Abstract

The dip of external quantum efficiency (EQE) is observed on In0.15Ga0.85N/GaN multiple quantum well (MQW) solar cells upon the increase of incident optical power density. With indium composition increased to 25%, the EQE dip becomes much less noticeable. The composition dependence of EQE dip is ascribed to the competition between radiative recombination and photocurrent generation in the active region, which are dictated by quantum-confined Stark effect (QCSE) and composition fluctuation in the MQWs.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced power conversion efficiency in InGaN-based solar cells via graded composition multiple quantum wells

Yu-Lin Tsai, Sheng-Wen Wang, Jhih-Kai Huang, Lung-Hsing Hsu, Ching-Hsueh Chiu, Po-Tsung Lee, Peichen Yu, Chien-Chung Lin, and Hao-Chung Kuo
Opt. Express 23(24) A1434-A1441 (2015)

Temperature dependence of photoluminescence spectra for green light emission from InGaN/GaN multiple wells

W. Liu, D. G. Zhao, D. S. Jiang, P. Chen, Z. S. Liu, J. J. Zhu, M. Shi, D. M. Zhao, X. Li, J. P. Liu, S. M. Zhang, H. Wang, H. Yang, Y. T. Zhang, and G. T. Du
Opt. Express 23(12) 15935-15943 (2015)

Performance of InGaN based green laser diodes improved by using an asymmetric InGaN/InGaN multi-quantum well active region

J. Yang, D. G. Zhao, D. S. Jiang, X. Li, F. Liang, P. Chen, J. J. Zhu, Z. S. Liu, S. T. Liu, L. Q. Zhang, and M. Li
Opt. Express 25(9) 9595-9602 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett. 80(21), 3967–3969 (2002).
    [Crossref]
  2. J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71(18), 2572–2574 (1997).
    [Crossref]
  3. Y. Nanishi, Y. Saito, and T. Yamaguchi, “RF-molecular beam epitaxy growth and properties of InN and related alloys,” Jpn. J. Appl. Phys. 42(Part 1), 2549–2559 (2003).
    [Crossref]
  4. M. Christian, J. F. Muth, E. A. Preble, and D. Hanser, “Temperature and dislocation density effects on the thermal conductivity of bulk gallium nitride,” Mater. Res. Soc. Symp. Proc. 892, 0892–FF29–05.1 (2006).
  5. J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477–6482 (2003).
    [Crossref]
  6. R. Dahal, B. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “InGaN/GaN multiple quantum well solar cells with long operating wavelengths,” Appl. Phys. Lett. 94(6), 063505 (2009).
    [Crossref]
  7. K. Y. Lai, G. J. Lin, Y.-L. Lai, Y. F. Chen, and J. H. He, “Effect of indium fluctuation on the photovoltaic characteristics of InGaN/GaN multiple quantum well solar cells,” Appl. Phys. Lett. 96(8), 081103 (2010).
    [Crossref]
  8. Y. Kuwahara, T. Fujii, T. Sugiyama, D. Iida, Y. Isobe, Y. Fujiyama, Y. Morita, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Amano, “GaInN-based solar cells using strained-layer GaInN/GaInN superlattice active layer on a freestanding GaN substrate,” Appl. Phys. Express 4(2), 021001 (2011).
    [Crossref]
  9. P. H. Fu, G. J. Lin, C. H. Ho, C. A. Lin, C. F. Kang, Y. L. Lai, K. Y. Lai, and J. H. He, “Efficiency enhancement of InGaN multi-quantum-well solar cells via light-harvesting SiO2 nano-honeycombs,” Appl. Phys. Lett. 100(1), 013105 (2012).
    [Crossref]
  10. G. J. Lin, K. Y. Lai, C. A. Lin, and J. H. He, “Solar energy harvesting scheme using syringe-like ZnO nanorod arrays for InGaN/GaN multiple quantum well solar cells,” Opt. Lett. 37(1), 61–63 (2012).
    [Crossref] [PubMed]
  11. G. J. Lin, K. Y. Lai, C. A. Lin, Y. L. Lai, and J. H. He, “Efficiency enhancement of InGaN-based multiple quantum well solar cells employing antireflective ZnO nanorod arrays,” IEEE Electron Device Lett. 32(8), 1104–1106 (2011).
    [Crossref]
  12. C. H. Ho, D. H. Lien, H. C. Chang, C. A. Lin, C. F. Kang, M. K. Hsing, K. Y. Lai, and J. H. He, “Hierarchical structures consisting of SiO2 nanorods and p-GaN microdomes for efficiently harvesting solar energy for InGaN quantum well photovoltaic cells,” Nanoscale 4(23), 7346–7349 (2012).
    [Crossref] [PubMed]
  13. C. H. Ho, K. Y. Lai, C. A. Lin, G. J. Lin, M. K. Hsing, and J. H. He, “Microdome InGaN-based multiple quantum well solar cells,” Appl. Phys. Lett. 101(2), 023902 (2012).
    [Crossref]
  14. C. H. Ho, G. J. Lin, P. H. Fu, C. A. Lin, P. C. Yang, K. Y. Lai, and J. H. He, “An efficient light-harvesting scheme using SiO2 nanorods for InGaN multiple quantum well solar cells,” Sol. Energy Mater. Sol. Cells 103, 194–198 (2012).
    [Crossref]
  15. P. M. F. J. Costa, R. Datta, M. J. Kappers, M. E. Vickers, C. J. Humphreys, D. M. Graham, P. Dawson, M. J. Godfrey, E. J. Thrush, and J. T. Mullins, “Misfit dislocations in In-rich InGaN/GaN quantum well structures,” Phys. Status Solidi 203(7), 1729–1732 (2006).
    [Crossref]
  16. K. W. J. Barnham and G. Duggan, “A new approach to high‐efficiency multi‐band‐gap solar cells,” J. Appl. Phys. 67(7), 3490–3493 (1990).
    [Crossref]
  17. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structures: the quantum-confined Stark effect,” Phys. Rev. Lett. 53(22), 2173–2176 (1984).
    [Crossref]
  18. Y.-S. Lin, K.-J. Ma, C. Hsu, S.-W. Feng, Y.-C. Cheng, C.-C. Liao, C. C. Yang, C.-C. Chou, C.-M. Lee, and J.-I. Chyi, “Dependence of composition fluctuation on indium content in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 77(19), 2988–2990 (2000).
    [Crossref]
  19. F. Bernardini and V. Fiorentini, “Spontaneous versus piezoelectric polarization in III–V nitrides: conceptual aspects and practical consequences,” Phys. Status Solidi 216(1), 391–398 (1999).
    [Crossref]
  20. I. Ho and G. B. Stringfellow, “Solid phase immiscibility in GaInN,” Appl. Phys. Lett. 69(18), 2701–2703 (1996).
    [Crossref]
  21. N. Faleev, B. Jampana, O. Jani, H. Yu, R. Opila, I. Ferguson, and C. Honsberg, “Correlation of crystalline defects with photoluminescence of InGaN layers,” Appl. Phys. Lett. 95(5), 051915 (2009).
    [Crossref]
  22. K. Y. Lai, T. Paskova, V. D. Wheeler, J. A. Grenko, M. A. L. Johnson, D. W. Barlage, K. Udwary, E. A. Preble, and K. R. Evans, “Excitation current dependent cathodoluminescence study of InGaN/GaN quantum wells grown on m-plane and c-plane GaN substrates,” J. Appl. Phys. 106(11), 113104 (2009).
    [Crossref]
  23. S. Takeuchi, H. Amano, and I. Akasaki, “Theoretical study of orientation dependence of piezoelectric effects in wurtzite strained GaInN/GaN heterostructures and quantum wells,” Jpn. J. Appl. Phys. 39(Part 1, No. 2A), 413–416 (2000).
    [Crossref]
  24. B. G. Streetman and S. K. Banerjee, Solid State Electronic Devices, 6th edition (Prentice-Hall, 2006).
  25. K. P. O’Donnell, R. W. Martin, and P. G. Middleton, “Origin of luminescence from InGaN diodes,” Phys. Rev. Lett. 82(1), 237–240 (1999).
    [Crossref]
  26. Y.-J. Lee, M.-H. Lee, C.-M. Cheng, and C.-H. Yang, “Enhanced conversion efficiency of InGaN multiple quantum well solar cells grown on a patterned sapphire substrate,” Appl. Phys. Lett. 98(26), 263504 (2011).
    [Crossref]
  27. J. R. Lang, C. J. Neufeld, C. A. Hurni, S. C. Cruz, E. Matioli, U. K. Mishra, and J. S. Speck, “High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH3-based molecular beam epitaxy,” Appl. Phys. Lett. 98(13), 131115 (2011).
    [Crossref]
  28. K. Y. Lai, G. J. Lin, C.-Y. Chen, Y.-L. Lai, and J. H. He, “Origin of Hot Carriers in InGaN-Based Quantum-Well Solar Cells,” IEEE Electron Device Lett. 32(2), 179–181 (2011).
    [Crossref]
  29. G. F. Brown, J. W. Ager, W. Walukiewicz, and J. Wu, “Finite element simulations of compositionally graded InGaN solar cells,” Sol. Energy Mater. Sol. Cells 94(3), 478–483 (2010).
    [Crossref]
  30. Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett. 91(14), 141101 (2007).
    [Crossref]
  31. C. K. Li and Y. R. Wu, “Study on the current spreading effect and light extraction enhancement of vertical GaN/InGaN LEDs,” IEEE Trans. Electron. Dev. 59(2), 400–407 (2012).
    [Crossref]
  32. T. J. Yang, R. Shivaraman, J. S. Speck, and Y. R. Wu, “The influence of random indium alloy fluctuations in indium gallium nitride quantum wells on the device behavior,” J. Appl. Phys. 116(11), 113104 (2014).
    [Crossref]

