Abstract

The influence of different black silicon (b-Si) front side textures prepared by inductively coupled reactive ion etching (ICP-RIE) on the performance of back-contacted back silicon heterojunction (BCB-SHJ) solar cells is investigated in detail regarding their optical performance, black silicon surface passivation and internal quantum efficiency. Under optimized conditions the effective minority carrier lifetime measured on black silicon surfaces passivated with Al2O3 can be higher than lifetimes measured for the SiO2/SiNx passivation stack used in the reference cells with standard KOH textures. However, to outperform the electrical current of silicon back-contact cells, the black silicon back-contact cell process needs to be optimized with aspect to chemical and thermal stability of the used dielectric layer combination on the cell.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Plasmonic effects in amorphous silicon thin film solar cells with metal back contacts

Ujwol Palanchoke, Vladislav Jovanov, Henning Kurz, Philipp Obermeyer, Helmut Stiebig, and Dietmar Knipp
Opt. Express 20(6) 6340-6347 (2012)

Plasmonic effects in ultrathin amorphous silicon solar cells: performance improvements with Ag nanoparticles on the front, the back, and both

Joshua D. Winans, Chanse Hungerford, Krishanu Shome, Lewis J. Rothberg, and Philippe M. Fauchet
Opt. Express 23(3) A92-A105 (2015)

Light trapping in periodically textured amorphous silicon thin film solar cells using realistic interface morphologies

Vladislav Jovanov, Ujwol Palanchoke, Philipp Magnus, Helmut Stiebig, Jürgen Hüpkes, Porponth Sichanugrist, Makoto Konagai, Samuel Wiesendanger, Carsten Rockstuhl, and Dietmar Knipp
Opt. Express 21(S4) A595-A606 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. G. Aberle, “Surface passivation of crystalline silicon solar cells: A review,” Prog. Photovolt: Res. Appl. 8, 473–487 (2000).
    [Crossref]
  2. M. Kroll, M. Otto, T. Käsebier, K. Füchsel, R. B. Wehrspohn, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Black silicon for solar cell applications,” Proc. SPIE 8438, 843817 (2012).
    [Crossref]
  3. M. Otto, M. Kroll, T. Kasebier, R. Salzer, A. Tunnermann, and R. B. Wehrspohn, “Extremely low surface recombination velocities in black silicon passivated by atomic layer deposition,” Appl. Phys. Lett. 100, 191603 (2012).
    [Crossref]
  4. M. Schnell, R. Ludemann, and S. Schaefer, “Plasma surface texturization for multicrystalline silicon solar cells,” Proc. of the 28th IEEE PVSC pp. 367–370 (2000).
  5. J. Oh, H.-C. Yuan, and H. M. Branz, “An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures,” Nat. Nanotechnol. 7, 743748 (2012).
    [Crossref]
  6. P. Repo, J. Benick, V. Vähänissi, J. Schön, G. von Gastrow, B. Steinhauser, M. C. Schubert, M. Hermle, and H. Savin, “N-type black silicon solar cells,” Energy Procedia 38, 866–871 (2013).
    [Crossref]
  7. W.-C. Wang, C.-W. Lin, H.-J. Chen, C.-W. Chang, J.-J. Huang, M.-J. Yang, B. Tjahjono, J.-J. Huang, W.-C. Hsu, and M.-J. Chen, “Surface passivation of efficient nanotextured black silicon solar cells using thermal atomic layer deposition,” ACS Appl. Mater. Interfaces 5, 9752–9759 (2013).
    [Crossref] [PubMed]
  8. K. Füchsel, M. Kroll, T. Käsebier, M. Otto, T. Pertsch, E.-B. Kley, R. B. Wehrspohn, N. Kaiser, and A. Tünnermann, “Black silicon photovoltaics,” Proc. SPIE 8438, 84380M (2012).
    [Crossref]
  9. J. Haschke, N. Mingirulli, and B. Rech, “Progress in point contacted rear silicon heterojunction solar cells,” Energy Procedia 27, 116–121 (2012).
    [Crossref]
  10. M. Otto, M. Kroll, T. Käsebier, S.-M. Lee, M. Putkonen, R. Salzer, P. T. Miclea, and R. B. Wehrspohn, “Conformal Transparent Conducting Oxides on Black Silicon,” Adv. Mater. 22, 5035–5038 (2010).
    [Crossref] [PubMed]
  11. W. Kern and D. Puotinen, “Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology,” RCA Rev 31, 187–206 (1970).
  12. S. M. Greil, A. Schöpke, and J. Rappich, “Strongly reduced si surface recombination by charge injection during etching in diluted HF/HNO3,” ChemPhysChem 13, 2982–2988 (2012).
    [Crossref] [PubMed]
  13. R. Sinton, A. Cuevas, and M. Stuckings, “Quasi-steady-state photoconductance, a new method for solar cell material and device characterization,” Proc. of the 25th IEEE PVSC pp. 457–460 (1996).
  14. M. J. Kerr, A. Cuevas, and R. A. Sinton, “Generalized analysis of quasi-steady-state and transient decay open circuit voltage measurements,” J. Appl. Phys. 91, 399–404 (2002).
    [Crossref]
  15. S.-Y. Lee, H. Choi, H. Li, K. Ji, S. Nam, J. Choi, S.-W. Ahn, H.-M. Lee, and B. Park, “Analysis of a-Si:H/TCO contact resistance for the Si heterojunction back-contact solar cell,” Sol. Energy Mater. Sol. Cells 120, Part A, 412–416 (2014).
    [Crossref]
  16. Y.-Y. Chen, L. Korte, C. Leendertz, J. Haschke, J.-Y. Gan, and D.-C. Wu, “Simulation of contact schemes for silicon heterostructure rear contact solar cells,” Energy Procedia 38, 677–683 (2013).
    [Crossref]

