Abstract

To bridge the gap between theoretically predicted and experimentally demonstrated efficiencies of solar thermophotovoltaics (STPVs), we consider the impact of spectral non-idealities on the efficiency and the optimal design of STPVs over a range of PV bandgaps (0.45-0.80 eV) and optical concentrations (1-3,000x). On the emitter side, we show that suppressing or recycling sub-bandgap radiation is critical. On the absorber side, the relative importance of high solar absorptance versus low thermal emittance depends on the energy balance. Both results are well-described using dimensionless parameters weighting the relative power density above and below the cutoff wavelength. This framework can be used as a guide for materials selection and targeted spectral engineering in STPVs.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Superlattice photonic crystal as broadband solar absorber for high temperature operation

Veronika Rinnerbauer, Yichen Shen, John D. Joannopoulos, Marin Soljačić, Friedrich Schäffler, and Ivan Celanovic
Opt. Express 22(S7) A1895-A1906 (2014)

Performance analysis of experimentally viable photonic crystal enhanced thermophotovoltaic systems

Yi Xiang Yeng, Walker R. Chan, Veronika Rinnerbauer, John D. Joannopoulos, Marin Soljačić, and Ivan Celanovic
Opt. Express 21(S6) A1035-A1051 (2013)

Solar thermophotovoltaic system using nanostructures

Craig Ungaro, Stephen K. Gray, and Mool C. Gupta
Opt. Express 23(19) A1149-A1156 (2015)

References

  • View by:
  • |
  • |
  • |

  1. N.-P. Harder and P. Würfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol. 18(5), 151–156 (2003).
    [Crossref]
  2. A. Datas and C. Algora, “Development and experimental evaluation of a complete solar thermophotovoltaic system,” Prog. Photovolt. Res. Appl. 21, 1025–1039 (2013).
  3. A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
    [Crossref] [PubMed]
  4. V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Eng. Mater.4, (2014).
  5. P. Bermel, J. Lee, J. D. Joannopoulos, I. Celanovic, and M. Soljacic, “Selective solar absorbers,” Annu. Rev. Heat Transfer 15(15), 231–254 (2012).
    [Crossref]
  6. V. Rinnerbauer, S. Ndao, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Recent developments in high-temperature photonic crystals for energy conversion,” Energy Environ. Sci. 5(10), 8815–8823 (2012).
    [Crossref]
  7. V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21(9), 11482–11491 (2013).
    [Crossref] [PubMed]
  8. V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljacic, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 011802 (2013).
    [Crossref]
  9. K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat Commun 4, 2630 (2013).
    [Crossref] [PubMed]
  10. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
    [Crossref]
  11. M. Röger, C. Rickers, R. Uhlig, F. Neumann, and C. Polenzky, “Infrared-reflective coating on fused silica for a solar high-temperature receiver,” J. Sol. Energ. 131(2), 021004 (2009).
    [Crossref]
  12. T. D. Rahmlow, D. M. DePoy, P. M. Fourspring, H. Ehsani, J. E. Lazo-Wasem, and E. J. Gratrix, “Development of front surface, spectral control filters with greater temperature stability for thermophotovoltaic energy conversion,” AIP Conf. Proc. 890, 59–67 (2007).
    [Crossref]
  13. P. M. Fourspring, D. M. DePoy, T. D. Rahmlow, J. E. Lazo-Wasem, and E. J. Gratrix, “Optical coatings for thermophotovoltaic spectral control,” Appl. Opt. 45(7), 1356–1358 (2006).
    [Crossref] [PubMed]
  14. J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, E. N. Wang, and S.-G. Kim, “Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications,” Opt. Express 22(S1Suppl 1), A144–A154 (2014).
    [Crossref] [PubMed]
  15. J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S.-G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mats., (2014).
  16. Y. X. Yeng, J. B. Chou, V. Rinnerbauer, Y. Shen, S.-G. Kim, J. D. Joannopoulos, M. Soljacic, and I. Čelanović, “Global optimization of omnidirectional wavelength selective emitters/absorbers based on dielectric-filled anti-reflection coated two-dimensional metallic photonic crystals,” Opt. Express 22(18), 21711–21718 (2014).
    [Crossref]
  17. P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(S3Suppl 3), A314–A334 (2010).
    [Crossref] [PubMed]
  18. Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energy Mater. 122, 287–296 (2014).
    [Crossref]
  19. E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the shockley-queisser limit,” Opt. Express 17(17), 15145–15159 (2009).
    [Crossref] [PubMed]
  20. C. Wu, I. Burton Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
    [Crossref]
  21. R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer (Hemisphere Pub. Corp., 1981).
  22. M. F. Modest, Radiative Heat Transfer (Academic Press, 2013).
  23. S. V. Boriskina and G. Chen, “Exceeding the solar cell shockley–queisser limit via thermal up-conversion of low-energy photons,” Opt. Commun. 314, 71–78 (2014).
    [Crossref]
  24. D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
    [Crossref] [PubMed]
  25. G. Chen, “Theoretical efficiency of solar thermoelectric energy generators,” J. Appl. Phys. 109(10), 104908 (2011).
    [Crossref]
  26. M. Telkes, “Solar thermoelectric generators,” J. Appl. Phys. 25(6), 765–777 (1954).
    [Crossref]
  27. P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljacic, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6(1), 549 (2011).
    [Crossref] [PubMed]