2014 (1)

T. J. Yang, R. Shivaraman, J. S. Speck, and Y. R. Wu, “The influence of random indium alloy fluctuations in indium gallium nitride quantum wells on the device behavior,” J. Appl. Phys. 116(11), 113104 (2014).
[Crossref]

2012 (6)

P. H. Fu, G. J. Lin, C. H. Ho, C. A. Lin, C. F. Kang, Y. L. Lai, K. Y. Lai, and J. H. He, “Efficiency enhancement of InGaN multi-quantum-well solar cells via light-harvesting SiO2 nano-honeycombs,” Appl. Phys. Lett. 100(1), 013105 (2012).
[Crossref]

G. J. Lin, K. Y. Lai, C. A. Lin, and J. H. He, “Solar energy harvesting scheme using syringe-like ZnO nanorod arrays for InGaN/GaN multiple quantum well solar cells,” Opt. Lett. 37(1), 61–63 (2012).
[Crossref] [PubMed]

C. H. Ho, D. H. Lien, H. C. Chang, C. A. Lin, C. F. Kang, M. K. Hsing, K. Y. Lai, and J. H. He, “Hierarchical structures consisting of SiO2 nanorods and p-GaN microdomes for efficiently harvesting solar energy for InGaN quantum well photovoltaic cells,” Nanoscale 4(23), 7346–7349 (2012).
[Crossref] [PubMed]

C. H. Ho, K. Y. Lai, C. A. Lin, G. J. Lin, M. K. Hsing, and J. H. He, “Microdome InGaN-based multiple quantum well solar cells,” Appl. Phys. Lett. 101(2), 023902 (2012).
[Crossref]

C. H. Ho, G. J. Lin, P. H. Fu, C. A. Lin, P. C. Yang, K. Y. Lai, and J. H. He, “An efficient light-harvesting scheme using SiO2 nanorods for InGaN multiple quantum well solar cells,” Sol. Energy Mater. Sol. Cells 103, 194–198 (2012).
[Crossref]

C. K. Li and Y. R. Wu, “Study on the current spreading effect and light extraction enhancement of vertical GaN/InGaN LEDs,” IEEE Trans. Electron. Dev. 59(2), 400–407 (2012).
[Crossref]

2011 (5)

G. J. Lin, K. Y. Lai, C. A. Lin, Y. L. Lai, and J. H. He, “Efficiency enhancement of InGaN-based multiple quantum well solar cells employing antireflective ZnO nanorod arrays,” IEEE Electron Device Lett. 32(8), 1104–1106 (2011).
[Crossref]

Y.-J. Lee, M.-H. Lee, C.-M. Cheng, and C.-H. Yang, “Enhanced conversion efficiency of InGaN multiple quantum well solar cells grown on a patterned sapphire substrate,” Appl. Phys. Lett. 98(26), 263504 (2011).
[Crossref]

J. R. Lang, C. J. Neufeld, C. A. Hurni, S. C. Cruz, E. Matioli, U. K. Mishra, and J. S. Speck, “High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH3-based molecular beam epitaxy,” Appl. Phys. Lett. 98(13), 131115 (2011).
[Crossref]

K. Y. Lai, G. J. Lin, C.-Y. Chen, Y.-L. Lai, and J. H. He, “Origin of Hot Carriers in InGaN-Based Quantum-Well Solar Cells,” IEEE Electron Device Lett. 32(2), 179–181 (2011).
[Crossref]

Y. Kuwahara, T. Fujii, T. Sugiyama, D. Iida, Y. Isobe, Y. Fujiyama, Y. Morita, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Amano, “GaInN-based solar cells using strained-layer GaInN/GaInN superlattice active layer on a freestanding GaN substrate,” Appl. Phys. Express 4(2), 021001 (2011).
[Crossref]

2010 (2)

K. Y. Lai, G. J. Lin, Y.-L. Lai, Y. F. Chen, and J. H. He, “Effect of indium fluctuation on the photovoltaic characteristics of InGaN/GaN multiple quantum well solar cells,” Appl. Phys. Lett. 96(8), 081103 (2010).
[Crossref]

G. F. Brown, J. W. Ager, W. Walukiewicz, and J. Wu, “Finite element simulations of compositionally graded InGaN solar cells,” Sol. Energy Mater. Sol. Cells 94(3), 478–483 (2010).
[Crossref]

2009 (3)

N. Faleev, B. Jampana, O. Jani, H. Yu, R. Opila, I. Ferguson, and C. Honsberg, “Correlation of crystalline defects with photoluminescence of InGaN layers,” Appl. Phys. Lett. 95(5), 051915 (2009).
[Crossref]

K. Y. Lai, T. Paskova, V. D. Wheeler, J. A. Grenko, M. A. L. Johnson, D. W. Barlage, K. Udwary, E. A. Preble, and K. R. Evans, “Excitation current dependent cathodoluminescence study of InGaN/GaN quantum wells grown on m-plane and c-plane GaN substrates,” J. Appl. Phys. 106(11), 113104 (2009).
[Crossref]

R. Dahal, B. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “InGaN/GaN multiple quantum well solar cells with long operating wavelengths,” Appl. Phys. Lett. 94(6), 063505 (2009).
[Crossref]

2007 (1)

Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett. 91(14), 141101 (2007).
[Crossref]

2006 (1)

P. M. F. J. Costa, R. Datta, M. J. Kappers, M. E. Vickers, C. J. Humphreys, D. M. Graham, P. Dawson, M. J. Godfrey, E. J. Thrush, and J. T. Mullins, “Misfit dislocations in In-rich InGaN/GaN quantum well structures,” Phys. Status Solidi 203(7), 1729–1732 (2006).
[Crossref]

2003 (2)

Y. Nanishi, Y. Saito, and T. Yamaguchi, “RF-molecular beam epitaxy growth and properties of InN and related alloys,” Jpn. J. Appl. Phys. 42(Part 1), 2549–2559 (2003).
[Crossref]

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477–6482 (2003).
[Crossref]

2002 (1)

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett. 80(21), 3967–3969 (2002).
[Crossref]

2000 (2)

S. Takeuchi, H. Amano, and I. Akasaki, “Theoretical study of orientation dependence of piezoelectric effects in wurtzite strained GaInN/GaN heterostructures and quantum wells,” Jpn. J. Appl. Phys. 39(Part 1, No. 2A), 413–416 (2000).
[Crossref]

Y.-S. Lin, K.-J. Ma, C. Hsu, S.-W. Feng, Y.-C. Cheng, C.-C. Liao, C. C. Yang, C.-C. Chou, C.-M. Lee, and J.-I. Chyi, “Dependence of composition fluctuation on indium content in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 77(19), 2988–2990 (2000).
[Crossref]

1999 (2)

F. Bernardini and V. Fiorentini, “Spontaneous versus piezoelectric polarization in III–V nitrides: conceptual aspects and practical consequences,” Phys. Status Solidi 216(1), 391–398 (1999).
[Crossref]

K. P. O’Donnell, R. W. Martin, and P. G. Middleton, “Origin of luminescence from InGaN diodes,” Phys. Rev. Lett. 82(1), 237–240 (1999).
[Crossref]

1997 (1)

J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71(18), 2572–2574 (1997).
[Crossref]

1996 (1)

I. Ho and G. B. Stringfellow, “Solid phase immiscibility in GaInN,” Appl. Phys. Lett. 69(18), 2701–2703 (1996).
[Crossref]

1990 (1)

K. W. J. Barnham and G. Duggan, “A new approach to high‐efficiency multi‐band‐gap solar cells,” J. Appl. Phys. 67(7), 3490–3493 (1990).
[Crossref]

1984 (1)

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structures: the quantum-confined Stark effect,” Phys. Rev. Lett. 53(22), 2173–2176 (1984).
[Crossref]

Ager, J. W.

G. F. Brown, J. W. Ager, W. Walukiewicz, and J. Wu, “Finite element simulations of compositionally graded InGaN solar cells,” Sol. Energy Mater. Sol. Cells 94(3), 478–483 (2010).
[Crossref]

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477–6482 (2003).
[Crossref]

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett. 80(21), 3967–3969 (2002).
[Crossref]

Akasaki, I.

Y. Kuwahara, T. Fujii, T. Sugiyama, D. Iida, Y. Isobe, Y. Fujiyama, Y. Morita, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Amano, “GaInN-based solar cells using strained-layer GaInN/GaInN superlattice active layer on a freestanding GaN substrate,” Appl. Phys. Express 4(2), 021001 (2011).
[Crossref]

S. Takeuchi, H. Amano, and I. Akasaki, “Theoretical study of orientation dependence of piezoelectric effects in wurtzite strained GaInN/GaN heterostructures and quantum wells,” Jpn. J. Appl. Phys. 39(Part 1, No. 2A), 413–416 (2000).
[Crossref]

Amano, H.

