Abstract

We analyze mesoscale light absorption and carrier collection in a tandem junction photoelectrochemical device using electromagnetic simulations. The tandem device consists of silicon (Eg,Si = 1.1 eV) and tungsten oxide (Eg,WO3 = 2.6 eV) as photocathode and photoanode materials, respectively. Specifically, we investigated Si microwires with lengths of 100 µm, and diameters of 2 µm, with a 7 µm pitch, covered vertically with 50 µm of WO3 with a thickness of 1 µm. Many geometrical variants of this prototypical tandem device were explored. For conditions of illumination with the AM 1.5G spectra, the nominal design resulted in a short circuit current density, JSC, of 1 mA/cm2, which is limited by the WO3 absorption. Geometrical optimization of photoanode and photocathode shape and contact material selection, enabled a three-fold increase in short circuit current density relative to the initial design via enhanced WO3 light absorption. These findings validate the usefulness of a mesoscale analysis for ascertaining optimum optoelectronic performance in photoelectrochemical devices.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhancing light absorption within the carrier transport length in quantum junction solar cells

Yulan Fu, Yukihiro Hara, Christopher W. Miller, and Rene Lopez
Appl. Opt. 54(26) 7933-7939 (2015)

WO3/SiO2 composite optical films for the fabrication of electrochromic interference filters

Bill Baloukas and Ludvik Martinu
Appl. Opt. 51(16) 3346-3356 (2012)

Wire textured, multi-crystalline Si solar cells created using self-assembled masks

Kejia (Albert) Wang, Oki Gunawan, Naim Moumen, George Tulevski, Hisham Mohamed, Babak Fallahazad, Emanuel Tutuc, and Supratik Guha
Opt. Express 18(S4) A568-A574 (2010)

References

  • View by:
  • |
  • |
  • |

  1. A. Bard and M. A. Fox, “Artificial photosynthesis: solar splitting of water to hydrogen and oxygen,” Acc. Chem. Res. 28(3), 141–145 (1995).
    [Crossref]
  2. F. E. Osterloh and B. A. Parkinson, “Recent developments in solar water-splitting photocatalysis,” MRS Bull. 36(1), 17–22 (2011).
    [Crossref]
  3. B. Masters, “Three-dimensional microscopic tomographic imagings of the cataract in a human lens in vivo,” Opt. Express 3(9), 332–338 (1998).
    [Crossref] [PubMed]
  4. A. J. Nozik, “Photoelectrochemical cells,” Philos. Trans. R. Soc. Lond. A 295(1414), 453–470 (1980).
    [Crossref]
  5. D. G. Nocera, “The artificial leaf,” Acc. Chem. Res. 45(5), 767–776 (2012).
    [Crossref] [PubMed]
  6. S. Haussener, C. Xiang, J. M. Spurgeon, S. Ardo, N. S. Lewis, and A. Z. Weber, “Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems,” Energy Environ. Sci. 5(12), 9922–9935 (2012).
    [Crossref]
  7. M. R. Shaner, K. T. Fountaine, S. Ardo, R. H. Coridan, H. A. Atwater, and N. S. Lewis, “Photoelectrochemistry of core-shell tandem junction n-p+ -Si/n-WO3 microwire array photoelectrodes,” Energy Environ. Sci. 7(2), 779–790 (2014).
    [Crossref]
  8. B. M. Kayes, M. A. Filler, M. C. Putnam, M. D. Kelzenberg, N. S. Lewis, and H. A. Atwater, “Growth of vertically aligned Si wire arrays over large areas (>1 cm2) with Au and Cu catalysts,” Appl. Phys. Lett. 91(10), 103110 (2007).
    [Crossref]
  9. J. R. Bolton, S. J. Strickler, and J. S. Connolly, “Limiting and realizable efficiencies of solar photolysis of water,” Nature 316(6028), 495–500 (1985).
    [Crossref]
  10. R. E. Rocheleau and E. L. Miller, “Photoelectrochemical production of hydrogen: engineering loss analysis,” Int. J. Hydrogen Energy 22(8), 771–782 (1997).
    [Crossref]
  11. B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys. 97(11), 114302 (2005).
    [Crossref]
  12. E. Ertekin, P. A. Greaney, D. C. Chrzan, and T. D. Sands, “Equilibrium limits of coherency in strained nanowire heterostructures,” J. Appl. Phys. 97(11), 114325 (2005).
    [Crossref]
  13. N. C. Strandwitz, D. B. Turner-Evans, A. C. Tamboli, C. T. Chen, H. A. Atwater, and N. S. Lewis, “Photoelectrochemical behavior of planar and microwire array Si|GaP electrodes,” Adv. Energy Mater. 2(9), 1109–1116 (2012).
    [Crossref]
  14. S. Trasatti, “Work function, electronegativity, and electrochemical behavior of metals: III. Electrolytic hydrogen evolution in acid solutions,” J. Electroanal. Chem. Interfacial Electrochem. 39(1), 163–184 (1972).
    [Crossref]
  15. A. Subrahmanyam and A. Karuppasamy, “Optical and electrochromic properties of oxygen sputtered tungsten oxide (WO3) thin films,” Sol. Energy Mater. Sol. Cells 91(4), 266–274 (2007).
    [Crossref]
  16. K. Sugiyama, H. Ishii, Y. Ouchi, and K. Seki, “Dependence of indium-tin-oxide work function on surface cleaning method as studied by ultraviolet and x-ray photoemission spectroscopies,” J. Appl. Phys. 87(1), 295–298 (2000).
    [Crossref]
  17. M. D. Kelzenberg, Silicon Microwire Photovoltaics, (California Institute of Technology, 2010).
  18. E. L. Warren, S. W. Boettcher, M. G. Walter, H. A. Atwater, and N. S. Lewis, “pH-independent, 520mV open-circuit voltages of Si/methyl viologen(2+/+) contacts through use of radial n(+)p-Si junction microwire array photoelectrodes,” J. Phys. Chem. C 115(2), 594–598 (2011).
    [Crossref]
  19. T. Iwai, “Temperature dependence of the optical absorption edge of tungsten trioxide single crystal,” J. Phys. Soc. Jpn. 15(9), 1596–1600 (1960).
    [Crossref]
  20. W. A. Gerrard, “Photoelectrolysis using a tungsten-oxide anode in chlorine and sulfate-solutions,” J. Electroanal. Chem. 86(2), 421–424 (1978).
    [Crossref]
  21. Q. Mi, A. Zhanaidarova, B. S. Brunschwig, H. B. Gray, and N. S. Lewis, “A quantitative assessment of the competition between wafer and anion oxidation at WO3 photoanodes in acidic aqueous electrolytes,” Energy Environ. Sci. 5(2), 5694–5700 (2012).
    [Crossref]
  22. A. Leenheer, Light to electrons to bonds: imaging water splitting and collecting photoexcited carriers (California Institute of Technology, 2013).
  23. K. R. Reyes-Gil, B. S. Brunschwig, and N. S. Lewis, “Enhanced photogenerated carrier diffusion and quantum yields in highly ordered porous WO3 photoanodes for solar water oxidation,” unpublished manuscript, 1–35.
  24. J. M. Berak and M. Sienko, “Effect of oxygen-deficiency on electrical transport properties of tungsten trioxide crystals,” J. Solid State Chem. 2(1), 109–133 (1970).
    [Crossref]
  25. H. Raether, Surface Plasmons (Springer, 1988)
  26. C. Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, 1996).

