Abstract

In this study, we report a novel monolithically integrated GaN-based light-emitting diode (LED) with metal-oxide-semiconductor field-effect transistor (MOSFET). Without additionally introducing complicated epitaxial structures for transistors, the MOSFET is directly fabricated on the exposed n-type GaN layer of the LED after dry etching, and serially connected to the LED through standard semiconductor-manufacturing technologies. Such monolithically integrated LED/MOSFET device is able to circumvent undesirable issues that might be faced by other kinds of integration schemes by growing a transistor on an LED or vice versa. For the performances of resulting device, our monolithically integrated LED/MOSFET device exhibits good characteristics in the modulation of gate voltage and good capability of driving injected current, which are essential for the important applications such as smart lighting, interconnection, and optical communication.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Monolithic integration of GaN-based phototransistors and light-emitting diodes

Pinghui S. Yeh, Yu-Chieh Chiu, Tsung-Che Wu, Yan-Xiang Chen, Tzu-Hsun Wang, and Tzu-Chieh Chou
Opt. Express 27(21) 29854-29862 (2019)

GaN-based light-emitting diodes with graphene/indium tin oxide transparent layer

Wei-Chih Lai, Chih-Nan Lin, Yi-Chun Lai, Peichen Yu, Gou Chung Chi, and Shoou-Jinn Chang
Opt. Express 22(S2) A396-A401 (2014)

Performance of GaN-based light-emitting diodes fabricated using GaN epilayers grown on silicon substrates

Ray-Hua Horng, Bing-Rui Wu, Ching-Ho Tien, Sin-Liang Ou, Min-Hao Yang, Hao-Chung Kuo, and Dong-Sing Wuu
Opt. Express 22(S1) A179-A187 (2014)

References

  • View by:
  • |
  • |
  • |

  1. R. G. Hunsperger, Integrated Optics, Theory and Technology (Springer, 1995).
  2. I. Polentier, L. Buydens, A. Ackaert, P. Demeester, P. van Daele, F. Depestel, D. Lootens, and R. Baets, “Monolithic integration of an InGaAs/GaAs/AlGaAs strained layer SQW LED and GaAs MESFET using epitaxial lift-off,” Electron. Lett. 26(13), 925 (1990).
    [Crossref]
  3. M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93(1), 362–367 (2003).
    [Crossref]
  4. J.-W. Shi, H.-Y. Huang, J.-K. Sheu, S.-H. Hsieh, Y.-S. Wu, F.-H. Ja-Yu Lu, F.-H. Huang, and W.-C. Lai, “Nitride-based photodiode at 510-nm wavelength for plastic optical fiber communication,” IEEE Photon. Technol. Lett. 18(1), 283–285 (2006).
    [Crossref]
  5. K. Chilukuri, M. J. Mori, C. L. Dohrman, and E. A. Fitzgerald, “Monolithic CMOS-compatible AlGaInP visible LED arrays on silicon on lattice-engineered substrates (SOLES),” Semicond. Sci. Technol. 22(2), 29–34 (2007).
    [Crossref]
  6. Y. J. Lee, P. C. Lin, T. C. Lu, H. C. Kuo, and S. C. Wang, “Dichromatic InGaN-based white light emitting diodes by using laser lift-off and wafer-bonding schemes,” Appl. Phys. Lett. 90(16), 161115 (2007).
    [Crossref]
  7. Z. J. Liu, K. M. Wong, C. W. Keung, C. W. Tang, and K. M. Lau, “Monolithic LED microdisplay on active matrix substrate using flip-chip technology,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1298–1302 (2009).
    [Crossref]
  8. H. P. T. Nguyen, S. Zhang, K. Cui, X. Han, S. Fathololoumi, M. Couillard, G. A. Botton, and Z. Mi, “p-Type modulation doped InGaN/GaN dot-in-a-wire white-light-emitting diodes monolithically grown on Si(111),” Nano Lett. 11(5), 1919–1924 (2011).
    [Crossref] [PubMed]
  9. F. G. Kalaitzakis, E. Iliopoulos, G. Konstantinidis, and N. T. Pelekanos, “Monolithic integration of nitride-based transistor with Light Emitting Diode for sensing applications,” Microelectron. Eng. 90, 33–36 (2012).
    [Crossref]
  10. Z. Li, J. Waldron, T. Detchprohm, C. Wetzel, R. F. Karlicek, and T. P. Chow, “Monolithic integration of light-emitting diodes and power metal-oxide-semiconductor channel high-electron-mobility transistors for light-emitting power integrated circuits in GaN on sapphire substrate,” Appl. Phys. Lett. 102(19), 192107 (2013).
    [Crossref]
  11. Z. Liu, J. Ma, T. Huang, C. Liu, and K. M. Lau, “Selective epitaxial growth of monolithically integrated GaN-based light emitting diodes with AlGaN/GaN driving transistors,” Appl. Phys. Lett. 104, 09103 (2014).
  12. Z. J. Liu, T. Huang, J. Ma, C. Liu, and K. M. Lau, “Monolithic Integration of AlGaN/GaN HEMT on LED by MOCVD,” IEEE Electron Device Lett. 35(3), 330–332 (2014).
    [Crossref]
  13. Y.-F. Wu, B. P. Keller, S. Keller, D. Kapolnek, P. Kozodoy, S. P. Denbaars, and U. K. Mishra, “Very high breakdown voltage and large transconductance realized on GaN heterojunction field effect transistors,” Appl. Phys. Lett. 69(10), 1438 (1996).
    [Crossref]
  14. Y. Dora, A. Chakraborty, L. McCarthy, S. Keller, S. P. Denbaars, and U. K. Mishra, “High breakdown voltage achieved on AlGaN/GaN HEMTs with integrated slant field plates,” IEEE Electron Device Lett. 27(9), 713–715 (2006).
    [Crossref]
  15. S. T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, J. W. Palmour, L. T. Kehias, and T. J. Jenkins, “High-power microwave GaN/AlGaN HEMT’s on semi-insulating silicon carbide substrates,” IEEE Electron Device Lett. 20(4), 161–163 (1999).
    [Crossref]
  16. O. I. Saadat, J. W. Chung, E. L. Piner, and T. Palacios, “Gate-first AlGaN/GaN HEMT technology for high-frequency applications,” IEEE Electron Device Lett. 30(12), 1254–1256 (2009).
    [Crossref]
  17. A. G. Holmes-Siedle, “Gallium nitride, a valuable semiconductor,” Nature 252, 434–444 (1974).
  18. J. J. D. McKendry, D. Massoubre, S. Zhang, B. R. Rae, R. P. Green, E. Gu, R. K. Henderson, A. E. Kelly, and M. D. Dlwson, “Visible-light communications using a CMOS-controlled micro-light- emitting-diode array,” J. Lightwave Technol. 30(1), 61–67 (2012).
    [Crossref]
  19. E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
    [Crossref] [PubMed]
  20. K. Hazu and S. F. Chichibu, “Optical polarization properties of m-plane AlxGa1-xN epitaxial films grown on m-plane freestanding GaN substrates toward nonpolar ultraviolet LEDs,” Opt. Express 19(S4), A1008–A1021 (2011).
    [Crossref] [PubMed]
  21. Y. J. Lee, H. C. Kuo, T. C. Lu, and S. C. Wang, “High light-extraction GaN-based vertical LEDs with double diffuse surfaces,” IEEE J. Quantum Electron. 42(12), 1196–1201 (2006).
    [Crossref]
  22. T. Wei, Q. Kong, J. Wang, J. Li, Y. Zeng, G. Wang, J. Li, Y. Liao, and F. Yi, “Improving light extraction of InGaN-based light emitting diodes with a roughened p-GaN surface using CsCl nano-islands,” Opt. Express 19(2), 1065–1071 (2011).
    [Crossref] [PubMed]
  23. C. Y. Huang, Y. C. Yao, Y. J. Lee, T. Y. Lin, W. J. Kao, J. Shang Hwang, Y. J. Yang, and J. L. Shen, “Local nanotip arrays sculptured by atomic force microscopy to enhance the light-output efficiency of GaN-based light-emitting diode structures,” Nanotechnology 25(19), 195401 (2014).
    [Crossref] [PubMed]
  24. J. K. Sheu, Y. K. Su, G. C. Chi, P. L. Koh, M. J. Jou, C. M. Chang, C. C. Liu, and W. C. Hung, “High-transparency Ni/Au ohmic contact to p-type GaN,” Appl. Phys. Lett. 74(16), 2340 (1999).
    [Crossref]
  25. R. H. Horng, C. C. Yang, J. Y. Wu, S. H. Huang, C. E. Lee, and D. S. Wuu, “GaN-based light-emitting diodes with indium tin oxide texturing window layers using natural lithography,” Appl. Phys. Lett. 86(22), 221101 (2005).
    [Crossref]