Y. Kuwahara, T. Fujii, T. Sugiyama, D. Iida, Y. Isobe, Y. Fujiyama, Y. Morita, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Amano, “GaInN-based solar cells using strained-layer GaInN/GaInN superlattice active layer on a freestanding GaN substrate,” Appl. Phys. Express 4(2), 021001 (2011).
[Crossref]

S. Takeuchi, H. Amano, and I. Akasaki, “Theoretical study of orientation dependence of piezoelectric effects in wurtzite strained GaInN/GaN heterostructures and quantum wells,” Jpn. J. Appl. Phys. 39(Part 1, No. 2A), 413–416 (2000).
[Crossref]

Barlage, D. W.

K. Y. Lai, T. Paskova, V. D. Wheeler, J. A. Grenko, M. A. L. Johnson, D. W. Barlage, K. Udwary, E. A. Preble, and K. R. Evans, “Excitation current dependent cathodoluminescence study of InGaN/GaN quantum wells grown on m-plane and c-plane GaN substrates,” J. Appl. Phys. 106(11), 113104 (2009).
[Crossref]

Barnham, K. W. J.

K. W. J. Barnham and G. Duggan, “A new approach to high‐efficiency multi‐band‐gap solar cells,” J. Appl. Phys. 67(7), 3490–3493 (1990).
[Crossref]

Bernardini, F.

F. Bernardini and V. Fiorentini, “Spontaneous versus piezoelectric polarization in III–V nitrides: conceptual aspects and practical consequences,” Phys. Status Solidi 216(1), 391–398 (1999).
[Crossref]

Brown, G. F.

G. F. Brown, J. W. Ager, W. Walukiewicz, and J. Wu, “Finite element simulations of compositionally graded InGaN solar cells,” Sol. Energy Mater. Sol. Cells 94(3), 478–483 (2010).
[Crossref]

Burrus, C. A.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structures: the quantum-confined Stark effect,” Phys. Rev. Lett. 53(22), 2173–2176 (1984).
[Crossref]

Casey, H. C.

J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71(18), 2572–2574 (1997).
[Crossref]

Chang, H. C.

C. H. Ho, D. H. Lien, H. C. Chang, C. A. Lin, C. F. Kang, M. K. Hsing, K. Y. Lai, and J. H. He, “Hierarchical structures consisting of SiO2 nanorods and p-GaN microdomes for efficiently harvesting solar energy for InGaN quantum well photovoltaic cells,” Nanoscale 4(23), 7346–7349 (2012).
[Crossref] [PubMed]

Chemla, D. S.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structures: the quantum-confined Stark effect,” Phys. Rev. Lett. 53(22), 2173–2176 (1984).
[Crossref]

Chen, C.-Y.

K. Y. Lai, G. J. Lin, C.-Y. Chen, Y.-L. Lai, and J. H. He, “Origin of Hot Carriers in InGaN-Based Quantum-Well Solar Cells,” IEEE Electron Device Lett. 32(2), 179–181 (2011).
[Crossref]

Chen, Y. F.

K. Y. Lai, G. J. Lin, Y.-L. Lai, Y. F. Chen, and J. H. He, “Effect of indium fluctuation on the photovoltaic characteristics of InGaN/GaN multiple quantum well solar cells,” Appl. Phys. Lett. 96(8), 081103 (2010).
[Crossref]

Cheng, C.-M.

Y.-J. Lee, M.-H. Lee, C.-M. Cheng, and C.-H. Yang, “Enhanced conversion efficiency of InGaN multiple quantum well solar cells grown on a patterned sapphire substrate,” Appl. Phys. Lett. 98(26), 263504 (2011).
[Crossref]

Cheng, Y.-C.

Y.-S. Lin, K.-J. Ma, C. Hsu, S.-W. Feng, Y.-C. Cheng, C.-C. Liao, C. C. Yang, C.-C. Chou, C.-M. Lee, and J.-I. Chyi, “Dependence of composition fluctuation on indium content in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 77(19), 2988–2990 (2000).
[Crossref]

Chou, C.-C.

Y.-S. Lin, K.-J. Ma, C. Hsu, S.-W. Feng, Y.-C. Cheng, C.-C. Liao, C. C. Yang, C.-C. Chou, C.-M. Lee, and J.-I. Chyi, “Dependence of composition fluctuation on indium content in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 77(19), 2988–2990 (2000).
[Crossref]

Chyi, J.-I.

Y.-S. Lin, K.-J. Ma, C. Hsu, S.-W. Feng, Y.-C. Cheng, C.-C. Liao, C. C. Yang, C.-C. Chou, C.-M. Lee, and J.-I. Chyi, “Dependence of composition fluctuation on indium content in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 77(19), 2988–2990 (2000).
[Crossref]

Costa, P. M. F. J.

P. M. F. J. Costa, R. Datta, M. J. Kappers, M. E. Vickers, C. J. Humphreys, D. M. Graham, P. Dawson, M. J. Godfrey, E. J. Thrush, and J. T. Mullins, “Misfit dislocations in In-rich InGaN/GaN quantum well structures,” Phys. Status Solidi 203(7), 1729–1732 (2006).
[Crossref]

Cruz, S. C.

J. R. Lang, C. J. Neufeld, C. A. Hurni, S. C. Cruz, E. Matioli, U. K. Mishra, and J. S. Speck, “High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH3-based molecular beam epitaxy,” Appl. Phys. Lett. 98(13), 131115 (2011).
[Crossref]

Dahal, R.

R. Dahal, B. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “InGaN/GaN multiple quantum well solar cells with long operating wavelengths,” Appl. Phys. Lett. 94(6), 063505 (2009).
[Crossref]

Damen, T. C.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structures: the quantum-confined Stark effect,” Phys. Rev. Lett. 53(22), 2173–2176 (1984).
[Crossref]

Datta, R.

P. M. F. J. Costa, R. Datta, M. J. Kappers, M. E. Vickers, C. J. Humphreys, D. M. Graham, P. Dawson, M. J. Godfrey, E. J. Thrush, and J. T. Mullins, “Misfit dislocations in In-rich InGaN/GaN quantum well structures,” Phys. Status Solidi 203(7), 1729–1732 (2006).
[Crossref]

Dawson, P.

P. M. F. J. Costa, R. Datta, M. J. Kappers, M. E. Vickers, C. J. Humphreys, D. M. Graham, P. Dawson, M. J. Godfrey, E. J. Thrush, and J. T. Mullins, “Misfit dislocations in In-rich InGaN/GaN quantum well structures,” Phys. Status Solidi 203(7), 1729–1732 (2006).
[Crossref]

DenBaars, S. P.

J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71(18), 2572–2574 (1997).
[Crossref]

Duggan, G.

K. W. J. Barnham and G. Duggan, “A new approach to high‐efficiency multi‐band‐gap solar cells,” J. Appl. Phys. 67(7), 3490–3493 (1990).
[Crossref]

Evans, K. R.

K. Y. Lai, T. Paskova, V. D. Wheeler, J. A. Grenko, M. A. L. Johnson, D. W. Barlage, K. Udwary, E. A. Preble, and K. R. Evans, “Excitation current dependent cathodoluminescence study of InGaN/GaN quantum wells grown on m-plane and c-plane GaN substrates,” J. Appl. Phys. 106(11), 113104 (2009).
[Crossref]

Faleev, N.

N. Faleev, B. Jampana, O. Jani, H. Yu, R. Opila, I. Ferguson, and C. Honsberg, “Correlation of crystalline defects with photoluminescence of InGaN layers,” Appl. Phys. Lett. 95(5), 051915 (2009).
[Crossref]

Feng, S.-W.

Y.-S. Lin, K.-J. Ma, C. Hsu, S.-W. Feng, Y.-C. Cheng, C.-C. Liao, C. C. Yang, C.-C. Chou, C.-M. Lee, and J.-I. Chyi, “Dependence of composition fluctuation on indium content in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 77(19), 2988–2990 (2000).
[Crossref]

Ferguson, I.

N. Faleev, B. Jampana, O. Jani, H. Yu, R. Opila, I. Ferguson, and C. Honsberg, “Correlation of crystalline defects with photoluminescence of InGaN layers,” Appl. Phys. Lett. 95(5), 051915 (2009).
[Crossref]

Fiorentini, V.

F. Bernardini and V. Fiorentini, “Spontaneous versus piezoelectric polarization in III–V nitrides: conceptual aspects and practical consequences,” Phys. Status Solidi 216(1), 391–398 (1999).
[Crossref]

Fu, P. H.

C. H. Ho, G. J. Lin, P. H. Fu, C. A. Lin, P. C. Yang, K. Y. Lai, and J. H. He, “An efficient light-harvesting scheme using SiO2 nanorods for InGaN multiple quantum well solar cells,” Sol. Energy Mater. Sol. Cells 103, 194–198 (2012).
[Crossref]

P. H. Fu, G. J. Lin, C. H. Ho, C. A. Lin, C. F. Kang, Y. L. Lai, K. Y. Lai, and J. H. He, “Efficiency enhancement of InGaN multi-quantum-well solar cells via light-harvesting SiO2 nano-honeycombs,” Appl. Phys. Lett. 100(1), 013105 (2012).
[Crossref]

Fujii, T.

Y. Kuwahara, T. Fujii, T. Sugiyama, D. Iida, Y. Isobe, Y. Fujiyama, Y. Morita, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Amano, “GaInN-based solar cells using strained-layer GaInN/GaInN superlattice active layer on a freestanding GaN substrate,” Appl. Phys. Express 4(2), 021001 (2011).
[Crossref]

Fujiyama, Y.

