Abstract

Most existing photobioreactors do a poor job of distributing light uniformly due to shading effects. One method by which this could be improved is through the use of internal wave-guiding structures incorporating engineered light scattering schemes. By varying the density of these scatterers, one can control the spatial distribution of light inside the reactor enabling better uniformity of illumination. Here, we compare a number of light scattering schemes and evaluate their ability to enhance biomass accumulation. We demonstrate a design for a gradient distribution of surface scatterers with uniform lateral scattering intensity that is superior for algal biomass accumulation, resulting in a 40% increase in the growth rate.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Stacked waveguide reactors with gradient embedded scatterers for high-capacity water cleaning

Syed Saad Ahsan, Abdurrahman Gumus, and David Erickson
Opt. Express 23(24) A1664-A1671 (2015)

Spectroradiometric monitoring for open outdoor culturing of algae and cyanobacteria

Thomas A. Reichardt, Aaron M. Collins, Robert C. McBride, Craig A. Behnke, and Jerilyn A. Timlin
Appl. Opt. 53(24) F31-F45 (2014)

Envilab: Measuring phytoplankton in-vivo absorption and scattering properties under tunable environmental conditions

Anna Göritz, Stefan von Hoesslin, Felix Hundhausen, and Peter Gege
Opt. Express 25(21) 25267-25277 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. L. Klass, Biomass for Renewable Energy, Fuels, and Chemicals (Elsevier Science, 1998).
  2. P. M. Cox, R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Totterdell, “Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model,” Nature 408(6809), 184–187 (2000).
    [Crossref] [PubMed]
  3. O. Morton, “Solar energy: A new day dawning? Silicon Valley sunrise,” Nature 443(7107), 19–22 (2006).
    [Crossref] [PubMed]
  4. N. S. Lewis and D. G. Nocera, “Powering the planet: chemical challenges in solar energy utilization,” Proc. Natl. Acad. Sci. U.S.A. 103(43), 15729–15735 (2006).
    [Crossref] [PubMed]
  5. A. Demirbas, “Biodiesel from oilgae, biofixation of carbon dioxide by microalgae: A solution to pollution problems,” Appl. Energy 88(10), 3541–3547 (2011).
    [Crossref]
  6. M. F. Demirbas, “Biofuels from algae for sustainable development,” Appl. Energy 88(10), 3473–3480 (2011).
    [Crossref]
  7. D. Pimentel and T. W. Patzek, “Ethanol production using corn, switchgrass, and wood; biodiesel production using soybean and sunflower,” Nat. Resour. Res. 14(1), 65–76 (2005).
    [Crossref]
  8. Y. Chisti, “Biodiesel from microalgae,” Biotechnol. Adv. 25(3), 294–306 (2007).
    [Crossref] [PubMed]
  9. R. Pate, G. Klise, and B. Wu, “Resource demand implications for US algae biofuels production scale-up,” Appl. Energy 88(10), 3377–3388 (2011).
    [Crossref]
  10. Y. Chisti and J. Y. Yan, “Energy from algae: Current status and future trends Algal biofuels - A status report,” Appl. Energy 88(10), 3277–3279 (2011).
    [Crossref]
  11. M. K. Lam and K. T. Lee, “Microalgae biofuels: A critical review of issues, problems and the way forward,” Biotechnol. Adv. 30(3), 673–690 (2012).
    [Crossref] [PubMed]
  12. C. Y. Chen, K. L. Yeh, R. Aisyah, D. J. Lee, and J. S. Chang, “Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review,” Bioresour. Technol. 102(1), 71–81 (2011).
    [Crossref] [PubMed]
  13. H. M. Amaro, A. C. Guedes, and F. X. Malcata, “Advances and perspectives in using microalgae to produce biodiesel,” Appl. Energy 88(10), 3402–3410 (2011).
    [Crossref]
  14. C. M. Beal, R. E. Hebner, M. E. Webber, R. S. Ruoff, and A. F. Seibert, “The Energy Return on Investment for Algal Biocrude: Results for a Research Production Facility,” Bioenerg Res 5(2), 341–362 (2012).
    [Crossref]
  15. L. F. Razon and R. R. Tan, “Net energy analysis of the production of biodiesel and biogas from the microalgae: Haematococcus pluvialis and Nannochloropsis,” Appl. Energy 88(10), 3507–3514 (2011).
    [Crossref]
  16. R. Davis, A. Aden, and P. T. Pienkos, “Techno-economic analysis of autotrophic microalgae for fuel production,” Appl. Energy 88(10), 3524–3531 (2011).
    [Crossref]
  17. A. Singh and S. I. Olsen, “A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels,” Appl. Energy 88(10), 3548–3555 (2011).
    [Crossref]
  18. R. H. Wijffels and M. J. Barbosa, “An Outlook on Microalgal Biofuels,” Science 329(5993), 796–799 (2010).
    [Crossref] [PubMed]
  19. M. Janssen, J. Tramper, L. R. Mur, and R. H. Wijffels, “Enclosed outdoor photobioreactors: Light regime, photosynthetic efficiency, scale-up, and future prospects,” Biotechnol. Bioeng. 81(2), 193–210 (2003).
    [Crossref] [PubMed]
  20. E. M. Grima, F. G. A. Fernandez, F. G. Camacho, and Y. Chisti, “Photobioreactors: light regime, mass transfer, and scaleup,” J. Biotechnol. 70(1-3), 231–247 (1999).
    [Crossref]
  21. C. Posten, “Design principles of photo-bioreactors for cultivation of microalgae,” Eng. Life Sci. 9(3), 165–177 (2009).
    [Crossref]
  22. F. Lehr and C. Posten, “Closed photo-bioreactors as tools for biofuel production,” Curr. Opin. Biotechnol. 20(3), 280–285 (2009).
    [Crossref] [PubMed]
  23. P. M. Slegers, P. J. M. van Beveren, R. H. Wijffels, G. van Straten, and A. J. B. van Boxtel, “Scenario analysis of large scale algae production in tubular photobioreactors,” Appl. Energy 105, 395–406 (2013).
    [Crossref]
  24. P. M. Slegers, R. H. Wijffels, G. van Straten, and A. J. B. van Boxtel, “Design scenarios for flat panel photobioreactors,” Appl. Energy 88(10), 3342–3353 (2011).
    [Crossref]
  25. C.-G. Lee, “Calculation of light penetration depth in photobioreactors,” Biotechnology and Bioprocess Engineering 4(1), 78–81 (1999).
    [Crossref]
  26. R. Bosma, E. van Zessen, J. H. Reith, J. Tramper, and R. H. Wijffels, “Prediction of volumetric productivity of an outdoor photobioreactor,” Biotechnol. Bioeng. 97(5), 1108–1120 (2007).
    [Crossref] [PubMed]
  27. E. M. Grima, J. M. F. Sevilla, J. A. S. Perez, and F. G. Camacho, “A study on simultaneous photolimitation and photoinhibition in dense microalgal cultures taking into account incident and averaged irradiances,” J. Biotechnol. 45(1), 59–69 (1996).
    [Crossref]
  28. C. U. Ugwu, H. Aoyagi, and H. Uchiyama, “Photobioreactors for mass cultivation of algae,” Bioresour. Technol. 99(10), 4021–4028 (2008).
    [Crossref] [PubMed]
  29. W. B. Zimmerman, M. Zandi, V. Tesar, D. J. Gilmour, and K. Z. Ying, “Design of an airlift loop bioreactor and pilot scales studies with fluidic oscillator induced microbubbles for growth of a microalgae Dunaliella salina,” Appl. Energy 88(10), 3357–3369 (2011).
    [Crossref]
  30. B. Ketheesan and N. Nirmalakhandan, “Development of a new airlift-driven raceway reactor for algal cultivation,” Appl. Energy 88(10), 3370–3376 (2011).
    [Crossref]
  31. S. Torkamani, S. N. Wani, Y. J. Tang, and R. Sureshkumar, “Plasmon-enhanced microalgal growth in miniphotobioreactors,” Appl. Phys. Lett. 97(4), 043703 (2010).
    [Crossref]
  32. E. E. Jung, M. Kalontarov, D. F. R. Doud, M. D. Ooms, L. T. Angenent, D. Sinton, and D. Erickson, “Slab waveguide photobioreactors for microalgae based biofuel production,” Lab Chip 12(19), 3740–3745 (2012).
    [Crossref] [PubMed]
  33. M. D. Ooms, V. J. Sieben, S. C. Pierobon, E. E. Jung, M. Kalontarov, D. Erickson, and D. Sinton, “Evanescent photosynthesis: exciting cyanobacteria in a surface-confined light field,” Phys. Chem. Chem. Phys. 14(14), 4817–4823 (2012).
    [Crossref] [PubMed]
  34. K. Mori, H. Ohya, K. Matsumoto, H. Furuune, K. Isozaki, and P. Siekmeier, “Design for a bioreactor with sunlight supply and operations systems for use in the space environment,” Adv. Space Res. 9(8), 161–168 (1989).
    [Crossref] [PubMed]
  35. C. Y. Chen, G. D. Saratale, C. M. Lee, P. C. Chen, and J. S. Chang, “Phototrophic hydrogen production in photobioreactors coupled with solar-energy-excited optical fibers,” Int. J. Hydrogen Energy 33(23), 6886–6895 (2008).
    [Crossref]
  36. G. Harbers, W. Timmers, and W. Sillevis-Smitt, “LED backlighting for LCD HDTV,” J. Soc. Inf. Disp. 10(4), 347–350 (2002).
    [Crossref]
  37. J. G. Chang and Y. B. Fang, “Dot-pattern design of a light guide in an edge-lit backlight using a regional partition approach,” Opt. Eng. 46(4), 043002 (2007).
    [Crossref]
  38. C. G. Son, J. H. Yi, J. S. Gwag, J. H. Kwon, and G. Park, “Improvement of Color and Luminance Uniformity of the Edge-Lit Backlight Using the RGB LEDs,” J Opt Soc Korea 15(3), 272–277 (2011).
    [Crossref]
  39. J. F. V. Derlofske, “Computer modeling of LED light pipe systems for uniform display illumination,” SPIE Proceedings 4445, 119–129 (2001).
  40. J. C. Ogbonna, T. Soejima, and H. Tanaka, “An integrated solar and artificial light system for internal illumination of photobioreactors,” J. Biotechnol. 70(1-3), 289–297 (1999).
    [Crossref] [PubMed]
  41. J. W. F. Zijffers, M. Janssen, J. Tramper, and R. H. Wijffels, “Design process of an area-efficient photobioreactor,” Mar. Biotechnol. (NY) 10(4), 404–415 (2008).
    [Crossref] [PubMed]
  42. D. Erickson, D. Sinton, and D. Psaltis, “Optofluidics for energy applications,” Nat. Photonics 5(10), 583–590 (2011).
    [Crossref]
  43. S. S. Ahsan, A. Gumus, and D. Erickson, “Redox mediated photocatalytic water-splitting in optofluidic microreactors,” Lab Chip 13(3), 409–414 (2013).
    [Crossref] [PubMed]
  44. A. del Campo and C. Greiner, “SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography,” J. Micromech. Microeng. 17(6), R81–R95 (2007).
    [Crossref]
  45. J. Ungerer, L. Tao, M. Davis, M. Ghirardi, P. C. Maness, and J. P. Yu, “Sustained photosynthetic conversion of CO2 to ethylene in recombinant cyanobacterium Synechocystis 6803,” Energ Environ Sci 5(10), 8998–9006 (2012).
    [Crossref]
  46. E. E. Jung, A. Jain, N. Voulis, D. D. R. Doud, L. T. Angenent, and D. Erickson, “Stacked optical waveguide photobioreactor for high density algal cultures,” Bioresource Technol. (2014).
  47. M. Kalontarov, D. Doud, E. E. Jung, L. Angenent, and D. Erickson, “In situ hollow fiber membrane facilitated CO2 delivery to a cyanobacterium for enhanced productivity,” RSC Adv. (2013).

