Abstract

We report the enhancement of photovoltaic output power by separating the incident spectrum into 3 bands, and concentrating these bands onto 3 different photovoltaic cells. The spectrum-splitting and concentration is achieved via a thin, planar micro-optical element that demonstrates high optical efficiency over the entire spectrum of interest. The optic (which we call a polychromat) was designed using a modified version of the direct-binary-search algorithm. The polychromat was fabricated using grayscale lithography. Rigorous optical characterization demonstrates excellent agreement with simulation results. Electrical characterization of the solar cells made from GaInP, GaAs and Si indicate increase in the peak output power density of 43.63%, 30.84% and 30.86%, respectively when compared to normal operation without the polychromat. This represents an overall increase of 35.52% in output power density. The potential for cost-effective large-area manufacturing and for high system efficiencies makes our approach a strong candidate for low cost solar power.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Efficiency enhancement in two-cell CIGS photovoltaic system with low-cost optical spectral splitter

Carlo Maragliano, Harry Apostoleris, Matteo Bronzoni, Stefano Rampino, Marco Stefancich, and Matteo Chiesa
Opt. Express 24(2) A222-A233 (2016)

Design and fabrication of a diffractive optical element as a spectrum-splitting solar concentrator for lateral multijunction solar cells

Qingli Huang, Jinze Wang, Baogang Quan, Qiulin Zhang, Dongxiang Zhang, Dongmei Li, Qingbo Meng, Li Pan, Yanqin Wang, and Guozhen Yang
Appl. Opt. 52(11) 2312-2319 (2013)

Photovoltaic concentrator using a holographic optical element

Y. W. Zhang, C. S. Ih, H. F. Yan, and M. J. Chang
Appl. Opt. 27(16) 3556-3560 (1988)

References

  • View by:
  • |
  • |
  • |

  1. A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater. 11(3), 174–177 (2012).
    [Crossref] [PubMed]
  2. A. G. Imenes and D. R. Mills, “Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: a review,” Sol. Energy Mater. Sol. Cells 84(1), 19–69 (2004).
    [Crossref]
  3. A. Mojiri, R. Taylor, E. Thomsen, and G. Rosengarten, “Spectral beam splitting for efficient conversion of solar energy—A review,” Renew. Sustain. Energy Rev. 28, 654–663 (2013).
    [Crossref]
  4. B. Mitchell, G. Peharz, G. Siefer, M. Peters, T. Gandy, J. C. Goldschmidt, J. Benick, S. W. Glunz, A. W. Bett, and F. Dimroth, “Four‐junction spectral beam‐splitting photovoltaic receiver with high optical efficiency,” Prog. Photovolt. Res. Appl. 19(1), 61–72 (2011).
    [Crossref]
  5. R. K. Kostuk and G. Rosenberg, “Analysis and design of holographic solar concentrators,” Proc. SPIE 7043, 70430I (2008).
    [Crossref]
  6. H. A. Macleod, Thin-Film Optical Filters (CRC Press, 2001).
  7. G. Kim, J.-A. Domínguez-Caballero, and R. Menon, “Design and analysis of multi-wavelength diffractive optics,” Opt. Express 20(3), 2814–2823 (2012).
    [Crossref] [PubMed]
  8. G. Kim, J.-A. Dominguez-Caballero, H. Lee, D. J. Friedman, and R. Menon, “Increased photovoltaic power output via diffractive spectrum separation,” Phys. Rev. Lett. 110(12), 123901 (2013).
    [Crossref] [PubMed]
  9. P. Wang, J.-A. Dominguez-Caballero, D. Friedman, and R. Menon, “A new class of multi-bandgap high efficiency photovoltaics enabled by broadband diffractive optics,” Prog. Photovolt. Res. Appl., doi:.
    [Crossref]
  10. M. S. Leite, R. L. Woo, J. N. Munday, W. D. Hong, S. Mesropian, D. C. Law, and H. A. Atwater, “Towards an optimized all lattice-matched InAlAs/InGaAsP/InGaAs multijunction solar cell with efficiency >50%,” Appl. Phys. Lett. 102(3), 033901 (2013).
    [Crossref]
  11. L. Guo, “Recent progress in nanoimprint technology and its applications,” J. Phys. D Appl. Phys. 37(11), R123–R141 (2004).
    [Crossref]
  12. C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. De Wolf, F. Haug, M. Despeisse, and C. Ballif, “Nanoimprint lithography for high-efficiency thin-film silicon solar cells,” Nano Lett. 11(2), 661–665 (2011).
    [Crossref] [PubMed]

