” Opt. Express 18(2), 1122–1133 (2010).
    [Crossref] [PubMed]
  4. Y. Liu, R. Huang, and C. K. Madsen, “Design of a lens-to-channel waveguide system as a solar concentrator structure,” Opt. Express 22(S2Suppl 2), A198–A204 (2014).
    [Crossref] [PubMed]
  5. O. Selimoglu and R. Turan, “Exploration of the horizontally staggered light guides for high concentration CPV applications,” Opt. Express 20(17), 19137–19147 (2012).
    [Crossref] [PubMed]
  6. B. L. Unger, G. R. Schmidt, and D. T. Moore, “Dimpled planar lightguide solar concentrators,” in OSA International Optical Design Conference, ITuE5P (2010).
    [Crossref]
  7. H. Y. Wu and S. C. Chu, “Ray-leakage-free sawtooth-shaped planar lightguide solar concentrators,” Opt. Express 21(17), 20073–20089 (2013).
    [Crossref] [PubMed]
  8. J. H. Karp, E. J. Tremblay, and J. E. Ford, “Radial Coupling Method for Orthogonal Concentration within Planar Micro-Optic Solar Collectors,” in OSA Imaging and Applied Optics Congress, STuD2 (2010).
    [Crossref]
  9. J. H. Karp, E. J. Tremblay, J. M. Hallas, and J. E. Ford, “Orthogonal and secondary concentration in planar micro-optic solar collectors,” Opt. Express 19(S4Suppl 4), A673–A685 (2011).
    [Crossref] [PubMed]
  10. M. Kischkoweit-Lopin, “An overview of daylighting systems,” Sol. Energy 73(2), 77–82 (2002).
    [Crossref]
  11. H. Hocheng, T.-Y. Huang, T.-H. Chou, and W.-H. Yang, “Microstructural fabrication and design of sunlight guide panels of inorganic–organic hybrid material,” Energy Build. 43(4), 1011–1019 (2011).
    [Crossref]
  12. S. I. El-Henawy, M. W. N. Mohamed, I. A. Mashaly, O. N. Mohamed, O. Galal, I. Taha, K. Nassar, and A. M. E. Safwat, “Illumination of dense urban areas by light redirecting panels,” Opt. Express 22(S3Suppl 3), A895–A907 (2014).
    [Crossref] [PubMed]
  13. S. Wittkopf, L. O. Grobe, D. Geisler-Moroder, R. Compagnon, J. Kampf, F. Linhart, and J.-L. Scartezzini, “Ray tracing study for non-imaging daylight collectors,” Sol. Energy 84(6), 986–996 (2010).
    [Crossref]
  14. A. J. W. Whang, Y. Y. Chen, S. H. Yang, P. H. Pan, K. H. Chou, Y. C. Lee, Z. Y. Lee, C. A. Chen, and C. N. Chen, “Natural light illumination system,” Appl. Opt. 49(35), 6789–6801 (2010).
    [Crossref] [PubMed]
  15. M. C. Tsai, A. J. W. Whang, and T. X. Lee, “Design of a high-efficiency collection structure for daylight illumination applications,” Appl. Opt. 52(36), 8789–8794 (2013).
    [Crossref] [PubMed]
  16. C. H. Tsuei, W. S. Sun, and C. C. Kuo, “Hybrid sunlight/LED illumination and renewable solar energy saving concepts for indoor lighting,” Opt. Express 18(S4Suppl 4), A640–A653 (2010).
    [Crossref] [PubMed]
  17. N. Yamada, K. Kanno, K. Hayashi, and T. Tokimitsu, “Performance of see-through prism CPV module for window integrated photovoltaics,” Opt. Express 19(S4Suppl 4), A649–A656 (2011).
    [Crossref] [PubMed]
  18. W. C. Shieh and G. D. Su, “Compact solar concentrator designed by minilens and slab waveguide,” Proc. SPIE 8108, 81080H(2011).
    [Crossref]
  19. S. Bouchard and S. Thibault, “Planar waveguide concentrator used with a seasonal tracker,” Appl. Opt. 51(28), 6848–6854 (2012).
    [Crossref] [PubMed]
  20. S. Bouchard and S. Thibault, “GRIN planar waveguide concentrator used with a single axis tracker,” Opt. Express 22(S2Suppl 2), A248–A258 (2014).
    [Crossref] [PubMed]
  21. J. M. Hallas, K. A. Baker, J. H. Karp, E. J. Tremblay, and J. E. Ford, “Two-axis solar tracking accomplished through small lateral translations,” Appl. Opt. 51(25), 6117–6124 (2012).
    [Crossref] [PubMed]
  22. C. Wang, H. Abdul-Rahman, and S. P. Rao, “Daylighting can be fluorescent: Development of a fiber solar concentrator and test for its indoor illumination,” Energy Build. 42(5), 717–727 (2010).
    [Crossref]
  23. B. D. Markman, R. R. Ranade, and N. C. Giebink, “Nonimaging optics in luminescent solar concentration,” Opt. Express 20(S5Suppl 5), A622–A629 (2012).
    [Crossref] [PubMed]
  24. V. Zagolla and C. Moser, “Trackfree Planar Solar Concentrator System,” Proc. SPIE 8256, 825618 (2012).
    [Crossref]
  25. K. A. Baker, J. H. Karp, E. J. Tremblay, J. M. Hallas, and J. E. Ford, “Reactive self-tracking solar concentrators: concept, design, and initial materials characterization,” Appl. Opt. 51(8), 1086–1094 (2012).
  26. F. Benford and J. E. Bock, A Time Analysis of Sunshin (General Electric Company Research Laboratory, 1938).