2014 (5)

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, E. N. Wang, and S.-G. Kim, “Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications,” Opt. Express 22(S1Suppl 1), A144–A154 (2014).
[Crossref] [PubMed]

Y. X. Yeng, J. B. Chou, V. Rinnerbauer, Y. Shen, S.-G. Kim, J. D. Joannopoulos, M. Soljacic, and I. Čelanović, “Global optimization of omnidirectional wavelength selective emitters/absorbers based on dielectric-filled anti-reflection coated two-dimensional metallic photonic crystals,” Opt. Express 22(18), 21711–21718 (2014).
[Crossref]

S. V. Boriskina and G. Chen, “Exceeding the solar cell shockley–queisser limit via thermal up-conversion of low-energy photons,” Opt. Commun. 314, 71–78 (2014).
[Crossref]

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energy Mater. 122, 287–296 (2014).
[Crossref]

2013 (4)

A. Datas and C. Algora, “Development and experimental evaluation of a complete solar thermophotovoltaic system,” Prog. Photovolt. Res. Appl. 21, 1025–1039 (2013).

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21(9), 11482–11491 (2013).
[Crossref] [PubMed]

V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljacic, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 011802 (2013).
[Crossref]

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat Commun 4, 2630 (2013).
[Crossref] [PubMed]

2012 (3)

P. Bermel, J. Lee, J. D. Joannopoulos, I. Celanovic, and M. Soljacic, “Selective solar absorbers,” Annu. Rev. Heat Transfer 15(15), 231–254 (2012).
[Crossref]

V. Rinnerbauer, S. Ndao, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Recent developments in high-temperature photonic crystals for energy conversion,” Energy Environ. Sci. 5(10), 8815–8823 (2012).
[Crossref]

C. Wu, I. Burton Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

2011 (3)

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljacic, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6(1), 549 (2011).
[Crossref] [PubMed]

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref] [PubMed]

G. Chen, “Theoretical efficiency of solar thermoelectric energy generators,” J. Appl. Phys. 109(10), 104908 (2011).
[Crossref]

2010 (1)

2009 (2)

M. Röger, C. Rickers, R. Uhlig, F. Neumann, and C. Polenzky, “Infrared-reflective coating on fused silica for a solar high-temperature receiver,” J. Sol. Energ. 131(2), 021004 (2009).
[Crossref]

E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the shockley-queisser limit,” Opt. Express 17(17), 15145–15159 (2009).
[Crossref] [PubMed]

2007 (1)

T. D. Rahmlow, D. M. DePoy, P. M. Fourspring, H. Ehsani, J. E. Lazo-Wasem, and E. J. Gratrix, “Development of front surface, spectral control filters with greater temperature stability for thermophotovoltaic energy conversion,” AIP Conf. Proc. 890, 59–67 (2007).
[Crossref]

2006 (1)

2003 (1)

N.-P. Harder and P. Würfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol. 18(5), 151–156 (2003).
[Crossref]

1961 (1)

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

1954 (1)

M. Telkes, “Solar thermoelectric generators,” J. Appl. Phys. 25(6), 765–777 (1954).
[Crossref]

Abelson, J. R.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat Commun 4, 2630 (2013).
[Crossref] [PubMed]

Algora, C.

A. Datas and C. Algora, “Development and experimental evaluation of a complete solar thermophotovoltaic system,” Prog. Photovolt. Res. Appl. 21, 1025–1039 (2013).