2013 (3)

A. Mojiri, R. Taylor, E. Thomsen, and G. Rosengarten, “Spectral beam splitting for efficient conversion of solar energy—A review,” Renew. Sustain. Energy Rev. 28, 654–663 (2013).
[Crossref]

G. Kim, J.-A. Dominguez-Caballero, H. Lee, D. J. Friedman, and R. Menon, “Increased photovoltaic power output via diffractive spectrum separation,” Phys. Rev. Lett. 110(12), 123901 (2013).
[Crossref] [PubMed]

M. S. Leite, R. L. Woo, J. N. Munday, W. D. Hong, S. Mesropian, D. C. Law, and H. A. Atwater, “Towards an optimized all lattice-matched InAlAs/InGaAsP/InGaAs multijunction solar cell with efficiency >50%,” Appl. Phys. Lett. 102(3), 033901 (2013).
[Crossref]

2012 (2)

G. Kim, J.-A. Domínguez-Caballero, and R. Menon, “Design and analysis of multi-wavelength diffractive optics,” Opt. Express 20(3), 2814–2823 (2012).
[Crossref] [PubMed]

A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater. 11(3), 174–177 (2012).
[Crossref] [PubMed]

2011 (2)

B. Mitchell, G. Peharz, G. Siefer, M. Peters, T. Gandy, J. C. Goldschmidt, J. Benick, S. W. Glunz, A. W. Bett, and F. Dimroth, “Four‐junction spectral beam‐splitting photovoltaic receiver with high optical efficiency,” Prog. Photovolt. Res. Appl. 19(1), 61–72 (2011).
[Crossref]

C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. De Wolf, F. Haug, M. Despeisse, and C. Ballif, “Nanoimprint lithography for high-efficiency thin-film silicon solar cells,” Nano Lett. 11(2), 661–665 (2011).
[Crossref] [PubMed]

2008 (1)

R. K. Kostuk and G. Rosenberg, “Analysis and design of holographic solar concentrators,” Proc. SPIE 7043, 70430I (2008).
[Crossref]

2004 (2)

A. G. Imenes and D. R. Mills, “Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: a review,” Sol. Energy Mater. Sol. Cells 84(1), 19–69 (2004).
[Crossref]

L. Guo, “Recent progress in nanoimprint technology and its applications,” J. Phys. D Appl. Phys. 37(11), R123–R141 (2004).
[Crossref]

Atwater, H. A.

M. S. Leite, R. L. Woo, J. N. Munday, W. D. Hong, S. Mesropian, D. C. Law, and H. A. Atwater, “Towards an optimized all lattice-matched InAlAs/InGaAsP/InGaAs multijunction solar cell with efficiency >50%,” Appl. Phys. Lett. 102(3), 033901 (2013).
[Crossref]

A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater. 11(3), 174–177 (2012).
[Crossref] [PubMed]

Ballif, C.

C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. De Wolf, F. Haug, M. Despeisse, and C. Ballif, “Nanoimprint lithography for high-efficiency thin-film silicon solar cells,” Nano Lett. 11(2), 661–665 (2011).
[Crossref] [PubMed]

Barraud, L.

C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. De Wolf, F. Haug, M. Despeisse, and C. Ballif, “Nanoimprint lithography for high-efficiency thin-film silicon solar cells,” Nano Lett. 11(2), 661–665 (2011).
[Crossref] [PubMed]

Battaglia, C.

C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. De Wolf, F. Haug, M. Despeisse, and C. Ballif, “Nanoimprint lithography for high-efficiency thin-film silicon solar cells,” Nano Lett. 11(2), 661–665 (2011).
[Crossref] [PubMed]

Benick, J.

B. Mitchell, G. Peharz, G. Siefer, M. Peters, T. Gandy, J. C. Goldschmidt, J. Benick, S. W. Glunz, A. W. Bett, and F. Dimroth, “Four‐junction spectral beam‐splitting photovoltaic receiver with high optical efficiency,” Prog. Photovolt. Res. Appl. 19(1), 61–72 (2011).
[Crossref]

Bett, A. W.