2014 (3)

2013 (3)

2012 (6)

2011 (4)

W. C. Shieh and G. D. Su, “Compact solar concentrator designed by minilens and slab waveguide,” Proc. SPIE 8108, 81080H(2011).
[Crossref]

N. Yamada, K. Kanno, K. Hayashi, and T. Tokimitsu, “Performance of see-through prism CPV module for window integrated photovoltaics,” Opt. Express 19(S4Suppl 4), A649–A656 (2011).
[Crossref] [PubMed]

J. H. Karp, E. J. Tremblay, J. M. Hallas, and J. E. Ford, “Orthogonal and secondary concentration in planar micro-optic solar collectors,” Opt. Express 19(S4Suppl 4), A673–A685 (2011).
[Crossref] [PubMed]

H. Hocheng, T.-Y. Huang, T.-H. Chou, and W.-H. Yang, “Microstructural fabrication and design of sunlight guide panels of inorganic–organic hybrid material,” Energy Build. 43(4), 1011–1019 (2011).
[Crossref]

2010 (6)

S. Wittkopf, L. O. Grobe, D. Geisler-Moroder, R. Compagnon, J. Kampf, F. Linhart, and J.-L. Scartezzini, “Ray tracing study for non-imaging daylight collectors,” Sol. Energy 84(6), 986–996 (2010).
[Crossref]

J. H. Karp, E. J. Tremblay, and J. E. Ford, “Planar micro-optic solar concentrator,” Opt. Express 18(2), 1122–1133 (2010).
[Crossref] [PubMed]

C. H. Tsuei, W. S. Sun, and C. C. Kuo, “Hybrid sunlight/LED illumination and renewable solar energy saving concepts for indoor lighting,” Opt. Express 18(S4Suppl 4), A640–A653 (2010).
[Crossref] [PubMed]

A. J. W. Whang, Y. Y. Chen, S. H. Yang, P. H. Pan, K. H. Chou, Y. C. Lee, Z. Y. Lee, C. A. Chen, and C. N. Chen, “Natural light illumination system,” Appl. Opt. 49(35), 6789–6801 (2010).
[Crossref] [PubMed]

C. Wang, H. Abdul-Rahman, and S. P. Rao, “Daylighting can be fluorescent: Development of a fiber solar concentrator and test for its indoor illumination,” Energy Build. 42(5), 717–727 (2010).
[Crossref]