2014 (3)

Z. Liu, J. Ma, T. Huang, C. Liu, and K. M. Lau, “Selective epitaxial growth of monolithically integrated GaN-based light emitting diodes with AlGaN/GaN driving transistors,” Appl. Phys. Lett. 104, 09103 (2014).

Z. J. Liu, T. Huang, J. Ma, C. Liu, and K. M. Lau, “Monolithic Integration of AlGaN/GaN HEMT on LED by MOCVD,” IEEE Electron Device Lett. 35(3), 330–332 (2014).
[Crossref]

C. Y. Huang, Y. C. Yao, Y. J. Lee, T. Y. Lin, W. J. Kao, J. Shang Hwang, Y. J. Yang, and J. L. Shen, “Local nanotip arrays sculptured by atomic force microscopy to enhance the light-output efficiency of GaN-based light-emitting diode structures,” Nanotechnology 25(19), 195401 (2014).
[Crossref] [PubMed]

2013 (1)

Z. Li, J. Waldron, T. Detchprohm, C. Wetzel, R. F. Karlicek, and T. P. Chow, “Monolithic integration of light-emitting diodes and power metal-oxide-semiconductor channel high-electron-mobility transistors for light-emitting power integrated circuits in GaN on sapphire substrate,” Appl. Phys. Lett. 102(19), 192107 (2013).
[Crossref]

2012 (2)

J. J. D. McKendry, D. Massoubre, S. Zhang, B. R. Rae, R. P. Green, E. Gu, R. K. Henderson, A. E. Kelly, and M. D. Dlwson, “Visible-light communications using a CMOS-controlled micro-light- emitting-diode array,” J. Lightwave Technol. 30(1), 61–67 (2012).
[Crossref]

F. G. Kalaitzakis, E. Iliopoulos, G. Konstantinidis, and N. T. Pelekanos, “Monolithic integration of nitride-based transistor with Light Emitting Diode for sensing applications,” Microelectron. Eng. 90, 33–36 (2012).
[Crossref]

2011 (3)

2009 (2)

Z. J. Liu, K. M. Wong, C. W. Keung, C. W. Tang, and K. M. Lau, “Monolithic LED microdisplay on active matrix substrate using flip-chip technology,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1298–1302 (2009).
[Crossref]

O. I. Saadat, J. W. Chung, E. L. Piner, and T. Palacios, “Gate-first AlGaN/GaN HEMT technology for high-frequency applications,” IEEE Electron Device Lett. 30(12), 1254–1256 (2009).
[Crossref]

2007 (2)

K. Chilukuri, M. J. Mori, C. L. Dohrman, and E. A. Fitzgerald, “Monolithic CMOS-compatible AlGaInP visible LED arrays on silicon on lattice-engineered substrates (SOLES),” Semicond. Sci. Technol. 22(2), 29–34 (2007).
[Crossref]

Y. J. Lee, P. C. Lin, T. C. Lu, H. C. Kuo, and S. C. Wang, “Dichromatic InGaN-based white light emitting diodes by using laser lift-off and wafer-bonding schemes,” Appl. Phys. Lett. 90(16), 161115 (2007).
[Crossref]

2006 (3)

J.-W. Shi, H.-Y. Huang, J.-K. Sheu, S.-H. Hsieh, Y.-S. Wu, F.-H. Ja-Yu Lu, F.-H. Huang, and W.-C. Lai, “Nitride-based photodiode at 510-nm wavelength for plastic optical fiber communication,” IEEE Photon. Technol. Lett. 18(1), 283–285 (2006).
[Crossref]

Y. Dora, A. Chakraborty, L. McCarthy, S. Keller, S. P. Denbaars, and U. K. Mishra, “High breakdown voltage achieved on AlGaN/GaN HEMTs with integrated slant field plates,” IEEE Electron Device Lett. 27(9), 713–715 (2006).
[Crossref]

Y. J. Lee, H. C. Kuo, T. C. Lu, and S. C. Wang, “High light-extraction GaN-based vertical LEDs with double diffuse surfaces,” IEEE J. Quantum Electron. 42(12), 1196–1201 (2006).
[Crossref]

2005 (2)

R. H. Horng, C. C. Yang, J. Y. Wu, S. H. Huang, C. E. Lee, and D. S. Wuu, “GaN-based light-emitting diodes with indium tin oxide texturing window layers using natural lithography,” Appl. Phys. Lett. 86(22), 221101 (2005).
[Crossref]

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
[Crossref] [PubMed]

2003 (1)

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93(1), 362–367 (2003).
[Crossref]

1999 (2)

S. T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, J. W. Palmour, L. T. Kehias, and T. J. Jenkins, “High-power microwave GaN/AlGaN HEMT’s on semi-insulating silicon carbide substrates,” IEEE Electron Device Lett. 20(4), 161–163 (1999).
[Crossref]

J. K. Sheu, Y. K. Su, G. C. Chi, P. L. Koh, M. J. Jou, C. M. Chang, C. C. Liu, and W. C. Hung, “High-transparency Ni/Au ohmic contact to p-type GaN,” Appl. Phys. Lett. 74(16), 2340 (1999).
[Crossref]

1996 (1)

Y.-F. Wu, B. P. Keller, S. Keller, D. Kapolnek, P. Kozodoy, S. P. Denbaars, and U. K. Mishra, “Very high breakdown voltage and large transconductance realized on GaN heterojunction field effect transistors,” Appl. Phys. Lett. 69(10), 1438 (1996).
[Crossref]

1990 (1)

I. Polentier, L. Buydens, A. Ackaert, P. Demeester, P. van Daele, F. Depestel, D. Lootens, and R. Baets, “Monolithic integration of an InGaAs/GaAs/AlGaAs strained layer SQW LED and GaAs MESFET using epitaxial lift-off,” Electron. Lett. 26(13), 925 (1990).
[Crossref]

1974 (1)

A. G. Holmes-Siedle, “Gallium nitride, a valuable semiconductor,” Nature 252, 434–444 (1974).

Ackaert, A.

I. Polentier, L. Buydens, A. Ackaert, P. Demeester, P. van Daele, F. Depestel, D. Lootens, and R. Baets, “Monolithic integration of an InGaAs/GaAs/AlGaAs strained layer SQW LED and GaAs MESFET using epitaxial lift-off,” Electron. Lett. 26(13), 925 (1990).
[Crossref]

Allen, S. T.