B. Mitchell, G. Peharz, G. Siefer, M. Peters, T. Gandy, J. C. Goldschmidt, J. Benick, S. W. Glunz, A. W. Bett, and F. Dimroth, “Four‐junction spectral beam‐splitting photovoltaic receiver with high optical efficiency,” Prog. Photovolt. Res. Appl. 19(1), 61–72 (2011).
[Crossref]

Billet, A.

C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. De Wolf, F. Haug, M. Despeisse, and C. Ballif, “Nanoimprint lithography for high-efficiency thin-film silicon solar cells,” Nano Lett. 11(2), 661–665 (2011).
[Crossref] [PubMed]

Boccard, M.

C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. De Wolf, F. Haug, M. Despeisse, and C. Ballif, “Nanoimprint lithography for high-efficiency thin-film silicon solar cells,” Nano Lett. 11(2), 661–665 (2011).
[Crossref] [PubMed]

Bugnon, G.

C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. De Wolf, F. Haug, M. Despeisse, and C. Ballif, “Nanoimprint lithography for high-efficiency thin-film silicon solar cells,” Nano Lett. 11(2), 661–665 (2011).
[Crossref] [PubMed]

De Wolf, S.

C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. De Wolf, F. Haug, M. Despeisse, and C. Ballif, “Nanoimprint lithography for high-efficiency thin-film silicon solar cells,” Nano Lett. 11(2), 661–665 (2011).
[Crossref] [PubMed]

Despeisse, M.

C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. De Wolf, F. Haug, M. Despeisse, and C. Ballif, “Nanoimprint lithography for high-efficiency thin-film silicon solar cells,” Nano Lett. 11(2), 661–665 (2011).
[Crossref] [PubMed]

Dimroth, F.

B. Mitchell, G. Peharz, G. Siefer, M. Peters, T. Gandy, J. C. Goldschmidt, J. Benick, S. W. Glunz, A. W. Bett, and F. Dimroth, “Four‐junction spectral beam‐splitting photovoltaic receiver with high optical efficiency,” Prog. Photovolt. Res. Appl. 19(1), 61–72 (2011).
[Crossref]

Ding, L.

C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. De Wolf, F. Haug, M. Despeisse, and C. Ballif, “Nanoimprint lithography for high-efficiency thin-film silicon solar cells,” Nano Lett. 11(2), 661–665 (2011).
[Crossref] [PubMed]

Dominguez-Caballero, J.-A.

G. Kim, J.-A. Dominguez-Caballero, H. Lee, D. J. Friedman, and R. Menon, “Increased photovoltaic power output via diffractive spectrum separation,” Phys. Rev. Lett. 110(12), 123901 (2013).
[Crossref] [PubMed]

P. Wang, J.-A. Dominguez-Caballero, D. Friedman, and R. Menon, “A new class of multi-bandgap high efficiency photovoltaics enabled by broadband diffractive optics,” Prog. Photovolt. Res. Appl., doi:.
[Crossref]

Domínguez-Caballero, J.-A.

Erni, L.

C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. De Wolf, F. Haug, M. Despeisse, and C. Ballif, “Nanoimprint lithography for high-efficiency thin-film silicon solar cells,” Nano Lett. 11(2), 661–665 (2011).
[Crossref] [PubMed]

Escarré, J.

C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. De Wolf, F. Haug, M. Despeisse, and C. Ballif, “Nanoimprint lithography for high-efficiency thin-film silicon solar cells,” Nano Lett. 11(2), 661–665 (2011).
[Crossref] [PubMed]

Friedman, D.

P. Wang, J.-A. Dominguez-Caballero, D. Friedman, and R. Menon, “A new class of multi-bandgap high efficiency photovoltaics enabled by broadband diffractive optics,” Prog. Photovolt. Res. Appl., doi:.
[Crossref]

Friedman, D. J.

G. Kim, J.-A. Dominguez-Caballero, H. Lee, D. J. Friedman, and R. Menon, “Increased photovoltaic power output via diffractive spectrum separation,” Phys. Rev. Lett. 110(12), 123901 (2013).
[Crossref] [PubMed]

Gandy, T.

B. Mitchell, G. Peharz, G. Siefer, M. Peters, T. Gandy, J. C. Goldschmidt, J. Benick, S. W. Glunz, A. W. Bett, and F. Dimroth, “Four‐junction spectral beam‐splitting photovoltaic receiver with high optical efficiency,” Prog. Photovolt. Res. Appl. 19(1), 61–72 (2011).
[Crossref]

Glunz, S. W.