2013 (2)

P. M. Slegers, P. J. M. van Beveren, R. H. Wijffels, G. van Straten, and A. J. B. van Boxtel, “Scenario analysis of large scale algae production in tubular photobioreactors,” Appl. Energy 105, 395–406 (2013).
[Crossref]

S. S. Ahsan, A. Gumus, and D. Erickson, “Redox mediated photocatalytic water-splitting in optofluidic microreactors,” Lab Chip 13(3), 409–414 (2013).
[Crossref] [PubMed]

2012 (5)

J. Ungerer, L. Tao, M. Davis, M. Ghirardi, P. C. Maness, and J. P. Yu, “Sustained photosynthetic conversion of CO2 to ethylene in recombinant cyanobacterium Synechocystis 6803,” Energ Environ Sci 5(10), 8998–9006 (2012).
[Crossref]

E. E. Jung, M. Kalontarov, D. F. R. Doud, M. D. Ooms, L. T. Angenent, D. Sinton, and D. Erickson, “Slab waveguide photobioreactors for microalgae based biofuel production,” Lab Chip 12(19), 3740–3745 (2012).
[Crossref] [PubMed]

M. D. Ooms, V. J. Sieben, S. C. Pierobon, E. E. Jung, M. Kalontarov, D. Erickson, and D. Sinton, “Evanescent photosynthesis: exciting cyanobacteria in a surface-confined light field,” Phys. Chem. Chem. Phys. 14(14), 4817–4823 (2012).
[Crossref] [PubMed]

C. M. Beal, R. E. Hebner, M. E. Webber, R. S. Ruoff, and A. F. Seibert, “The Energy Return on Investment for Algal Biocrude: Results for a Research Production Facility,” Bioenerg Res 5(2), 341–362 (2012).
[Crossref]

M. K. Lam and K. T. Lee, “Microalgae biofuels: A critical review of issues, problems and the way forward,” Biotechnol. Adv. 30(3), 673–690 (2012).
[Crossref] [PubMed]

2011 (14)

C. Y. Chen, K. L. Yeh, R. Aisyah, D. J. Lee, and J. S. Chang, “Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review,” Bioresour. Technol. 102(1), 71–81 (2011).
[Crossref] [PubMed]

H. M. Amaro, A. C. Guedes, and F. X. Malcata, “Advances and perspectives in using microalgae to produce biodiesel,” Appl. Energy 88(10), 3402–3410 (2011).
[Crossref]

L. F. Razon and R. R. Tan, “Net energy analysis of the production of biodiesel and biogas from the microalgae: Haematococcus pluvialis and Nannochloropsis,” Appl. Energy 88(10), 3507–3514 (2011).
[Crossref]

R. Davis, A. Aden, and P. T. Pienkos, “Techno-economic analysis of autotrophic microalgae for fuel production,” Appl. Energy 88(10), 3524–3531 (2011).
[Crossref]

A. Singh and S. I. Olsen, “A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels,” Appl. Energy 88(10), 3548–3555 (2011).
[Crossref]

A. Demirbas, “Biodiesel from oilgae, biofixation of carbon dioxide by microalgae: A solution to pollution problems,” Appl. Energy 88(10), 3541–3547 (2011).
[Crossref]

M. F. Demirbas, “Biofuels from algae for sustainable development,” Appl. Energy 88(10), 3473–3480 (2011).
[Crossref]

R. Pate, G. Klise, and B. Wu, “Resource demand implications for US algae biofuels production scale-up,” Appl. Energy 88(10), 3377–3388 (2011).
[Crossref]

Y. Chisti and J. Y. Yan, “Energy from algae: Current status and future trends Algal biofuels - A status report,” Appl. Energy 88(10), 3277–3279 (2011).
[Crossref]

W. B. Zimmerman, M. Zandi, V. Tesar, D. J. Gilmour, and K. Z. Ying, “Design of an airlift loop bioreactor and pilot scales studies with fluidic oscillator induced microbubbles for growth of a microalgae Dunaliella salina,” Appl. Energy 88(10), 3357–3369 (2011).
[Crossref]

B. Ketheesan and N. Nirmalakhandan, “Development of a new airlift-driven raceway reactor for algal cultivation,” Appl. Energy 88(10), 3370–3376 (2011).
[Crossref]

P. M. Slegers, R. H. Wijffels, G. van Straten, and A. J. B. van Boxtel, “Design scenarios for flat panel photobioreactors,” Appl. Energy 88(10), 3342–3353 (2011).
[Crossref]

C. G. Son, J. H. Yi, J. S. Gwag, J. H. Kwon, and G. Park, “Improvement of Color and Luminance Uniformity of the Edge-Lit Backlight Using the RGB LEDs,” J Opt Soc Korea 15(3), 272–277 (2011).
[Crossref]

D. Erickson, D. Sinton, and D. Psaltis, “Optofluidics for energy applications,” Nat. Photonics 5(10), 583–590 (2011).
[Crossref]

2010 (2)

S. Torkamani, S. N. Wani, Y. J. Tang, and R. Sureshkumar, “Plasmon-enhanced microalgal growth in miniphotobioreactors,” Appl. Phys. Lett. 97(4), 043703 (2010).
[Crossref]

R. H. Wijffels and M. J. Barbosa, “An Outlook on Microalgal Biofuels,” Science 329(5993), 796–799 (2010).
[Crossref] [PubMed]

2009 (2)

C. Posten, “Design principles of photo-bioreactors for cultivation of microalgae,” Eng. Life Sci. 9(3), 165–177 (2009).
[Crossref]

F. Lehr and C. Posten, “Closed photo-bioreactors as tools for biofuel production,” Curr. Opin. Biotechnol. 20(3), 280–285 (2009).
[Crossref] [PubMed]

2008 (3)

J. W. F. Zijffers, M. Janssen, J. Tramper, and R. H. Wijffels, “Design process of an area-efficient photobioreactor,” Mar. Biotechnol. (NY) 10(4), 404–415 (2008).
[Crossref] [PubMed]

C. Y. Chen, G. D. Saratale, C. M. Lee, P. C. Chen, and J. S. Chang, “Phototrophic hydrogen production in photobioreactors coupled with solar-energy-excited optical fibers,” Int. J. Hydrogen Energy 33(23), 6886–6895 (2008).
[Crossref]