D. C. Law, R. R. King, H. Yoon, M. J. Archer, A. Boca, C. M. Fetzer, S. Mesropian, T. Isshiki, M. Haddad, and K. M. Edmondson, “Future technology pathways of terrestrial III–V mulitjunction solar cells for concentrator photovoltaic systems,” Sol. Energy Mater. Sol. Cells 94(8), 1314–1318 (2010).
[Crossref]

2002 (1)

M. Kischkoweit-Lopin, “An overview of daylighting systems,” Sol. Energy 73(2), 77–82 (2002).
[Crossref]

Abdul-Rahman, H.

C. Wang, H. Abdul-Rahman, and S. P. Rao, “Daylighting can be fluorescent: Development of a fiber solar concentrator and test for its indoor illumination,” Energy Build. 42(5), 717–727 (2010).
[Crossref]

Archer, M. J.

D. C. Law, R. R. King, H. Yoon, M. J. Archer, A. Boca, C. M. Fetzer, S. Mesropian, T. Isshiki, M. Haddad, and K. M. Edmondson, “Future technology pathways of terrestrial III–V mulitjunction solar cells for concentrator photovoltaic systems,” Sol. Energy Mater. Sol. Cells 94(8), 1314–1318 (2010).
[Crossref]

Baker, K. A.

Boca, A.

D. C. Law, R. R. King, H. Yoon, M. J. Archer, A. Boca, C. M. Fetzer, S. Mesropian, T. Isshiki, M. Haddad, and K. M. Edmondson, “Future technology pathways of terrestrial III–V mulitjunction solar cells for concentrator photovoltaic systems,” Sol. Energy Mater. Sol. Cells 94(8), 1314–1318 (2010).
[Crossref]

Bouchard, S.

Chen, C. A.

Chen, C. N.

Chen, Y. Y.

Chong, K. K.

K. K. Chong, S. L. Lau, T. K. Yew, and P. C. Tan, “Design and development in optics of concentrator photovoltaic system,” Renew. Sustain. Energy Rev. 19, 598–612 (2013).
[Crossref]

Chou, K. H.

Chou, T.-H.

H. Hocheng, T.-Y. Huang, T.-H. Chou, and W.-H. Yang, “Microstructural fabrication and design of sunlight guide panels of inorganic–organic hybrid material,” Energy Build. 43(4), 1011–1019 (2011).
[Crossref]

Chu, S. C.

Compagnon, R.

S. Wittkopf, L. O. Grobe, D. Geisler-Moroder, R. Compagnon, J. Kampf, F. Linhart, and J.-L. Scartezzini, “Ray tracing study for non-imaging daylight collectors,” Sol. Energy 84(6), 986–996 (2010).
[Crossref]

Edmondson, K. M.

D. C. Law, R. R. King, H. Yoon, M. J. Archer, A. Boca, C. M. Fetzer, S. Mesropian, T. Isshiki, M. Haddad, and K. M. Edmondson, “Future technology pathways of terrestrial III–V mulitjunction solar cells for concentrator photovoltaic systems,” Sol. Energy Mater. Sol. Cells 94(8), 1314–1318 (2010).
[Crossref]

El-Henawy, S. I.

Fetzer, C. M.

D. C. Law, R. R. King, H. Yoon, M. J. Archer, A. Boca, C. M. Fetzer, S. Mesropian, T. Isshiki, M. Haddad, and K. M. Edmondson, “Future technology pathways of terrestrial III–V mulitjunction solar cells for concentrator photovoltaic systems,” Sol. Energy Mater. Sol. Cells 94(8), 1314–1318 (2010).
[Crossref]

Ford, J. E.

Galal, O.

Geisler-Moroder, D.

S. Wittkopf, L. O. Grobe, D. Geisler-Moroder, R. Compagnon, J. Kampf, F. Linhart, and J.-L. Scartezzini, “Ray tracing study for non-imaging daylight collectors,” Sol. Energy 84(6), 986–996 (2010).
[Crossref]

Giebink, N. C.