Araghchini, M.

Arpin, K. A.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat Commun 4, 2630 (2013).
[Crossref] [PubMed]

Bermel, P.

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energy Mater. 122, 287–296 (2014).
[Crossref]

P. Bermel, J. Lee, J. D. Joannopoulos, I. Celanovic, and M. Soljacic, “Selective solar absorbers,” Annu. Rev. Heat Transfer 15(15), 231–254 (2012).
[Crossref]

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljacic, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6(1), 549 (2011).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(S3Suppl 3), A314–A334 (2010).
[Crossref] [PubMed]

Bierman, D. M.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Eng. Mater.4, (2014).

Boriskina, S. V.

S. V. Boriskina and G. Chen, “Exceeding the solar cell shockley–queisser limit via thermal up-conversion of low-energy photons,” Opt. Commun. 314, 71–78 (2014).
[Crossref]

Braun, P. V.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat Commun 4, 2630 (2013).
[Crossref] [PubMed]

Burton Neuner, I.

C. Wu, I. Burton Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

Caylor, J. C.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref] [PubMed]

Celanovic, I.

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energy Mater. 122, 287–296 (2014).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, E. N. Wang, and S.-G. Kim, “Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications,” Opt. Express 22(S1Suppl 1), A144–A154 (2014).
[Crossref] [PubMed]

Y. X. Yeng, J. B. Chou, V. Rinnerbauer, Y. Shen, S.-G. Kim, J. D. Joannopoulos, M. Soljacic, and I. Čelanović, “Global optimization of omnidirectional wavelength selective emitters/absorbers based on dielectric-filled anti-reflection coated two-dimensional metallic photonic crystals,” Opt. Express 22(18), 21711–21718 (2014).
[Crossref]

V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljacic, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 011802 (2013).
[Crossref]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21(9), 11482–11491 (2013).
[Crossref] [PubMed]

V. Rinnerbauer, S. Ndao, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Recent developments in high-temperature photonic crystals for energy conversion,” Energy Environ. Sci. 5(10), 8815–8823 (2012).
[Crossref]

P. Bermel, J. Lee, J. D. Joannopoulos, I. Celanovic, and M. Soljacic, “Selective solar absorbers,” Annu. Rev. Heat Transfer 15(15), 231–254 (2012).
[Crossref]

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljacic, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6(1), 549 (2011).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(S3Suppl 3), A314–A334 (2010).
[Crossref] [PubMed]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Eng. Mater.4, (2014).

Chan, W.

Chan, W. R.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21(9), 11482–11491 (2013).
[Crossref] [PubMed]

V. Rinnerbauer, S. Ndao, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Recent developments in high-temperature photonic crystals for energy conversion,” Energy Environ. Sci. 5(10), 8815–8823 (2012).
[Crossref]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Eng. Mater.4, (2014).

Chen, G.

S. V. Boriskina and G. Chen, “Exceeding the solar cell shockley–queisser limit via thermal up-conversion of low-energy photons,” Opt. Commun. 314, 71–78 (2014).
[Crossref]

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref] [PubMed]

G. Chen, “Theoretical efficiency of solar thermoelectric energy generators,” J. Appl. Phys. 109(10), 104908 (2011).
[Crossref]

Chiesa, M.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref] [PubMed]

Chou, J. B.

Cloud, A. N.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat Commun 4, 2630 (2013).
[Crossref] [PubMed]

Datas, A.

A. Datas and C. Algora, “Development and experimental evaluation of a complete solar thermophotovoltaic system,” Prog. Photovolt. Res. Appl. 21, 1025–1039 (2013).

DePoy, D. M.

T. D. Rahmlow, D. M. DePoy, P. M. Fourspring, H. Ehsani, J. E. Lazo-Wasem, and E. J. Gratrix, “Development of front surface, spectral control filters with greater temperature stability for thermophotovoltaic energy conversion,” AIP Conf. Proc. 890, 59–67 (2007).
[Crossref]

P. M. Fourspring, D. M. DePoy, T. D. Rahmlow, J. E. Lazo-Wasem, and E. J. Gratrix, “Optical coatings for thermophotovoltaic spectral control,” Appl. Opt. 45(7), 1356–1358 (2006).
[Crossref] [PubMed]

Ehsani, H.