C. U. Ugwu, H. Aoyagi, and H. Uchiyama, “Photobioreactors for mass cultivation of algae,” Bioresour. Technol. 99(10), 4021–4028 (2008).
[Crossref] [PubMed]

2007 (4)

J. G. Chang and Y. B. Fang, “Dot-pattern design of a light guide in an edge-lit backlight using a regional partition approach,” Opt. Eng. 46(4), 043002 (2007).
[Crossref]

R. Bosma, E. van Zessen, J. H. Reith, J. Tramper, and R. H. Wijffels, “Prediction of volumetric productivity of an outdoor photobioreactor,” Biotechnol. Bioeng. 97(5), 1108–1120 (2007).
[Crossref] [PubMed]

Y. Chisti, “Biodiesel from microalgae,” Biotechnol. Adv. 25(3), 294–306 (2007).
[Crossref] [PubMed]

A. del Campo and C. Greiner, “SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography,” J. Micromech. Microeng. 17(6), R81–R95 (2007).
[Crossref]

2006 (2)

O. Morton, “Solar energy: A new day dawning? Silicon Valley sunrise,” Nature 443(7107), 19–22 (2006).
[Crossref] [PubMed]

N. S. Lewis and D. G. Nocera, “Powering the planet: chemical challenges in solar energy utilization,” Proc. Natl. Acad. Sci. U.S.A. 103(43), 15729–15735 (2006).
[Crossref] [PubMed]

2005 (1)

D. Pimentel and T. W. Patzek, “Ethanol production using corn, switchgrass, and wood; biodiesel production using soybean and sunflower,” Nat. Resour. Res. 14(1), 65–76 (2005).
[Crossref]

2003 (1)

M. Janssen, J. Tramper, L. R. Mur, and R. H. Wijffels, “Enclosed outdoor photobioreactors: Light regime, photosynthetic efficiency, scale-up, and future prospects,” Biotechnol. Bioeng. 81(2), 193–210 (2003).
[Crossref] [PubMed]

2002 (1)

G. Harbers, W. Timmers, and W. Sillevis-Smitt, “LED backlighting for LCD HDTV,” J. Soc. Inf. Disp. 10(4), 347–350 (2002).
[Crossref]

2000 (1)

P. M. Cox, R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Totterdell, “Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model,” Nature 408(6809), 184–187 (2000).
[Crossref] [PubMed]

1999 (3)

E. M. Grima, F. G. A. Fernandez, F. G. Camacho, and Y. Chisti, “Photobioreactors: light regime, mass transfer, and scaleup,” J. Biotechnol. 70(1-3), 231–247 (1999).
[Crossref]

J. C. Ogbonna, T. Soejima, and H. Tanaka, “An integrated solar and artificial light system for internal illumination of photobioreactors,” J. Biotechnol. 70(1-3), 289–297 (1999).
[Crossref] [PubMed]

C.-G. Lee, “Calculation of light penetration depth in photobioreactors,” Biotechnology and Bioprocess Engineering 4(1), 78–81 (1999).
[Crossref]

1996 (1)

E. M. Grima, J. M. F. Sevilla, J. A. S. Perez, and F. G. Camacho, “A study on simultaneous photolimitation and photoinhibition in dense microalgal cultures taking into account incident and averaged irradiances,” J. Biotechnol. 45(1), 59–69 (1996).
[Crossref]

1989 (1)

K. Mori, H. Ohya, K. Matsumoto, H. Furuune, K. Isozaki, and P. Siekmeier, “Design for a bioreactor with sunlight supply and operations systems for use in the space environment,” Adv. Space Res. 9(8), 161–168 (1989).
[Crossref] [PubMed]

Aden, A.

R. Davis, A. Aden, and P. T. Pienkos, “Techno-economic analysis of autotrophic microalgae for fuel production,” Appl. Energy 88(10), 3524–3531 (2011).
[Crossref]

Ahsan, S. S.

S. S. Ahsan, A. Gumus, and D. Erickson, “Redox mediated photocatalytic water-splitting in optofluidic microreactors,” Lab Chip 13(3), 409–414 (2013).
[Crossref] [PubMed]

Aisyah, R.

C. Y. Chen, K. L. Yeh, R. Aisyah, D. J. Lee, and J. S. Chang, “Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review,” Bioresour. Technol. 102(1), 71–81 (2011).
[Crossref] [PubMed]

Amaro, H. M.

H. M. Amaro, A. C. Guedes, and F. X. Malcata, “Advances and perspectives in using microalgae to produce biodiesel,” Appl. Energy 88(10), 3402–3410 (2011).
[Crossref]

Angenent, L. T.

E. E. Jung, M. Kalontarov, D. F. R. Doud, M. D. Ooms, L. T. Angenent, D. Sinton, and D. Erickson, “Slab waveguide photobioreactors for microalgae based biofuel production,” Lab Chip 12(19), 3740–3745 (2012).
[Crossref] [PubMed]

Aoyagi, H.

C. U. Ugwu, H. Aoyagi, and H. Uchiyama, “Photobioreactors for mass cultivation of algae,” Bioresour. Technol. 99(10), 4021–4028 (2008).
[Crossref] [PubMed]

Barbosa, M. J.

R. H. Wijffels and M. J. Barbosa, “An Outlook on Microalgal Biofuels,” Science 329(5993), 796–799 (2010).
[Crossref] [PubMed]

Beal, C. M.

C. M. Beal, R. E. Hebner, M. E. Webber, R. S. Ruoff, and A. F. Seibert, “The Energy Return on Investment for Algal Biocrude: Results for a Research Production Facility,” Bioenerg Res 5(2), 341–362 (2012).
[Crossref]

Betts, R. A.

P. M. Cox, R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Totterdell, “Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model,” Nature 408(6809), 184–187 (2000).
[Crossref] [PubMed]

Bosma, R.

R. Bosma, E. van Zessen, J. H. Reith, J. Tramper, and R. H. Wijffels, “Prediction of volumetric productivity of an outdoor photobioreactor,” Biotechnol. Bioeng. 97(5), 1108–1120 (2007).
[Crossref] [PubMed]

Camacho, F. G.

E. M. Grima, F. G. A. Fernandez, F. G. Camacho, and Y. Chisti, “Photobioreactors: light regime, mass transfer, and scaleup,” J. Biotechnol. 70(1-3), 231–247 (1999).
[Crossref]

E. M. Grima, J. M. F. Sevilla, J. A. S. Perez, and F. G. Camacho, “A study on simultaneous photolimitation and photoinhibition in dense microalgal cultures taking into account incident and averaged irradiances,” J. Biotechnol. 45(1), 59–69 (1996).
[Crossref]

Chang, J. G.

J. G. Chang and Y. B. Fang, “Dot-pattern design of a light guide in an edge-lit backlight using a regional partition approach,” Opt. Eng. 46(4), 043002 (2007).
[Crossref]

Chang, J. S.

C. Y. Chen, K. L. Yeh, R. Aisyah, D. J. Lee, and J. S. Chang, “Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review,” Bioresour. Technol. 102(1), 71–81 (2011).
[Crossref] [PubMed]

C. Y. Chen, G. D. Saratale, C. M. Lee, P. C. Chen, and J. S. Chang, “Phototrophic hydrogen production in photobioreactors coupled with solar-energy-excited optical fibers,” Int. J. Hydrogen Energy 33(23), 6886–6895 (2008).
[Crossref]

Chen, C. Y.

C. Y. Chen, K. L. Yeh, R. Aisyah, D. J. Lee, and J. S. Chang, “Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review,” Bioresour. Technol. 102(1), 71–81 (2011).
[Crossref] [PubMed]

C. Y. Chen, G. D. Saratale, C. M. Lee, P. C. Chen, and J. S. Chang, “Phototrophic hydrogen production in photobioreactors coupled with solar-energy-excited optical fibers,” Int. J. Hydrogen Energy 33(23), 6886–6895 (2008).
[Crossref]

Chen, P. C.

C. Y. Chen, G. D. Saratale, C. M. Lee, P. C. Chen, and J. S. Chang, “Phototrophic hydrogen production in photobioreactors coupled with solar-energy-excited optical fibers,” Int. J. Hydrogen Energy 33(23), 6886–6895 (2008).
[Crossref]

Chisti, Y.

Y. Chisti and J. Y. Yan, “Energy from algae: Current status and future trends Algal biofuels - A status report,” Appl. Energy 88(10), 3277–3279 (2011).
[Crossref]

Y. Chisti, “Biodiesel from microalgae,” Biotechnol. Adv. 25(3), 294–306 (2007).
[Crossref] [PubMed]

E. M. Grima, F. G. A. Fernandez, F. G. Camacho, and Y. Chisti, “Photobioreactors: light regime, mass transfer, and scaleup,” J. Biotechnol. 70(1-3), 231–247 (1999).
[Crossref]

Cox, P. M.

P. M. Cox, R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Totterdell, “Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model,” Nature 408(6809), 184–187 (2000).
[Crossref] [PubMed]

Davis, M.