B. Mitchell, G. Peharz, G. Siefer, M. Peters, T. Gandy, J. C. Goldschmidt, J. Benick, S. W. Glunz, A. W. Bett, and F. Dimroth, “Four‐junction spectral beam‐splitting photovoltaic receiver with high optical efficiency,” Prog. Photovolt. Res. Appl. 19(1), 61–72 (2011).
[Crossref]

Goldschmidt, J. C.

B. Mitchell, G. Peharz, G. Siefer, M. Peters, T. Gandy, J. C. Goldschmidt, J. Benick, S. W. Glunz, A. W. Bett, and F. Dimroth, “Four‐junction spectral beam‐splitting photovoltaic receiver with high optical efficiency,” Prog. Photovolt. Res. Appl. 19(1), 61–72 (2011).
[Crossref]

Guo, L.

L. Guo, “Recent progress in nanoimprint technology and its applications,” J. Phys. D Appl. Phys. 37(11), R123–R141 (2004).
[Crossref]

Haug, F.

C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. De Wolf, F. Haug, M. Despeisse, and C. Ballif, “Nanoimprint lithography for high-efficiency thin-film silicon solar cells,” Nano Lett. 11(2), 661–665 (2011).
[Crossref] [PubMed]

Hong, W. D.

M. S. Leite, R. L. Woo, J. N. Munday, W. D. Hong, S. Mesropian, D. C. Law, and H. A. Atwater, “Towards an optimized all lattice-matched InAlAs/InGaAsP/InGaAs multijunction solar cell with efficiency >50%,” Appl. Phys. Lett. 102(3), 033901 (2013).
[Crossref]

Imenes, A. G.

A. G. Imenes and D. R. Mills, “Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: a review,” Sol. Energy Mater. Sol. Cells 84(1), 19–69 (2004).
[Crossref]

Kim, G.

G. Kim, J.-A. Dominguez-Caballero, H. Lee, D. J. Friedman, and R. Menon, “Increased photovoltaic power output via diffractive spectrum separation,” Phys. Rev. Lett. 110(12), 123901 (2013).
[Crossref] [PubMed]

G. Kim, J.-A. Domínguez-Caballero, and R. Menon, “Design and analysis of multi-wavelength diffractive optics,” Opt. Express 20(3), 2814–2823 (2012).
[Crossref] [PubMed]

Kostuk, R. K.

R. K. Kostuk and G. Rosenberg, “Analysis and design of holographic solar concentrators,” Proc. SPIE 7043, 70430I (2008).
[Crossref]

Law, D. C.

M. S. Leite, R. L. Woo, J. N. Munday, W. D. Hong, S. Mesropian, D. C. Law, and H. A. Atwater, “Towards an optimized all lattice-matched InAlAs/InGaAsP/InGaAs multijunction solar cell with efficiency >50%,” Appl. Phys. Lett. 102(3), 033901 (2013).
[Crossref]

Lee, H.

G. Kim, J.-A. Dominguez-Caballero, H. Lee, D. J. Friedman, and R. Menon, “Increased photovoltaic power output via diffractive spectrum separation,” Phys. Rev. Lett. 110(12), 123901 (2013).
[Crossref] [PubMed]

Leite, M. S.

M. S. Leite, R. L. Woo, J. N. Munday, W. D. Hong, S. Mesropian, D. C. Law, and H. A. Atwater, “Towards an optimized all lattice-matched InAlAs/InGaAsP/InGaAs multijunction solar cell with efficiency >50%,” Appl. Phys. Lett. 102(3), 033901 (2013).
[Crossref]

Menon, R.

G. Kim, J.-A. Dominguez-Caballero, H. Lee, D. J. Friedman, and R. Menon, “Increased photovoltaic power output via diffractive spectrum separation,” Phys. Rev. Lett. 110(12), 123901 (2013).
[Crossref] [PubMed]

G. Kim, J.-A. Domínguez-Caballero, and R. Menon, “Design and analysis of multi-wavelength diffractive optics,” Opt. Express 20(3), 2814–2823 (2012).
[Crossref] [PubMed]

P. Wang, J.-A. Dominguez-Caballero, D. Friedman, and R. Menon, “A new class of multi-bandgap high efficiency photovoltaics enabled by broadband diffractive optics,” Prog. Photovolt. Res. Appl., doi:.
[Crossref]

Mesropian, S.