2014 (1)

M. R. Shaner, K. T. Fountaine, S. Ardo, R. H. Coridan, H. A. Atwater, and N. S. Lewis, “Photoelectrochemistry of core-shell tandem junction n-p+ -Si/n-WO3 microwire array photoelectrodes,” Energy Environ. Sci. 7(2), 779–790 (2014).
[Crossref]

2012 (4)

D. G. Nocera, “The artificial leaf,” Acc. Chem. Res. 45(5), 767–776 (2012).
[Crossref] [PubMed]

S. Haussener, C. Xiang, J. M. Spurgeon, S. Ardo, N. S. Lewis, and A. Z. Weber, “Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems,” Energy Environ. Sci. 5(12), 9922–9935 (2012).
[Crossref]

N. C. Strandwitz, D. B. Turner-Evans, A. C. Tamboli, C. T. Chen, H. A. Atwater, and N. S. Lewis, “Photoelectrochemical behavior of planar and microwire array Si|GaP electrodes,” Adv. Energy Mater. 2(9), 1109–1116 (2012).
[Crossref]

Q. Mi, A. Zhanaidarova, B. S. Brunschwig, H. B. Gray, and N. S. Lewis, “A quantitative assessment of the competition between wafer and anion oxidation at WO3 photoanodes in acidic aqueous electrolytes,” Energy Environ. Sci. 5(2), 5694–5700 (2012).
[Crossref]

2011 (2)

E. L. Warren, S. W. Boettcher, M. G. Walter, H. A. Atwater, and N. S. Lewis, “pH-independent, 520mV open-circuit voltages of Si/methyl viologen(2+/+) contacts through use of radial n(+)p-Si junction microwire array photoelectrodes,” J. Phys. Chem. C 115(2), 594–598 (2011).
[Crossref]

F. E. Osterloh and B. A. Parkinson, “Recent developments in solar water-splitting photocatalysis,” MRS Bull. 36(1), 17–22 (2011).
[Crossref]

2007 (2)