Grobe, L. O.

S. Wittkopf, L. O. Grobe, D. Geisler-Moroder, R. Compagnon, J. Kampf, F. Linhart, and J.-L. Scartezzini, “Ray tracing study for non-imaging daylight collectors,” Sol. Energy 84(6), 986–996 (2010).
[Crossref]

Haddad, M.

D. C. Law, R. R. King, H. Yoon, M. J. Archer, A. Boca, C. M. Fetzer, S. Mesropian, T. Isshiki, M. Haddad, and K. M. Edmondson, “Future technology pathways of terrestrial III–V mulitjunction solar cells for concentrator photovoltaic systems,” Sol. Energy Mater. Sol. Cells 94(8), 1314–1318 (2010).
[Crossref]

Hallas, J. M.

Hayashi, K.

Hocheng, H.

H. Hocheng, T.-Y. Huang, T.-H. Chou, and W.-H. Yang, “Microstructural fabrication and design of sunlight guide panels of inorganic–organic hybrid material,” Energy Build. 43(4), 1011–1019 (2011).
[Crossref]

Huang, R.

Huang, T.-Y.

H. Hocheng, T.-Y. Huang, T.-H. Chou, and W.-H. Yang, “Microstructural fabrication and design of sunlight guide panels of inorganic–organic hybrid material,” Energy Build. 43(4), 1011–1019 (2011).
[Crossref]

Isshiki, T.

D. C. Law, R. R. King, H. Yoon, M. J. Archer, A. Boca, C. M. Fetzer, S. Mesropian, T. Isshiki, M. Haddad, and K. M. Edmondson, “Future technology pathways of terrestrial III–V mulitjunction solar cells for concentrator photovoltaic systems,” Sol. Energy Mater. Sol. Cells 94(8), 1314–1318 (2010).
[Crossref]

Kampf, J.

S. Wittkopf, L. O. Grobe, D. Geisler-Moroder, R. Compagnon, J. Kampf, F. Linhart, and J.-L. Scartezzini, “Ray tracing study for non-imaging daylight collectors,” Sol. Energy 84(6), 986–996 (2010).
[Crossref]

Kanno, K.

Karp, J. H.

King, R. R.

D. C. Law, R. R. King, H. Yoon, M. J. Archer, A. Boca, C. M. Fetzer, S. Mesropian, T. Isshiki, M. Haddad, and K. M. Edmondson, “Future technology pathways of terrestrial III–V mulitjunction solar cells for concentrator photovoltaic systems,” Sol. Energy Mater. Sol. Cells 94(8), 1314–1318 (2010).
[Crossref]

Kischkoweit-Lopin, M.

M. Kischkoweit-Lopin, “An overview of daylighting systems,” Sol. Energy 73(2), 77–82 (2002).
[Crossref]

Kuo, C. C.

Lau, S. L.

K. K. Chong, S. L. Lau, T. K. Yew, and P. C. Tan, “Design and development in optics of concentrator photovoltaic system,” Renew. Sustain. Energy Rev. 19, 598–612 (2013).
[Crossref]

Law, D. C.

D. C. Law, R. R. King, H. Yoon, M. J. Archer, A. Boca, C. M. Fetzer, S. Mesropian, T. Isshiki, M. Haddad, and K. M. Edmondson, “Future technology pathways of terrestrial III–V mulitjunction solar cells for concentrator photovoltaic systems,” Sol. Energy Mater. Sol. Cells 94(8), 1314–1318 (2010).
[Crossref]

Lee, T. X.

Lee, Y. C.

Lee, Z. Y.

Linhart, F.

S. Wittkopf, L. O. Grobe, D. Geisler-Moroder, R. Compagnon, J. Kampf, F. Linhart, and J.-L. Scartezzini, “Ray tracing study for non-imaging daylight collectors,” Sol. Energy 84(6), 986–996 (2010).
[Crossref]

Liu, Y.

Madsen, C. K.