2014 (1)

S.-Y. Lee, H. Choi, H. Li, K. Ji, S. Nam, J. Choi, S.-W. Ahn, H.-M. Lee, and B. Park, “Analysis of a-Si:H/TCO contact resistance for the Si heterojunction back-contact solar cell,” Sol. Energy Mater. Sol. Cells 120, Part A, 412–416 (2014).
[Crossref]

2013 (3)

Y.-Y. Chen, L. Korte, C. Leendertz, J. Haschke, J.-Y. Gan, and D.-C. Wu, “Simulation of contact schemes for silicon heterostructure rear contact solar cells,” Energy Procedia 38, 677–683 (2013).
[Crossref]

P. Repo, J. Benick, V. Vähänissi, J. Schön, G. von Gastrow, B. Steinhauser, M. C. Schubert, M. Hermle, and H. Savin, “N-type black silicon solar cells,” Energy Procedia 38, 866–871 (2013).
[Crossref]

W.-C. Wang, C.-W. Lin, H.-J. Chen, C.-W. Chang, J.-J. Huang, M.-J. Yang, B. Tjahjono, J.-J. Huang, W.-C. Hsu, and M.-J. Chen, “Surface passivation of efficient nanotextured black silicon solar cells using thermal atomic layer deposition,” ACS Appl. Mater. Interfaces 5, 9752–9759 (2013).
[Crossref] [PubMed]

2012 (6)

K. Füchsel, M. Kroll, T. Käsebier, M. Otto, T. Pertsch, E.-B. Kley, R. B. Wehrspohn, N. Kaiser, and A. Tünnermann, “Black silicon photovoltaics,” Proc. SPIE 8438, 84380M (2012).
[Crossref]

J. Haschke, N. Mingirulli, and B. Rech, “Progress in point contacted rear silicon heterojunction solar cells,” Energy Procedia 27, 116–121 (2012).
[Crossref]

M. Kroll, M. Otto, T. Käsebier, K. Füchsel, R. B. Wehrspohn, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Black silicon for solar cell applications,” Proc. SPIE 8438, 843817 (2012).
[Crossref]

M. Otto, M. Kroll, T. Kasebier, R. Salzer, A. Tunnermann, and R. B. Wehrspohn, “Extremely low surface recombination velocities in black silicon passivated by atomic layer deposition,” Appl. Phys. Lett. 100, 191603 (2012).
[Crossref]

J. Oh, H.-C. Yuan, and H. M. Branz, “An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures,” Nat. Nanotechnol. 7, 743748 (2012).
[Crossref]

S. M. Greil, A. Schöpke, and J. Rappich, “Strongly reduced si surface recombination by charge injection during etching in diluted HF/HNO3,” ChemPhysChem 13, 2982–2988 (2012).
[Crossref] [PubMed]

2010 (1)

M. Otto, M. Kroll, T. Käsebier, S.-M. Lee, M. Putkonen, R. Salzer, P. T. Miclea, and R. B. Wehrspohn, “Conformal Transparent Conducting Oxides on Black Silicon,” Adv. Mater. 22, 5035–5038 (2010).
[Crossref] [PubMed]

2002 (1)

M. J. Kerr, A. Cuevas, and R. A. Sinton, “Generalized analysis of quasi-steady-state and transient decay open circuit voltage measurements,” J. Appl. Phys. 91, 399–404 (2002).
[Crossref]

2000 (1)

A. G. Aberle, “Surface passivation of crystalline silicon solar cells: A review,” Prog. Photovolt: Res. Appl. 8, 473–487 (2000).
[Crossref]

1970 (1)

W. Kern and D. Puotinen, “Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology,” RCA Rev 31, 187–206 (1970).

Aberle, A. G.

A. G. Aberle, “Surface passivation of crystalline silicon solar cells: A review,” Prog. Photovolt: Res. Appl. 8, 473–487 (2000).
[Crossref]

Ahn, S.-W.

S.-Y. Lee, H. Choi, H. Li, K. Ji, S. Nam, J. Choi, S.-W. Ahn, H.-M. Lee, and B. Park, “Analysis of a-Si:H/TCO contact resistance for the Si heterojunction back-contact solar cell,” Sol. Energy Mater. Sol. Cells 120, Part A, 412–416 (2014).
[Crossref]

Benick, J.

P. Repo, J. Benick, V. Vähänissi, J. Schön, G. von Gastrow, B. Steinhauser, M. C. Schubert, M. Hermle, and H. Savin, “N-type black silicon solar cells,” Energy Procedia 38, 866–871 (2013).
[Crossref]

Branz, H. M.