S. T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, J. W. Palmour, L. T. Kehias, and T. J. Jenkins, “High-power microwave GaN/AlGaN HEMT’s on semi-insulating silicon carbide substrates,” IEEE Electron Device Lett. 20(4), 161–163 (1999).
[Crossref]

Baets, R.

I. Polentier, L. Buydens, A. Ackaert, P. Demeester, P. van Daele, F. Depestel, D. Lootens, and R. Baets, “Monolithic integration of an InGaAs/GaAs/AlGaAs strained layer SQW LED and GaAs MESFET using epitaxial lift-off,” Electron. Lett. 26(13), 925 (1990).
[Crossref]

Botton, G. A.

H. P. T. Nguyen, S. Zhang, K. Cui, X. Han, S. Fathololoumi, M. Couillard, G. A. Botton, and Z. Mi, “p-Type modulation doped InGaN/GaN dot-in-a-wire white-light-emitting diodes monolithically grown on Si(111),” Nano Lett. 11(5), 1919–1924 (2011).
[Crossref] [PubMed]

Buydens, L.

I. Polentier, L. Buydens, A. Ackaert, P. Demeester, P. van Daele, F. Depestel, D. Lootens, and R. Baets, “Monolithic integration of an InGaAs/GaAs/AlGaAs strained layer SQW LED and GaAs MESFET using epitaxial lift-off,” Electron. Lett. 26(13), 925 (1990).
[Crossref]

Chakraborty, A.

Y. Dora, A. Chakraborty, L. McCarthy, S. Keller, S. P. Denbaars, and U. K. Mishra, “High breakdown voltage achieved on AlGaN/GaN HEMTs with integrated slant field plates,” IEEE Electron Device Lett. 27(9), 713–715 (2006).
[Crossref]

Chang, C. M.

J. K. Sheu, Y. K. Su, G. C. Chi, P. L. Koh, M. J. Jou, C. M. Chang, C. C. Liu, and W. C. Hung, “High-transparency Ni/Au ohmic contact to p-type GaN,” Appl. Phys. Lett. 74(16), 2340 (1999).
[Crossref]

Chi, G. C.

J. K. Sheu, Y. K. Su, G. C. Chi, P. L. Koh, M. J. Jou, C. M. Chang, C. C. Liu, and W. C. Hung, “High-transparency Ni/Au ohmic contact to p-type GaN,” Appl. Phys. Lett. 74(16), 2340 (1999).
[Crossref]

Chichibu, S. F.

Chilukuri, K.

K. Chilukuri, M. J. Mori, C. L. Dohrman, and E. A. Fitzgerald, “Monolithic CMOS-compatible AlGaInP visible LED arrays on silicon on lattice-engineered substrates (SOLES),” Semicond. Sci. Technol. 22(2), 29–34 (2007).
[Crossref]

Chow, T. P.

Z. Li, J. Waldron, T. Detchprohm, C. Wetzel, R. F. Karlicek, and T. P. Chow, “Monolithic integration of light-emitting diodes and power metal-oxide-semiconductor channel high-electron-mobility transistors for light-emitting power integrated circuits in GaN on sapphire substrate,” Appl. Phys. Lett. 102(19), 192107 (2013).
[Crossref]

Chung, J. W.

O. I. Saadat, J. W. Chung, E. L. Piner, and T. Palacios, “Gate-first AlGaN/GaN HEMT technology for high-frequency applications,” IEEE Electron Device Lett. 30(12), 1254–1256 (2009).
[Crossref]

Couillard, M.

H. P. T. Nguyen, S. Zhang, K. Cui, X. Han, S. Fathololoumi, M. Couillard, G. A. Botton, and Z. Mi, “p-Type modulation doped InGaN/GaN dot-in-a-wire white-light-emitting diodes monolithically grown on Si(111),” Nano Lett. 11(5), 1919–1924 (2011).
[Crossref] [PubMed]

Cui, K.

H. P. T. Nguyen, S. Zhang, K. Cui, X. Han, S. Fathololoumi, M. Couillard, G. A. Botton, and Z. Mi, “p-Type modulation doped InGaN/GaN dot-in-a-wire white-light-emitting diodes monolithically grown on Si(111),” Nano Lett. 11(5), 1919–1924 (2011).
[Crossref] [PubMed]

Demeester, P.

I. Polentier, L. Buydens, A. Ackaert, P. Demeester, P. van Daele, F. Depestel, D. Lootens, and R. Baets, “Monolithic integration of an InGaAs/GaAs/AlGaAs strained layer SQW LED and GaAs MESFET using epitaxial lift-off,” Electron. Lett. 26(13), 925 (1990).
[Crossref]

Denbaars, S. P.

Y. Dora, A. Chakraborty, L. McCarthy, S. Keller, S. P. Denbaars, and U. K. Mishra, “High breakdown voltage achieved on AlGaN/GaN HEMTs with integrated slant field plates,” IEEE Electron Device Lett. 27(9), 713–715 (2006).
[Crossref]

Y.-F. Wu, B. P. Keller, S. Keller, D. Kapolnek, P. Kozodoy, S. P. Denbaars, and U. K. Mishra, “Very high breakdown voltage and large transconductance realized on GaN heterojunction field effect transistors,” Appl. Phys. Lett. 69(10), 1438 (1996).
[Crossref]

Depestel, F.

I. Polentier, L. Buydens, A. Ackaert, P. Demeester, P. van Daele, F. Depestel, D. Lootens, and R. Baets, “Monolithic integration of an InGaAs/GaAs/AlGaAs strained layer SQW LED and GaAs MESFET using epitaxial lift-off,” Electron. Lett. 26(13), 925 (1990).
[Crossref]

Detchprohm, T.

Z. Li, J. Waldron, T. Detchprohm, C. Wetzel, R. F. Karlicek, and T. P. Chow, “Monolithic integration of light-emitting diodes and power metal-oxide-semiconductor channel high-electron-mobility transistors for light-emitting power integrated circuits in GaN on sapphire substrate,” Appl. Phys. Lett. 102(19), 192107 (2013).
[Crossref]

Dlwson, M. D.

Dohrman, C. L.

K. Chilukuri, M. J. Mori, C. L. Dohrman, and E. A. Fitzgerald, “Monolithic CMOS-compatible AlGaInP visible LED arrays on silicon on lattice-engineered substrates (SOLES),” Semicond. Sci. Technol. 22(2), 29–34 (2007).
[Crossref]

Dora, Y.

Y. Dora, A. Chakraborty, L. McCarthy, S. Keller, S. P. Denbaars, and U. K. Mishra, “High breakdown voltage achieved on AlGaN/GaN HEMTs with integrated slant field plates,” IEEE Electron Device Lett. 27(9), 713–715 (2006).
[Crossref]

Doverspike, K.

S. T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, J. W. Palmour, L. T. Kehias, and T. J. Jenkins, “High-power microwave GaN/AlGaN HEMT’s on semi-insulating silicon carbide substrates,” IEEE Electron Device Lett. 20(4), 161–163 (1999).
[Crossref]

Fathololoumi, S.

H. P. T. Nguyen, S. Zhang, K. Cui, X. Han, S. Fathololoumi, M. Couillard, G. A. Botton, and Z. Mi, “p-Type modulation doped InGaN/GaN dot-in-a-wire white-light-emitting diodes monolithically grown on Si(111),” Nano Lett. 11(5), 1919–1924 (2011).
[Crossref] [PubMed]

Fitzgerald, E. A.