J. Ungerer, L. Tao, M. Davis, M. Ghirardi, P. C. Maness, and J. P. Yu, “Sustained photosynthetic conversion of CO2 to ethylene in recombinant cyanobacterium Synechocystis 6803,” Energ Environ Sci 5(10), 8998–9006 (2012).
[Crossref]

Davis, R.

R. Davis, A. Aden, and P. T. Pienkos, “Techno-economic analysis of autotrophic microalgae for fuel production,” Appl. Energy 88(10), 3524–3531 (2011).
[Crossref]

del Campo, A.

A. del Campo and C. Greiner, “SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography,” J. Micromech. Microeng. 17(6), R81–R95 (2007).
[Crossref]

Demirbas, A.

A. Demirbas, “Biodiesel from oilgae, biofixation of carbon dioxide by microalgae: A solution to pollution problems,” Appl. Energy 88(10), 3541–3547 (2011).
[Crossref]

Demirbas, M. F.

M. F. Demirbas, “Biofuels from algae for sustainable development,” Appl. Energy 88(10), 3473–3480 (2011).
[Crossref]

Doud, D. F. R.

E. E. Jung, M. Kalontarov, D. F. R. Doud, M. D. Ooms, L. T. Angenent, D. Sinton, and D. Erickson, “Slab waveguide photobioreactors for microalgae based biofuel production,” Lab Chip 12(19), 3740–3745 (2012).
[Crossref] [PubMed]

Erickson, D.

S. S. Ahsan, A. Gumus, and D. Erickson, “Redox mediated photocatalytic water-splitting in optofluidic microreactors,” Lab Chip 13(3), 409–414 (2013).
[Crossref] [PubMed]

E. E. Jung, M. Kalontarov, D. F. R. Doud, M. D. Ooms, L. T. Angenent, D. Sinton, and D. Erickson, “Slab waveguide photobioreactors for microalgae based biofuel production,” Lab Chip 12(19), 3740–3745 (2012).
[Crossref] [PubMed]

M. D. Ooms, V. J. Sieben, S. C. Pierobon, E. E. Jung, M. Kalontarov, D. Erickson, and D. Sinton, “Evanescent photosynthesis: exciting cyanobacteria in a surface-confined light field,” Phys. Chem. Chem. Phys. 14(14), 4817–4823 (2012).
[Crossref] [PubMed]

D. Erickson, D. Sinton, and D. Psaltis, “Optofluidics for energy applications,” Nat. Photonics 5(10), 583–590 (2011).
[Crossref]

Fang, Y. B.

J. G. Chang and Y. B. Fang, “Dot-pattern design of a light guide in an edge-lit backlight using a regional partition approach,” Opt. Eng. 46(4), 043002 (2007).
[Crossref]

Fernandez, F. G. A.

E. M. Grima, F. G. A. Fernandez, F. G. Camacho, and Y. Chisti, “Photobioreactors: light regime, mass transfer, and scaleup,” J. Biotechnol. 70(1-3), 231–247 (1999).
[Crossref]

Furuune, H.

K. Mori, H. Ohya, K. Matsumoto, H. Furuune, K. Isozaki, and P. Siekmeier, “Design for a bioreactor with sunlight supply and operations systems for use in the space environment,” Adv. Space Res. 9(8), 161–168 (1989).
[Crossref] [PubMed]

Ghirardi, M.

J. Ungerer, L. Tao, M. Davis, M. Ghirardi, P. C. Maness, and J. P. Yu, “Sustained photosynthetic conversion of CO2 to ethylene in recombinant cyanobacterium Synechocystis 6803,” Energ Environ Sci 5(10), 8998–9006 (2012).
[Crossref]

Gilmour, D. J.

W. B. Zimmerman, M. Zandi, V. Tesar, D. J. Gilmour, and K. Z. Ying, “Design of an airlift loop bioreactor and pilot scales studies with fluidic oscillator induced microbubbles for growth of a microalgae Dunaliella salina,” Appl. Energy 88(10), 3357–3369 (2011).
[Crossref]

Greiner, C.

A. del Campo and C. Greiner, “SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography,” J. Micromech. Microeng. 17(6), R81–R95 (2007).
[Crossref]

Grima, E. M.

E. M. Grima, F. G. A. Fernandez, F. G. Camacho, and Y. Chisti, “Photobioreactors: light regime, mass transfer, and scaleup,” J. Biotechnol. 70(1-3), 231–247 (1999).
[Crossref]

E. M. Grima, J. M. F. Sevilla, J. A. S. Perez, and F. G. Camacho, “A study on simultaneous photolimitation and photoinhibition in dense microalgal cultures taking into account incident and averaged irradiances,” J. Biotechnol. 45(1), 59–69 (1996).
[Crossref]

Guedes, A. C.

H. M. Amaro, A. C. Guedes, and F. X. Malcata, “Advances and perspectives in using microalgae to produce biodiesel,” Appl. Energy 88(10), 3402–3410 (2011).
[Crossref]

Gumus, A.

S. S. Ahsan, A. Gumus, and D. Erickson, “Redox mediated photocatalytic water-splitting in optofluidic microreactors,” Lab Chip 13(3), 409–414 (2013).
[Crossref] [PubMed]

Gwag, J. S.

C. G. Son, J. H. Yi, J. S. Gwag, J. H. Kwon, and G. Park, “Improvement of Color and Luminance Uniformity of the Edge-Lit Backlight Using the RGB LEDs,” J Opt Soc Korea 15(3), 272–277 (2011).
[Crossref]

Harbers, G.

G. Harbers, W. Timmers, and W. Sillevis-Smitt, “LED backlighting for LCD HDTV,” J. Soc. Inf. Disp. 10(4), 347–350 (2002).
[Crossref]

Hebner, R. E.

C. M. Beal, R. E. Hebner, M. E. Webber, R. S. Ruoff, and A. F. Seibert, “The Energy Return on Investment for Algal Biocrude: Results for a Research Production Facility,” Bioenerg Res 5(2), 341–362 (2012).
[Crossref]

Isozaki, K.

K. Mori, H. Ohya, K. Matsumoto, H. Furuune, K. Isozaki, and P. Siekmeier, “Design for a bioreactor with sunlight supply and operations systems for use in the space environment,” Adv. Space Res. 9(8), 161–168 (1989).
[Crossref] [PubMed]

Janssen, M.

J. W. F. Zijffers, M. Janssen, J. Tramper, and R. H. Wijffels, “Design process of an area-efficient photobioreactor,” Mar. Biotechnol. (NY) 10(4), 404–415 (2008).
[Crossref] [PubMed]

M. Janssen, J. Tramper, L. R. Mur, and R. H. Wijffels, “Enclosed outdoor photobioreactors: Light regime, photosynthetic efficiency, scale-up, and future prospects,” Biotechnol. Bioeng. 81(2), 193–210 (2003).
[Crossref] [PubMed]

Jones, C. D.

P. M. Cox, R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Totterdell, “Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model,” Nature 408(6809), 184–187 (2000).
[Crossref] [PubMed]

Jung, E. E.

E. E. Jung, M. Kalontarov, D. F. R. Doud, M. D. Ooms, L. T. Angenent, D. Sinton, and D. Erickson, “Slab waveguide photobioreactors for microalgae based biofuel production,” Lab Chip 12(19), 3740–3745 (2012).
[Crossref] [PubMed]

M. D. Ooms, V. J. Sieben, S. C. Pierobon, E. E. Jung, M. Kalontarov, D. Erickson, and D. Sinton, “Evanescent photosynthesis: exciting cyanobacteria in a surface-confined light field,” Phys. Chem. Chem. Phys. 14(14), 4817–4823 (2012).
[Crossref] [PubMed]

Kalontarov, M.

M. D. Ooms, V. J. Sieben, S. C. Pierobon, E. E. Jung, M. Kalontarov, D. Erickson, and D. Sinton, “Evanescent photosynthesis: exciting cyanobacteria in a surface-confined light field,” Phys. Chem. Chem. Phys. 14(14), 4817–4823 (2012).
[Crossref] [PubMed]

E. E. Jung, M. Kalontarov, D. F. R. Doud, M. D. Ooms, L. T. Angenent, D. Sinton, and D. Erickson, “Slab waveguide photobioreactors for microalgae based biofuel production,” Lab Chip 12(19), 3740–3745 (2012).
[Crossref] [PubMed]

Ketheesan, B.

B. Ketheesan and N. Nirmalakhandan, “Development of a new airlift-driven raceway reactor for algal cultivation,” Appl. Energy 88(10), 3370–3376 (2011).
[Crossref]

Klise, G.

R. Pate, G. Klise, and B. Wu, “Resource demand implications for US algae biofuels production scale-up,” Appl. Energy 88(10), 3377–3388 (2011).
[Crossref]

Kwon, J. H.

C. G. Son, J. H. Yi, J. S. Gwag, J. H. Kwon, and G. Park, “Improvement of Color and Luminance Uniformity of the Edge-Lit Backlight Using the RGB LEDs,” J Opt Soc Korea 15(3), 272–277 (2011).
[Crossref]

Lam, M. K.