J. Oh, H.-C. Yuan, and H. M. Branz, “An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures,” Nat. Nanotechnol. 7, 743748 (2012).
[Crossref]

Chang, C.-W.

W.-C. Wang, C.-W. Lin, H.-J. Chen, C.-W. Chang, J.-J. Huang, M.-J. Yang, B. Tjahjono, J.-J. Huang, W.-C. Hsu, and M.-J. Chen, “Surface passivation of efficient nanotextured black silicon solar cells using thermal atomic layer deposition,” ACS Appl. Mater. Interfaces 5, 9752–9759 (2013).
[Crossref] [PubMed]

Chen, H.-J.

W.-C. Wang, C.-W. Lin, H.-J. Chen, C.-W. Chang, J.-J. Huang, M.-J. Yang, B. Tjahjono, J.-J. Huang, W.-C. Hsu, and M.-J. Chen, “Surface passivation of efficient nanotextured black silicon solar cells using thermal atomic layer deposition,” ACS Appl. Mater. Interfaces 5, 9752–9759 (2013).
[Crossref] [PubMed]

Chen, M.-J.

W.-C. Wang, C.-W. Lin, H.-J. Chen, C.-W. Chang, J.-J. Huang, M.-J. Yang, B. Tjahjono, J.-J. Huang, W.-C. Hsu, and M.-J. Chen, “Surface passivation of efficient nanotextured black silicon solar cells using thermal atomic layer deposition,” ACS Appl. Mater. Interfaces 5, 9752–9759 (2013).
[Crossref] [PubMed]

Chen, Y.-Y.

Y.-Y. Chen, L. Korte, C. Leendertz, J. Haschke, J.-Y. Gan, and D.-C. Wu, “Simulation of contact schemes for silicon heterostructure rear contact solar cells,” Energy Procedia 38, 677–683 (2013).
[Crossref]

Choi, H.

S.-Y. Lee, H. Choi, H. Li, K. Ji, S. Nam, J. Choi, S.-W. Ahn, H.-M. Lee, and B. Park, “Analysis of a-Si:H/TCO contact resistance for the Si heterojunction back-contact solar cell,” Sol. Energy Mater. Sol. Cells 120, Part A, 412–416 (2014).
[Crossref]

Choi, J.

S.-Y. Lee, H. Choi, H. Li, K. Ji, S. Nam, J. Choi, S.-W. Ahn, H.-M. Lee, and B. Park, “Analysis of a-Si:H/TCO contact resistance for the Si heterojunction back-contact solar cell,” Sol. Energy Mater. Sol. Cells 120, Part A, 412–416 (2014).
[Crossref]

Cuevas, A.

M. J. Kerr, A. Cuevas, and R. A. Sinton, “Generalized analysis of quasi-steady-state and transient decay open circuit voltage measurements,” J. Appl. Phys. 91, 399–404 (2002).
[Crossref]

R. Sinton, A. Cuevas, and M. Stuckings, “Quasi-steady-state photoconductance, a new method for solar cell material and device characterization,” Proc. of the 25th IEEE PVSC pp. 457–460 (1996).

Füchsel, K.

K. Füchsel, M. Kroll, T. Käsebier, M. Otto, T. Pertsch, E.-B. Kley, R. B. Wehrspohn, N. Kaiser, and A. Tünnermann, “Black silicon photovoltaics,” Proc. SPIE 8438, 84380M (2012).
[Crossref]

M. Kroll, M. Otto, T. Käsebier, K. Füchsel, R. B. Wehrspohn, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Black silicon for solar cell applications,” Proc. SPIE 8438, 843817 (2012).
[Crossref]

Gan, J.-Y.

Y.-Y. Chen, L. Korte, C. Leendertz, J. Haschke, J.-Y. Gan, and D.-C. Wu, “Simulation of contact schemes for silicon heterostructure rear contact solar cells,” Energy Procedia 38, 677–683 (2013).
[Crossref]

Greil, S. M.

S. M. Greil, A. Schöpke, and J. Rappich, “Strongly reduced si surface recombination by charge injection during etching in diluted HF/HNO3,” ChemPhysChem 13, 2982–2988 (2012).
[Crossref] [PubMed]

Haschke, J.

Y.-Y. Chen, L. Korte, C. Leendertz, J. Haschke, J.-Y. Gan, and D.-C. Wu, “Simulation of contact schemes for silicon heterostructure rear contact solar cells,” Energy Procedia 38, 677–683 (2013).
[Crossref]

J. Haschke, N. Mingirulli, and B. Rech, “Progress in point contacted rear silicon heterojunction solar cells,” Energy Procedia 27, 116–121 (2012).
[Crossref]

Hermle, M.

P. Repo, J. Benick, V. Vähänissi, J. Schön, G. von Gastrow, B. Steinhauser, M. C. Schubert, M. Hermle, and H. Savin, “N-type black silicon solar cells,” Energy Procedia 38, 866–871 (2013).
[Crossref]

Hsu, W.-C.

W.-C. Wang, C.-W. Lin, H.-J. Chen, C.-W. Chang, J.-J. Huang, M.-J. Yang, B. Tjahjono, J.-J. Huang, W.-C. Hsu, and M.-J. Chen, “Surface passivation of efficient nanotextured black silicon solar cells using thermal atomic layer deposition,” ACS Appl. Mater. Interfaces 5, 9752–9759 (2013).
[Crossref] [PubMed]

Huang, J.-J.