K. Chilukuri, M. J. Mori, C. L. Dohrman, and E. A. Fitzgerald, “Monolithic CMOS-compatible AlGaInP visible LED arrays on silicon on lattice-engineered substrates (SOLES),” Semicond. Sci. Technol. 22(2), 29–34 (2007).
[Crossref]

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93(1), 362–367 (2003).
[Crossref]

Green, R. P.

Groenert, M. E.

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93(1), 362–367 (2003).
[Crossref]

Gu, E.

Han, X.

H. P. T. Nguyen, S. Zhang, K. Cui, X. Han, S. Fathololoumi, M. Couillard, G. A. Botton, and Z. Mi, “p-Type modulation doped InGaN/GaN dot-in-a-wire white-light-emitting diodes monolithically grown on Si(111),” Nano Lett. 11(5), 1919–1924 (2011).
[Crossref] [PubMed]

Hazu, K.

Henderson, R. K.

Holmes-Siedle, A. G.

A. G. Holmes-Siedle, “Gallium nitride, a valuable semiconductor,” Nature 252, 434–444 (1974).

Horng, R. H.

R. H. Horng, C. C. Yang, J. Y. Wu, S. H. Huang, C. E. Lee, and D. S. Wuu, “GaN-based light-emitting diodes with indium tin oxide texturing window layers using natural lithography,” Appl. Phys. Lett. 86(22), 221101 (2005).
[Crossref]

Hsieh, S.-H.

J.-W. Shi, H.-Y. Huang, J.-K. Sheu, S.-H. Hsieh, Y.-S. Wu, F.-H. Ja-Yu Lu, F.-H. Huang, and W.-C. Lai, “Nitride-based photodiode at 510-nm wavelength for plastic optical fiber communication,” IEEE Photon. Technol. Lett. 18(1), 283–285 (2006).
[Crossref]

Huang, C. Y.

C. Y. Huang, Y. C. Yao, Y. J. Lee, T. Y. Lin, W. J. Kao, J. Shang Hwang, Y. J. Yang, and J. L. Shen, “Local nanotip arrays sculptured by atomic force microscopy to enhance the light-output efficiency of GaN-based light-emitting diode structures,” Nanotechnology 25(19), 195401 (2014).
[Crossref] [PubMed]

Huang, F.-H.

J.-W. Shi, H.-Y. Huang, J.-K. Sheu, S.-H. Hsieh, Y.-S. Wu, F.-H. Ja-Yu Lu, F.-H. Huang, and W.-C. Lai, “Nitride-based photodiode at 510-nm wavelength for plastic optical fiber communication,” IEEE Photon. Technol. Lett. 18(1), 283–285 (2006).
[Crossref]

Huang, H.-Y.

J.-W. Shi, H.-Y. Huang, J.-K. Sheu, S.-H. Hsieh, Y.-S. Wu, F.-H. Ja-Yu Lu, F.-H. Huang, and W.-C. Lai, “Nitride-based photodiode at 510-nm wavelength for plastic optical fiber communication,” IEEE Photon. Technol. Lett. 18(1), 283–285 (2006).
[Crossref]

Huang, S. H.

R. H. Horng, C. C. Yang, J. Y. Wu, S. H. Huang, C. E. Lee, and D. S. Wuu, “GaN-based light-emitting diodes with indium tin oxide texturing window layers using natural lithography,” Appl. Phys. Lett. 86(22), 221101 (2005).
[Crossref]

Huang, T.

Z. Liu, J. Ma, T. Huang, C. Liu, and K. M. Lau, “Selective epitaxial growth of monolithically integrated GaN-based light emitting diodes with AlGaN/GaN driving transistors,” Appl. Phys. Lett. 104, 09103 (2014).

Z. J. Liu, T. Huang, J. Ma, C. Liu, and K. M. Lau, “Monolithic Integration of AlGaN/GaN HEMT on LED by MOCVD,” IEEE Electron Device Lett. 35(3), 330–332 (2014).
[Crossref]

Hung, W. C.

J. K. Sheu, Y. K. Su, G. C. Chi, P. L. Koh, M. J. Jou, C. M. Chang, C. C. Liu, and W. C. Hung, “High-transparency Ni/Au ohmic contact to p-type GaN,” Appl. Phys. Lett. 74(16), 2340 (1999).
[Crossref]

Iliopoulos, E.

F. G. Kalaitzakis, E. Iliopoulos, G. Konstantinidis, and N. T. Pelekanos, “Monolithic integration of nitride-based transistor with Light Emitting Diode for sensing applications,” Microelectron. Eng. 90, 33–36 (2012).
[Crossref]

Ja-Yu Lu, F.-H.

J.-W. Shi, H.-Y. Huang, J.-K. Sheu, S.-H. Hsieh, Y.-S. Wu, F.-H. Ja-Yu Lu, F.-H. Huang, and W.-C. Lai, “Nitride-based photodiode at 510-nm wavelength for plastic optical fiber communication,” IEEE Photon. Technol. Lett. 18(1), 283–285 (2006).
[Crossref]

Jenkins, T. J.

S. T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, J. W. Palmour, L. T. Kehias, and T. J. Jenkins, “High-power microwave GaN/AlGaN HEMT’s on semi-insulating silicon carbide substrates,” IEEE Electron Device Lett. 20(4), 161–163 (1999).
[Crossref]

Jou, M. J.

J. K. Sheu, Y. K. Su, G. C. Chi, P. L. Koh, M. J. Jou, C. M. Chang, C. C. Liu, and W. C. Hung, “High-transparency Ni/Au ohmic contact to p-type GaN,” Appl. Phys. Lett. 74(16), 2340 (1999).
[Crossref]

Kalaitzakis, F. G.

F. G. Kalaitzakis, E. Iliopoulos, G. Konstantinidis, and N. T. Pelekanos, “Monolithic integration of nitride-based transistor with Light Emitting Diode for sensing applications,” Microelectron. Eng. 90, 33–36 (2012).
[Crossref]

Kao, W. J.

C. Y. Huang, Y. C. Yao, Y. J. Lee, T. Y. Lin, W. J. Kao, J. Shang Hwang, Y. J. Yang, and J. L. Shen, “Local nanotip arrays sculptured by atomic force microscopy to enhance the light-output efficiency of GaN-based light-emitting diode structures,” Nanotechnology 25(19), 195401 (2014).
[Crossref] [PubMed]

Kapolnek, D.

Y.-F. Wu, B. P. Keller, S. Keller, D. Kapolnek, P. Kozodoy, S. P. Denbaars, and U. K. Mishra, “Very high breakdown voltage and large transconductance realized on GaN heterojunction field effect transistors,” Appl. Phys. Lett. 69(10), 1438 (1996).
[Crossref]

Karlicek, R. F.

Z. Li, J. Waldron, T. Detchprohm, C. Wetzel, R. F. Karlicek, and T. P. Chow, “Monolithic integration of light-emitting diodes and power metal-oxide-semiconductor channel high-electron-mobility transistors for light-emitting power integrated circuits in GaN on sapphire substrate,” Appl. Phys. Lett. 102(19), 192107 (2013).
[Crossref]

Kehias, L. T.

S. T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, J. W. Palmour, L. T. Kehias, and T. J. Jenkins, “High-power microwave GaN/AlGaN HEMT’s on semi-insulating silicon carbide substrates,” IEEE Electron Device Lett. 20(4), 161–163 (1999).
[Crossref]

Keller, B. P.