Y. Kuwahara, T. Fujii, T. Sugiyama, D. Iida, Y. Isobe, Y. Fujiyama, Y. Morita, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Amano, “GaInN-based solar cells using strained-layer GaInN/GaInN superlattice active layer on a freestanding GaN substrate,” Appl. Phys. Express 4(2), 021001 (2011).
[Crossref]

Gardner, N. F.

Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett. 91(14), 141101 (2007).
[Crossref]

Godfrey, M. J.

P. M. F. J. Costa, R. Datta, M. J. Kappers, M. E. Vickers, C. J. Humphreys, D. M. Graham, P. Dawson, M. J. Godfrey, E. J. Thrush, and J. T. Mullins, “Misfit dislocations in In-rich InGaN/GaN quantum well structures,” Phys. Status Solidi 203(7), 1729–1732 (2006).
[Crossref]

Gossard, A. C.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structures: the quantum-confined Stark effect,” Phys. Rev. Lett. 53(22), 2173–2176 (1984).
[Crossref]

Graham, D. M.

P. M. F. J. Costa, R. Datta, M. J. Kappers, M. E. Vickers, C. J. Humphreys, D. M. Graham, P. Dawson, M. J. Godfrey, E. J. Thrush, and J. T. Mullins, “Misfit dislocations in In-rich InGaN/GaN quantum well structures,” Phys. Status Solidi 203(7), 1729–1732 (2006).
[Crossref]

Grenko, J. A.

K. Y. Lai, T. Paskova, V. D. Wheeler, J. A. Grenko, M. A. L. Johnson, D. W. Barlage, K. Udwary, E. A. Preble, and K. R. Evans, “Excitation current dependent cathodoluminescence study of InGaN/GaN quantum wells grown on m-plane and c-plane GaN substrates,” J. Appl. Phys. 106(11), 113104 (2009).
[Crossref]

Haller, E. E.

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477–6482 (2003).
[Crossref]

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett. 80(21), 3967–3969 (2002).
[Crossref]

He, J. H.

P. H. Fu, G. J. Lin, C. H. Ho, C. A. Lin, C. F. Kang, Y. L. Lai, K. Y. Lai, and J. H. He, “Efficiency enhancement of InGaN multi-quantum-well solar cells via light-harvesting SiO2 nano-honeycombs,” Appl. Phys. Lett. 100(1), 013105 (2012).
[Crossref]

G. J. Lin, K. Y. Lai, C. A. Lin, and J. H. He, “Solar energy harvesting scheme using syringe-like ZnO nanorod arrays for InGaN/GaN multiple quantum well solar cells,” Opt. Lett. 37(1), 61–63 (2012).
[Crossref] [PubMed]

C. H. Ho, G. J. Lin, P. H. Fu, C. A. Lin, P. C. Yang, K. Y. Lai, and J. H. He, “An efficient light-harvesting scheme using SiO2 nanorods for InGaN multiple quantum well solar cells,” Sol. Energy Mater. Sol. Cells 103, 194–198 (2012).
[Crossref]

C. H. Ho, K. Y. Lai, C. A. Lin, G. J. Lin, M. K. Hsing, and J. H. He, “Microdome InGaN-based multiple quantum well solar cells,” Appl. Phys. Lett. 101(2), 023902 (2012).
[Crossref]

C. H. Ho, D. H. Lien, H. C. Chang, C. A. Lin, C. F. Kang, M. K. Hsing, K. Y. Lai, and J. H. He, “Hierarchical structures consisting of SiO2 nanorods and p-GaN microdomes for efficiently harvesting solar energy for InGaN quantum well photovoltaic cells,” Nanoscale 4(23), 7346–7349 (2012).
[Crossref] [PubMed]

G. J. Lin, K. Y. Lai, C. A. Lin, Y. L. Lai, and J. H. He, “Efficiency enhancement of InGaN-based multiple quantum well solar cells employing antireflective ZnO nanorod arrays,” IEEE Electron Device Lett. 32(8), 1104–1106 (2011).
[Crossref]

K. Y. Lai, G. J. Lin, C.-Y. Chen, Y.-L. Lai, and J. H. He, “Origin of Hot Carriers in InGaN-Based Quantum-Well Solar Cells,” IEEE Electron Device Lett. 32(2), 179–181 (2011).
[Crossref]

K. Y. Lai, G. J. Lin, Y.-L. Lai, Y. F. Chen, and J. H. He, “Effect of indium fluctuation on the photovoltaic characteristics of InGaN/GaN multiple quantum well solar cells,” Appl. Phys. Lett. 96(8), 081103 (2010).
[Crossref]

Ho, C. H.

P. H. Fu, G. J. Lin, C. H. Ho, C. A. Lin, C. F. Kang, Y. L. Lai, K. Y. Lai, and J. H. He, “Efficiency enhancement of InGaN multi-quantum-well solar cells via light-harvesting SiO2 nano-honeycombs,” Appl. Phys. Lett. 100(1), 013105 (2012).
[Crossref]

C. H. Ho, D. H. Lien, H. C. Chang, C. A. Lin, C. F. Kang, M. K. Hsing, K. Y. Lai, and J. H. He, “Hierarchical structures consisting of SiO2 nanorods and p-GaN microdomes for efficiently harvesting solar energy for InGaN quantum well photovoltaic cells,” Nanoscale 4(23), 7346–7349 (2012).
[Crossref] [PubMed]

C. H. Ho, K. Y. Lai, C. A. Lin, G. J. Lin, M. K. Hsing, and J. H. He, “Microdome InGaN-based multiple quantum well solar cells,” Appl. Phys. Lett. 101(2), 023902 (2012).
[Crossref]

C. H. Ho, G. J. Lin, P. H. Fu, C. A. Lin, P. C. Yang, K. Y. Lai, and J. H. He, “An efficient light-harvesting scheme using SiO2 nanorods for InGaN multiple quantum well solar cells,” Sol. Energy Mater. Sol. Cells 103, 194–198 (2012).
[Crossref]

Ho, I.

I. Ho and G. B. Stringfellow, “Solid phase immiscibility in GaInN,” Appl. Phys. Lett. 69(18), 2701–2703 (1996).
[Crossref]

Honsberg, C.

N. Faleev, B. Jampana, O. Jani, H. Yu, R. Opila, I. Ferguson, and C. Honsberg, “Correlation of crystalline defects with photoluminescence of InGaN layers,” Appl. Phys. Lett. 95(5), 051915 (2009).
[Crossref]

Hsing, M. K.

C. H. Ho, D. H. Lien, H. C. Chang, C. A. Lin, C. F. Kang, M. K. Hsing, K. Y. Lai, and J. H. He, “Hierarchical structures consisting of SiO2 nanorods and p-GaN microdomes for efficiently harvesting solar energy for InGaN quantum well photovoltaic cells,” Nanoscale 4(23), 7346–7349 (2012).
[Crossref] [PubMed]

C. H. Ho, K. Y. Lai, C. A. Lin, G. J. Lin, M. K. Hsing, and J. H. He, “Microdome InGaN-based multiple quantum well solar cells,” Appl. Phys. Lett. 101(2), 023902 (2012).
[Crossref]

Hsu, C.

Y.-S. Lin, K.-J. Ma, C. Hsu, S.-W. Feng, Y.-C. Cheng, C.-C. Liao, C. C. Yang, C.-C. Chou, C.-M. Lee, and J.-I. Chyi, “Dependence of composition fluctuation on indium content in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 77(19), 2988–2990 (2000).
[Crossref]

Humphreys, C. J.

P. M. F. J. Costa, R. Datta, M. J. Kappers, M. E. Vickers, C. J. Humphreys, D. M. Graham, P. Dawson, M. J. Godfrey, E. J. Thrush, and J. T. Mullins, “Misfit dislocations in In-rich InGaN/GaN quantum well structures,” Phys. Status Solidi 203(7), 1729–1732 (2006).
[Crossref]

Hurni, C. A.

J. R. Lang, C. J. Neufeld, C. A. Hurni, S. C. Cruz, E. Matioli, U. K. Mishra, and J. S. Speck, “High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH3-based molecular beam epitaxy,” Appl. Phys. Lett. 98(13), 131115 (2011).
[Crossref]

Iida, D.

Y. Kuwahara, T. Fujii, T. Sugiyama, D. Iida, Y. Isobe, Y. Fujiyama, Y. Morita, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Amano, “GaInN-based solar cells using strained-layer GaInN/GaInN superlattice active layer on a freestanding GaN substrate,” Appl. Phys. Express 4(2), 021001 (2011).
[Crossref]

Isobe, Y.

Y. Kuwahara, T. Fujii, T. Sugiyama, D. Iida, Y. Isobe, Y. Fujiyama, Y. Morita, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Amano, “GaInN-based solar cells using strained-layer GaInN/GaInN superlattice active layer on a freestanding GaN substrate,” Appl. Phys. Express 4(2), 021001 (2011).
[Crossref]

Iwaya, M.

Y. Kuwahara, T. Fujii, T. Sugiyama, D. Iida, Y. Isobe, Y. Fujiyama, Y. Morita, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Amano, “GaInN-based solar cells using strained-layer GaInN/GaInN superlattice active layer on a freestanding GaN substrate,” Appl. Phys. Express 4(2), 021001 (2011).
[Crossref]

Jampana, B.