W.-C. Wang, C.-W. Lin, H.-J. Chen, C.-W. Chang, J.-J. Huang, M.-J. Yang, B. Tjahjono, J.-J. Huang, W.-C. Hsu, and M.-J. Chen, “Surface passivation of efficient nanotextured black silicon solar cells using thermal atomic layer deposition,” ACS Appl. Mater. Interfaces 5, 9752–9759 (2013).
[Crossref] [PubMed]

W.-C. Wang, C.-W. Lin, H.-J. Chen, C.-W. Chang, J.-J. Huang, M.-J. Yang, B. Tjahjono, J.-J. Huang, W.-C. Hsu, and M.-J. Chen, “Surface passivation of efficient nanotextured black silicon solar cells using thermal atomic layer deposition,” ACS Appl. Mater. Interfaces 5, 9752–9759 (2013).
[Crossref] [PubMed]

Ji, K.

S.-Y. Lee, H. Choi, H. Li, K. Ji, S. Nam, J. Choi, S.-W. Ahn, H.-M. Lee, and B. Park, “Analysis of a-Si:H/TCO contact resistance for the Si heterojunction back-contact solar cell,” Sol. Energy Mater. Sol. Cells 120, Part A, 412–416 (2014).
[Crossref]

Kaiser, N.

K. Füchsel, M. Kroll, T. Käsebier, M. Otto, T. Pertsch, E.-B. Kley, R. B. Wehrspohn, N. Kaiser, and A. Tünnermann, “Black silicon photovoltaics,” Proc. SPIE 8438, 84380M (2012).
[Crossref]

Kasebier, T.

M. Otto, M. Kroll, T. Kasebier, R. Salzer, A. Tunnermann, and R. B. Wehrspohn, “Extremely low surface recombination velocities in black silicon passivated by atomic layer deposition,” Appl. Phys. Lett. 100, 191603 (2012).
[Crossref]

Käsebier, T.

M. Kroll, M. Otto, T. Käsebier, K. Füchsel, R. B. Wehrspohn, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Black silicon for solar cell applications,” Proc. SPIE 8438, 843817 (2012).
[Crossref]

K. Füchsel, M. Kroll, T. Käsebier, M. Otto, T. Pertsch, E.-B. Kley, R. B. Wehrspohn, N. Kaiser, and A. Tünnermann, “Black silicon photovoltaics,” Proc. SPIE 8438, 84380M (2012).
[Crossref]

M. Otto, M. Kroll, T. Käsebier, S.-M. Lee, M. Putkonen, R. Salzer, P. T. Miclea, and R. B. Wehrspohn, “Conformal Transparent Conducting Oxides on Black Silicon,” Adv. Mater. 22, 5035–5038 (2010).
[Crossref] [PubMed]

Kern, W.

W. Kern and D. Puotinen, “Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology,” RCA Rev 31, 187–206 (1970).

Kerr, M. J.

M. J. Kerr, A. Cuevas, and R. A. Sinton, “Generalized analysis of quasi-steady-state and transient decay open circuit voltage measurements,” J. Appl. Phys. 91, 399–404 (2002).
[Crossref]

Kley, E.-B.

K. Füchsel, M. Kroll, T. Käsebier, M. Otto, T. Pertsch, E.-B. Kley, R. B. Wehrspohn, N. Kaiser, and A. Tünnermann, “Black silicon photovoltaics,” Proc. SPIE 8438, 84380M (2012).
[Crossref]

M. Kroll, M. Otto, T. Käsebier, K. Füchsel, R. B. Wehrspohn, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Black silicon for solar cell applications,” Proc. SPIE 8438, 843817 (2012).
[Crossref]

Korte, L.

Y.-Y. Chen, L. Korte, C. Leendertz, J. Haschke, J.-Y. Gan, and D.-C. Wu, “Simulation of contact schemes for silicon heterostructure rear contact solar cells,” Energy Procedia 38, 677–683 (2013).
[Crossref]

Kroll, M.

M. Kroll, M. Otto, T. Käsebier, K. Füchsel, R. B. Wehrspohn, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Black silicon for solar cell applications,” Proc. SPIE 8438, 843817 (2012).
[Crossref]

M. Otto, M. Kroll, T. Kasebier, R. Salzer, A. Tunnermann, and R. B. Wehrspohn, “Extremely low surface recombination velocities in black silicon passivated by atomic layer deposition,” Appl. Phys. Lett. 100, 191603 (2012).
[Crossref]

K. Füchsel, M. Kroll, T. Käsebier, M. Otto, T. Pertsch, E.-B. Kley, R. B. Wehrspohn, N. Kaiser, and A. Tünnermann, “Black silicon photovoltaics,” Proc. SPIE 8438, 84380M (2012).
[Crossref]

M. Otto, M. Kroll, T. Käsebier, S.-M. Lee, M. Putkonen, R. Salzer, P. T. Miclea, and R. B. Wehrspohn, “Conformal Transparent Conducting Oxides on Black Silicon,” Adv. Mater. 22, 5035–5038 (2010).
[Crossref] [PubMed]

Lee, H.-M.