Y.-F. Wu, B. P. Keller, S. Keller, D. Kapolnek, P. Kozodoy, S. P. Denbaars, and U. K. Mishra, “Very high breakdown voltage and large transconductance realized on GaN heterojunction field effect transistors,” Appl. Phys. Lett. 69(10), 1438 (1996).
[Crossref]

Keller, S.

Y. Dora, A. Chakraborty, L. McCarthy, S. Keller, S. P. Denbaars, and U. K. Mishra, “High breakdown voltage achieved on AlGaN/GaN HEMTs with integrated slant field plates,” IEEE Electron Device Lett. 27(9), 713–715 (2006).
[Crossref]

Y.-F. Wu, B. P. Keller, S. Keller, D. Kapolnek, P. Kozodoy, S. P. Denbaars, and U. K. Mishra, “Very high breakdown voltage and large transconductance realized on GaN heterojunction field effect transistors,” Appl. Phys. Lett. 69(10), 1438 (1996).
[Crossref]

Kelly, A. E.

Keung, C. W.

Z. J. Liu, K. M. Wong, C. W. Keung, C. W. Tang, and K. M. Lau, “Monolithic LED microdisplay on active matrix substrate using flip-chip technology,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1298–1302 (2009).
[Crossref]

Kim, J. K.

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
[Crossref] [PubMed]

Koh, P. L.

J. K. Sheu, Y. K. Su, G. C. Chi, P. L. Koh, M. J. Jou, C. M. Chang, C. C. Liu, and W. C. Hung, “High-transparency Ni/Au ohmic contact to p-type GaN,” Appl. Phys. Lett. 74(16), 2340 (1999).
[Crossref]

Kong, Q.

Konstantinidis, G.

F. G. Kalaitzakis, E. Iliopoulos, G. Konstantinidis, and N. T. Pelekanos, “Monolithic integration of nitride-based transistor with Light Emitting Diode for sensing applications,” Microelectron. Eng. 90, 33–36 (2012).
[Crossref]

Kozodoy, P.

Y.-F. Wu, B. P. Keller, S. Keller, D. Kapolnek, P. Kozodoy, S. P. Denbaars, and U. K. Mishra, “Very high breakdown voltage and large transconductance realized on GaN heterojunction field effect transistors,” Appl. Phys. Lett. 69(10), 1438 (1996).
[Crossref]

Kuo, H. C.

Y. J. Lee, P. C. Lin, T. C. Lu, H. C. Kuo, and S. C. Wang, “Dichromatic InGaN-based white light emitting diodes by using laser lift-off and wafer-bonding schemes,” Appl. Phys. Lett. 90(16), 161115 (2007).
[Crossref]

Y. J. Lee, H. C. Kuo, T. C. Lu, and S. C. Wang, “High light-extraction GaN-based vertical LEDs with double diffuse surfaces,” IEEE J. Quantum Electron. 42(12), 1196–1201 (2006).
[Crossref]

Lai, W.-C.

J.-W. Shi, H.-Y. Huang, J.-K. Sheu, S.-H. Hsieh, Y.-S. Wu, F.-H. Ja-Yu Lu, F.-H. Huang, and W.-C. Lai, “Nitride-based photodiode at 510-nm wavelength for plastic optical fiber communication,” IEEE Photon. Technol. Lett. 18(1), 283–285 (2006).
[Crossref]

Lau, K. M.

Z. J. Liu, T. Huang, J. Ma, C. Liu, and K. M. Lau, “Monolithic Integration of AlGaN/GaN HEMT on LED by MOCVD,” IEEE Electron Device Lett. 35(3), 330–332 (2014).
[Crossref]

Z. Liu, J. Ma, T. Huang, C. Liu, and K. M. Lau, “Selective epitaxial growth of monolithically integrated GaN-based light emitting diodes with AlGaN/GaN driving transistors,” Appl. Phys. Lett. 104, 09103 (2014).

Z. J. Liu, K. M. Wong, C. W. Keung, C. W. Tang, and K. M. Lau, “Monolithic LED microdisplay on active matrix substrate using flip-chip technology,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1298–1302 (2009).
[Crossref]

Lee, C. E.

R. H. Horng, C. C. Yang, J. Y. Wu, S. H. Huang, C. E. Lee, and D. S. Wuu, “GaN-based light-emitting diodes with indium tin oxide texturing window layers using natural lithography,” Appl. Phys. Lett. 86(22), 221101 (2005).
[Crossref]

Lee, H.

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93(1), 362–367 (2003).
[Crossref]

Lee, Y. J.

C. Y. Huang, Y. C. Yao, Y. J. Lee, T. Y. Lin, W. J. Kao, J. Shang Hwang, Y. J. Yang, and J. L. Shen, “Local nanotip arrays sculptured by atomic force microscopy to enhance the light-output efficiency of GaN-based light-emitting diode structures,” Nanotechnology 25(19), 195401 (2014).
[Crossref] [PubMed]

Y. J. Lee, P. C. Lin, T. C. Lu, H. C. Kuo, and S. C. Wang, “Dichromatic InGaN-based white light emitting diodes by using laser lift-off and wafer-bonding schemes,” Appl. Phys. Lett. 90(16), 161115 (2007).
[Crossref]

Y. J. Lee, H. C. Kuo, T. C. Lu, and S. C. Wang, “High light-extraction GaN-based vertical LEDs with double diffuse surfaces,” IEEE J. Quantum Electron. 42(12), 1196–1201 (2006).
[Crossref]

Leitz, C. W.

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93(1), 362–367 (2003).
[Crossref]

Li, J.

Li, Z.

Z. Li, J. Waldron, T. Detchprohm, C. Wetzel, R. F. Karlicek, and T. P. Chow, “Monolithic integration of light-emitting diodes and power metal-oxide-semiconductor channel high-electron-mobility transistors for light-emitting power integrated circuits in GaN on sapphire substrate,” Appl. Phys. Lett. 102(19), 192107 (2013).
[Crossref]

Liao, Y.

Lin, P. C.

Y. J. Lee, P. C. Lin, T. C. Lu, H. C. Kuo, and S. C. Wang, “Dichromatic InGaN-based white light emitting diodes by using laser lift-off and wafer-bonding schemes,” Appl. Phys. Lett. 90(16), 161115 (2007).
[Crossref]

Lin, T. Y.

C. Y. Huang, Y. C. Yao, Y. J. Lee, T. Y. Lin, W. J. Kao, J. Shang Hwang, Y. J. Yang, and J. L. Shen, “Local nanotip arrays sculptured by atomic force microscopy to enhance the light-output efficiency of GaN-based light-emitting diode structures,” Nanotechnology 25(19), 195401 (2014).
[Crossref] [PubMed]

Liu, C.

Z. Liu, J. Ma, T. Huang, C. Liu, and K. M. Lau, “Selective epitaxial growth of monolithically integrated GaN-based light emitting diodes with AlGaN/GaN driving transistors,” Appl. Phys. Lett. 104, 09103 (2014).

Z. J. Liu, T. Huang, J. Ma, C. Liu, and K. M. Lau, “Monolithic Integration of AlGaN/GaN HEMT on LED by MOCVD,” IEEE Electron Device Lett. 35(3), 330–332 (2014).
[Crossref]

Liu, C. C.

J. K. Sheu, Y. K. Su, G. C. Chi, P. L. Koh, M. J. Jou, C. M. Chang, C. C. Liu, and W. C. Hung, “High-transparency Ni/Au ohmic contact to p-type GaN,” Appl. Phys. Lett. 74(16), 2340 (1999).
[Crossref]

Liu, Z.