N. Faleev, B. Jampana, O. Jani, H. Yu, R. Opila, I. Ferguson, and C. Honsberg, “Correlation of crystalline defects with photoluminescence of InGaN layers,” Appl. Phys. Lett. 95(5), 051915 (2009).
[Crossref]

Jani, O.

N. Faleev, B. Jampana, O. Jani, H. Yu, R. Opila, I. Ferguson, and C. Honsberg, “Correlation of crystalline defects with photoluminescence of InGaN layers,” Appl. Phys. Lett. 95(5), 051915 (2009).
[Crossref]

Jiang, H. X.

R. Dahal, B. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “InGaN/GaN multiple quantum well solar cells with long operating wavelengths,” Appl. Phys. Lett. 94(6), 063505 (2009).
[Crossref]

Johnson, M. A. L.

K. Y. Lai, T. Paskova, V. D. Wheeler, J. A. Grenko, M. A. L. Johnson, D. W. Barlage, K. Udwary, E. A. Preble, and K. R. Evans, “Excitation current dependent cathodoluminescence study of InGaN/GaN quantum wells grown on m-plane and c-plane GaN substrates,” J. Appl. Phys. 106(11), 113104 (2009).
[Crossref]

Kamiyama, S.

Y. Kuwahara, T. Fujii, T. Sugiyama, D. Iida, Y. Isobe, Y. Fujiyama, Y. Morita, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Amano, “GaInN-based solar cells using strained-layer GaInN/GaInN superlattice active layer on a freestanding GaN substrate,” Appl. Phys. Express 4(2), 021001 (2011).
[Crossref]

Kang, C. F.

P. H. Fu, G. J. Lin, C. H. Ho, C. A. Lin, C. F. Kang, Y. L. Lai, K. Y. Lai, and J. H. He, “Efficiency enhancement of InGaN multi-quantum-well solar cells via light-harvesting SiO2 nano-honeycombs,” Appl. Phys. Lett. 100(1), 013105 (2012).
[Crossref]

C. H. Ho, D. H. Lien, H. C. Chang, C. A. Lin, C. F. Kang, M. K. Hsing, K. Y. Lai, and J. H. He, “Hierarchical structures consisting of SiO2 nanorods and p-GaN microdomes for efficiently harvesting solar energy for InGaN quantum well photovoltaic cells,” Nanoscale 4(23), 7346–7349 (2012).
[Crossref] [PubMed]

Kappers, M. J.

P. M. F. J. Costa, R. Datta, M. J. Kappers, M. E. Vickers, C. J. Humphreys, D. M. Graham, P. Dawson, M. J. Godfrey, E. J. Thrush, and J. T. Mullins, “Misfit dislocations in In-rich InGaN/GaN quantum well structures,” Phys. Status Solidi 203(7), 1729–1732 (2006).
[Crossref]

Keller, B. P.

J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71(18), 2572–2574 (1997).
[Crossref]

Kolbas, R. M.

J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71(18), 2572–2574 (1997).
[Crossref]

Krames, M. R.

Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett. 91(14), 141101 (2007).
[Crossref]

Kurtz, S.

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477–6482 (2003).
[Crossref]

Kuwahara, Y.

Y. Kuwahara, T. Fujii, T. Sugiyama, D. Iida, Y. Isobe, Y. Fujiyama, Y. Morita, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Amano, “GaInN-based solar cells using strained-layer GaInN/GaInN superlattice active layer on a freestanding GaN substrate,” Appl. Phys. Express 4(2), 021001 (2011).
[Crossref]

Lai, K. Y.

P. H. Fu, G. J. Lin, C. H. Ho, C. A. Lin, C. F. Kang, Y. L. Lai, K. Y. Lai, and J. H. He, “Efficiency enhancement of InGaN multi-quantum-well solar cells via light-harvesting SiO2 nano-honeycombs,” Appl. Phys. Lett. 100(1), 013105 (2012).
[Crossref]

G. J. Lin, K. Y. Lai, C. A. Lin, and J. H. He, “Solar energy harvesting scheme using syringe-like ZnO nanorod arrays for InGaN/GaN multiple quantum well solar cells,” Opt. Lett. 37(1), 61–63 (2012).
[Crossref] [PubMed]

C. H. Ho, G. J. Lin, P. H. Fu, C. A. Lin, P. C. Yang, K. Y. Lai, and J. H. He, “An efficient light-harvesting scheme using SiO2 nanorods for InGaN multiple quantum well solar cells,” Sol. Energy Mater. Sol. Cells 103, 194–198 (2012).
[Crossref]

C. H. Ho, D. H. Lien, H. C. Chang, C. A. Lin, C. F. Kang, M. K. Hsing, K. Y. Lai, and J. H. He, “Hierarchical structures consisting of SiO2 nanorods and p-GaN microdomes for efficiently harvesting solar energy for InGaN quantum well photovoltaic cells,” Nanoscale 4(23), 7346–7349 (2012).
[Crossref] [PubMed]

C. H. Ho, K. Y. Lai, C. A. Lin, G. J. Lin, M. K. Hsing, and J. H. He, “Microdome InGaN-based multiple quantum well solar cells,” Appl. Phys. Lett. 101(2), 023902 (2012).
[Crossref]

G. J. Lin, K. Y. Lai, C. A. Lin, Y. L. Lai, and J. H. He, “Efficiency enhancement of InGaN-based multiple quantum well solar cells employing antireflective ZnO nanorod arrays,” IEEE Electron Device Lett. 32(8), 1104–1106 (2011).
[Crossref]

K. Y. Lai, G. J. Lin, C.-Y. Chen, Y.-L. Lai, and J. H. He, “Origin of Hot Carriers in InGaN-Based Quantum-Well Solar Cells,” IEEE Electron Device Lett. 32(2), 179–181 (2011).
[Crossref]

K. Y. Lai, G. J. Lin, Y.-L. Lai, Y. F. Chen, and J. H. He, “Effect of indium fluctuation on the photovoltaic characteristics of InGaN/GaN multiple quantum well solar cells,” Appl. Phys. Lett. 96(8), 081103 (2010).
[Crossref]

K. Y. Lai, T. Paskova, V. D. Wheeler, J. A. Grenko, M. A. L. Johnson, D. W. Barlage, K. Udwary, E. A. Preble, and K. R. Evans, “Excitation current dependent cathodoluminescence study of InGaN/GaN quantum wells grown on m-plane and c-plane GaN substrates,” J. Appl. Phys. 106(11), 113104 (2009).
[Crossref]

Lai, Y. L.

P. H. Fu, G. J. Lin, C. H. Ho, C. A. Lin, C. F. Kang, Y. L. Lai, K. Y. Lai, and J. H. He, “Efficiency enhancement of InGaN multi-quantum-well solar cells via light-harvesting SiO2 nano-honeycombs,” Appl. Phys. Lett. 100(1), 013105 (2012).
[Crossref]

G. J. Lin, K. Y. Lai, C. A. Lin, Y. L. Lai, and J. H. He, “Efficiency enhancement of InGaN-based multiple quantum well solar cells employing antireflective ZnO nanorod arrays,” IEEE Electron Device Lett. 32(8), 1104–1106 (2011).
[Crossref]

Lai, Y.-L.

K. Y. Lai, G. J. Lin, C.-Y. Chen, Y.-L. Lai, and J. H. He, “Origin of Hot Carriers in InGaN-Based Quantum-Well Solar Cells,” IEEE Electron Device Lett. 32(2), 179–181 (2011).
[Crossref]

K. Y. Lai, G. J. Lin, Y.-L. Lai, Y. F. Chen, and J. H. He, “Effect of indium fluctuation on the photovoltaic characteristics of InGaN/GaN multiple quantum well solar cells,” Appl. Phys. Lett. 96(8), 081103 (2010).
[Crossref]

Lang, J. R.

J. R. Lang, C. J. Neufeld, C. A. Hurni, S. C. Cruz, E. Matioli, U. K. Mishra, and J. S. Speck, “High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH3-based molecular beam epitaxy,” Appl. Phys. Lett. 98(13), 131115 (2011).
[Crossref]

Lee, C.-M.

Y.-S. Lin, K.-J. Ma, C. Hsu, S.-W. Feng, Y.-C. Cheng, C.-C. Liao, C. C. Yang, C.-C. Chou, C.-M. Lee, and J.-I. Chyi, “Dependence of composition fluctuation on indium content in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 77(19), 2988–2990 (2000).
[Crossref]

Lee, J. H.

J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71(18), 2572–2574 (1997).
[Crossref]

Lee, M.-H.

Y.-J. Lee, M.-H. Lee, C.-M. Cheng, and C.-H. Yang, “Enhanced conversion efficiency of InGaN multiple quantum well solar cells grown on a patterned sapphire substrate,” Appl. Phys. Lett. 98(26), 263504 (2011).
[Crossref]

Lee, Y.-J.

Y.-J. Lee, M.-H. Lee, C.-M. Cheng, and C.-H. Yang, “Enhanced conversion efficiency of InGaN multiple quantum well solar cells grown on a patterned sapphire substrate,” Appl. Phys. Lett. 98(26), 263504 (2011).
[Crossref]

Li, C. K.