S.-Y. Lee, H. Choi, H. Li, K. Ji, S. Nam, J. Choi, S.-W. Ahn, H.-M. Lee, and B. Park, “Analysis of a-Si:H/TCO contact resistance for the Si heterojunction back-contact solar cell,” Sol. Energy Mater. Sol. Cells 120, Part A, 412–416 (2014).
[Crossref]

Lee, S.-M.

M. Otto, M. Kroll, T. Käsebier, S.-M. Lee, M. Putkonen, R. Salzer, P. T. Miclea, and R. B. Wehrspohn, “Conformal Transparent Conducting Oxides on Black Silicon,” Adv. Mater. 22, 5035–5038 (2010).
[Crossref] [PubMed]

Lee, S.-Y.

S.-Y. Lee, H. Choi, H. Li, K. Ji, S. Nam, J. Choi, S.-W. Ahn, H.-M. Lee, and B. Park, “Analysis of a-Si:H/TCO contact resistance for the Si heterojunction back-contact solar cell,” Sol. Energy Mater. Sol. Cells 120, Part A, 412–416 (2014).
[Crossref]

Leendertz, C.

Y.-Y. Chen, L. Korte, C. Leendertz, J. Haschke, J.-Y. Gan, and D.-C. Wu, “Simulation of contact schemes for silicon heterostructure rear contact solar cells,” Energy Procedia 38, 677–683 (2013).
[Crossref]

Li, H.

S.-Y. Lee, H. Choi, H. Li, K. Ji, S. Nam, J. Choi, S.-W. Ahn, H.-M. Lee, and B. Park, “Analysis of a-Si:H/TCO contact resistance for the Si heterojunction back-contact solar cell,” Sol. Energy Mater. Sol. Cells 120, Part A, 412–416 (2014).
[Crossref]

Lin, C.-W.

W.-C. Wang, C.-W. Lin, H.-J. Chen, C.-W. Chang, J.-J. Huang, M.-J. Yang, B. Tjahjono, J.-J. Huang, W.-C. Hsu, and M.-J. Chen, “Surface passivation of efficient nanotextured black silicon solar cells using thermal atomic layer deposition,” ACS Appl. Mater. Interfaces 5, 9752–9759 (2013).
[Crossref] [PubMed]

Ludemann, R.

M. Schnell, R. Ludemann, and S. Schaefer, “Plasma surface texturization for multicrystalline silicon solar cells,” Proc. of the 28th IEEE PVSC pp. 367–370 (2000).

Miclea, P. T.

M. Otto, M. Kroll, T. Käsebier, S.-M. Lee, M. Putkonen, R. Salzer, P. T. Miclea, and R. B. Wehrspohn, “Conformal Transparent Conducting Oxides on Black Silicon,” Adv. Mater. 22, 5035–5038 (2010).
[Crossref] [PubMed]

Mingirulli, N.

J. Haschke, N. Mingirulli, and B. Rech, “Progress in point contacted rear silicon heterojunction solar cells,” Energy Procedia 27, 116–121 (2012).
[Crossref]

Nam, S.

S.-Y. Lee, H. Choi, H. Li, K. Ji, S. Nam, J. Choi, S.-W. Ahn, H.-M. Lee, and B. Park, “Analysis of a-Si:H/TCO contact resistance for the Si heterojunction back-contact solar cell,” Sol. Energy Mater. Sol. Cells 120, Part A, 412–416 (2014).
[Crossref]

Oh, J.

J. Oh, H.-C. Yuan, and H. M. Branz, “An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures,” Nat. Nanotechnol. 7, 743748 (2012).
[Crossref]

Otto, M.

M. Otto, M. Kroll, T. Kasebier, R. Salzer, A. Tunnermann, and R. B. Wehrspohn, “Extremely low surface recombination velocities in black silicon passivated by atomic layer deposition,” Appl. Phys. Lett. 100, 191603 (2012).
[Crossref]

M. Kroll, M. Otto, T. Käsebier, K. Füchsel, R. B. Wehrspohn, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Black silicon for solar cell applications,” Proc. SPIE 8438, 843817 (2012).
[Crossref]

K. Füchsel, M. Kroll, T. Käsebier, M. Otto, T. Pertsch, E.-B. Kley, R. B. Wehrspohn, N. Kaiser, and A. Tünnermann, “Black silicon photovoltaics,” Proc. SPIE 8438, 84380M (2012).
[Crossref]

M. Otto, M. Kroll, T. Käsebier, S.-M. Lee, M. Putkonen, R. Salzer, P. T. Miclea, and R. B. Wehrspohn, “Conformal Transparent Conducting Oxides on Black Silicon,” Adv. Mater. 22, 5035–5038 (2010).
[Crossref] [PubMed]

Park, B.

S.-Y. Lee, H. Choi, H. Li, K. Ji, S. Nam, J. Choi, S.-W. Ahn, H.-M. Lee, and B. Park, “Analysis of a-Si:H/TCO contact resistance for the Si heterojunction back-contact solar cell,” Sol. Energy Mater. Sol. Cells 120, Part A, 412–416 (2014).
[Crossref]

Pertsch, T.