T. D. Rahmlow, D. M. DePoy, P. M. Fourspring, H. Ehsani, J. E. Lazo-Wasem, and E. J. Gratrix, “Development of front surface, spectral control filters with greater temperature stability for thermophotovoltaic energy conversion,” AIP Conf. Proc. 890, 59–67 (2007).
[Crossref]

Fan, S.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat Commun 4, 2630 (2013).
[Crossref] [PubMed]

E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the shockley-queisser limit,” Opt. Express 17(17), 15145–15159 (2009).
[Crossref] [PubMed]

Feng, H.-P.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref] [PubMed]

Fourspring, P. M.

T. D. Rahmlow, D. M. DePoy, P. M. Fourspring, H. Ehsani, J. E. Lazo-Wasem, and E. J. Gratrix, “Development of front surface, spectral control filters with greater temperature stability for thermophotovoltaic energy conversion,” AIP Conf. Proc. 890, 59–67 (2007).
[Crossref]

P. M. Fourspring, D. M. DePoy, T. D. Rahmlow, J. E. Lazo-Wasem, and E. J. Gratrix, “Optical coatings for thermophotovoltaic spectral control,” Appl. Opt. 45(7), 1356–1358 (2006).
[Crossref] [PubMed]

Geil, R. D.

V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljacic, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 011802 (2013).
[Crossref]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Eng. Mater.4, (2014).

Ghebrebrhan, M.

Girolami, G. S.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat Commun 4, 2630 (2013).
[Crossref] [PubMed]

Gratrix, E. J.

T. D. Rahmlow, D. M. DePoy, P. M. Fourspring, H. Ehsani, J. E. Lazo-Wasem, and E. J. Gratrix, “Development of front surface, spectral control filters with greater temperature stability for thermophotovoltaic energy conversion,” AIP Conf. Proc. 890, 59–67 (2007).
[Crossref]

P. M. Fourspring, D. M. DePoy, T. D. Rahmlow, J. E. Lazo-Wasem, and E. J. Gratrix, “Optical coatings for thermophotovoltaic spectral control,” Appl. Opt. 45(7), 1356–1358 (2006).
[Crossref] [PubMed]

Hamam, R.

Harder, N.-P.

N.-P. Harder and P. Würfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol. 18(5), 151–156 (2003).
[Crossref]

Harradon, M.

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljacic, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6(1), 549 (2011).
[Crossref] [PubMed]

Jensen, K. F.

V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljacic, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 011802 (2013).
[Crossref]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(S3Suppl 3), A314–A334 (2010).
[Crossref] [PubMed]

Joannopoulos, J. D.

Y. X. Yeng, J. B. Chou, V. Rinnerbauer, Y. Shen, S.-G. Kim, J. D. Joannopoulos, M. Soljacic, and I. Čelanović, “Global optimization of omnidirectional wavelength selective emitters/absorbers based on dielectric-filled anti-reflection coated two-dimensional metallic photonic crystals,” Opt. Express 22(18), 21711–21718 (2014).
[Crossref]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21(9), 11482–11491 (2013).
[Crossref] [PubMed]

V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljacic, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 011802 (2013).
[Crossref]

V. Rinnerbauer, S. Ndao, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Recent developments in high-temperature photonic crystals for energy conversion,” Energy Environ. Sci. 5(10), 8815–8823 (2012).
[Crossref]

P. Bermel, J. Lee, J. D. Joannopoulos, I. Celanovic, and M. Soljacic, “Selective solar absorbers,” Annu. Rev. Heat Transfer 15(15), 231–254 (2012).
[Crossref]

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljacic, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6(1), 549 (2011).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(S3Suppl 3), A314–A334 (2010).
[Crossref] [PubMed]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Eng. Mater.4, (2014).

John, J.

C. Wu, I. Burton Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

Johnson, S. G.

Kalanyan, B.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat Commun 4, 2630 (2013).
[Crossref] [PubMed]

Kim, S.-G.

Kraemer, D.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref] [PubMed]

Lazo-Wasem, J. E.

T. D. Rahmlow, D. M. DePoy, P. M. Fourspring, H. Ehsani, J. E. Lazo-Wasem, and E. J. Gratrix, “Development of front surface, spectral control filters with greater temperature stability for thermophotovoltaic energy conversion,” AIP Conf. Proc. 890, 59–67 (2007).
[Crossref]

P. M. Fourspring, D. M. DePoy, T. D. Rahmlow, J. E. Lazo-Wasem, and E. J. Gratrix, “Optical coatings for thermophotovoltaic spectral control,” Appl. Opt. 45(7), 1356–1358 (2006).
[Crossref] [PubMed]

Lee, J.