B. M. Kayes, M. A. Filler, M. C. Putnam, M. D. Kelzenberg, N. S. Lewis, and H. A. Atwater, “Growth of vertically aligned Si wire arrays over large areas (>1 cm2) with Au and Cu catalysts,” Appl. Phys. Lett. 91(10), 103110 (2007).
[Crossref]

A. Subrahmanyam and A. Karuppasamy, “Optical and electrochromic properties of oxygen sputtered tungsten oxide (WO3) thin films,” Sol. Energy Mater. Sol. Cells 91(4), 266–274 (2007).
[Crossref]

2005 (2)

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys. 97(11), 114302 (2005).
[Crossref]

E. Ertekin, P. A. Greaney, D. C. Chrzan, and T. D. Sands, “Equilibrium limits of coherency in strained nanowire heterostructures,” J. Appl. Phys. 97(11), 114325 (2005).
[Crossref]

2000 (1)

K. Sugiyama, H. Ishii, Y. Ouchi, and K. Seki, “Dependence of indium-tin-oxide work function on surface cleaning method as studied by ultraviolet and x-ray photoemission spectroscopies,” J. Appl. Phys. 87(1), 295–298 (2000).
[Crossref]

1998 (1)

1997 (1)

R. E. Rocheleau and E. L. Miller, “Photoelectrochemical production of hydrogen: engineering loss analysis,” Int. J. Hydrogen Energy 22(8), 771–782 (1997).
[Crossref]

1995 (1)

A. Bard and M. A. Fox, “Artificial photosynthesis: solar splitting of water to hydrogen and oxygen,” Acc. Chem. Res. 28(3), 141–145 (1995).
[Crossref]

1985 (1)

J. R. Bolton, S. J. Strickler, and J. S. Connolly, “Limiting and realizable efficiencies of solar photolysis of water,” Nature 316(6028), 495–500 (1985).
[Crossref]

1980 (1)

A. J. Nozik, “Photoelectrochemical cells,” Philos. Trans. R. Soc. Lond. A 295(1414), 453–470 (1980).
[Crossref]

1978 (1)

W. A. Gerrard, “Photoelectrolysis using a tungsten-oxide anode in chlorine and sulfate-solutions,” J. Electroanal. Chem. 86(2), 421–424 (1978).
[Crossref]

1972 (1)

S. Trasatti, “Work function, electronegativity, and electrochemical behavior of metals: III. Electrolytic hydrogen evolution in acid solutions,” J. Electroanal. Chem. Interfacial Electrochem. 39(1), 163–184 (1972).
[Crossref]

1970 (1)

J. M. Berak and M. Sienko, “Effect of oxygen-deficiency on electrical transport properties of tungsten trioxide crystals,” J. Solid State Chem. 2(1), 109–133 (1970).
[Crossref]

1960 (1)

T. Iwai, “Temperature dependence of the optical absorption edge of tungsten trioxide single crystal,” J. Phys. Soc. Jpn. 15(9), 1596–1600 (1960).
[Crossref]

Ardo, S.

M. R. Shaner, K. T. Fountaine, S. Ardo, R. H. Coridan, H. A. Atwater, and N. S. Lewis, “Photoelectrochemistry of core-shell tandem junction n-p+ -Si/n-WO3 microwire array photoelectrodes,” Energy Environ. Sci. 7(2), 779–790 (2014).
[Crossref]

S. Haussener, C. Xiang, J. M. Spurgeon, S. Ardo, N. S. Lewis, and A. Z. Weber, “Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems,” Energy Environ. Sci. 5(12), 9922–9935 (2012).
[Crossref]

Atwater, H. A.

M. R. Shaner, K. T. Fountaine, S. Ardo, R. H. Coridan, H. A. Atwater, and N. S. Lewis, “Photoelectrochemistry of core-shell tandem junction n-p+ -Si/n-WO3 microwire array photoelectrodes,” Energy Environ. Sci. 7(2), 779–790 (2014).
[Crossref]

N. C. Strandwitz, D. B. Turner-Evans, A. C. Tamboli, C. T. Chen, H. A. Atwater, and N. S. Lewis, “Photoelectrochemical behavior of planar and microwire array Si|GaP electrodes,” Adv. Energy Mater. 2(9), 1109–1116 (2012).
[Crossref]

E. L. Warren, S. W. Boettcher, M. G. Walter, H. A. Atwater, and N. S. Lewis, “pH-independent, 520mV open-circuit voltages of Si/methyl viologen(2+/+) contacts through use of radial n(+)p-Si junction microwire array photoelectrodes,” J. Phys. Chem. C 115(2), 594–598 (2011).
[Crossref]

B. M. Kayes, M. A. Filler, M. C. Putnam, M. D. Kelzenberg, N. S. Lewis, and H. A. Atwater, “Growth of vertically aligned Si wire arrays over large areas (>1 cm2) with Au and Cu catalysts,” Appl. Phys. Lett. 91(10), 103110 (2007).
[Crossref]

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys. 97(11), 114302 (2005).
[Crossref]

Bard, A.