K. Füchsel, M. Kroll, T. Käsebier, M. Otto, T. Pertsch, E.-B. Kley, R. B. Wehrspohn, N. Kaiser, and A. Tünnermann, “Black silicon photovoltaics,” Proc. SPIE 8438, 84380M (2012).
[Crossref]

M. Kroll, M. Otto, T. Käsebier, K. Füchsel, R. B. Wehrspohn, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Black silicon for solar cell applications,” Proc. SPIE 8438, 843817 (2012).
[Crossref]

Puotinen, D.

W. Kern and D. Puotinen, “Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology,” RCA Rev 31, 187–206 (1970).

Putkonen, M.

M. Otto, M. Kroll, T. Käsebier, S.-M. Lee, M. Putkonen, R. Salzer, P. T. Miclea, and R. B. Wehrspohn, “Conformal Transparent Conducting Oxides on Black Silicon,” Adv. Mater. 22, 5035–5038 (2010).
[Crossref] [PubMed]

Rappich, J.

S. M. Greil, A. Schöpke, and J. Rappich, “Strongly reduced si surface recombination by charge injection during etching in diluted HF/HNO3,” ChemPhysChem 13, 2982–2988 (2012).
[Crossref] [PubMed]

Rech, B.

J. Haschke, N. Mingirulli, and B. Rech, “Progress in point contacted rear silicon heterojunction solar cells,” Energy Procedia 27, 116–121 (2012).
[Crossref]

Repo, P.

P. Repo, J. Benick, V. Vähänissi, J. Schön, G. von Gastrow, B. Steinhauser, M. C. Schubert, M. Hermle, and H. Savin, “N-type black silicon solar cells,” Energy Procedia 38, 866–871 (2013).
[Crossref]

Salzer, R.

M. Otto, M. Kroll, T. Kasebier, R. Salzer, A. Tunnermann, and R. B. Wehrspohn, “Extremely low surface recombination velocities in black silicon passivated by atomic layer deposition,” Appl. Phys. Lett. 100, 191603 (2012).
[Crossref]

M. Otto, M. Kroll, T. Käsebier, S.-M. Lee, M. Putkonen, R. Salzer, P. T. Miclea, and R. B. Wehrspohn, “Conformal Transparent Conducting Oxides on Black Silicon,” Adv. Mater. 22, 5035–5038 (2010).
[Crossref] [PubMed]

Savin, H.

P. Repo, J. Benick, V. Vähänissi, J. Schön, G. von Gastrow, B. Steinhauser, M. C. Schubert, M. Hermle, and H. Savin, “N-type black silicon solar cells,” Energy Procedia 38, 866–871 (2013).
[Crossref]

Schaefer, S.

M. Schnell, R. Ludemann, and S. Schaefer, “Plasma surface texturization for multicrystalline silicon solar cells,” Proc. of the 28th IEEE PVSC pp. 367–370 (2000).

Schnell, M.

M. Schnell, R. Ludemann, and S. Schaefer, “Plasma surface texturization for multicrystalline silicon solar cells,” Proc. of the 28th IEEE PVSC pp. 367–370 (2000).

Schön, J.

P. Repo, J. Benick, V. Vähänissi, J. Schön, G. von Gastrow, B. Steinhauser, M. C. Schubert, M. Hermle, and H. Savin, “N-type black silicon solar cells,” Energy Procedia 38, 866–871 (2013).
[Crossref]

Schöpke, A.

S. M. Greil, A. Schöpke, and J. Rappich, “Strongly reduced si surface recombination by charge injection during etching in diluted HF/HNO3,” ChemPhysChem 13, 2982–2988 (2012).
[Crossref] [PubMed]

Schubert, M. C.

P. Repo, J. Benick, V. Vähänissi, J. Schön, G. von Gastrow, B. Steinhauser, M. C. Schubert, M. Hermle, and H. Savin, “N-type black silicon solar cells,” Energy Procedia 38, 866–871 (2013).
[Crossref]

Sinton, R.

R. Sinton, A. Cuevas, and M. Stuckings, “Quasi-steady-state photoconductance, a new method for solar cell material and device characterization,” Proc. of the 25th IEEE PVSC pp. 457–460 (1996).

Sinton, R. A.

M. J. Kerr, A. Cuevas, and R. A. Sinton, “Generalized analysis of quasi-steady-state and transient decay open circuit voltage measurements,” J. Appl. Phys. 91, 399–404 (2002).
[Crossref]

Steinhauser, B.

P. Repo, J. Benick, V. Vähänissi, J. Schön, G. von Gastrow, B. Steinhauser, M. C. Schubert, M. Hermle, and H. Savin, “N-type black silicon solar cells,” Energy Procedia 38, 866–871 (2013).
[Crossref]

Stuckings, M.

R. Sinton, A. Cuevas, and M. Stuckings, “Quasi-steady-state photoconductance, a new method for solar cell material and device characterization,” Proc. of the 25th IEEE PVSC pp. 457–460 (1996).

Tjahjono, B.