M. S. Leite, R. L. Woo, J. N. Munday, W. D. Hong, S. Mesropian, D. C. Law, and H. A. Atwater, “Towards an optimized all lattice-matched InAlAs/InGaAsP/InGaAs multijunction solar cell with efficiency >50%,” Appl. Phys. Lett. 102(3), 033901 (2013).
[Crossref]

Mills, D. R.

A. G. Imenes and D. R. Mills, “Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: a review,” Sol. Energy Mater. Sol. Cells 84(1), 19–69 (2004).
[Crossref]

Mitchell, B.

B. Mitchell, G. Peharz, G. Siefer, M. Peters, T. Gandy, J. C. Goldschmidt, J. Benick, S. W. Glunz, A. W. Bett, and F. Dimroth, “Four‐junction spectral beam‐splitting photovoltaic receiver with high optical efficiency,” Prog. Photovolt. Res. Appl. 19(1), 61–72 (2011).
[Crossref]

Mojiri, A.

A. Mojiri, R. Taylor, E. Thomsen, and G. Rosengarten, “Spectral beam splitting for efficient conversion of solar energy—A review,” Renew. Sustain. Energy Rev. 28, 654–663 (2013).
[Crossref]

Munday, J. N.

M. S. Leite, R. L. Woo, J. N. Munday, W. D. Hong, S. Mesropian, D. C. Law, and H. A. Atwater, “Towards an optimized all lattice-matched InAlAs/InGaAsP/InGaAs multijunction solar cell with efficiency >50%,” Appl. Phys. Lett. 102(3), 033901 (2013).
[Crossref]

Peharz, G.

B. Mitchell, G. Peharz, G. Siefer, M. Peters, T. Gandy, J. C. Goldschmidt, J. Benick, S. W. Glunz, A. W. Bett, and F. Dimroth, “Four‐junction spectral beam‐splitting photovoltaic receiver with high optical efficiency,” Prog. Photovolt. Res. Appl. 19(1), 61–72 (2011).
[Crossref]

Peters, M.

B. Mitchell, G. Peharz, G. Siefer, M. Peters, T. Gandy, J. C. Goldschmidt, J. Benick, S. W. Glunz, A. W. Bett, and F. Dimroth, “Four‐junction spectral beam‐splitting photovoltaic receiver with high optical efficiency,” Prog. Photovolt. Res. Appl. 19(1), 61–72 (2011).
[Crossref]

Polman, A.

A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater. 11(3), 174–177 (2012).
[Crossref] [PubMed]

Rosenberg, G.

R. K. Kostuk and G. Rosenberg, “Analysis and design of holographic solar concentrators,” Proc. SPIE 7043, 70430I (2008).
[Crossref]

Rosengarten, G.

A. Mojiri, R. Taylor, E. Thomsen, and G. Rosengarten, “Spectral beam splitting for efficient conversion of solar energy—A review,” Renew. Sustain. Energy Rev. 28, 654–663 (2013).
[Crossref]

Siefer, G.

B. Mitchell, G. Peharz, G. Siefer, M. Peters, T. Gandy, J. C. Goldschmidt, J. Benick, S. W. Glunz, A. W. Bett, and F. Dimroth, “Four‐junction spectral beam‐splitting photovoltaic receiver with high optical efficiency,” Prog. Photovolt. Res. Appl. 19(1), 61–72 (2011).
[Crossref]

Söderström, K.

C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. De Wolf, F. Haug, M. Despeisse, and C. Ballif, “Nanoimprint lithography for high-efficiency thin-film silicon solar cells,” Nano Lett. 11(2), 661–665 (2011).
[Crossref] [PubMed]

Taylor, R.

A. Mojiri, R. Taylor, E. Thomsen, and G. Rosengarten, “Spectral beam splitting for efficient conversion of solar energy—A review,” Renew. Sustain. Energy Rev. 28, 654–663 (2013).
[Crossref]

Thomsen, E.

A. Mojiri, R. Taylor, E. Thomsen, and G. Rosengarten, “Spectral beam splitting for efficient conversion of solar energy—A review,” Renew. Sustain. Energy Rev. 28, 654–663 (2013).
[Crossref]

Wang, P.

P. Wang, J.-A. Dominguez-Caballero, D. Friedman, and R. Menon, “A new class of multi-bandgap high efficiency photovoltaics enabled by broadband diffractive optics,” Prog. Photovolt. Res. Appl., doi:.
[Crossref]

Woo, R. L.