C. K. Li and Y. R. Wu, “Study on the current spreading effect and light extraction enhancement of vertical GaN/InGaN LEDs,” IEEE Trans. Electron. Dev. 59(2), 400–407 (2012).
[Crossref]

Li, J.

R. Dahal, B. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “InGaN/GaN multiple quantum well solar cells with long operating wavelengths,” Appl. Phys. Lett. 94(6), 063505 (2009).
[Crossref]

Liao, C.-C.

Y.-S. Lin, K.-J. Ma, C. Hsu, S.-W. Feng, Y.-C. Cheng, C.-C. Liao, C. C. Yang, C.-C. Chou, C.-M. Lee, and J.-I. Chyi, “Dependence of composition fluctuation on indium content in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 77(19), 2988–2990 (2000).
[Crossref]

Lien, D. H.

C. H. Ho, D. H. Lien, H. C. Chang, C. A. Lin, C. F. Kang, M. K. Hsing, K. Y. Lai, and J. H. He, “Hierarchical structures consisting of SiO2 nanorods and p-GaN microdomes for efficiently harvesting solar energy for InGaN quantum well photovoltaic cells,” Nanoscale 4(23), 7346–7349 (2012).
[Crossref] [PubMed]

Lin, C. A.

C. H. Ho, D. H. Lien, H. C. Chang, C. A. Lin, C. F. Kang, M. K. Hsing, K. Y. Lai, and J. H. He, “Hierarchical structures consisting of SiO2 nanorods and p-GaN microdomes for efficiently harvesting solar energy for InGaN quantum well photovoltaic cells,” Nanoscale 4(23), 7346–7349 (2012).
[Crossref] [PubMed]

C. H. Ho, K. Y. Lai, C. A. Lin, G. J. Lin, M. K. Hsing, and J. H. He, “Microdome InGaN-based multiple quantum well solar cells,” Appl. Phys. Lett. 101(2), 023902 (2012).
[Crossref]

C. H. Ho, G. J. Lin, P. H. Fu, C. A. Lin, P. C. Yang, K. Y. Lai, and J. H. He, “An efficient light-harvesting scheme using SiO2 nanorods for InGaN multiple quantum well solar cells,” Sol. Energy Mater. Sol. Cells 103, 194–198 (2012).
[Crossref]

P. H. Fu, G. J. Lin, C. H. Ho, C. A. Lin, C. F. Kang, Y. L. Lai, K. Y. Lai, and J. H. He, “Efficiency enhancement of InGaN multi-quantum-well solar cells via light-harvesting SiO2 nano-honeycombs,” Appl. Phys. Lett. 100(1), 013105 (2012).
[Crossref]

G. J. Lin, K. Y. Lai, C. A. Lin, and J. H. He, “Solar energy harvesting scheme using syringe-like ZnO nanorod arrays for InGaN/GaN multiple quantum well solar cells,” Opt. Lett. 37(1), 61–63 (2012).
[Crossref] [PubMed]

G. J. Lin, K. Y. Lai, C. A. Lin, Y. L. Lai, and J. H. He, “Efficiency enhancement of InGaN-based multiple quantum well solar cells employing antireflective ZnO nanorod arrays,” IEEE Electron Device Lett. 32(8), 1104–1106 (2011).
[Crossref]

Lin, G. J.

G. J. Lin, K. Y. Lai, C. A. Lin, and J. H. He, “Solar energy harvesting scheme using syringe-like ZnO nanorod arrays for InGaN/GaN multiple quantum well solar cells,” Opt. Lett. 37(1), 61–63 (2012).
[Crossref] [PubMed]

P. H. Fu, G. J. Lin, C. H. Ho, C. A. Lin, C. F. Kang, Y. L. Lai, K. Y. Lai, and J. H. He, “Efficiency enhancement of InGaN multi-quantum-well solar cells via light-harvesting SiO2 nano-honeycombs,” Appl. Phys. Lett. 100(1), 013105 (2012).
[Crossref]

C. H. Ho, G. J. Lin, P. H. Fu, C. A. Lin, P. C. Yang, K. Y. Lai, and J. H. He, “An efficient light-harvesting scheme using SiO2 nanorods for InGaN multiple quantum well solar cells,” Sol. Energy Mater. Sol. Cells 103, 194–198 (2012).
[Crossref]

C. H. Ho, K. Y. Lai, C. A. Lin, G. J. Lin, M. K. Hsing, and J. H. He, “Microdome InGaN-based multiple quantum well solar cells,” Appl. Phys. Lett. 101(2), 023902 (2012).
[Crossref]

G. J. Lin, K. Y. Lai, C. A. Lin, Y. L. Lai, and J. H. He, “Efficiency enhancement of InGaN-based multiple quantum well solar cells employing antireflective ZnO nanorod arrays,” IEEE Electron Device Lett. 32(8), 1104–1106 (2011).
[Crossref]

K. Y. Lai, G. J. Lin, C.-Y. Chen, Y.-L. Lai, and J. H. He, “Origin of Hot Carriers in InGaN-Based Quantum-Well Solar Cells,” IEEE Electron Device Lett. 32(2), 179–181 (2011).
[Crossref]

K. Y. Lai, G. J. Lin, Y.-L. Lai, Y. F. Chen, and J. H. He, “Effect of indium fluctuation on the photovoltaic characteristics of InGaN/GaN multiple quantum well solar cells,” Appl. Phys. Lett. 96(8), 081103 (2010).
[Crossref]

Lin, J. Y.

R. Dahal, B. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “InGaN/GaN multiple quantum well solar cells with long operating wavelengths,” Appl. Phys. Lett. 94(6), 063505 (2009).
[Crossref]

Lin, Y.-S.

Y.-S. Lin, K.-J. Ma, C. Hsu, S.-W. Feng, Y.-C. Cheng, C.-C. Liao, C. C. Yang, C.-C. Chou, C.-M. Lee, and J.-I. Chyi, “Dependence of composition fluctuation on indium content in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 77(19), 2988–2990 (2000).
[Crossref]

Lu, H.

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477–6482 (2003).
[Crossref]

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett. 80(21), 3967–3969 (2002).
[Crossref]

Ma, K.-J.

Y.-S. Lin, K.-J. Ma, C. Hsu, S.-W. Feng, Y.-C. Cheng, C.-C. Liao, C. C. Yang, C.-C. Chou, C.-M. Lee, and J.-I. Chyi, “Dependence of composition fluctuation on indium content in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 77(19), 2988–2990 (2000).
[Crossref]

Martin, R. W.

K. P. O’Donnell, R. W. Martin, and P. G. Middleton, “Origin of luminescence from InGaN diodes,” Phys. Rev. Lett. 82(1), 237–240 (1999).
[Crossref]

Matioli, E.

J. R. Lang, C. J. Neufeld, C. A. Hurni, S. C. Cruz, E. Matioli, U. K. Mishra, and J. S. Speck, “High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH3-based molecular beam epitaxy,” Appl. Phys. Lett. 98(13), 131115 (2011).
[Crossref]

Metzger, W. K.

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477–6482 (2003).
[Crossref]

Middleton, P. G.

K. P. O’Donnell, R. W. Martin, and P. G. Middleton, “Origin of luminescence from InGaN diodes,” Phys. Rev. Lett. 82(1), 237–240 (1999).
[Crossref]

Miller, D. A. B.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structures: the quantum-confined Stark effect,” Phys. Rev. Lett. 53(22), 2173–2176 (1984).
[Crossref]

Mishra, U. K.

J. R. Lang, C. J. Neufeld, C. A. Hurni, S. C. Cruz, E. Matioli, U. K. Mishra, and J. S. Speck, “High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH3-based molecular beam epitaxy,” Appl. Phys. Lett. 98(13), 131115 (2011).
[Crossref]

J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71(18), 2572–2574 (1997).
[Crossref]

Morita, Y.

Y. Kuwahara, T. Fujii, T. Sugiyama, D. Iida, Y. Isobe, Y. Fujiyama, Y. Morita, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Amano, “GaInN-based solar cells using strained-layer GaInN/GaInN superlattice active layer on a freestanding GaN substrate,” Appl. Phys. Express 4(2), 021001 (2011).
[Crossref]

Mueller, G. O.

Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett. 91(14), 141101 (2007).
[Crossref]

Mullins, J. T.

P. M. F. J. Costa, R. Datta, M. J. Kappers, M. E. Vickers, C. J. Humphreys, D. M. Graham, P. Dawson, M. J. Godfrey, E. J. Thrush, and J. T. Mullins, “Misfit dislocations in In-rich InGaN/GaN quantum well structures,” Phys. Status Solidi 203(7), 1729–1732 (2006).
[Crossref]

Munkholm, A.

Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett. 91(14), 141101 (2007).
[Crossref]

Muth, J. F.

J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71(18), 2572–2574 (1997).
[Crossref]

Nanishi, Y.

Y. Nanishi, Y. Saito, and T. Yamaguchi, “RF-molecular beam epitaxy growth and properties of InN and related alloys,” Jpn. J. Appl. Phys. 42(Part 1), 2549–2559 (2003).
[Crossref]

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett. 80(21), 3967–3969 (2002).
[Crossref]

Neufeld, C. J.

J. R. Lang, C. J. Neufeld, C. A. Hurni, S. C. Cruz, E. Matioli, U. K. Mishra, and J. S. Speck, “High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH3-based molecular beam epitaxy,” Appl. Phys. Lett. 98(13), 131115 (2011).
[Crossref]

O’Donnell, K. P.