M. K. Lam and K. T. Lee, “Microalgae biofuels: A critical review of issues, problems and the way forward,” Biotechnol. Adv. 30(3), 673–690 (2012).
[Crossref] [PubMed]

Lee, C. M.

C. Y. Chen, G. D. Saratale, C. M. Lee, P. C. Chen, and J. S. Chang, “Phototrophic hydrogen production in photobioreactors coupled with solar-energy-excited optical fibers,” Int. J. Hydrogen Energy 33(23), 6886–6895 (2008).
[Crossref]

Lee, C.-G.

C.-G. Lee, “Calculation of light penetration depth in photobioreactors,” Biotechnology and Bioprocess Engineering 4(1), 78–81 (1999).
[Crossref]

Lee, D. J.

C. Y. Chen, K. L. Yeh, R. Aisyah, D. J. Lee, and J. S. Chang, “Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review,” Bioresour. Technol. 102(1), 71–81 (2011).
[Crossref] [PubMed]

Lee, K. T.

M. K. Lam and K. T. Lee, “Microalgae biofuels: A critical review of issues, problems and the way forward,” Biotechnol. Adv. 30(3), 673–690 (2012).
[Crossref] [PubMed]

Lehr, F.

F. Lehr and C. Posten, “Closed photo-bioreactors as tools for biofuel production,” Curr. Opin. Biotechnol. 20(3), 280–285 (2009).
[Crossref] [PubMed]

Lewis, N. S.

N. S. Lewis and D. G. Nocera, “Powering the planet: chemical challenges in solar energy utilization,” Proc. Natl. Acad. Sci. U.S.A. 103(43), 15729–15735 (2006).
[Crossref] [PubMed]

Malcata, F. X.

H. M. Amaro, A. C. Guedes, and F. X. Malcata, “Advances and perspectives in using microalgae to produce biodiesel,” Appl. Energy 88(10), 3402–3410 (2011).
[Crossref]

Maness, P. C.

J. Ungerer, L. Tao, M. Davis, M. Ghirardi, P. C. Maness, and J. P. Yu, “Sustained photosynthetic conversion of CO2 to ethylene in recombinant cyanobacterium Synechocystis 6803,” Energ Environ Sci 5(10), 8998–9006 (2012).
[Crossref]

Matsumoto, K.

K. Mori, H. Ohya, K. Matsumoto, H. Furuune, K. Isozaki, and P. Siekmeier, “Design for a bioreactor with sunlight supply and operations systems for use in the space environment,” Adv. Space Res. 9(8), 161–168 (1989).
[Crossref] [PubMed]

Mori, K.

K. Mori, H. Ohya, K. Matsumoto, H. Furuune, K. Isozaki, and P. Siekmeier, “Design for a bioreactor with sunlight supply and operations systems for use in the space environment,” Adv. Space Res. 9(8), 161–168 (1989).
[Crossref] [PubMed]

Morton, O.

O. Morton, “Solar energy: A new day dawning? Silicon Valley sunrise,” Nature 443(7107), 19–22 (2006).
[Crossref] [PubMed]

Mur, L. R.

M. Janssen, J. Tramper, L. R. Mur, and R. H. Wijffels, “Enclosed outdoor photobioreactors: Light regime, photosynthetic efficiency, scale-up, and future prospects,” Biotechnol. Bioeng. 81(2), 193–210 (2003).
[Crossref] [PubMed]

Nirmalakhandan, N.

B. Ketheesan and N. Nirmalakhandan, “Development of a new airlift-driven raceway reactor for algal cultivation,” Appl. Energy 88(10), 3370–3376 (2011).
[Crossref]

Nocera, D. G.

N. S. Lewis and D. G. Nocera, “Powering the planet: chemical challenges in solar energy utilization,” Proc. Natl. Acad. Sci. U.S.A. 103(43), 15729–15735 (2006).
[Crossref] [PubMed]

Ogbonna, J. C.

J. C. Ogbonna, T. Soejima, and H. Tanaka, “An integrated solar and artificial light system for internal illumination of photobioreactors,” J. Biotechnol. 70(1-3), 289–297 (1999).
[Crossref] [PubMed]

Ohya, H.

K. Mori, H. Ohya, K. Matsumoto, H. Furuune, K. Isozaki, and P. Siekmeier, “Design for a bioreactor with sunlight supply and operations systems for use in the space environment,” Adv. Space Res. 9(8), 161–168 (1989).
[Crossref] [PubMed]

Olsen, S. I.

A. Singh and S. I. Olsen, “A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels,” Appl. Energy 88(10), 3548–3555 (2011).
[Crossref]

Ooms, M. D.

E. E. Jung, M. Kalontarov, D. F. R. Doud, M. D. Ooms, L. T. Angenent, D. Sinton, and D. Erickson, “Slab waveguide photobioreactors for microalgae based biofuel production,” Lab Chip 12(19), 3740–3745 (2012).
[Crossref] [PubMed]

M. D. Ooms, V. J. Sieben, S. C. Pierobon, E. E. Jung, M. Kalontarov, D. Erickson, and D. Sinton, “Evanescent photosynthesis: exciting cyanobacteria in a surface-confined light field,” Phys. Chem. Chem. Phys. 14(14), 4817–4823 (2012).
[Crossref] [PubMed]

Park, G.

C. G. Son, J. H. Yi, J. S. Gwag, J. H. Kwon, and G. Park, “Improvement of Color and Luminance Uniformity of the Edge-Lit Backlight Using the RGB LEDs,” J Opt Soc Korea 15(3), 272–277 (2011).
[Crossref]

Pate, R.

R. Pate, G. Klise, and B. Wu, “Resource demand implications for US algae biofuels production scale-up,” Appl. Energy 88(10), 3377–3388 (2011).
[Crossref]

Patzek, T. W.

D. Pimentel and T. W. Patzek, “Ethanol production using corn, switchgrass, and wood; biodiesel production using soybean and sunflower,” Nat. Resour. Res. 14(1), 65–76 (2005).
[Crossref]

Perez, J. A. S.

E. M. Grima, J. M. F. Sevilla, J. A. S. Perez, and F. G. Camacho, “A study on simultaneous photolimitation and photoinhibition in dense microalgal cultures taking into account incident and averaged irradiances,” J. Biotechnol. 45(1), 59–69 (1996).
[Crossref]

Pienkos, P. T.

R. Davis, A. Aden, and P. T. Pienkos, “Techno-economic analysis of autotrophic microalgae for fuel production,” Appl. Energy 88(10), 3524–3531 (2011).
[Crossref]

Pierobon, S. C.

M. D. Ooms, V. J. Sieben, S. C. Pierobon, E. E. Jung, M. Kalontarov, D. Erickson, and D. Sinton, “Evanescent photosynthesis: exciting cyanobacteria in a surface-confined light field,” Phys. Chem. Chem. Phys. 14(14), 4817–4823 (2012).
[Crossref] [PubMed]

Pimentel, D.

D. Pimentel and T. W. Patzek, “Ethanol production using corn, switchgrass, and wood; biodiesel production using soybean and sunflower,” Nat. Resour. Res. 14(1), 65–76 (2005).
[Crossref]

Posten, C.

C. Posten, “Design principles of photo-bioreactors for cultivation of microalgae,” Eng. Life Sci. 9(3), 165–177 (2009).
[Crossref]

F. Lehr and C. Posten, “Closed photo-bioreactors as tools for biofuel production,” Curr. Opin. Biotechnol. 20(3), 280–285 (2009).
[Crossref] [PubMed]

Psaltis, D.

D. Erickson, D. Sinton, and D. Psaltis, “Optofluidics for energy applications,” Nat. Photonics 5(10), 583–590 (2011).
[Crossref]

Razon, L. F.

L. F. Razon and R. R. Tan, “Net energy analysis of the production of biodiesel and biogas from the microalgae: Haematococcus pluvialis and Nannochloropsis,” Appl. Energy 88(10), 3507–3514 (2011).
[Crossref]

Reith, J. H.

R. Bosma, E. van Zessen, J. H. Reith, J. Tramper, and R. H. Wijffels, “Prediction of volumetric productivity of an outdoor photobioreactor,” Biotechnol. Bioeng. 97(5), 1108–1120 (2007).
[Crossref] [PubMed]

Ruoff, R. S.

C. M. Beal, R. E. Hebner, M. E. Webber, R. S. Ruoff, and A. F. Seibert, “The Energy Return on Investment for Algal Biocrude: Results for a Research Production Facility,” Bioenerg Res 5(2), 341–362 (2012).
[Crossref]

Saratale, G. D.

C. Y. Chen, G. D. Saratale, C. M. Lee, P. C. Chen, and J. S. Chang, “Phototrophic hydrogen production in photobioreactors coupled with solar-energy-excited optical fibers,” Int. J. Hydrogen Energy 33(23), 6886–6895 (2008).
[Crossref]

Seibert, A. F.

C. M. Beal, R. E. Hebner, M. E. Webber, R. S. Ruoff, and A. F. Seibert, “The Energy Return on Investment for Algal Biocrude: Results for a Research Production Facility,” Bioenerg Res 5(2), 341–362 (2012).
[Crossref]

Sevilla, J. M. F.