A. Bard and M. A. Fox, “Artificial photosynthesis: solar splitting of water to hydrogen and oxygen,” Acc. Chem. Res. 28(3), 141–145 (1995).
[Crossref]

Berak, J. M.

J. M. Berak and M. Sienko, “Effect of oxygen-deficiency on electrical transport properties of tungsten trioxide crystals,” J. Solid State Chem. 2(1), 109–133 (1970).
[Crossref]

Boettcher, S. W.

E. L. Warren, S. W. Boettcher, M. G. Walter, H. A. Atwater, and N. S. Lewis, “pH-independent, 520mV open-circuit voltages of Si/methyl viologen(2+/+) contacts through use of radial n(+)p-Si junction microwire array photoelectrodes,” J. Phys. Chem. C 115(2), 594–598 (2011).
[Crossref]

Bolton, J. R.

J. R. Bolton, S. J. Strickler, and J. S. Connolly, “Limiting and realizable efficiencies of solar photolysis of water,” Nature 316(6028), 495–500 (1985).
[Crossref]

Brunschwig, B. S.

Q. Mi, A. Zhanaidarova, B. S. Brunschwig, H. B. Gray, and N. S. Lewis, “A quantitative assessment of the competition between wafer and anion oxidation at WO3 photoanodes in acidic aqueous electrolytes,” Energy Environ. Sci. 5(2), 5694–5700 (2012).
[Crossref]

Chen, C. T.

N. C. Strandwitz, D. B. Turner-Evans, A. C. Tamboli, C. T. Chen, H. A. Atwater, and N. S. Lewis, “Photoelectrochemical behavior of planar and microwire array Si|GaP electrodes,” Adv. Energy Mater. 2(9), 1109–1116 (2012).
[Crossref]

Chrzan, D. C.

E. Ertekin, P. A. Greaney, D. C. Chrzan, and T. D. Sands, “Equilibrium limits of coherency in strained nanowire heterostructures,” J. Appl. Phys. 97(11), 114325 (2005).
[Crossref]

Connolly, J. S.

J. R. Bolton, S. J. Strickler, and J. S. Connolly, “Limiting and realizable efficiencies of solar photolysis of water,” Nature 316(6028), 495–500 (1985).
[Crossref]

Coridan, R. H.

M. R. Shaner, K. T. Fountaine, S. Ardo, R. H. Coridan, H. A. Atwater, and N. S. Lewis, “Photoelectrochemistry of core-shell tandem junction n-p+ -Si/n-WO3 microwire array photoelectrodes,” Energy Environ. Sci. 7(2), 779–790 (2014).
[Crossref]

Ertekin, E.

E. Ertekin, P. A. Greaney, D. C. Chrzan, and T. D. Sands, “Equilibrium limits of coherency in strained nanowire heterostructures,” J. Appl. Phys. 97(11), 114325 (2005).
[Crossref]

Filler, M. A.

B. M. Kayes, M. A. Filler, M. C. Putnam, M. D. Kelzenberg, N. S. Lewis, and H. A. Atwater, “Growth of vertically aligned Si wire arrays over large areas (>1 cm2) with Au and Cu catalysts,” Appl. Phys. Lett. 91(10), 103110 (2007).
[Crossref]

Fountaine, K. T.

M. R. Shaner, K. T. Fountaine, S. Ardo, R. H. Coridan, H. A. Atwater, and N. S. Lewis, “Photoelectrochemistry of core-shell tandem junction n-p+ -Si/n-WO3 microwire array photoelectrodes,” Energy Environ. Sci. 7(2), 779–790 (2014).
[Crossref]

Fox, M. A.

A. Bard and M. A. Fox, “Artificial photosynthesis: solar splitting of water to hydrogen and oxygen,” Acc. Chem. Res. 28(3), 141–145 (1995).
[Crossref]

Gerrard, W. A.

W. A. Gerrard, “Photoelectrolysis using a tungsten-oxide anode in chlorine and sulfate-solutions,” J. Electroanal. Chem. 86(2), 421–424 (1978).
[Crossref]

Gray, H. B.

Q. Mi, A. Zhanaidarova, B. S. Brunschwig, H. B. Gray, and N. S. Lewis, “A quantitative assessment of the competition between wafer and anion oxidation at WO3 photoanodes in acidic aqueous electrolytes,” Energy Environ. Sci. 5(2), 5694–5700 (2012).
[Crossref]

Greaney, P. A.

E. Ertekin, P. A. Greaney, D. C. Chrzan, and T. D. Sands, “Equilibrium limits of coherency in strained nanowire heterostructures,” J. Appl. Phys. 97(11), 114325 (2005).
[Crossref]

Haussener, S.