Z. Liu, J. Ma, T. Huang, C. Liu, and K. M. Lau, “Selective epitaxial growth of monolithically integrated GaN-based light emitting diodes with AlGaN/GaN driving transistors,” Appl. Phys. Lett. 104, 09103 (2014).

Liu, Z. J.

Z. J. Liu, T. Huang, J. Ma, C. Liu, and K. M. Lau, “Monolithic Integration of AlGaN/GaN HEMT on LED by MOCVD,” IEEE Electron Device Lett. 35(3), 330–332 (2014).
[Crossref]

Z. J. Liu, K. M. Wong, C. W. Keung, C. W. Tang, and K. M. Lau, “Monolithic LED microdisplay on active matrix substrate using flip-chip technology,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1298–1302 (2009).
[Crossref]

Lootens, D.

I. Polentier, L. Buydens, A. Ackaert, P. Demeester, P. van Daele, F. Depestel, D. Lootens, and R. Baets, “Monolithic integration of an InGaAs/GaAs/AlGaAs strained layer SQW LED and GaAs MESFET using epitaxial lift-off,” Electron. Lett. 26(13), 925 (1990).
[Crossref]

Lu, T. C.

Y. J. Lee, P. C. Lin, T. C. Lu, H. C. Kuo, and S. C. Wang, “Dichromatic InGaN-based white light emitting diodes by using laser lift-off and wafer-bonding schemes,” Appl. Phys. Lett. 90(16), 161115 (2007).
[Crossref]

Y. J. Lee, H. C. Kuo, T. C. Lu, and S. C. Wang, “High light-extraction GaN-based vertical LEDs with double diffuse surfaces,” IEEE J. Quantum Electron. 42(12), 1196–1201 (2006).
[Crossref]

Ma, J.

Z. J. Liu, T. Huang, J. Ma, C. Liu, and K. M. Lau, “Monolithic Integration of AlGaN/GaN HEMT on LED by MOCVD,” IEEE Electron Device Lett. 35(3), 330–332 (2014).
[Crossref]

Z. Liu, J. Ma, T. Huang, C. Liu, and K. M. Lau, “Selective epitaxial growth of monolithically integrated GaN-based light emitting diodes with AlGaN/GaN driving transistors,” Appl. Phys. Lett. 104, 09103 (2014).

Massoubre, D.

McCarthy, L.

Y. Dora, A. Chakraborty, L. McCarthy, S. Keller, S. P. Denbaars, and U. K. Mishra, “High breakdown voltage achieved on AlGaN/GaN HEMTs with integrated slant field plates,” IEEE Electron Device Lett. 27(9), 713–715 (2006).
[Crossref]

McKendry, J. J. D.

Mi, Z.

H. P. T. Nguyen, S. Zhang, K. Cui, X. Han, S. Fathololoumi, M. Couillard, G. A. Botton, and Z. Mi, “p-Type modulation doped InGaN/GaN dot-in-a-wire white-light-emitting diodes monolithically grown on Si(111),” Nano Lett. 11(5), 1919–1924 (2011).
[Crossref] [PubMed]

Mishra, U. K.

Y. Dora, A. Chakraborty, L. McCarthy, S. Keller, S. P. Denbaars, and U. K. Mishra, “High breakdown voltage achieved on AlGaN/GaN HEMTs with integrated slant field plates,” IEEE Electron Device Lett. 27(9), 713–715 (2006).
[Crossref]

Y.-F. Wu, B. P. Keller, S. Keller, D. Kapolnek, P. Kozodoy, S. P. Denbaars, and U. K. Mishra, “Very high breakdown voltage and large transconductance realized on GaN heterojunction field effect transistors,” Appl. Phys. Lett. 69(10), 1438 (1996).
[Crossref]

Mori, M. J.

K. Chilukuri, M. J. Mori, C. L. Dohrman, and E. A. Fitzgerald, “Monolithic CMOS-compatible AlGaInP visible LED arrays on silicon on lattice-engineered substrates (SOLES),” Semicond. Sci. Technol. 22(2), 29–34 (2007).
[Crossref]

Nguyen, H. P. T.

H. P. T. Nguyen, S. Zhang, K. Cui, X. Han, S. Fathololoumi, M. Couillard, G. A. Botton, and Z. Mi, “p-Type modulation doped InGaN/GaN dot-in-a-wire white-light-emitting diodes monolithically grown on Si(111),” Nano Lett. 11(5), 1919–1924 (2011).
[Crossref] [PubMed]

Palacios, T.

O. I. Saadat, J. W. Chung, E. L. Piner, and T. Palacios, “Gate-first AlGaN/GaN HEMT technology for high-frequency applications,” IEEE Electron Device Lett. 30(12), 1254–1256 (2009).
[Crossref]

Palmour, J. W.

S. T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, J. W. Palmour, L. T. Kehias, and T. J. Jenkins, “High-power microwave GaN/AlGaN HEMT’s on semi-insulating silicon carbide substrates,” IEEE Electron Device Lett. 20(4), 161–163 (1999).
[Crossref]

Pelekanos, N. T.

F. G. Kalaitzakis, E. Iliopoulos, G. Konstantinidis, and N. T. Pelekanos, “Monolithic integration of nitride-based transistor with Light Emitting Diode for sensing applications,” Microelectron. Eng. 90, 33–36 (2012).
[Crossref]

Piner, E. L.

O. I. Saadat, J. W. Chung, E. L. Piner, and T. Palacios, “Gate-first AlGaN/GaN HEMT technology for high-frequency applications,” IEEE Electron Device Lett. 30(12), 1254–1256 (2009).
[Crossref]

Pitera, A. J.

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93(1), 362–367 (2003).
[Crossref]

Polentier, I.

I. Polentier, L. Buydens, A. Ackaert, P. Demeester, P. van Daele, F. Depestel, D. Lootens, and R. Baets, “Monolithic integration of an InGaAs/GaAs/AlGaAs strained layer SQW LED and GaAs MESFET using epitaxial lift-off,” Electron. Lett. 26(13), 925 (1990).
[Crossref]

Pribble, W. L.

S. T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, J. W. Palmour, L. T. Kehias, and T. J. Jenkins, “High-power microwave GaN/AlGaN HEMT’s on semi-insulating silicon carbide substrates,” IEEE Electron Device Lett. 20(4), 161–163 (1999).
[Crossref]

Rae, B. R.

Ram, R. J.

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93(1), 362–367 (2003).
[Crossref]

Saadat, O. I.

O. I. Saadat, J. W. Chung, E. L. Piner, and T. Palacios, “Gate-first AlGaN/GaN HEMT technology for high-frequency applications,” IEEE Electron Device Lett. 30(12), 1254–1256 (2009).
[Crossref]

Schubert, E. F.

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
[Crossref] [PubMed]

Shang Hwang, J.

C. Y. Huang, Y. C. Yao, Y. J. Lee, T. Y. Lin, W. J. Kao, J. Shang Hwang, Y. J. Yang, and J. L. Shen, “Local nanotip arrays sculptured by atomic force microscopy to enhance the light-output efficiency of GaN-based light-emitting diode structures,” Nanotechnology 25(19), 195401 (2014).
[Crossref] [PubMed]

Shen, J. L.

C. Y. Huang, Y. C. Yao, Y. J. Lee, T. Y. Lin, W. J. Kao, J. Shang Hwang, Y. J. Yang, and J. L. Shen, “Local nanotip arrays sculptured by atomic force microscopy to enhance the light-output efficiency of GaN-based light-emitting diode structures,” Nanotechnology 25(19), 195401 (2014).
[Crossref] [PubMed]

Sheppard, S. T.