P. Bermel, J. Lee, J. D. Joannopoulos, I. Celanovic, and M. Soljacic, “Selective solar absorbers,” Annu. Rev. Heat Transfer 15(15), 231–254 (2012).
[Crossref]

Lenert, A.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energy Mater. 122, 287–296 (2014).
[Crossref]

J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, E. N. Wang, and S.-G. Kim, “Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications,” Opt. Express 22(S1Suppl 1), A144–A154 (2014).
[Crossref] [PubMed]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Eng. Mater.4, (2014).

Losego, M. D.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat Commun 4, 2630 (2013).
[Crossref] [PubMed]

Ma, Y.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref] [PubMed]

Mallek, J.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat Commun 4, 2630 (2013).
[Crossref] [PubMed]

Marton, C. H.

McEnaney, K.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref] [PubMed]

Milder, A.

C. Wu, I. Burton Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

Muto, A.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref] [PubMed]

Nam, Y.

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energy Mater. 122, 287–296 (2014).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Ndao, S.

V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljacic, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 011802 (2013).
[Crossref]

V. Rinnerbauer, S. Ndao, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Recent developments in high-temperature photonic crystals for energy conversion,” Energy Environ. Sci. 5(10), 8815–8823 (2012).
[Crossref]

Neumann, F.

M. Röger, C. Rickers, R. Uhlig, F. Neumann, and C. Polenzky, “Infrared-reflective coating on fused silica for a solar high-temperature receiver,” J. Sol. Energ. 131(2), 021004 (2009).
[Crossref]

Ning, H.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat Commun 4, 2630 (2013).
[Crossref] [PubMed]

Parsons, G. N.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat Commun 4, 2630 (2013).
[Crossref] [PubMed]

Polenzky, C.

M. Röger, C. Rickers, R. Uhlig, F. Neumann, and C. Polenzky, “Infrared-reflective coating on fused silica for a solar high-temperature receiver,” J. Sol. Energ. 131(2), 021004 (2009).
[Crossref]

Poudel, B.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref] [PubMed]

Queisser, H. J.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

Rahmlow, T. D.

T. D. Rahmlow, D. M. DePoy, P. M. Fourspring, H. Ehsani, J. E. Lazo-Wasem, and E. J. Gratrix, “Development of front surface, spectral control filters with greater temperature stability for thermophotovoltaic energy conversion,” AIP Conf. Proc. 890, 59–67 (2007).
[Crossref]

P. M. Fourspring, D. M. DePoy, T. D. Rahmlow, J. E. Lazo-Wasem, and E. J. Gratrix, “Optical coatings for thermophotovoltaic spectral control,” Appl. Opt. 45(7), 1356–1358 (2006).
[Crossref] [PubMed]

Ren, Z.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref] [PubMed]

Rephaeli, E.

Rickers, C.

M. Röger, C. Rickers, R. Uhlig, F. Neumann, and C. Polenzky, “Infrared-reflective coating on fused silica for a solar high-temperature receiver,” J. Sol. Energ. 131(2), 021004 (2009).
[Crossref]

Rinnerbauer, V.

J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, E. N. Wang, and S.-G. Kim, “Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications,” Opt. Express 22(S1Suppl 1), A144–A154 (2014).
[Crossref] [PubMed]

Y. X. Yeng, J. B. Chou, V. Rinnerbauer, Y. Shen, S.-G. Kim, J. D. Joannopoulos, M. Soljacic, and I. Čelanović, “Global optimization of omnidirectional wavelength selective emitters/absorbers based on dielectric-filled anti-reflection coated two-dimensional metallic photonic crystals,” Opt. Express 22(18), 21711–21718 (2014).
[Crossref]

V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljacic, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 011802 (2013).
[Crossref]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21(9), 11482–11491 (2013).
[Crossref] [PubMed]

V. Rinnerbauer, S. Ndao, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Recent developments in high-temperature photonic crystals for energy conversion,” Energy Environ. Sci. 5(10), 8815–8823 (2012).
[Crossref]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Eng. Mater.4, (2014).

Röger, M.