W.-C. Wang, C.-W. Lin, H.-J. Chen, C.-W. Chang, J.-J. Huang, M.-J. Yang, B. Tjahjono, J.-J. Huang, W.-C. Hsu, and M.-J. Chen, “Surface passivation of efficient nanotextured black silicon solar cells using thermal atomic layer deposition,” ACS Appl. Mater. Interfaces 5, 9752–9759 (2013).
[Crossref] [PubMed]

Tunnermann, A.

M. Otto, M. Kroll, T. Kasebier, R. Salzer, A. Tunnermann, and R. B. Wehrspohn, “Extremely low surface recombination velocities in black silicon passivated by atomic layer deposition,” Appl. Phys. Lett. 100, 191603 (2012).
[Crossref]

Tünnermann, A.

M. Kroll, M. Otto, T. Käsebier, K. Füchsel, R. B. Wehrspohn, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Black silicon for solar cell applications,” Proc. SPIE 8438, 843817 (2012).
[Crossref]

K. Füchsel, M. Kroll, T. Käsebier, M. Otto, T. Pertsch, E.-B. Kley, R. B. Wehrspohn, N. Kaiser, and A. Tünnermann, “Black silicon photovoltaics,” Proc. SPIE 8438, 84380M (2012).
[Crossref]

Vähänissi, V.

P. Repo, J. Benick, V. Vähänissi, J. Schön, G. von Gastrow, B. Steinhauser, M. C. Schubert, M. Hermle, and H. Savin, “N-type black silicon solar cells,” Energy Procedia 38, 866–871 (2013).
[Crossref]

von Gastrow, G.

P. Repo, J. Benick, V. Vähänissi, J. Schön, G. von Gastrow, B. Steinhauser, M. C. Schubert, M. Hermle, and H. Savin, “N-type black silicon solar cells,” Energy Procedia 38, 866–871 (2013).
[Crossref]

Wang, W.-C.

W.-C. Wang, C.-W. Lin, H.-J. Chen, C.-W. Chang, J.-J. Huang, M.-J. Yang, B. Tjahjono, J.-J. Huang, W.-C. Hsu, and M.-J. Chen, “Surface passivation of efficient nanotextured black silicon solar cells using thermal atomic layer deposition,” ACS Appl. Mater. Interfaces 5, 9752–9759 (2013).
[Crossref] [PubMed]

Wehrspohn, R. B.

M. Kroll, M. Otto, T. Käsebier, K. Füchsel, R. B. Wehrspohn, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Black silicon for solar cell applications,” Proc. SPIE 8438, 843817 (2012).
[Crossref]

M. Otto, M. Kroll, T. Kasebier, R. Salzer, A. Tunnermann, and R. B. Wehrspohn, “Extremely low surface recombination velocities in black silicon passivated by atomic layer deposition,” Appl. Phys. Lett. 100, 191603 (2012).
[Crossref]

K. Füchsel, M. Kroll, T. Käsebier, M. Otto, T. Pertsch, E.-B. Kley, R. B. Wehrspohn, N. Kaiser, and A. Tünnermann, “Black silicon photovoltaics,” Proc. SPIE 8438, 84380M (2012).
[Crossref]

M. Otto, M. Kroll, T. Käsebier, S.-M. Lee, M. Putkonen, R. Salzer, P. T. Miclea, and R. B. Wehrspohn, “Conformal Transparent Conducting Oxides on Black Silicon,” Adv. Mater. 22, 5035–5038 (2010).
[Crossref] [PubMed]

Wu, D.-C.

Y.-Y. Chen, L. Korte, C. Leendertz, J. Haschke, J.-Y. Gan, and D.-C. Wu, “Simulation of contact schemes for silicon heterostructure rear contact solar cells,” Energy Procedia 38, 677–683 (2013).
[Crossref]

Yang, M.-J.

W.-C. Wang, C.-W. Lin, H.-J. Chen, C.-W. Chang, J.-J. Huang, M.-J. Yang, B. Tjahjono, J.-J. Huang, W.-C. Hsu, and M.-J. Chen, “Surface passivation of efficient nanotextured black silicon solar cells using thermal atomic layer deposition,” ACS Appl. Mater. Interfaces 5, 9752–9759 (2013).
[Crossref] [PubMed]

Yuan, H.-C.

J. Oh, H.-C. Yuan, and H. M. Branz, “An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures,” Nat. Nanotechnol. 7, 743748 (2012).
[Crossref]

ACS Appl. Mater. Interfaces (1)

W.-C. Wang, C.-W. Lin, H.-J. Chen, C.-W. Chang, J.-J. Huang, M.-J. Yang, B. Tjahjono, J.-J. Huang, W.-C. Hsu, and M.-J. Chen, “Surface passivation of efficient nanotextured black silicon solar cells using thermal atomic layer deposition,” ACS Appl. Mater. Interfaces 5, 9752–9759 (2013).
[Crossref] [PubMed]

Adv. Mater. (1)

M. Otto, M. Kroll, T. Käsebier, S.-M. Lee, M. Putkonen, R. Salzer, P. T. Miclea, and R. B. Wehrspohn, “Conformal Transparent Conducting Oxides on Black Silicon,” Adv. Mater. 22, 5035–5038 (2010).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

M. Otto, M. Kroll, T. Kasebier, R. Salzer, A. Tunnermann, and R. B. Wehrspohn, “Extremely low surface recombination velocities in black silicon passivated by atomic layer deposition,” Appl. Phys. Lett. 100, 191603 (2012).
[Crossref]