S. Haussener, C. Xiang, J. M. Spurgeon, S. Ardo, N. S. Lewis, and A. Z. Weber, “Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems,” Energy Environ. Sci. 5(12), 9922–9935 (2012).
[Crossref]

Ishii, H.

K. Sugiyama, H. Ishii, Y. Ouchi, and K. Seki, “Dependence of indium-tin-oxide work function on surface cleaning method as studied by ultraviolet and x-ray photoemission spectroscopies,” J. Appl. Phys. 87(1), 295–298 (2000).
[Crossref]

Iwai, T.

T. Iwai, “Temperature dependence of the optical absorption edge of tungsten trioxide single crystal,” J. Phys. Soc. Jpn. 15(9), 1596–1600 (1960).
[Crossref]

Karuppasamy, A.

A. Subrahmanyam and A. Karuppasamy, “Optical and electrochromic properties of oxygen sputtered tungsten oxide (WO3) thin films,” Sol. Energy Mater. Sol. Cells 91(4), 266–274 (2007).
[Crossref]

Kayes, B. M.

B. M. Kayes, M. A. Filler, M. C. Putnam, M. D. Kelzenberg, N. S. Lewis, and H. A. Atwater, “Growth of vertically aligned Si wire arrays over large areas (>1 cm2) with Au and Cu catalysts,” Appl. Phys. Lett. 91(10), 103110 (2007).
[Crossref]

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys. 97(11), 114302 (2005).
[Crossref]

Kelzenberg, M. D.

B. M. Kayes, M. A. Filler, M. C. Putnam, M. D. Kelzenberg, N. S. Lewis, and H. A. Atwater, “Growth of vertically aligned Si wire arrays over large areas (>1 cm2) with Au and Cu catalysts,” Appl. Phys. Lett. 91(10), 103110 (2007).
[Crossref]

Lewis, N. S.

M. R. Shaner, K. T. Fountaine, S. Ardo, R. H. Coridan, H. A. Atwater, and N. S. Lewis, “Photoelectrochemistry of core-shell tandem junction n-p+ -Si/n-WO3 microwire array photoelectrodes,” Energy Environ. Sci. 7(2), 779–790 (2014).
[Crossref]

S. Haussener, C. Xiang, J. M. Spurgeon, S. Ardo, N. S. Lewis, and A. Z. Weber, “Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems,” Energy Environ. Sci. 5(12), 9922–9935 (2012).
[Crossref]

N. C. Strandwitz, D. B. Turner-Evans, A. C. Tamboli, C. T. Chen, H. A. Atwater, and N. S. Lewis, “Photoelectrochemical behavior of planar and microwire array Si|GaP electrodes,” Adv. Energy Mater. 2(9), 1109–1116 (2012).
[Crossref]

Q. Mi, A. Zhanaidarova, B. S. Brunschwig, H. B. Gray, and N. S. Lewis, “A quantitative assessment of the competition between wafer and anion oxidation at WO3 photoanodes in acidic aqueous electrolytes,” Energy Environ. Sci. 5(2), 5694–5700 (2012).
[Crossref]

E. L. Warren, S. W. Boettcher, M. G. Walter, H. A. Atwater, and N. S. Lewis, “pH-independent, 520mV open-circuit voltages of Si/methyl viologen(2+/+) contacts through use of radial n(+)p-Si junction microwire array photoelectrodes,” J. Phys. Chem. C 115(2), 594–598 (2011).
[Crossref]

B. M. Kayes, M. A. Filler, M. C. Putnam, M. D. Kelzenberg, N. S. Lewis, and H. A. Atwater, “Growth of vertically aligned Si wire arrays over large areas (>1 cm2) with Au and Cu catalysts,” Appl. Phys. Lett. 91(10), 103110 (2007).
[Crossref]

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys. 97(11), 114302 (2005).
[Crossref]

Masters, B.

Mi, Q.

Q. Mi, A. Zhanaidarova, B. S. Brunschwig, H. B. Gray, and N. S. Lewis, “A quantitative assessment of the competition between wafer and anion oxidation at WO3 photoanodes in acidic aqueous electrolytes,” Energy Environ. Sci. 5(2), 5694–5700 (2012).
[Crossref]

Miller, E. L.

R. E. Rocheleau and E. L. Miller, “Photoelectrochemical production of hydrogen: engineering loss analysis,” Int. J. Hydrogen Energy 22(8), 771–782 (1997).
[Crossref]

Nocera, D. G.

D. G. Nocera, “The artificial leaf,” Acc. Chem. Res. 45(5), 767–776 (2012).
[Crossref] [PubMed]

Nozik, A. J.