E. M. Grima, J. M. F. Sevilla, J. A. S. Perez, and F. G. Camacho, “A study on simultaneous photolimitation and photoinhibition in dense microalgal cultures taking into account incident and averaged irradiances,” J. Biotechnol. 45(1), 59–69 (1996).
[Crossref]

Sieben, V. J.

M. D. Ooms, V. J. Sieben, S. C. Pierobon, E. E. Jung, M. Kalontarov, D. Erickson, and D. Sinton, “Evanescent photosynthesis: exciting cyanobacteria in a surface-confined light field,” Phys. Chem. Chem. Phys. 14(14), 4817–4823 (2012).
[Crossref] [PubMed]

Siekmeier, P.

K. Mori, H. Ohya, K. Matsumoto, H. Furuune, K. Isozaki, and P. Siekmeier, “Design for a bioreactor with sunlight supply and operations systems for use in the space environment,” Adv. Space Res. 9(8), 161–168 (1989).
[Crossref] [PubMed]

Sillevis-Smitt, W.

G. Harbers, W. Timmers, and W. Sillevis-Smitt, “LED backlighting for LCD HDTV,” J. Soc. Inf. Disp. 10(4), 347–350 (2002).
[Crossref]

Singh, A.

A. Singh and S. I. Olsen, “A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels,” Appl. Energy 88(10), 3548–3555 (2011).
[Crossref]

Sinton, D.

E. E. Jung, M. Kalontarov, D. F. R. Doud, M. D. Ooms, L. T. Angenent, D. Sinton, and D. Erickson, “Slab waveguide photobioreactors for microalgae based biofuel production,” Lab Chip 12(19), 3740–3745 (2012).
[Crossref] [PubMed]

M. D. Ooms, V. J. Sieben, S. C. Pierobon, E. E. Jung, M. Kalontarov, D. Erickson, and D. Sinton, “Evanescent photosynthesis: exciting cyanobacteria in a surface-confined light field,” Phys. Chem. Chem. Phys. 14(14), 4817–4823 (2012).
[Crossref] [PubMed]

D. Erickson, D. Sinton, and D. Psaltis, “Optofluidics for energy applications,” Nat. Photonics 5(10), 583–590 (2011).
[Crossref]

Slegers, P. M.

P. M. Slegers, P. J. M. van Beveren, R. H. Wijffels, G. van Straten, and A. J. B. van Boxtel, “Scenario analysis of large scale algae production in tubular photobioreactors,” Appl. Energy 105, 395–406 (2013).
[Crossref]

P. M. Slegers, R. H. Wijffels, G. van Straten, and A. J. B. van Boxtel, “Design scenarios for flat panel photobioreactors,” Appl. Energy 88(10), 3342–3353 (2011).
[Crossref]

Soejima, T.

J. C. Ogbonna, T. Soejima, and H. Tanaka, “An integrated solar and artificial light system for internal illumination of photobioreactors,” J. Biotechnol. 70(1-3), 289–297 (1999).
[Crossref] [PubMed]

Son, C. G.

C. G. Son, J. H. Yi, J. S. Gwag, J. H. Kwon, and G. Park, “Improvement of Color and Luminance Uniformity of the Edge-Lit Backlight Using the RGB LEDs,” J Opt Soc Korea 15(3), 272–277 (2011).
[Crossref]

Spall, S. A.

P. M. Cox, R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Totterdell, “Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model,” Nature 408(6809), 184–187 (2000).
[Crossref] [PubMed]

Sureshkumar, R.

S. Torkamani, S. N. Wani, Y. J. Tang, and R. Sureshkumar, “Plasmon-enhanced microalgal growth in miniphotobioreactors,” Appl. Phys. Lett. 97(4), 043703 (2010).
[Crossref]

Tan, R. R.

L. F. Razon and R. R. Tan, “Net energy analysis of the production of biodiesel and biogas from the microalgae: Haematococcus pluvialis and Nannochloropsis,” Appl. Energy 88(10), 3507–3514 (2011).
[Crossref]

Tanaka, H.

J. C. Ogbonna, T. Soejima, and H. Tanaka, “An integrated solar and artificial light system for internal illumination of photobioreactors,” J. Biotechnol. 70(1-3), 289–297 (1999).
[Crossref] [PubMed]

Tang, Y. J.

S. Torkamani, S. N. Wani, Y. J. Tang, and R. Sureshkumar, “Plasmon-enhanced microalgal growth in miniphotobioreactors,” Appl. Phys. Lett. 97(4), 043703 (2010).
[Crossref]

Tao, L.

J. Ungerer, L. Tao, M. Davis, M. Ghirardi, P. C. Maness, and J. P. Yu, “Sustained photosynthetic conversion of CO2 to ethylene in recombinant cyanobacterium Synechocystis 6803,” Energ Environ Sci 5(10), 8998–9006 (2012).
[Crossref]

Tesar, V.

W. B. Zimmerman, M. Zandi, V. Tesar, D. J. Gilmour, and K. Z. Ying, “Design of an airlift loop bioreactor and pilot scales studies with fluidic oscillator induced microbubbles for growth of a microalgae Dunaliella salina,” Appl. Energy 88(10), 3357–3369 (2011).
[Crossref]

Timmers, W.

G. Harbers, W. Timmers, and W. Sillevis-Smitt, “LED backlighting for LCD HDTV,” J. Soc. Inf. Disp. 10(4), 347–350 (2002).
[Crossref]

Torkamani, S.

S. Torkamani, S. N. Wani, Y. J. Tang, and R. Sureshkumar, “Plasmon-enhanced microalgal growth in miniphotobioreactors,” Appl. Phys. Lett. 97(4), 043703 (2010).
[Crossref]

Totterdell, I. J.

P. M. Cox, R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Totterdell, “Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model,” Nature 408(6809), 184–187 (2000).
[Crossref] [PubMed]

Tramper, J.

J. W. F. Zijffers, M. Janssen, J. Tramper, and R. H. Wijffels, “Design process of an area-efficient photobioreactor,” Mar. Biotechnol. (NY) 10(4), 404–415 (2008).
[Crossref] [PubMed]

R. Bosma, E. van Zessen, J. H. Reith, J. Tramper, and R. H. Wijffels, “Prediction of volumetric productivity of an outdoor photobioreactor,” Biotechnol. Bioeng. 97(5), 1108–1120 (2007).
[Crossref] [PubMed]

M. Janssen, J. Tramper, L. R. Mur, and R. H. Wijffels, “Enclosed outdoor photobioreactors: Light regime, photosynthetic efficiency, scale-up, and future prospects,” Biotechnol. Bioeng. 81(2), 193–210 (2003).
[Crossref] [PubMed]

Uchiyama, H.

C. U. Ugwu, H. Aoyagi, and H. Uchiyama, “Photobioreactors for mass cultivation of algae,” Bioresour. Technol. 99(10), 4021–4028 (2008).
[Crossref] [PubMed]

Ugwu, C. U.

C. U. Ugwu, H. Aoyagi, and H. Uchiyama, “Photobioreactors for mass cultivation of algae,” Bioresour. Technol. 99(10), 4021–4028 (2008).
[Crossref] [PubMed]

Ungerer, J.

J. Ungerer, L. Tao, M. Davis, M. Ghirardi, P. C. Maness, and J. P. Yu, “Sustained photosynthetic conversion of CO2 to ethylene in recombinant cyanobacterium Synechocystis 6803,” Energ Environ Sci 5(10), 8998–9006 (2012).
[Crossref]

van Beveren, P. J. M.

P. M. Slegers, P. J. M. van Beveren, R. H. Wijffels, G. van Straten, and A. J. B. van Boxtel, “Scenario analysis of large scale algae production in tubular photobioreactors,” Appl. Energy 105, 395–406 (2013).
[Crossref]

van Boxtel, A. J. B.

P. M. Slegers, P. J. M. van Beveren, R. H. Wijffels, G. van Straten, and A. J. B. van Boxtel, “Scenario analysis of large scale algae production in tubular photobioreactors,” Appl. Energy 105, 395–406 (2013).
[Crossref]

P. M. Slegers, R. H. Wijffels, G. van Straten, and A. J. B. van Boxtel, “Design scenarios for flat panel photobioreactors,” Appl. Energy 88(10), 3342–3353 (2011).
[Crossref]

van Straten, G.

P. M. Slegers, P. J. M. van Beveren, R. H. Wijffels, G. van Straten, and A. J. B. van Boxtel, “Scenario analysis of large scale algae production in tubular photobioreactors,” Appl. Energy 105, 395–406 (2013).
[Crossref]

P. M. Slegers, R. H. Wijffels, G. van Straten, and A. J. B. van Boxtel, “Design scenarios for flat panel photobioreactors,” Appl. Energy 88(10), 3342–3353 (2011).
[Crossref]

van Zessen, E.

R. Bosma, E. van Zessen, J. H. Reith, J. Tramper, and R. H. Wijffels, “Prediction of volumetric productivity of an outdoor photobioreactor,” Biotechnol. Bioeng. 97(5), 1108–1120 (2007).
[Crossref] [PubMed]

Wani, S. N.