K. P. O’Donnell, R. W. Martin, and P. G. Middleton, “Origin of luminescence from InGaN diodes,” Phys. Rev. Lett. 82(1), 237–240 (1999).
[Crossref]

Opila, R.

N. Faleev, B. Jampana, O. Jani, H. Yu, R. Opila, I. Ferguson, and C. Honsberg, “Correlation of crystalline defects with photoluminescence of InGaN layers,” Appl. Phys. Lett. 95(5), 051915 (2009).
[Crossref]

Pantha, B.

R. Dahal, B. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “InGaN/GaN multiple quantum well solar cells with long operating wavelengths,” Appl. Phys. Lett. 94(6), 063505 (2009).
[Crossref]

Paskova, T.

K. Y. Lai, T. Paskova, V. D. Wheeler, J. A. Grenko, M. A. L. Johnson, D. W. Barlage, K. Udwary, E. A. Preble, and K. R. Evans, “Excitation current dependent cathodoluminescence study of InGaN/GaN quantum wells grown on m-plane and c-plane GaN substrates,” J. Appl. Phys. 106(11), 113104 (2009).
[Crossref]

Preble, E. A.

K. Y. Lai, T. Paskova, V. D. Wheeler, J. A. Grenko, M. A. L. Johnson, D. W. Barlage, K. Udwary, E. A. Preble, and K. R. Evans, “Excitation current dependent cathodoluminescence study of InGaN/GaN quantum wells grown on m-plane and c-plane GaN substrates,” J. Appl. Phys. 106(11), 113104 (2009).
[Crossref]

Saito, Y.

Y. Nanishi, Y. Saito, and T. Yamaguchi, “RF-molecular beam epitaxy growth and properties of InN and related alloys,” Jpn. J. Appl. Phys. 42(Part 1), 2549–2559 (2003).
[Crossref]

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett. 80(21), 3967–3969 (2002).
[Crossref]

Schaff, W. J.

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477–6482 (2003).
[Crossref]

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett. 80(21), 3967–3969 (2002).
[Crossref]

Shan, W.

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477–6482 (2003).
[Crossref]

Shen, Y. C.

Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett. 91(14), 141101 (2007).
[Crossref]

Shivaraman, R.

T. J. Yang, R. Shivaraman, J. S. Speck, and Y. R. Wu, “The influence of random indium alloy fluctuations in indium gallium nitride quantum wells on the device behavior,” J. Appl. Phys. 116(11), 113104 (2014).
[Crossref]

Shmagin, I. K.

J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71(18), 2572–2574 (1997).
[Crossref]

Speck, J. S.

T. J. Yang, R. Shivaraman, J. S. Speck, and Y. R. Wu, “The influence of random indium alloy fluctuations in indium gallium nitride quantum wells on the device behavior,” J. Appl. Phys. 116(11), 113104 (2014).
[Crossref]

J. R. Lang, C. J. Neufeld, C. A. Hurni, S. C. Cruz, E. Matioli, U. K. Mishra, and J. S. Speck, “High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH3-based molecular beam epitaxy,” Appl. Phys. Lett. 98(13), 131115 (2011).
[Crossref]

Stringfellow, G. B.

I. Ho and G. B. Stringfellow, “Solid phase immiscibility in GaInN,” Appl. Phys. Lett. 69(18), 2701–2703 (1996).
[Crossref]

Sugiyama, T.

Y. Kuwahara, T. Fujii, T. Sugiyama, D. Iida, Y. Isobe, Y. Fujiyama, Y. Morita, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Amano, “GaInN-based solar cells using strained-layer GaInN/GaInN superlattice active layer on a freestanding GaN substrate,” Appl. Phys. Express 4(2), 021001 (2011).
[Crossref]

Takeuchi, S.

S. Takeuchi, H. Amano, and I. Akasaki, “Theoretical study of orientation dependence of piezoelectric effects in wurtzite strained GaInN/GaN heterostructures and quantum wells,” Jpn. J. Appl. Phys. 39(Part 1, No. 2A), 413–416 (2000).
[Crossref]

Takeuchi, T.

Y. Kuwahara, T. Fujii, T. Sugiyama, D. Iida, Y. Isobe, Y. Fujiyama, Y. Morita, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Amano, “GaInN-based solar cells using strained-layer GaInN/GaInN superlattice active layer on a freestanding GaN substrate,” Appl. Phys. Express 4(2), 021001 (2011).
[Crossref]

Thrush, E. J.

P. M. F. J. Costa, R. Datta, M. J. Kappers, M. E. Vickers, C. J. Humphreys, D. M. Graham, P. Dawson, M. J. Godfrey, E. J. Thrush, and J. T. Mullins, “Misfit dislocations in In-rich InGaN/GaN quantum well structures,” Phys. Status Solidi 203(7), 1729–1732 (2006).
[Crossref]

Udwary, K.

K. Y. Lai, T. Paskova, V. D. Wheeler, J. A. Grenko, M. A. L. Johnson, D. W. Barlage, K. Udwary, E. A. Preble, and K. R. Evans, “Excitation current dependent cathodoluminescence study of InGaN/GaN quantum wells grown on m-plane and c-plane GaN substrates,” J. Appl. Phys. 106(11), 113104 (2009).
[Crossref]

Vickers, M. E.

P. M. F. J. Costa, R. Datta, M. J. Kappers, M. E. Vickers, C. J. Humphreys, D. M. Graham, P. Dawson, M. J. Godfrey, E. J. Thrush, and J. T. Mullins, “Misfit dislocations in In-rich InGaN/GaN quantum well structures,” Phys. Status Solidi 203(7), 1729–1732 (2006).
[Crossref]

Walukiewicz, W.

G. F. Brown, J. W. Ager, W. Walukiewicz, and J. Wu, “Finite element simulations of compositionally graded InGaN solar cells,” Sol. Energy Mater. Sol. Cells 94(3), 478–483 (2010).
[Crossref]

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477–6482 (2003).
[Crossref]

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett. 80(21), 3967–3969 (2002).
[Crossref]

Watanabe, S.

Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett. 91(14), 141101 (2007).
[Crossref]

Wheeler, V. D.

K. Y. Lai, T. Paskova, V. D. Wheeler, J. A. Grenko, M. A. L. Johnson, D. W. Barlage, K. Udwary, E. A. Preble, and K. R. Evans, “Excitation current dependent cathodoluminescence study of InGaN/GaN quantum wells grown on m-plane and c-plane GaN substrates,” J. Appl. Phys. 106(11), 113104 (2009).
[Crossref]

Wiegmann, W.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structures: the quantum-confined Stark effect,” Phys. Rev. Lett. 53(22), 2173–2176 (1984).
[Crossref]

Wood, T. H.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structures: the quantum-confined Stark effect,” Phys. Rev. Lett. 53(22), 2173–2176 (1984).
[Crossref]

Wu, J.

G. F. Brown, J. W. Ager, W. Walukiewicz, and J. Wu, “Finite element simulations of compositionally graded InGaN solar cells,” Sol. Energy Mater. Sol. Cells 94(3), 478–483 (2010).
[Crossref]

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477–6482 (2003).
[Crossref]

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett. 80(21), 3967–3969 (2002).
[Crossref]

Wu, Y. R.

T. J. Yang, R. Shivaraman, J. S. Speck, and Y. R. Wu, “The influence of random indium alloy fluctuations in indium gallium nitride quantum wells on the device behavior,” J. Appl. Phys. 116(11), 113104 (2014).
[Crossref]

C. K. Li and Y. R. Wu, “Study on the current spreading effect and light extraction enhancement of vertical GaN/InGaN LEDs,” IEEE Trans. Electron. Dev. 59(2), 400–407 (2012).
[Crossref]

Yamaguchi, T.

Y. Nanishi, Y. Saito, and T. Yamaguchi, “RF-molecular beam epitaxy growth and properties of InN and related alloys,” Jpn. J. Appl. Phys. 42(Part 1), 2549–2559 (2003).
[Crossref]

Yang, C. C.

Y.-S. Lin, K.-J. Ma, C. Hsu, S.-W. Feng, Y.-C. Cheng, C.-C. Liao, C. C. Yang, C.-C. Chou, C.-M. Lee, and J.-I. Chyi, “Dependence of composition fluctuation on indium content in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 77(19), 2988–2990 (2000).
[Crossref]

Yang, C.-H.

Y.-J. Lee, M.-H. Lee, C.-M. Cheng, and C.-H. Yang, “Enhanced conversion efficiency of InGaN multiple quantum well solar cells grown on a patterned sapphire substrate,” Appl. Phys. Lett. 98(26), 263504 (2011).
[Crossref]

Yang, P. C.

C. H. Ho, G. J. Lin, P. H. Fu, C. A. Lin, P. C. Yang, K. Y. Lai, and J. H. He, “An efficient light-harvesting scheme using SiO2 nanorods for InGaN multiple quantum well solar cells,” Sol. Energy Mater. Sol. Cells 103, 194–198 (2012).
[Crossref]

Yang, T. J.

T. J. Yang, R. Shivaraman, J. S. Speck, and Y. R. Wu, “The influence of random indium alloy fluctuations in indium gallium nitride quantum wells on the device behavior,” J. Appl. Phys. 116(11), 113104 (2014).
[Crossref]

Yu, H.