M. Röger, C. Rickers, R. Uhlig, F. Neumann, and C. Polenzky, “Infrared-reflective coating on fused silica for a solar high-temperature receiver,” J. Sol. Energ. 131(2), 021004 (2009).
[Crossref]

Savoy, S.

C. Wu, I. Burton Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

Senkevich, J. J.

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21(9), 11482–11491 (2013).
[Crossref] [PubMed]

V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljacic, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 011802 (2013).
[Crossref]

V. Rinnerbauer, S. Ndao, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Recent developments in high-temperature photonic crystals for energy conversion,” Energy Environ. Sci. 5(10), 8815–8823 (2012).
[Crossref]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Eng. Mater.4, (2014).

Sergeant, N. P.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat Commun 4, 2630 (2013).
[Crossref] [PubMed]

Shen, Y.

Shockley, W.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

Shvets, G.

C. Wu, I. Burton Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

Soljacic, M.

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energy Mater. 122, 287–296 (2014).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, E. N. Wang, and S.-G. Kim, “Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications,” Opt. Express 22(S1Suppl 1), A144–A154 (2014).
[Crossref] [PubMed]

Y. X. Yeng, J. B. Chou, V. Rinnerbauer, Y. Shen, S.-G. Kim, J. D. Joannopoulos, M. Soljacic, and I. Čelanović, “Global optimization of omnidirectional wavelength selective emitters/absorbers based on dielectric-filled anti-reflection coated two-dimensional metallic photonic crystals,” Opt. Express 22(18), 21711–21718 (2014).
[Crossref]

V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljacic, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 011802 (2013).
[Crossref]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21(9), 11482–11491 (2013).
[Crossref] [PubMed]

V. Rinnerbauer, S. Ndao, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Recent developments in high-temperature photonic crystals for energy conversion,” Energy Environ. Sci. 5(10), 8815–8823 (2012).
[Crossref]

P. Bermel, J. Lee, J. D. Joannopoulos, I. Celanovic, and M. Soljacic, “Selective solar absorbers,” Annu. Rev. Heat Transfer 15(15), 231–254 (2012).
[Crossref]

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljacic, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6(1), 549 (2011).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(S3Suppl 3), A314–A334 (2010).
[Crossref] [PubMed]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Eng. Mater.4, (2014).

Telkes, M.

M. Telkes, “Solar thermoelectric generators,” J. Appl. Phys. 25(6), 765–777 (1954).
[Crossref]

Uhlig, R.

M. Röger, C. Rickers, R. Uhlig, F. Neumann, and C. Polenzky, “Infrared-reflective coating on fused silica for a solar high-temperature receiver,” J. Sol. Energ. 131(2), 021004 (2009).
[Crossref]

Wang, D.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref] [PubMed]

Wang, E. N.

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energy Mater. 122, 287–296 (2014).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, E. N. Wang, and S.-G. Kim, “Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications,” Opt. Express 22(S1Suppl 1), A144–A154 (2014).
[Crossref] [PubMed]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Eng. Mater.4, (2014).

Wang, X.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref] [PubMed]

Wu, C.

C. Wu, I. Burton Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

Würfel, P.

N.-P. Harder and P. Würfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol. 18(5), 151–156 (2003).
[Crossref]

Xiang Yeng, Y.

V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljacic, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 011802 (2013).
[Crossref]

Yan, X.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref] [PubMed]

Yeng, Y. X.

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energy Mater. 122, 287–296 (2014).
[Crossref]

J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, E. N. Wang, and S.-G. Kim, “Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications,” Opt. Express 22(S1Suppl 1), A144–A154 (2014).
[Crossref] [PubMed]

Y. X. Yeng, J. B. Chou, V. Rinnerbauer, Y. Shen, S.-G. Kim, J. D. Joannopoulos, M. Soljacic, and I. Čelanović, “Global optimization of omnidirectional wavelength selective emitters/absorbers based on dielectric-filled anti-reflection coated two-dimensional metallic photonic crystals,” Opt. Express 22(18), 21711–21718 (2014).
[Crossref]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21(9), 11482–11491 (2013).
[Crossref] [PubMed]

V. Rinnerbauer, S. Ndao, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Recent developments in high-temperature photonic crystals for energy conversion,” Energy Environ. Sci. 5(10), 8815–8823 (2012).
[Crossref]

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljacic, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6(1), 549 (2011).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(S3Suppl 3), A314–A334 (2010).
[Crossref] [PubMed]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Eng. Mater.4, (2014).