Markman, B. D.

Mashaly, I. A.

Mesropian, S.

D. C. Law, R. R. King, H. Yoon, M. J. Archer, A. Boca, C. M. Fetzer, S. Mesropian, T. Isshiki, M. Haddad, and K. M. Edmondson, “Future technology pathways of terrestrial III–V mulitjunction solar cells for concentrator photovoltaic systems,” Sol. Energy Mater. Sol. Cells 94(8), 1314–1318 (2010).
[Crossref]

Mohamed, M. W. N.

Mohamed, O. N.

Moser, C.

V. Zagolla and C. Moser, “Trackfree Planar Solar Concentrator System,” Proc. SPIE 8256, 825618 (2012).
[Crossref]

Nassar, K.

Pan, P. H.

Ranade, R. R.

Rao, S. P.

C. Wang, H. Abdul-Rahman, and S. P. Rao, “Daylighting can be fluorescent: Development of a fiber solar concentrator and test for its indoor illumination,” Energy Build. 42(5), 717–727 (2010).
[Crossref]

Safwat, A. M. E.

Scartezzini, J.-L.

S. Wittkopf, L. O. Grobe, D. Geisler-Moroder, R. Compagnon, J. Kampf, F. Linhart, and J.-L. Scartezzini, “Ray tracing study for non-imaging daylight collectors,” Sol. Energy 84(6), 986–996 (2010).
[Crossref]

Selimoglu, O.

Shieh, W. C.

W. C. Shieh and G. D. Su, “Compact solar concentrator designed by minilens and slab waveguide,” Proc. SPIE 8108, 81080H(2011).
[Crossref]

Su, G. D.

W. C. Shieh and G. D. Su, “Compact solar concentrator designed by minilens and slab waveguide,” Proc. SPIE 8108, 81080H(2011).
[Crossref]

Sun, W. S.

Taha, I.

Tan, P. C.

K. K. Chong, S. L. Lau, T. K. Yew, and P. C. Tan, “Design and development in optics of concentrator photovoltaic system,” Renew. Sustain. Energy Rev. 19, 598–612 (2013).
[Crossref]

Thibault, S.

Tokimitsu, T.

Tremblay, E. J.

Tsai, M. C.

Tsuei, C. H.

Turan, R.

Wang, C.

C. Wang, H. Abdul-Rahman, and S. P. Rao, “Daylighting can be fluorescent: Development of a fiber solar concentrator and test for its indoor illumination,” Energy Build. 42(5), 717–727 (2010).
[Crossref]

Whang, A. J. W.

Wittkopf, S.

S. Wittkopf, L. O. Grobe, D. Geisler-Moroder, R. Compagnon, J. Kampf, F. Linhart, and J.-L. Scartezzini, “Ray tracing study for non-imaging daylight collectors,” Sol. Energy 84(6), 986–996 (2010).
[Crossref]

Wu, H. Y.

Yamada, N.

Yang, S. H.

Yang, W.-H.

H. Hocheng, T.-Y. Huang, T.-H. Chou, and W.-H. Yang, “Microstructural fabrication and design of sunlight guide panels of inorganic–organic hybrid material,” Energy Build. 43(4), 1011–1019 (2011).
[Crossref]

Yew, T. K.

K. K. Chong, S. L. Lau, T. K. Yew, and P. C. Tan, “Design and development in optics of concentrator photovoltaic system,” Renew. Sustain. Energy Rev. 19, 598–612 (2013).
[Crossref]

Yoon, H.

D. C. Law, R. R. King, H. Yoon, M. J. Archer, A. Boca, C. M. Fetzer, S. Mesropian, T. Isshiki, M. Haddad, and K. M. Edmondson, “Future technology pathways of terrestrial III–V mulitjunction solar cells for concentrator photovoltaic systems,” Sol. Energy Mater. Sol. Cells 94(8), 1314–1318 (2010).
[Crossref]

Zagolla, V.