A. J. Nozik, “Photoelectrochemical cells,” Philos. Trans. R. Soc. Lond. A 295(1414), 453–470 (1980).
[Crossref]

Osterloh, F. E.

F. E. Osterloh and B. A. Parkinson, “Recent developments in solar water-splitting photocatalysis,” MRS Bull. 36(1), 17–22 (2011).
[Crossref]

Ouchi, Y.

K. Sugiyama, H. Ishii, Y. Ouchi, and K. Seki, “Dependence of indium-tin-oxide work function on surface cleaning method as studied by ultraviolet and x-ray photoemission spectroscopies,” J. Appl. Phys. 87(1), 295–298 (2000).
[Crossref]

Parkinson, B. A.

F. E. Osterloh and B. A. Parkinson, “Recent developments in solar water-splitting photocatalysis,” MRS Bull. 36(1), 17–22 (2011).
[Crossref]

Putnam, M. C.

B. M. Kayes, M. A. Filler, M. C. Putnam, M. D. Kelzenberg, N. S. Lewis, and H. A. Atwater, “Growth of vertically aligned Si wire arrays over large areas (>1 cm2) with Au and Cu catalysts,” Appl. Phys. Lett. 91(10), 103110 (2007).
[Crossref]

Rocheleau, R. E.

R. E. Rocheleau and E. L. Miller, “Photoelectrochemical production of hydrogen: engineering loss analysis,” Int. J. Hydrogen Energy 22(8), 771–782 (1997).
[Crossref]

Sands, T. D.

E. Ertekin, P. A. Greaney, D. C. Chrzan, and T. D. Sands, “Equilibrium limits of coherency in strained nanowire heterostructures,” J. Appl. Phys. 97(11), 114325 (2005).
[Crossref]

Seki, K.

K. Sugiyama, H. Ishii, Y. Ouchi, and K. Seki, “Dependence of indium-tin-oxide work function on surface cleaning method as studied by ultraviolet and x-ray photoemission spectroscopies,” J. Appl. Phys. 87(1), 295–298 (2000).
[Crossref]

Shaner, M. R.

M. R. Shaner, K. T. Fountaine, S. Ardo, R. H. Coridan, H. A. Atwater, and N. S. Lewis, “Photoelectrochemistry of core-shell tandem junction n-p+ -Si/n-WO3 microwire array photoelectrodes,” Energy Environ. Sci. 7(2), 779–790 (2014).
[Crossref]

Sienko, M.

J. M. Berak and M. Sienko, “Effect of oxygen-deficiency on electrical transport properties of tungsten trioxide crystals,” J. Solid State Chem. 2(1), 109–133 (1970).
[Crossref]

Spurgeon, J. M.

S. Haussener, C. Xiang, J. M. Spurgeon, S. Ardo, N. S. Lewis, and A. Z. Weber, “Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems,” Energy Environ. Sci. 5(12), 9922–9935 (2012).
[Crossref]

Strandwitz, N. C.

N. C. Strandwitz, D. B. Turner-Evans, A. C. Tamboli, C. T. Chen, H. A. Atwater, and N. S. Lewis, “Photoelectrochemical behavior of planar and microwire array Si|GaP electrodes,” Adv. Energy Mater. 2(9), 1109–1116 (2012).
[Crossref]

Strickler, S. J.

J. R. Bolton, S. J. Strickler, and J. S. Connolly, “Limiting and realizable efficiencies of solar photolysis of water,” Nature 316(6028), 495–500 (1985).
[Crossref]

Subrahmanyam, A.

A. Subrahmanyam and A. Karuppasamy, “Optical and electrochromic properties of oxygen sputtered tungsten oxide (WO3) thin films,” Sol. Energy Mater. Sol. Cells 91(4), 266–274 (2007).
[Crossref]

Sugiyama, K.

K. Sugiyama, H. Ishii, Y. Ouchi, and K. Seki, “Dependence of indium-tin-oxide work function on surface cleaning method as studied by ultraviolet and x-ray photoemission spectroscopies,” J. Appl. Phys. 87(1), 295–298 (2000).
[Crossref]

Tamboli, A. C.

N. C. Strandwitz, D. B. Turner-Evans, A. C. Tamboli, C. T. Chen, H. A. Atwater, and N. S. Lewis, “Photoelectrochemical behavior of planar and microwire array Si|GaP electrodes,” Adv. Energy Mater. 2(9), 1109–1116 (2012).
[Crossref]

Trasatti, S.

S. Trasatti, “Work function, electronegativity, and electrochemical behavior of metals: III. Electrolytic hydrogen evolution in acid solutions,” J. Electroanal. Chem. Interfacial Electrochem. 39(1), 163–184 (1972).
[Crossref]

Turner-Evans, D. B.