Yu, B.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref] [PubMed]

Yu, Z.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat Commun 4, 2630 (2013).
[Crossref] [PubMed]

Zhu, L.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat Commun 4, 2630 (2013).
[Crossref] [PubMed]

Zollars, B.

C. Wu, I. Burton Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

AIP Conf. Proc. (1)

T. D. Rahmlow, D. M. DePoy, P. M. Fourspring, H. Ehsani, J. E. Lazo-Wasem, and E. J. Gratrix, “Development of front surface, spectral control filters with greater temperature stability for thermophotovoltaic energy conversion,” AIP Conf. Proc. 890, 59–67 (2007).
[Crossref]

Annu. Rev. Heat Transfer (1)

P. Bermel, J. Lee, J. D. Joannopoulos, I. Celanovic, and M. Soljacic, “Selective solar absorbers,” Annu. Rev. Heat Transfer 15(15), 231–254 (2012).
[Crossref]

Appl. Opt. (1)

Energy Environ. Sci. (1)

V. Rinnerbauer, S. Ndao, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Recent developments in high-temperature photonic crystals for energy conversion,” Energy Environ. Sci. 5(10), 8815–8823 (2012).
[Crossref]

J. Appl. Phys. (3)

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

G. Chen, “Theoretical efficiency of solar thermoelectric energy generators,” J. Appl. Phys. 109(10), 104908 (2011).
[Crossref]

M. Telkes, “Solar thermoelectric generators,” J. Appl. Phys. 25(6), 765–777 (1954).
[Crossref]

J. Opt. (1)

C. Wu, I. Burton Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

J. Sol. Energ. (1)

M. Röger, C. Rickers, R. Uhlig, F. Neumann, and C. Polenzky, “Infrared-reflective coating on fused silica for a solar high-temperature receiver,” J. Sol. Energ. 131(2), 021004 (2009).
[Crossref]

J. Vac. Sci. Technol. B (1)

V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljacic, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 011802 (2013).
[Crossref]

Nanoscale Res. Lett. (1)

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljacic, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6(1), 549 (2011).
[Crossref] [PubMed]

Nat Commun (1)

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat Commun 4, 2630 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Opt. Commun. (1)

S. V. Boriskina and G. Chen, “Exceeding the solar cell shockley–queisser limit via thermal up-conversion of low-energy photons,” Opt. Commun. 314, 71–78 (2014).
[Crossref]

Opt. Express (5)

Prog. Photovolt. Res. Appl. (1)

A. Datas and C. Algora, “Development and experimental evaluation of a complete solar thermophotovoltaic system,” Prog. Photovolt. Res. Appl. 21, 1025–1039 (2013).

Semicond. Sci. Technol. (1)

N.-P. Harder and P. Würfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol. 18(5), 151–156 (2003).
[Crossref]

Sol. Energy Mater. (1)

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energy Mater. 122, 287–296 (2014).
[Crossref]

Other (4)

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S.-G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mats., (2014).

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Eng. Mater.4, (2014).

R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer (Hemisphere Pub. Corp., 1981).

M. F. Modest, Radiative Heat Transfer (Academic Press, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Generalized spectral non-idealities: deviations from unity emittance at wavelengths below the cutoff (δh ) and from zero emittance above the cutoff (δl ) on both the absorber (a) and the emitter (e) side. The following spectral fluxes are shown for reference: AM 1.5D with 40x concentration (gray) and blackbody emission at 1300 K (light red).

Fig. 2
Fig. 2

Schematic of a planar STPV device and its components. The window and the absorber are grouped together as “absorber-side”. The emitter and the filter are grouped together as “emitter-side”. The model accounts for parasitic losses from the inactive area and the mechanical supports.

Fig. 3
Fig. 3

Optimized STPV efficiency in the presence of (a) 0.10 and (b) 0.01 non-idealities (δ). Design space covers a range of bandgaps and optical concentrations. Each operating point corresponds to a specific absorber-side cutoff [Fig. 4], absorber-emitter temperature [Fig. 5], and emitter-to-absorber area ratio [Fig. 6]. Arrow points to region where the STPV efficiency exceeds the PV efficiency (same cell as in STPV) as delineated by the dash-dot line.