V. Zagolla and C. Moser, “Trackfree Planar Solar Concentrator System,” Proc. SPIE 8256, 825618 (2012).
[Crossref]

Appl. Opt. (5)

Energy Build. (2)

H. Hocheng, T.-Y. Huang, T.-H. Chou, and W.-H. Yang, “Microstructural fabrication and design of sunlight guide panels of inorganic–organic hybrid material,” Energy Build. 43(4), 1011–1019 (2011).
[Crossref]

C. Wang, H. Abdul-Rahman, and S. P. Rao, “Daylighting can be fluorescent: Development of a fiber solar concentrator and test for its indoor illumination,” Energy Build. 42(5), 717–727 (2010).
[Crossref]

Opt. Express (10)

H. Y. Wu and S. C. Chu, “Ray-leakage-free sawtooth-shaped planar lightguide solar concentrators,” Opt. Express 21(17), 20073–20089 (2013).
[Crossref] [PubMed]

B. D. Markman, R. R. Ranade, and N. C. Giebink, “Nonimaging optics in luminescent solar concentration,” Opt. Express 20(S5Suppl 5), A622–A629 (2012).
[Crossref] [PubMed]

O. Selimoglu and R. Turan, “Exploration of the horizontally staggered light guides for high concentration CPV applications,” Opt. Express 20(17), 19137–19147 (2012).
[Crossref] [PubMed]

N. Yamada, K. Kanno, K. Hayashi, and T. Tokimitsu, “Performance of see-through prism CPV module for window integrated photovoltaics,” Opt. Express 19(S4Suppl 4), A649–A656 (2011).
[Crossref] [PubMed]

J. H. Karp, E. J. Tremblay, J. M. Hallas, and J. E. Ford, “Orthogonal and secondary concentration in planar micro-optic solar collectors,” Opt. Express 19(S4Suppl 4), A673–A685 (2011).
[Crossref] [PubMed]

J. H. Karp, E. J. Tremblay, and J. E. Ford, “Planar micro-optic solar concentrator,” Opt. Express 18(2), 1122–1133 (2010).
[Crossref] [PubMed]

C. H. Tsuei, W. S. Sun, and C. C. Kuo, “Hybrid sunlight/LED illumination and renewable solar energy saving concepts for indoor lighting,” Opt. Express 18(S4Suppl 4), A640–A653 (2010).
[Crossref] [PubMed]

Y. Liu, R. Huang, and C. K. Madsen, “Design of a lens-to-channel waveguide system as a solar concentrator structure,” Opt. Express 22(S2Suppl 2), A198–A204 (2014).
[Crossref] [PubMed]

S. Bouchard and S. Thibault, “GRIN planar waveguide concentrator used with a single axis tracker,” Opt. Express 22(S2Suppl 2), A248–A258 (2014).
[Crossref] [PubMed]

S. I. El-Henawy, M. W. N. Mohamed, I. A. Mashaly, O. N. Mohamed, O. Galal, I. Taha, K. Nassar, and A. M. E. Safwat, “Illumination of dense urban areas by light redirecting panels,” Opt. Express 22(S3Suppl 3), A895–A907 (2014).
[Crossref] [PubMed]

Proc. SPIE (2)

W. C. Shieh and G. D. Su, “Compact solar concentrator designed by minilens and slab waveguide,” Proc. SPIE 8108, 81080H(2011).
[Crossref]

V. Zagolla and C. Moser, “Trackfree Planar Solar Concentrator System,” Proc. SPIE 8256, 825618 (2012).
[Crossref]

Renew. Sustain. Energy Rev. (1)

K. K. Chong, S. L. Lau, T. K. Yew, and P. C. Tan, “Design and development in optics of concentrator photovoltaic system,” Renew. Sustain. Energy Rev. 19, 598–612 (2013).
[Crossref]

Sol. Energy (2)

M. Kischkoweit-Lopin, “An overview of daylighting systems,” Sol. Energy 73(2), 77–82 (2002).
[Crossref]

S. Wittkopf, L. O. Grobe, D. Geisler-Moroder, R. Compagnon, J. Kampf, F. Linhart, and J.-L. Scartezzini, “Ray tracing study for non-imaging daylight collectors,” Sol. Energy 84(6), 986–996 (2010).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