S. T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, J. W. Palmour, L. T. Kehias, and T. J. Jenkins, “High-power microwave GaN/AlGaN HEMT’s on semi-insulating silicon carbide substrates,” IEEE Electron Device Lett. 20(4), 161–163 (1999).
[Crossref]

Sheu, J. K.

J. K. Sheu, Y. K. Su, G. C. Chi, P. L. Koh, M. J. Jou, C. M. Chang, C. C. Liu, and W. C. Hung, “High-transparency Ni/Au ohmic contact to p-type GaN,” Appl. Phys. Lett. 74(16), 2340 (1999).
[Crossref]

Sheu, J.-K.

J.-W. Shi, H.-Y. Huang, J.-K. Sheu, S.-H. Hsieh, Y.-S. Wu, F.-H. Ja-Yu Lu, F.-H. Huang, and W.-C. Lai, “Nitride-based photodiode at 510-nm wavelength for plastic optical fiber communication,” IEEE Photon. Technol. Lett. 18(1), 283–285 (2006).
[Crossref]

Shi, J.-W.

J.-W. Shi, H.-Y. Huang, J.-K. Sheu, S.-H. Hsieh, Y.-S. Wu, F.-H. Ja-Yu Lu, F.-H. Huang, and W.-C. Lai, “Nitride-based photodiode at 510-nm wavelength for plastic optical fiber communication,” IEEE Photon. Technol. Lett. 18(1), 283–285 (2006).
[Crossref]

Su, Y. K.

J. K. Sheu, Y. K. Su, G. C. Chi, P. L. Koh, M. J. Jou, C. M. Chang, C. C. Liu, and W. C. Hung, “High-transparency Ni/Au ohmic contact to p-type GaN,” Appl. Phys. Lett. 74(16), 2340 (1999).
[Crossref]

Tang, C. W.

Z. J. Liu, K. M. Wong, C. W. Keung, C. W. Tang, and K. M. Lau, “Monolithic LED microdisplay on active matrix substrate using flip-chip technology,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1298–1302 (2009).
[Crossref]

van Daele, P.

I. Polentier, L. Buydens, A. Ackaert, P. Demeester, P. van Daele, F. Depestel, D. Lootens, and R. Baets, “Monolithic integration of an InGaAs/GaAs/AlGaAs strained layer SQW LED and GaAs MESFET using epitaxial lift-off,” Electron. Lett. 26(13), 925 (1990).
[Crossref]

Waldron, J.

Z. Li, J. Waldron, T. Detchprohm, C. Wetzel, R. F. Karlicek, and T. P. Chow, “Monolithic integration of light-emitting diodes and power metal-oxide-semiconductor channel high-electron-mobility transistors for light-emitting power integrated circuits in GaN on sapphire substrate,” Appl. Phys. Lett. 102(19), 192107 (2013).
[Crossref]

Wang, G.

Wang, J.

Wang, S. C.

Y. J. Lee, P. C. Lin, T. C. Lu, H. C. Kuo, and S. C. Wang, “Dichromatic InGaN-based white light emitting diodes by using laser lift-off and wafer-bonding schemes,” Appl. Phys. Lett. 90(16), 161115 (2007).
[Crossref]

Y. J. Lee, H. C. Kuo, T. C. Lu, and S. C. Wang, “High light-extraction GaN-based vertical LEDs with double diffuse surfaces,” IEEE J. Quantum Electron. 42(12), 1196–1201 (2006).
[Crossref]

Wei, T.

Wetzel, C.

Z. Li, J. Waldron, T. Detchprohm, C. Wetzel, R. F. Karlicek, and T. P. Chow, “Monolithic integration of light-emitting diodes and power metal-oxide-semiconductor channel high-electron-mobility transistors for light-emitting power integrated circuits in GaN on sapphire substrate,” Appl. Phys. Lett. 102(19), 192107 (2013).
[Crossref]

Wong, K. M.

Z. J. Liu, K. M. Wong, C. W. Keung, C. W. Tang, and K. M. Lau, “Monolithic LED microdisplay on active matrix substrate using flip-chip technology,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1298–1302 (2009).
[Crossref]

Wu, J. Y.

R. H. Horng, C. C. Yang, J. Y. Wu, S. H. Huang, C. E. Lee, and D. S. Wuu, “GaN-based light-emitting diodes with indium tin oxide texturing window layers using natural lithography,” Appl. Phys. Lett. 86(22), 221101 (2005).
[Crossref]

Wu, Y.-F.

Y.-F. Wu, B. P. Keller, S. Keller, D. Kapolnek, P. Kozodoy, S. P. Denbaars, and U. K. Mishra, “Very high breakdown voltage and large transconductance realized on GaN heterojunction field effect transistors,” Appl. Phys. Lett. 69(10), 1438 (1996).
[Crossref]

Wu, Y.-S.

J.-W. Shi, H.-Y. Huang, J.-K. Sheu, S.-H. Hsieh, Y.-S. Wu, F.-H. Ja-Yu Lu, F.-H. Huang, and W.-C. Lai, “Nitride-based photodiode at 510-nm wavelength for plastic optical fiber communication,” IEEE Photon. Technol. Lett. 18(1), 283–285 (2006).
[Crossref]

Wuu, D. S.

R. H. Horng, C. C. Yang, J. Y. Wu, S. H. Huang, C. E. Lee, and D. S. Wuu, “GaN-based light-emitting diodes with indium tin oxide texturing window layers using natural lithography,” Appl. Phys. Lett. 86(22), 221101 (2005).
[Crossref]

Yang, C. C.

R. H. Horng, C. C. Yang, J. Y. Wu, S. H. Huang, C. E. Lee, and D. S. Wuu, “GaN-based light-emitting diodes with indium tin oxide texturing window layers using natural lithography,” Appl. Phys. Lett. 86(22), 221101 (2005).
[Crossref]

Yang, V.

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93(1), 362–367 (2003).
[Crossref]

Yang, Y. J.

C. Y. Huang, Y. C. Yao, Y. J. Lee, T. Y. Lin, W. J. Kao, J. Shang Hwang, Y. J. Yang, and J. L. Shen, “Local nanotip arrays sculptured by atomic force microscopy to enhance the light-output efficiency of GaN-based light-emitting diode structures,” Nanotechnology 25(19), 195401 (2014).
[Crossref] [PubMed]

Yao, Y. C.

C. Y. Huang, Y. C. Yao, Y. J. Lee, T. Y. Lin, W. J. Kao, J. Shang Hwang, Y. J. Yang, and J. L. Shen, “Local nanotip arrays sculptured by atomic force microscopy to enhance the light-output efficiency of GaN-based light-emitting diode structures,” Nanotechnology 25(19), 195401 (2014).
[Crossref] [PubMed]

Yi, F.

Zeng, Y.

Zhang, S.