N. C. Strandwitz, D. B. Turner-Evans, A. C. Tamboli, C. T. Chen, H. A. Atwater, and N. S. Lewis, “Photoelectrochemical behavior of planar and microwire array Si|GaP electrodes,” Adv. Energy Mater. 2(9), 1109–1116 (2012).
[Crossref]

Walter, M. G.

E. L. Warren, S. W. Boettcher, M. G. Walter, H. A. Atwater, and N. S. Lewis, “pH-independent, 520mV open-circuit voltages of Si/methyl viologen(2+/+) contacts through use of radial n(+)p-Si junction microwire array photoelectrodes,” J. Phys. Chem. C 115(2), 594–598 (2011).
[Crossref]

Warren, E. L.

E. L. Warren, S. W. Boettcher, M. G. Walter, H. A. Atwater, and N. S. Lewis, “pH-independent, 520mV open-circuit voltages of Si/methyl viologen(2+/+) contacts through use of radial n(+)p-Si junction microwire array photoelectrodes,” J. Phys. Chem. C 115(2), 594–598 (2011).
[Crossref]

Weber, A. Z.

S. Haussener, C. Xiang, J. M. Spurgeon, S. Ardo, N. S. Lewis, and A. Z. Weber, “Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems,” Energy Environ. Sci. 5(12), 9922–9935 (2012).
[Crossref]

Xiang, C.

S. Haussener, C. Xiang, J. M. Spurgeon, S. Ardo, N. S. Lewis, and A. Z. Weber, “Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems,” Energy Environ. Sci. 5(12), 9922–9935 (2012).
[Crossref]

Zhanaidarova, A.

Q. Mi, A. Zhanaidarova, B. S. Brunschwig, H. B. Gray, and N. S. Lewis, “A quantitative assessment of the competition between wafer and anion oxidation at WO3 photoanodes in acidic aqueous electrolytes,” Energy Environ. Sci. 5(2), 5694–5700 (2012).
[Crossref]

Acc. Chem. Res. (2)

A. Bard and M. A. Fox, “Artificial photosynthesis: solar splitting of water to hydrogen and oxygen,” Acc. Chem. Res. 28(3), 141–145 (1995).
[Crossref]

D. G. Nocera, “The artificial leaf,” Acc. Chem. Res. 45(5), 767–776 (2012).
[Crossref] [PubMed]

Adv. Energy Mater. (1)

N. C. Strandwitz, D. B. Turner-Evans, A. C. Tamboli, C. T. Chen, H. A. Atwater, and N. S. Lewis, “Photoelectrochemical behavior of planar and microwire array Si|GaP electrodes,” Adv. Energy Mater. 2(9), 1109–1116 (2012).
[Crossref]

Appl. Phys. Lett. (1)

B. M. Kayes, M. A. Filler, M. C. Putnam, M. D. Kelzenberg, N. S. Lewis, and H. A. Atwater, “Growth of vertically aligned Si wire arrays over large areas (>1 cm2) with Au and Cu catalysts,” Appl. Phys. Lett. 91(10), 103110 (2007).
[Crossref]

Energy Environ. Sci. (3)

S. Haussener, C. Xiang, J. M. Spurgeon, S. Ardo, N. S. Lewis, and A. Z. Weber, “Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems,” Energy Environ. Sci. 5(12), 9922–9935 (2012).
[Crossref]

M. R. Shaner, K. T. Fountaine, S. Ardo, R. H. Coridan, H. A. Atwater, and N. S. Lewis, “Photoelectrochemistry of core-shell tandem junction n-p+ -Si/n-WO3 microwire array photoelectrodes,” Energy Environ. Sci. 7(2), 779–790 (2014).
[Crossref]

Q. Mi, A. Zhanaidarova, B. S. Brunschwig, H. B. Gray, and N. S. Lewis, “A quantitative assessment of the competition between wafer and anion oxidation at WO3 photoanodes in acidic aqueous electrolytes,” Energy Environ. Sci. 5(2), 5694–5700 (2012).
[Crossref]

Int. J. Hydrogen Energy (1)

R. E. Rocheleau and E. L. Miller, “Photoelectrochemical production of hydrogen: engineering loss analysis,” Int. J. Hydrogen Energy 22(8), 771–782 (1997).
[Crossref]

J. Appl. Phys. (3)

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys. 97(11), 114302 (2005).
[Crossref]

E. Ertekin, P. A. Greaney, D. C. Chrzan, and T. D. Sands, “Equilibrium limits of coherency in strained nanowire heterostructures,” J. Appl. Phys. 97(11), 114325 (2005).
[Crossref]

K. Sugiyama, H. Ishii, Y. Ouchi, and K. Seki, “Dependence of indium-tin-oxide work function on surface cleaning method as studied by ultraviolet and x-ray photoemission spectroscopies,” J. Appl. Phys. 87(1), 295–298 (2000).
[Crossref]