D. C. Law, R. R. King, H. Yoon, M. J. Archer, A. Boca, C. M. Fetzer, S. Mesropian, T. Isshiki, M. Haddad, and K. M. Edmondson, “Future technology pathways of terrestrial III–V mulitjunction solar cells for concentrator photovoltaic systems,” Sol. Energy Mater. Sol. Cells 94(8), 1314–1318 (2010).
[Crossref]

Other (3)

B. L. Unger, G. R. Schmidt, and D. T. Moore, “Dimpled planar lightguide solar concentrators,” in OSA International Optical Design Conference, ITuE5P (2010).
[Crossref]

J. H. Karp, E. J. Tremblay, and J. E. Ford, “Radial Coupling Method for Orthogonal Concentration within Planar Micro-Optic Solar Collectors,” in OSA Imaging and Applied Optics Congress, STuD2 (2010).
[Crossref]

F. Benford and J. E. Bock, A Time Analysis of Sunshin (General Electric Company Research Laboratory, 1938).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

The parabolic curve with the bottom removed.

Fig. 2
Fig. 2

Modification procedure of the paraboloid TIR collector: (a) axially symmetric paraboloid; (b) half-cut paraboloid; (c) the perspective side view of two modified TIR collectors placed near each other; (d) the light incident on the outer margins of the modified TIR collector leaks out from the side wall of the waveguide slab; (e) final modified of the paraboloid TIR collector after both outer portions of the TIR collector are trimmed off.

Fig. 3
Fig. 3

Coupling inlet of the TIR collector.

Fig. 4
Fig. 4

3D view of the waveguide concentrator with a CPC attached to its end (not proportionally scaled).

Fig. 5
Fig. 5

Tracking mechanism of the compound tracker: (a) a single-axis tracker is employed to rotate both the waveguide concentrator and the scrollable microstructure sheets around the x-axis to trace the sun’s locus from east to west; (b) a microstructure sheet with prisms is employed to deflect the sunlight to enter the TIR collector along the y’-axis.

Fig. 6
Fig. 6

The position of the sun in the sky.

Fig. 7
Fig. 7

Tracking sequence of the compound tracker.

Fig. 8
Fig. 8

Annual variation of the angle γ .

Fig. 9
Fig. 9

Schematic illustration of the waveguide concentrator with scrollable prism sheets (not proportionally scaled).

Fig. 10
Fig. 10

Irradiance on the coupling inlet varies with incident angles of light.

Fig. 11
Fig. 11

Base angle of prism varies with incident angles of light.

Fig. 12
Fig. 12

Optical efficiency varies with geometric concentration.

Fig. 13
Fig. 13

TIR collectors collocating with a horizontally staggered waveguide slab.

Tables (1)

Tables Icon

Table 1 Efficiency Evaluation for Various Waveguide Slabs and Their Materials

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

y=a z 2 ,
dy dz =2az.
z z i or z z i ; z i = 1 2a .
shield ratio=c/p,
c= ( h+ 1 4a )/a z i .
( tanθ ) max = n+ n 2 1 n n 2 1 ,
h max = ( tanθ ) max 2a 1 4a .
shield ratio=( ( h+ 1 4a )/a 1 2a )×2a= 4ah+1 1.
C g eo = l / t ,
x=r×sin( 90 A e )sin( A z 90 ),
y=r×cos( 90 A e ),
z=r×sin( 90 A e )cos( A z 90 ).
x ' =x×cos γ 0 +y×sin γ 0  ,
y ' =x×sin γ 0 +y×cos γ 0 ,
z'=z.
x " = x ' .
y " = y ' ×cos α '  + z×sin α ' ,
z " = y ' ×sin α '  + z×cos α ' .
α = tan 1 ( z ' / y ' ).
γ = tan 1 ( x / y ).

Metrics