S. Torkamani, S. N. Wani, Y. J. Tang, and R. Sureshkumar, “Plasmon-enhanced microalgal growth in miniphotobioreactors,” Appl. Phys. Lett. 97(4), 043703 (2010).
[Crossref]

Webber, M. E.

C. M. Beal, R. E. Hebner, M. E. Webber, R. S. Ruoff, and A. F. Seibert, “The Energy Return on Investment for Algal Biocrude: Results for a Research Production Facility,” Bioenerg Res 5(2), 341–362 (2012).
[Crossref]

Wijffels, R. H.

P. M. Slegers, P. J. M. van Beveren, R. H. Wijffels, G. van Straten, and A. J. B. van Boxtel, “Scenario analysis of large scale algae production in tubular photobioreactors,” Appl. Energy 105, 395–406 (2013).
[Crossref]

P. M. Slegers, R. H. Wijffels, G. van Straten, and A. J. B. van Boxtel, “Design scenarios for flat panel photobioreactors,” Appl. Energy 88(10), 3342–3353 (2011).
[Crossref]

R. H. Wijffels and M. J. Barbosa, “An Outlook on Microalgal Biofuels,” Science 329(5993), 796–799 (2010).
[Crossref] [PubMed]

J. W. F. Zijffers, M. Janssen, J. Tramper, and R. H. Wijffels, “Design process of an area-efficient photobioreactor,” Mar. Biotechnol. (NY) 10(4), 404–415 (2008).
[Crossref] [PubMed]

R. Bosma, E. van Zessen, J. H. Reith, J. Tramper, and R. H. Wijffels, “Prediction of volumetric productivity of an outdoor photobioreactor,” Biotechnol. Bioeng. 97(5), 1108–1120 (2007).
[Crossref] [PubMed]

M. Janssen, J. Tramper, L. R. Mur, and R. H. Wijffels, “Enclosed outdoor photobioreactors: Light regime, photosynthetic efficiency, scale-up, and future prospects,” Biotechnol. Bioeng. 81(2), 193–210 (2003).
[Crossref] [PubMed]

Wu, B.

R. Pate, G. Klise, and B. Wu, “Resource demand implications for US algae biofuels production scale-up,” Appl. Energy 88(10), 3377–3388 (2011).
[Crossref]

Yan, J. Y.

Y. Chisti and J. Y. Yan, “Energy from algae: Current status and future trends Algal biofuels - A status report,” Appl. Energy 88(10), 3277–3279 (2011).
[Crossref]

Yeh, K. L.

C. Y. Chen, K. L. Yeh, R. Aisyah, D. J. Lee, and J. S. Chang, “Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review,” Bioresour. Technol. 102(1), 71–81 (2011).
[Crossref] [PubMed]

Yi, J. H.

C. G. Son, J. H. Yi, J. S. Gwag, J. H. Kwon, and G. Park, “Improvement of Color and Luminance Uniformity of the Edge-Lit Backlight Using the RGB LEDs,” J Opt Soc Korea 15(3), 272–277 (2011).
[Crossref]

Ying, K. Z.

W. B. Zimmerman, M. Zandi, V. Tesar, D. J. Gilmour, and K. Z. Ying, “Design of an airlift loop bioreactor and pilot scales studies with fluidic oscillator induced microbubbles for growth of a microalgae Dunaliella salina,” Appl. Energy 88(10), 3357–3369 (2011).
[Crossref]

Yu, J. P.

J. Ungerer, L. Tao, M. Davis, M. Ghirardi, P. C. Maness, and J. P. Yu, “Sustained photosynthetic conversion of CO2 to ethylene in recombinant cyanobacterium Synechocystis 6803,” Energ Environ Sci 5(10), 8998–9006 (2012).
[Crossref]

Zandi, M.

W. B. Zimmerman, M. Zandi, V. Tesar, D. J. Gilmour, and K. Z. Ying, “Design of an airlift loop bioreactor and pilot scales studies with fluidic oscillator induced microbubbles for growth of a microalgae Dunaliella salina,” Appl. Energy 88(10), 3357–3369 (2011).
[Crossref]

Zijffers, J. W. F.

J. W. F. Zijffers, M. Janssen, J. Tramper, and R. H. Wijffels, “Design process of an area-efficient photobioreactor,” Mar. Biotechnol. (NY) 10(4), 404–415 (2008).
[Crossref] [PubMed]

Zimmerman, W. B.

W. B. Zimmerman, M. Zandi, V. Tesar, D. J. Gilmour, and K. Z. Ying, “Design of an airlift loop bioreactor and pilot scales studies with fluidic oscillator induced microbubbles for growth of a microalgae Dunaliella salina,” Appl. Energy 88(10), 3357–3369 (2011).
[Crossref]

Adv. Space Res. (1)

K. Mori, H. Ohya, K. Matsumoto, H. Furuune, K. Isozaki, and P. Siekmeier, “Design for a bioreactor with sunlight supply and operations systems for use in the space environment,” Adv. Space Res. 9(8), 161–168 (1989).
[Crossref] [PubMed]

Appl. Energy (12)

W. B. Zimmerman, M. Zandi, V. Tesar, D. J. Gilmour, and K. Z. Ying, “Design of an airlift loop bioreactor and pilot scales studies with fluidic oscillator induced microbubbles for growth of a microalgae Dunaliella salina,” Appl. Energy 88(10), 3357–3369 (2011).
[Crossref]

B. Ketheesan and N. Nirmalakhandan, “Development of a new airlift-driven raceway reactor for algal cultivation,” Appl. Energy 88(10), 3370–3376 (2011).
[Crossref]

P. M. Slegers, P. J. M. van Beveren, R. H. Wijffels, G. van Straten, and A. J. B. van Boxtel, “Scenario analysis of large scale algae production in tubular photobioreactors,” Appl. Energy 105, 395–406 (2013).
[Crossref]

P. M. Slegers, R. H. Wijffels, G. van Straten, and A. J. B. van Boxtel, “Design scenarios for flat panel photobioreactors,” Appl. Energy 88(10), 3342–3353 (2011).
[Crossref]

A. Demirbas, “Biodiesel from oilgae, biofixation of carbon dioxide by microalgae: A solution to pollution problems,” Appl. Energy 88(10), 3541–3547 (2011).
[Crossref]

M. F. Demirbas, “Biofuels from algae for sustainable development,” Appl. Energy 88(10), 3473–3480 (2011).
[Crossref]

R. Pate, G. Klise, and B. Wu, “Resource demand implications for US algae biofuels production scale-up,” Appl. Energy 88(10), 3377–3388 (2011).
[Crossref]

Y. Chisti and J. Y. Yan, “Energy from algae: Current status and future trends Algal biofuels - A status report,” Appl. Energy 88(10), 3277–3279 (2011).
[Crossref]

L. F. Razon and R. R. Tan, “Net energy analysis of the production of biodiesel and biogas from the microalgae: Haematococcus pluvialis and Nannochloropsis,” Appl. Energy 88(10), 3507–3514 (2011).
[Crossref]

R. Davis, A. Aden, and P. T. Pienkos, “Techno-economic analysis of autotrophic microalgae for fuel production,” Appl. Energy 88(10), 3524–3531 (2011).
[Crossref]

A. Singh and S. I. Olsen, “A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels,” Appl. Energy 88(10), 3548–3555 (2011).
[Crossref]

H. M. Amaro, A. C. Guedes, and F. X. Malcata, “Advances and perspectives in using microalgae to produce biodiesel,” Appl. Energy 88(10), 3402–3410 (2011).
[Crossref]

Appl. Phys. Lett. (1)

S. Torkamani, S. N. Wani, Y. J. Tang, and R. Sureshkumar, “Plasmon-enhanced microalgal growth in miniphotobioreactors,” Appl. Phys. Lett. 97(4), 043703 (2010).
[Crossref]

Bioenerg Res (1)

C. M. Beal, R. E. Hebner, M. E. Webber, R. S. Ruoff, and A. F. Seibert, “The Energy Return on Investment for Algal Biocrude: Results for a Research Production Facility,” Bioenerg Res 5(2), 341–362 (2012).
[Crossref]

Bioresour. Technol. (2)

C. Y. Chen, K. L. Yeh, R. Aisyah, D. J. Lee, and J. S. Chang, “Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review,” Bioresour. Technol. 102(1), 71–81 (2011).
[Crossref] [PubMed]

C. U. Ugwu, H. Aoyagi, and H. Uchiyama, “Photobioreactors for mass cultivation of algae,” Bioresour. Technol. 99(10), 4021–4028 (2008).
[Crossref] [PubMed]

Biotechnol. Adv. (2)

M. K. Lam and K. T. Lee, “Microalgae biofuels: A critical review of issues, problems and the way forward,” Biotechnol. Adv. 30(3), 673–690 (2012).
[Crossref] [PubMed]

Y. Chisti, “Biodiesel from microalgae,” Biotechnol. Adv. 25(3), 294–306 (2007).
[Crossref] [PubMed]

Biotechnol. Bioeng. (2)