J. J. D. McKendry, D. Massoubre, S. Zhang, B. R. Rae, R. P. Green, E. Gu, R. K. Henderson, A. E. Kelly, and M. D. Dlwson, “Visible-light communications using a CMOS-controlled micro-light- emitting-diode array,” J. Lightwave Technol. 30(1), 61–67 (2012).
[Crossref]

H. P. T. Nguyen, S. Zhang, K. Cui, X. Han, S. Fathololoumi, M. Couillard, G. A. Botton, and Z. Mi, “p-Type modulation doped InGaN/GaN dot-in-a-wire white-light-emitting diodes monolithically grown on Si(111),” Nano Lett. 11(5), 1919–1924 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (6)

Y. J. Lee, P. C. Lin, T. C. Lu, H. C. Kuo, and S. C. Wang, “Dichromatic InGaN-based white light emitting diodes by using laser lift-off and wafer-bonding schemes,” Appl. Phys. Lett. 90(16), 161115 (2007).
[Crossref]

Y.-F. Wu, B. P. Keller, S. Keller, D. Kapolnek, P. Kozodoy, S. P. Denbaars, and U. K. Mishra, “Very high breakdown voltage and large transconductance realized on GaN heterojunction field effect transistors,” Appl. Phys. Lett. 69(10), 1438 (1996).
[Crossref]

Z. Li, J. Waldron, T. Detchprohm, C. Wetzel, R. F. Karlicek, and T. P. Chow, “Monolithic integration of light-emitting diodes and power metal-oxide-semiconductor channel high-electron-mobility transistors for light-emitting power integrated circuits in GaN on sapphire substrate,” Appl. Phys. Lett. 102(19), 192107 (2013).
[Crossref]

Z. Liu, J. Ma, T. Huang, C. Liu, and K. M. Lau, “Selective epitaxial growth of monolithically integrated GaN-based light emitting diodes with AlGaN/GaN driving transistors,” Appl. Phys. Lett. 104, 09103 (2014).

J. K. Sheu, Y. K. Su, G. C. Chi, P. L. Koh, M. J. Jou, C. M. Chang, C. C. Liu, and W. C. Hung, “High-transparency Ni/Au ohmic contact to p-type GaN,” Appl. Phys. Lett. 74(16), 2340 (1999).
[Crossref]

R. H. Horng, C. C. Yang, J. Y. Wu, S. H. Huang, C. E. Lee, and D. S. Wuu, “GaN-based light-emitting diodes with indium tin oxide texturing window layers using natural lithography,” Appl. Phys. Lett. 86(22), 221101 (2005).
[Crossref]

Electron. Lett. (1)

I. Polentier, L. Buydens, A. Ackaert, P. Demeester, P. van Daele, F. Depestel, D. Lootens, and R. Baets, “Monolithic integration of an InGaAs/GaAs/AlGaAs strained layer SQW LED and GaAs MESFET using epitaxial lift-off,” Electron. Lett. 26(13), 925 (1990).
[Crossref]

IEEE Electron Device Lett. (4)

Z. J. Liu, T. Huang, J. Ma, C. Liu, and K. M. Lau, “Monolithic Integration of AlGaN/GaN HEMT on LED by MOCVD,” IEEE Electron Device Lett. 35(3), 330–332 (2014).
[Crossref]

Y. Dora, A. Chakraborty, L. McCarthy, S. Keller, S. P. Denbaars, and U. K. Mishra, “High breakdown voltage achieved on AlGaN/GaN HEMTs with integrated slant field plates,” IEEE Electron Device Lett. 27(9), 713–715 (2006).
[Crossref]

S. T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, J. W. Palmour, L. T. Kehias, and T. J. Jenkins, “High-power microwave GaN/AlGaN HEMT’s on semi-insulating silicon carbide substrates,” IEEE Electron Device Lett. 20(4), 161–163 (1999).
[Crossref]

O. I. Saadat, J. W. Chung, E. L. Piner, and T. Palacios, “Gate-first AlGaN/GaN HEMT technology for high-frequency applications,” IEEE Electron Device Lett. 30(12), 1254–1256 (2009).
[Crossref]

IEEE J. Quantum Electron. (1)

Y. J. Lee, H. C. Kuo, T. C. Lu, and S. C. Wang, “High light-extraction GaN-based vertical LEDs with double diffuse surfaces,” IEEE J. Quantum Electron. 42(12), 1196–1201 (2006).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Z. J. Liu, K. M. Wong, C. W. Keung, C. W. Tang, and K. M. Lau, “Monolithic LED microdisplay on active matrix substrate using flip-chip technology,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1298–1302 (2009).
[Crossref]

IEEE Photon. Technol. Lett. (1)

J.-W. Shi, H.-Y. Huang, J.-K. Sheu, S.-H. Hsieh, Y.-S. Wu, F.-H. Ja-Yu Lu, F.-H. Huang, and W.-C. Lai, “Nitride-based photodiode at 510-nm wavelength for plastic optical fiber communication,” IEEE Photon. Technol. Lett. 18(1), 283–285 (2006).
[Crossref]

J. Appl. Phys. (1)

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93(1), 362–367 (2003).
[Crossref]

J. Lightwave Technol. (1)

Microelectron. Eng. (1)

F. G. Kalaitzakis, E. Iliopoulos, G. Konstantinidis, and N. T. Pelekanos, “Monolithic integration of nitride-based transistor with Light Emitting Diode for sensing applications,” Microelectron. Eng. 90, 33–36 (2012).
[Crossref]

Nano Lett. (1)

H. P. T. Nguyen, S. Zhang, K. Cui, X. Han, S. Fathololoumi, M. Couillard, G. A. Botton, and Z. Mi, “p-Type modulation doped InGaN/GaN dot-in-a-wire white-light-emitting diodes monolithically grown on Si(111),” Nano Lett. 11(5), 1919–1924 (2011).
[Crossref] [PubMed]

Nanotechnology (1)

C. Y. Huang, Y. C. Yao, Y. J. Lee, T. Y. Lin, W. J. Kao, J. Shang Hwang, Y. J. Yang, and J. L. Shen, “Local nanotip arrays sculptured by atomic force microscopy to enhance the light-output efficiency of GaN-based light-emitting diode structures,” Nanotechnology 25(19), 195401 (2014).
[Crossref] [PubMed]

Nature (1)

A. G. Holmes-Siedle, “Gallium nitride, a valuable semiconductor,” Nature 252, 434–444 (1974).

Opt. Express (2)

Science (1)

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

K. Chilukuri, M. J. Mori, C. L. Dohrman, and E. A. Fitzgerald, “Monolithic CMOS-compatible AlGaInP visible LED arrays on silicon on lattice-engineered substrates (SOLES),” Semicond. Sci. Technol. 22(2), 29–34 (2007).
[Crossref]

Other (1)

R. G. Hunsperger, Integrated Optics, Theory and Technology (Springer, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic plot of monolithically integrated GaN-based light-emitting diode (LED) and metal-oxide-semiconductor filed-effect transistor (MOSFET) device. The equivalent electronic circuit of monolithically integrated LED/MOSFET device is also inserted in the figure.
Fig. 2
Fig. 2 (a) Top-view SEM image of the monolithically integrated and serially connected LED/MOSFET device. (b) AFM images of the LED (top, p-GaN region) and MOSFET (bottom, Gate region) surfaces with a scanned area of 20 × 20 μm2.
Fig. 3
Fig. 3 (a) Output ID-VD and (b) transfer characteristics measured on the monolithically integrated LED/MOSFET device.
Fig. 4
Fig. 4 (a) Current vs. voltage (I-V) behavior of the LED in both linear (red line) and semi-log (black line) scales. Inset: An optical image of the monolithically integrated LED/MOSFET device lighted up under an injection current of 20 mA. (b) Light output power (LOP) and external quantum efficiency (EQE) vs. forward injected current of the LED. Inset: EL spectrum of the LED at an injection current of 20mA with an emitting wavelength of λ = 485nm.
Fig. 5
Fig. 5 (a) LED’s current (same as the source-to-drain current, IDS) and light output power (LOP) versus supply voltage (VDD) with different gate voltages. Inset: oscilloscope signals of VGS, VDS, and LOP (grabbed by the photo-detector), from top to the bottom, respectively. (b) IDS and LOP versus VGS for both VDD = 7V and VDD = 15V.

Metrics