ChemPhysChem (1)

S. M. Greil, A. Schöpke, and J. Rappich, “Strongly reduced si surface recombination by charge injection during etching in diluted HF/HNO3,” ChemPhysChem 13, 2982–2988 (2012).
[Crossref] [PubMed]

Energy Procedia (3)

J. Haschke, N. Mingirulli, and B. Rech, “Progress in point contacted rear silicon heterojunction solar cells,” Energy Procedia 27, 116–121 (2012).
[Crossref]

Y.-Y. Chen, L. Korte, C. Leendertz, J. Haschke, J.-Y. Gan, and D.-C. Wu, “Simulation of contact schemes for silicon heterostructure rear contact solar cells,” Energy Procedia 38, 677–683 (2013).
[Crossref]

P. Repo, J. Benick, V. Vähänissi, J. Schön, G. von Gastrow, B. Steinhauser, M. C. Schubert, M. Hermle, and H. Savin, “N-type black silicon solar cells,” Energy Procedia 38, 866–871 (2013).
[Crossref]

J. Appl. Phys. (1)

M. J. Kerr, A. Cuevas, and R. A. Sinton, “Generalized analysis of quasi-steady-state and transient decay open circuit voltage measurements,” J. Appl. Phys. 91, 399–404 (2002).
[Crossref]

Nat. Nanotechnol. (1)

J. Oh, H.-C. Yuan, and H. M. Branz, “An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures,” Nat. Nanotechnol. 7, 743748 (2012).
[Crossref]

Proc. SPIE (2)

K. Füchsel, M. Kroll, T. Käsebier, M. Otto, T. Pertsch, E.-B. Kley, R. B. Wehrspohn, N. Kaiser, and A. Tünnermann, “Black silicon photovoltaics,” Proc. SPIE 8438, 84380M (2012).
[Crossref]

M. Kroll, M. Otto, T. Käsebier, K. Füchsel, R. B. Wehrspohn, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Black silicon for solar cell applications,” Proc. SPIE 8438, 843817 (2012).
[Crossref]

Prog. Photovolt: Res. Appl. (1)

A. G. Aberle, “Surface passivation of crystalline silicon solar cells: A review,” Prog. Photovolt: Res. Appl. 8, 473–487 (2000).
[Crossref]

RCA Rev (1)

W. Kern and D. Puotinen, “Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology,” RCA Rev 31, 187–206 (1970).

Sol. Energy Mater. Sol. Cells (1)

S.-Y. Lee, H. Choi, H. Li, K. Ji, S. Nam, J. Choi, S.-W. Ahn, H.-M. Lee, and B. Park, “Analysis of a-Si:H/TCO contact resistance for the Si heterojunction back-contact solar cell,” Sol. Energy Mater. Sol. Cells 120, Part A, 412–416 (2014).
[Crossref]

Other (2)

R. Sinton, A. Cuevas, and M. Stuckings, “Quasi-steady-state photoconductance, a new method for solar cell material and device characterization,” Proc. of the 25th IEEE PVSC pp. 457–460 (1996).

M. Schnell, R. Ludemann, and S. Schaefer, “Plasma surface texturization for multicrystalline silicon solar cells,” Proc. of the 28th IEEE PVSC pp. 367–370 (2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic cross section of the back side contacted silicon PRECASH solar cells. Left: Random pyramid texture passivated by SiO2/SiNx (reference). Right: ICP-RIE texture passivated by Al2O3. Bottom: Schematic back side.
Fig. 2
Fig. 2 SEM pictures of the structured surfaces after the cell process. Frontsides achieved by ICP-RIE process with high process pressure (a) and with low process pressure (b).
Fig. 3
Fig. 3 Internal quantum efficiency (IQE) and reflection measurements of the fabricated PRECASH solar cells. ABSF is the BSF to emitter the contact area in percent of the meassured cell
Fig. 4
Fig. 4 Effective minority carrier lifetime τeff of silicon wafers after passivation with 20 nm Al2O3 on both sides. Shown are samples with texture A and B on the frontside before and after the deposition of the a-Si:H(n) emitter layer at the backside (wafer resestivity 2.7Ωcm meassurements are done in transient mode). Additionally, the lifetime measurement of a reference sample with a pyramidal texture on both sides and passivated by SiO2/SiNx stacks is plotted (wafer resestivity 1.4Ωcm meassurement done in generalized mode optical constant 0.85).
Fig. 5
Fig. 5 Illuminated IV curves of a reference cell measured at 25 °C (Jsc = 38.3mA × cm−2, Voc = 631mV, FF = 59.2, η = 14.3 %) and of a cell with texture A measured at 31.1°C (Jsc = 35.1mA × cm−2, Voc = 562mV, FF = 57, η = 11.2 %).
Fig. 6
Fig. 6 Illuminated IV curves of a reference cell measured at 25.6 °C (Jsc = 37.6mA × cm−2, Voc = 607mV, FF = 54.8, η = 12.5 %) and of a cell with texture B measured at 30.4°C (Jsc = 34.95mA × cm−2, Voc = 525mV, FF = 56.2, η = 10.31 %).

Metrics