M. Janssen, J. Tramper, L. R. Mur, and R. H. Wijffels, “Enclosed outdoor photobioreactors: Light regime, photosynthetic efficiency, scale-up, and future prospects,” Biotechnol. Bioeng. 81(2), 193–210 (2003).
[Crossref] [PubMed]

R. Bosma, E. van Zessen, J. H. Reith, J. Tramper, and R. H. Wijffels, “Prediction of volumetric productivity of an outdoor photobioreactor,” Biotechnol. Bioeng. 97(5), 1108–1120 (2007).
[Crossref] [PubMed]

Biotechnology and Bioprocess Engineering (1)

C.-G. Lee, “Calculation of light penetration depth in photobioreactors,” Biotechnology and Bioprocess Engineering 4(1), 78–81 (1999).
[Crossref]

Curr. Opin. Biotechnol. (1)

F. Lehr and C. Posten, “Closed photo-bioreactors as tools for biofuel production,” Curr. Opin. Biotechnol. 20(3), 280–285 (2009).
[Crossref] [PubMed]

Energ Environ Sci (1)

J. Ungerer, L. Tao, M. Davis, M. Ghirardi, P. C. Maness, and J. P. Yu, “Sustained photosynthetic conversion of CO2 to ethylene in recombinant cyanobacterium Synechocystis 6803,” Energ Environ Sci 5(10), 8998–9006 (2012).
[Crossref]

Eng. Life Sci. (1)

C. Posten, “Design principles of photo-bioreactors for cultivation of microalgae,” Eng. Life Sci. 9(3), 165–177 (2009).
[Crossref]

Int. J. Hydrogen Energy (1)

C. Y. Chen, G. D. Saratale, C. M. Lee, P. C. Chen, and J. S. Chang, “Phototrophic hydrogen production in photobioreactors coupled with solar-energy-excited optical fibers,” Int. J. Hydrogen Energy 33(23), 6886–6895 (2008).
[Crossref]

J Opt Soc Korea (1)

C. G. Son, J. H. Yi, J. S. Gwag, J. H. Kwon, and G. Park, “Improvement of Color and Luminance Uniformity of the Edge-Lit Backlight Using the RGB LEDs,” J Opt Soc Korea 15(3), 272–277 (2011).
[Crossref]

J. Biotechnol. (3)

J. C. Ogbonna, T. Soejima, and H. Tanaka, “An integrated solar and artificial light system for internal illumination of photobioreactors,” J. Biotechnol. 70(1-3), 289–297 (1999).
[Crossref] [PubMed]

E. M. Grima, J. M. F. Sevilla, J. A. S. Perez, and F. G. Camacho, “A study on simultaneous photolimitation and photoinhibition in dense microalgal cultures taking into account incident and averaged irradiances,” J. Biotechnol. 45(1), 59–69 (1996).
[Crossref]

E. M. Grima, F. G. A. Fernandez, F. G. Camacho, and Y. Chisti, “Photobioreactors: light regime, mass transfer, and scaleup,” J. Biotechnol. 70(1-3), 231–247 (1999).
[Crossref]

J. Micromech. Microeng. (1)

A. del Campo and C. Greiner, “SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography,” J. Micromech. Microeng. 17(6), R81–R95 (2007).
[Crossref]

J. Soc. Inf. Disp. (1)

G. Harbers, W. Timmers, and W. Sillevis-Smitt, “LED backlighting for LCD HDTV,” J. Soc. Inf. Disp. 10(4), 347–350 (2002).
[Crossref]

Lab Chip (2)

E. E. Jung, M. Kalontarov, D. F. R. Doud, M. D. Ooms, L. T. Angenent, D. Sinton, and D. Erickson, “Slab waveguide photobioreactors for microalgae based biofuel production,” Lab Chip 12(19), 3740–3745 (2012).
[Crossref] [PubMed]

S. S. Ahsan, A. Gumus, and D. Erickson, “Redox mediated photocatalytic water-splitting in optofluidic microreactors,” Lab Chip 13(3), 409–414 (2013).
[Crossref] [PubMed]

Mar. Biotechnol. (NY) (1)

J. W. F. Zijffers, M. Janssen, J. Tramper, and R. H. Wijffels, “Design process of an area-efficient photobioreactor,” Mar. Biotechnol. (NY) 10(4), 404–415 (2008).
[Crossref] [PubMed]

Nat. Photonics (1)

D. Erickson, D. Sinton, and D. Psaltis, “Optofluidics for energy applications,” Nat. Photonics 5(10), 583–590 (2011).
[Crossref]

Nat. Resour. Res. (1)

D. Pimentel and T. W. Patzek, “Ethanol production using corn, switchgrass, and wood; biodiesel production using soybean and sunflower,” Nat. Resour. Res. 14(1), 65–76 (2005).
[Crossref]

Nature (2)

P. M. Cox, R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Totterdell, “Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model,” Nature 408(6809), 184–187 (2000).
[Crossref] [PubMed]

O. Morton, “Solar energy: A new day dawning? Silicon Valley sunrise,” Nature 443(7107), 19–22 (2006).
[Crossref] [PubMed]

Opt. Eng. (1)

J. G. Chang and Y. B. Fang, “Dot-pattern design of a light guide in an edge-lit backlight using a regional partition approach,” Opt. Eng. 46(4), 043002 (2007).
[Crossref]

Phys. Chem. Chem. Phys. (1)

M. D. Ooms, V. J. Sieben, S. C. Pierobon, E. E. Jung, M. Kalontarov, D. Erickson, and D. Sinton, “Evanescent photosynthesis: exciting cyanobacteria in a surface-confined light field,” Phys. Chem. Chem. Phys. 14(14), 4817–4823 (2012).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

N. S. Lewis and D. G. Nocera, “Powering the planet: chemical challenges in solar energy utilization,” Proc. Natl. Acad. Sci. U.S.A. 103(43), 15729–15735 (2006).
[Crossref] [PubMed]

Science (1)

R. H. Wijffels and M. J. Barbosa, “An Outlook on Microalgal Biofuels,” Science 329(5993), 796–799 (2010).
[Crossref] [PubMed]

Other (4)

D. L. Klass, Biomass for Renewable Energy, Fuels, and Chemicals (Elsevier Science, 1998).

J. F. V. Derlofske, “Computer modeling of LED light pipe systems for uniform display illumination,” SPIE Proceedings 4445, 119–129 (2001).

E. E. Jung, A. Jain, N. Voulis, D. D. R. Doud, L. T. Angenent, and D. Erickson, “Stacked optical waveguide photobioreactor for high density algal cultures,” Bioresource Technol. (2014).

M. Kalontarov, D. Doud, E. E. Jung, L. Angenent, and D. Erickson, “In situ hollow fiber membrane facilitated CO2 delivery to a cyanobacterium for enhanced productivity,” RSC Adv. (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Scatterers on slabwaveguides for algal cultivation. (a) Algae can also be excited via evanescent waves where growth is confined closer to the surface of the waveguide; (b) Uniform distribution of scatterers results in non-uniform illumination across the length of the reactor; (c) Spatially varying the distribution of pillars results in more uniform illumination along the reactor; (d) SEMs of the pillars at different densities, from left to right is variance down the length of the reactor.
Fig. 2
Fig. 2 Characterizing angular scattering from surface scatterers. (a) Results from the 2D FEM simulation environment; (b) periodic positions of the pillars scatter the laser light in predictable manner creating interference patterns; (c) Angular scattering profiles vary with respect to the side angle of incidence of the laser; (d) angular scattering profiles also seem to vary depending on the length along the waveguide when seen through pinholes at different locations from front (1cm from front edge) and back (3.5cm from front edge)
Fig. 3
Fig. 3 Characterizing longitudinal scattering illumination in shallow dye channels. (a) Schematic of shallow channel dye experiments; (b) the surface coverage along the length of the reactor of the posts required for uniform scattering; (c) the scattering along the length of the shallow dye channel when sample has uniform surface coverage of posts of 25%; (d) the scattering along the length of the shallow dye channel when sample has gradient surface coverage of pillars as in (b).
Fig. 4
Fig. 4 The surface coverage of photobioreactors with different scattering schemes over the course of three days. (a) evanescent excitation; (b) uniform density of posts at 50% coverage; (c) chemically etched waveguides; (d) gradient density of pillars
Fig. 5
Fig. 5 (a) The total surface coverage as a function of the length after the first day for the different scattering schemes;(b) the total surface coverage for different scattering schemes over the course of the three days; (c) the scattering intensity across the width of a gradient pillar sample in shallow channel dye experiments; (d) a fluorescent image of the bacteria under the uniform density of posts at 50%. Notice that algal growth occurs only in between pillars and seems to be spatially confined.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

S ( x ) = d θ A ( θ ) e k ( θ ) x A e k int x
k( sc )= k i sc s c i
K( x )= 1 ( 1/ k 0 x )
k 0 = k max ( 1+L* k max )
SC( x )= k i s c i *( 1/ k 0 x )
P( t )=K* P 0 e rt / ( K+ P 0 ( e rt 1 ) )

Metrics