M. S. Leite, R. L. Woo, J. N. Munday, W. D. Hong, S. Mesropian, D. C. Law, and H. A. Atwater, “Towards an optimized all lattice-matched InAlAs/InGaAsP/InGaAs multijunction solar cell with efficiency >50%,” Appl. Phys. Lett. 102(3), 033901 (2013).
[Crossref]

Appl. Phys. Lett. (1)

M. S. Leite, R. L. Woo, J. N. Munday, W. D. Hong, S. Mesropian, D. C. Law, and H. A. Atwater, “Towards an optimized all lattice-matched InAlAs/InGaAsP/InGaAs multijunction solar cell with efficiency >50%,” Appl. Phys. Lett. 102(3), 033901 (2013).
[Crossref]

J. Phys. D Appl. Phys. (1)

L. Guo, “Recent progress in nanoimprint technology and its applications,” J. Phys. D Appl. Phys. 37(11), R123–R141 (2004).
[Crossref]

Nano Lett. (1)

C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. De Wolf, F. Haug, M. Despeisse, and C. Ballif, “Nanoimprint lithography for high-efficiency thin-film silicon solar cells,” Nano Lett. 11(2), 661–665 (2011).
[Crossref] [PubMed]

Nat. Mater. (1)

A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater. 11(3), 174–177 (2012).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Rev. Lett. (1)

G. Kim, J.-A. Dominguez-Caballero, H. Lee, D. J. Friedman, and R. Menon, “Increased photovoltaic power output via diffractive spectrum separation,” Phys. Rev. Lett. 110(12), 123901 (2013).
[Crossref] [PubMed]

Proc. SPIE (1)

R. K. Kostuk and G. Rosenberg, “Analysis and design of holographic solar concentrators,” Proc. SPIE 7043, 70430I (2008).
[Crossref]

Prog. Photovolt. Res. Appl. (1)

B. Mitchell, G. Peharz, G. Siefer, M. Peters, T. Gandy, J. C. Goldschmidt, J. Benick, S. W. Glunz, A. W. Bett, and F. Dimroth, “Four‐junction spectral beam‐splitting photovoltaic receiver with high optical efficiency,” Prog. Photovolt. Res. Appl. 19(1), 61–72 (2011).
[Crossref]

Renew. Sustain. Energy Rev. (1)

A. Mojiri, R. Taylor, E. Thomsen, and G. Rosengarten, “Spectral beam splitting for efficient conversion of solar energy—A review,” Renew. Sustain. Energy Rev. 28, 654–663 (2013).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

A. G. Imenes and D. R. Mills, “Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: a review,” Sol. Energy Mater. Sol. Cells 84(1), 19–69 (2004).
[Crossref]

Other (2)

H. A. Macleod, Thin-Film Optical Filters (CRC Press, 2001).

P. Wang, J.-A. Dominguez-Caballero, D. Friedman, and R. Menon, “A new class of multi-bandgap high efficiency photovoltaics enabled by broadband diffractive optics,” Prog. Photovolt. Res. Appl., doi:.
[Crossref]

Supplementary Material (1)

» Media 1: PDF (1056 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic of the polychromat-solar cells configuration. (b) Height distribution of the designed polychromat. (c) Magnified view of the left-most 100 µm of the polychromat.

Fig. 2
Fig. 2

(a) Optical micrograph of the fabricated polychromat. The spatial-spectral point-spread function of the polychromat: (b) simulated and (c) measured. White lines are shown to depict the boundaries of the 3 bands. (d) Optical efficiency as a function of wavelength: simulated (dashed lines), measured (solid lines).

Fig. 3
Fig. 3

Electrical characterization. Current density vs voltage for (a) GaInP (c) GaAs and (e) Si cells. Power density vs voltage for (b) GaInP (d) GaAs and (f) Si cells. Reference measurements are shown in blue, while spectrum-split measurements are in red.

Fig. 4
Fig. 4

(a) Quantum efficiencies of GaInP, GaAs and Si cells. (b) Designed (blue) and measured (red) pixel-height distribution along the x direction of the polychromat.

Fig. 5
Fig. 5

Effect of errors. Variation (a) of power boost and (b) of optical efficiencies as a function of standard deviation of the polychromat height errors. Variation (c) of power boost and (d) of optical efficiencies as a function of defocus error.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

PowerBoost=( i=1 n P poly,i i=1 n P ref,i )/ i=1 n P ref,i

Metrics