Fig. 4
Fig. 4

Optimal absorber-side cutoff wavelength (λc ) for an STPV with (a) 0.10 and (b) 0.01 non-idealities. Dash-dot line [see Fig. 3] delineates the region where STPV efficiency exceeds the PV efficiency. (c) and (d) λc plotted as energy (Ec ) relative to the PV bandgap energy (Eg ), corresponding to (a) and (b) respectively. Thick black contours represent the median cutoff wavelength for each cluster from Appendix A with the corresponding 10/90 percentile of each cluster [see Fig. 13] shown with thin contours. Note: the emitter-side cutoff is set to the bandgap energy.

Fig. 5
Fig. 5

Optimal temperature of the absorber-emitter for an STPV with (a) 0.10 non-idealities, compared to an STPV with (b) 0.01 non-idealities. Dash-dot line [see Fig. 3] delineates the region where STPV efficiency exceeds the PV efficiency. Thin contours represent the 10/90 percentile of each λc cluster [see Fig. 4].

Fig. 6
Fig. 6

Geometrical optimization of the size of emitter with respect to the absorber (AR): (a) Emitter is smaller than the absorber (AR<1), (b) Emitter is larger than the absorber (AR>1).

Fig. 7
Fig. 7

Optimal absorber-emitter geometry (emitter-to-absorber size, AR) for an STPV with (a) 0.10 non-idealities, compared to an STPV with (b) 0.01 non-idealities. Dash-dot line [see Fig. 3] delineates the region where STPV efficiency exceeds the PV efficiency. Thin contours represent the 10/90 percentile of each λc cluster [see Fig. 4].

Fig. 8
Fig. 8

The impact of independently increasing the emitter-side emittance below λg (blue) as compared to decreasing the emittance above λg (red), schematically shown in (a), on the STPV efficiency (b). δ = 0.10 is the baseline case.

Fig. 9
Fig. 9

Emitter-side weighting parameter We for an STPV with (a) 0.10 compared to (b) 0.01 non-idealities.

Fig. 10
Fig. 10

The impact of independently increasing the absorber-side solar absorptance (blue) as compared to decreasing the thermal emittance (red), schematically shown in (a), on the STPV efficiency (b). The baseline case has uniform spectral non-idealities (δ = 0.10).

Fig. 11
Fig. 11

Absorber-side weighting parameter for an STPV with (c) 0.10 compared to (d) 0.01 non-idealities. Thin contours represent the 10/90 percentile of each λc cluster [see Fig. 4].

Fig. 12
Fig. 12

Optimization of the absorber-side cutoff wavelength. Net spectral flux (a) integrated up to a wavelength of interest (b). Optimal cutoff wavelength shown.

Fig. 13
Fig. 13

Grouping of absorber-side cut-off wavelengths. Histogram of optimal cutoff wavelengths corresponding to Fig. 3 for (a) 0.10 and (b) 0.01 non-ideality cases. (c) AM 1.5D spectral flux (gray) with the median cutoff wavelength (solid black) for each cluster and its corresponding 10/90 percentile (dashed lines).

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

σ ( T a e 4 T a m b 4 ) ( ε ¯ a A a + ε ¯ e A e + ε ¯ n a e f f | A e A a | ) + Q p a r a s i t i c = α ¯ a A a c G s
ε ¯ n a e f f = [ 1 δ l + 1 ( 1 0.96 ) 1 ] 1
p u = 0 λ g ε λ e b λ λ λ g d λ
e b λ = 2 π h c 2 λ 5 ( e h c / λ k b T 1 )
v = V o c V g = k b T P V E g ln ( f 0 λ g R λ , e d λ 0 λ g R λ , P V d λ )
m = z m 2 ( 1 + z m e z m ) ( z m + ln ( 1 + z m ) )
z m + ln ( 1 + z m ) = q V o c k b T P V
W e = e λ > λ g e λ < λ g
W a = σ ( T a e 4 T a m b 4 ) c G s
W a = σ ( T a e 4 T a m b 4 ) c G s = α ¯ a b s ε ¯ a b s + ε ¯ e m i t A R + p a r a s i t i c
0 λ ( H λ ' Q λ ' ) d λ '
C 1 ( 0 λ H λ ' Q λ ' d λ ' ) + C 2
C 1 = 1 δ l a δ h a C 2 = δ l a [ c G s σ ( T a e 4 T a m b 4 ) ]

Metrics