N. Faleev, B. Jampana, O. Jani, H. Yu, R. Opila, I. Ferguson, and C. Honsberg, “Correlation of crystalline defects with photoluminescence of InGaN layers,” Appl. Phys. Lett. 95(5), 051915 (2009).
[Crossref]

Yu, K. M.

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477–6482 (2003).
[Crossref]

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett. 80(21), 3967–3969 (2002).
[Crossref]

Appl. Phys. Express (1)

Y. Kuwahara, T. Fujii, T. Sugiyama, D. Iida, Y. Isobe, Y. Fujiyama, Y. Morita, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Amano, “GaInN-based solar cells using strained-layer GaInN/GaInN superlattice active layer on a freestanding GaN substrate,” Appl. Phys. Express 4(2), 021001 (2011).
[Crossref]

Appl. Phys. Lett. (12)

P. H. Fu, G. J. Lin, C. H. Ho, C. A. Lin, C. F. Kang, Y. L. Lai, K. Y. Lai, and J. H. He, “Efficiency enhancement of InGaN multi-quantum-well solar cells via light-harvesting SiO2 nano-honeycombs,” Appl. Phys. Lett. 100(1), 013105 (2012).
[Crossref]

R. Dahal, B. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “InGaN/GaN multiple quantum well solar cells with long operating wavelengths,” Appl. Phys. Lett. 94(6), 063505 (2009).
[Crossref]

K. Y. Lai, G. J. Lin, Y.-L. Lai, Y. F. Chen, and J. H. He, “Effect of indium fluctuation on the photovoltaic characteristics of InGaN/GaN multiple quantum well solar cells,” Appl. Phys. Lett. 96(8), 081103 (2010).
[Crossref]

Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett. 91(14), 141101 (2007).
[Crossref]

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett. 80(21), 3967–3969 (2002).
[Crossref]

J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71(18), 2572–2574 (1997).
[Crossref]

C. H. Ho, K. Y. Lai, C. A. Lin, G. J. Lin, M. K. Hsing, and J. H. He, “Microdome InGaN-based multiple quantum well solar cells,” Appl. Phys. Lett. 101(2), 023902 (2012).
[Crossref]

Y.-S. Lin, K.-J. Ma, C. Hsu, S.-W. Feng, Y.-C. Cheng, C.-C. Liao, C. C. Yang, C.-C. Chou, C.-M. Lee, and J.-I. Chyi, “Dependence of composition fluctuation on indium content in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 77(19), 2988–2990 (2000).
[Crossref]

I. Ho and G. B. Stringfellow, “Solid phase immiscibility in GaInN,” Appl. Phys. Lett. 69(18), 2701–2703 (1996).
[Crossref]

N. Faleev, B. Jampana, O. Jani, H. Yu, R. Opila, I. Ferguson, and C. Honsberg, “Correlation of crystalline defects with photoluminescence of InGaN layers,” Appl. Phys. Lett. 95(5), 051915 (2009).
[Crossref]

Y.-J. Lee, M.-H. Lee, C.-M. Cheng, and C.-H. Yang, “Enhanced conversion efficiency of InGaN multiple quantum well solar cells grown on a patterned sapphire substrate,” Appl. Phys. Lett. 98(26), 263504 (2011).
[Crossref]

J. R. Lang, C. J. Neufeld, C. A. Hurni, S. C. Cruz, E. Matioli, U. K. Mishra, and J. S. Speck, “High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH3-based molecular beam epitaxy,” Appl. Phys. Lett. 98(13), 131115 (2011).
[Crossref]

IEEE Electron Device Lett. (2)

K. Y. Lai, G. J. Lin, C.-Y. Chen, Y.-L. Lai, and J. H. He, “Origin of Hot Carriers in InGaN-Based Quantum-Well Solar Cells,” IEEE Electron Device Lett. 32(2), 179–181 (2011).
[Crossref]

G. J. Lin, K. Y. Lai, C. A. Lin, Y. L. Lai, and J. H. He, “Efficiency enhancement of InGaN-based multiple quantum well solar cells employing antireflective ZnO nanorod arrays,” IEEE Electron Device Lett. 32(8), 1104–1106 (2011).
[Crossref]

IEEE Trans. Electron. Dev. (1)

C. K. Li and Y. R. Wu, “Study on the current spreading effect and light extraction enhancement of vertical GaN/InGaN LEDs,” IEEE Trans. Electron. Dev. 59(2), 400–407 (2012).
[Crossref]

J. Appl. Phys. (4)

T. J. Yang, R. Shivaraman, J. S. Speck, and Y. R. Wu, “The influence of random indium alloy fluctuations in indium gallium nitride quantum wells on the device behavior,” J. Appl. Phys. 116(11), 113104 (2014).
[Crossref]

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477–6482 (2003).
[Crossref]

K. W. J. Barnham and G. Duggan, “A new approach to high‐efficiency multi‐band‐gap solar cells,” J. Appl. Phys. 67(7), 3490–3493 (1990).
[Crossref]

K. Y. Lai, T. Paskova, V. D. Wheeler, J. A. Grenko, M. A. L. Johnson, D. W. Barlage, K. Udwary, E. A. Preble, and K. R. Evans, “Excitation current dependent cathodoluminescence study of InGaN/GaN quantum wells grown on m-plane and c-plane GaN substrates,” J. Appl. Phys. 106(11), 113104 (2009).
[Crossref]

Jpn. J. Appl. Phys. (2)

S. Takeuchi, H. Amano, and I. Akasaki, “Theoretical study of orientation dependence of piezoelectric effects in wurtzite strained GaInN/GaN heterostructures and quantum wells,” Jpn. J. Appl. Phys. 39(Part 1, No. 2A), 413–416 (2000).
[Crossref]

Y. Nanishi, Y. Saito, and T. Yamaguchi, “RF-molecular beam epitaxy growth and properties of InN and related alloys,” Jpn. J. Appl. Phys. 42(Part 1), 2549–2559 (2003).
[Crossref]

Nanoscale (1)

C. H. Ho, D. H. Lien, H. C. Chang, C. A. Lin, C. F. Kang, M. K. Hsing, K. Y. Lai, and J. H. He, “Hierarchical structures consisting of SiO2 nanorods and p-GaN microdomes for efficiently harvesting solar energy for InGaN quantum well photovoltaic cells,” Nanoscale 4(23), 7346–7349 (2012).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Rev. Lett. (2)

K. P. O’Donnell, R. W. Martin, and P. G. Middleton, “Origin of luminescence from InGaN diodes,” Phys. Rev. Lett. 82(1), 237–240 (1999).
[Crossref]

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structures: the quantum-confined Stark effect,” Phys. Rev. Lett. 53(22), 2173–2176 (1984).
[Crossref]

Phys. Status Solidi (2)

F. Bernardini and V. Fiorentini, “Spontaneous versus piezoelectric polarization in III–V nitrides: conceptual aspects and practical consequences,” Phys. Status Solidi 216(1), 391–398 (1999).
[Crossref]

P. M. F. J. Costa, R. Datta, M. J. Kappers, M. E. Vickers, C. J. Humphreys, D. M. Graham, P. Dawson, M. J. Godfrey, E. J. Thrush, and J. T. Mullins, “Misfit dislocations in In-rich InGaN/GaN quantum well structures,” Phys. Status Solidi 203(7), 1729–1732 (2006).
[Crossref]

Sol. Energy Mater. Sol. Cells (2)

C. H. Ho, G. J. Lin, P. H. Fu, C. A. Lin, P. C. Yang, K. Y. Lai, and J. H. He, “An efficient light-harvesting scheme using SiO2 nanorods for InGaN multiple quantum well solar cells,” Sol. Energy Mater. Sol. Cells 103, 194–198 (2012).
[Crossref]

G. F. Brown, J. W. Ager, W. Walukiewicz, and J. Wu, “Finite element simulations of compositionally graded InGaN solar cells,” Sol. Energy Mater. Sol. Cells 94(3), 478–483 (2010).
[Crossref]

Other (2)

B. G. Streetman and S. K. Banerjee, Solid State Electronic Devices, 6th edition (Prentice-Hall, 2006).

M. Christian, J. F. Muth, E. A. Preble, and D. Hanser, “Temperature and dislocation density effects on the thermal conductivity of bulk gallium nitride,” Mater. Res. Soc. Symp. Proc. 892, 0892–FF29–05.1 (2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) PL spectra of the MQWs with 15% and 25% indium at the incident power density of 5 W/m2. (b) PL peak wavelengths as a function of driving current for the MQWs with 15% and 25% indium.

Fig. 2
Fig. 2

Normalized PL spectra at the power densities from 5 W/m2 to 25 W/m2 for the MQW solar cells with the indium compositions of (a) 15%; (b) 25%.

Fig. 3
Fig. 3

(a) EQE spectra of the two MQW solar cells with the incident power density at λ = 380 nm fixed at 5 W/m2. (b) J-V curves under AM 1.5G for the solar cells with 15% and 25% indium compositions.

Fig. 4
Fig. 4

The measured EQEs at λ = 380 nm as a function of incident power density for the two MQW solar cells.

Fig. 5
Fig. 5

Simulated EQE curves at λ = 380 nm as a function of incident power density for the MQW solar cells with 15% and 25% indium.

Tables (1)

Tables Icon

Table 1 The device characteristics determined from Fig. 3(b).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

d n d t = G A n B n 2 C n 3 E
dn dt GB n 2 E

Metrics