J. Electroanal. Chem. (1)

W. A. Gerrard, “Photoelectrolysis using a tungsten-oxide anode in chlorine and sulfate-solutions,” J. Electroanal. Chem. 86(2), 421–424 (1978).
[Crossref]

J. Electroanal. Chem. Interfacial Electrochem. (1)

S. Trasatti, “Work function, electronegativity, and electrochemical behavior of metals: III. Electrolytic hydrogen evolution in acid solutions,” J. Electroanal. Chem. Interfacial Electrochem. 39(1), 163–184 (1972).
[Crossref]

J. Phys. Chem. C (1)

E. L. Warren, S. W. Boettcher, M. G. Walter, H. A. Atwater, and N. S. Lewis, “pH-independent, 520mV open-circuit voltages of Si/methyl viologen(2+/+) contacts through use of radial n(+)p-Si junction microwire array photoelectrodes,” J. Phys. Chem. C 115(2), 594–598 (2011).
[Crossref]

J. Phys. Soc. Jpn. (1)

T. Iwai, “Temperature dependence of the optical absorption edge of tungsten trioxide single crystal,” J. Phys. Soc. Jpn. 15(9), 1596–1600 (1960).
[Crossref]

J. Solid State Chem. (1)

J. M. Berak and M. Sienko, “Effect of oxygen-deficiency on electrical transport properties of tungsten trioxide crystals,” J. Solid State Chem. 2(1), 109–133 (1970).
[Crossref]

MRS Bull. (1)

F. E. Osterloh and B. A. Parkinson, “Recent developments in solar water-splitting photocatalysis,” MRS Bull. 36(1), 17–22 (2011).
[Crossref]

Nature (1)

J. R. Bolton, S. J. Strickler, and J. S. Connolly, “Limiting and realizable efficiencies of solar photolysis of water,” Nature 316(6028), 495–500 (1985).
[Crossref]

Opt. Express (1)

Philos. Trans. R. Soc. Lond. A (1)

A. J. Nozik, “Photoelectrochemical cells,” Philos. Trans. R. Soc. Lond. A 295(1414), 453–470 (1980).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

A. Subrahmanyam and A. Karuppasamy, “Optical and electrochromic properties of oxygen sputtered tungsten oxide (WO3) thin films,” Sol. Energy Mater. Sol. Cells 91(4), 266–274 (2007).
[Crossref]

Other (5)

M. D. Kelzenberg, Silicon Microwire Photovoltaics, (California Institute of Technology, 2010).

H. Raether, Surface Plasmons (Springer, 1988)

C. Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, 1996).

A. Leenheer, Light to electrons to bonds: imaging water splitting and collecting photoexcited carriers (California Institute of Technology, 2013).

K. R. Reyes-Gil, B. S. Brunschwig, and N. S. Lewis, “Enhanced photogenerated carrier diffusion and quantum yields in highly ordered porous WO3 photoanodes for solar water oxidation,” unpublished manuscript, 1–35.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 One-dimensional representation of a tandem photoelectrochemical device with a proton-conducting membrane, illustrating the integrated nature of light absorption, carrier transport, catalysis, and reactant and product transport through solution and membrane.
Fig. 2
Fig. 2 Diagram of a monolithic, tandem, microwire based PEC device, including photoanode, photocathode, Ohmic contact material between the two photoelectrodes, oxygen (OER) and hydrogen (HER) evolution catalysts, and ion-conducting membrane. Reactions are written for acidic conditions, and therefore, the membrane is labeled as a proton exchange membrane (PEM).
Fig. 3
Fig. 3 Schematics for two proposed optoelectronic tandem PEC designs; (a) an opaque contact with the p|n junction in the bottom half of the Si microwire (b) a transparent contact design with the p|n junction in the top half of the Si microwire.
Fig. 4
Fig. 4 (a) Schematic of simulation unit cell, simulated as a 2D infinite array using TE-polarized illumination at normal incidence; (b) absorption vs. wavelength for the photoanode (WO3), photocathode (Si), and contact (Al, opaque) for the structure in (a); (c) absorption vs. wavelength for the photoanode (WO3), photocathode (Si), and contact (ITO, transparent) for the structure in (a).
Fig. 5
Fig. 5 Snapshots of the propagation of the electric field along an Al|air interface within an infinite 2D array of wires indicating the coupling into a surface plasmon-polariton mode (a) at λ = 800 nm, illustrating the evanescent decay of the electric field away from the interface; (b) at λ = 200 nm, illustrating the slower propagation of light at the interface.
Fig. 6
Fig. 6 Schematic of (a) the original, (b) the partially optimized, and (c) the optimized microwire array designs with the transparent, indium tin oxide contact; (d) plot of WO3 absorption vs. wavelength of each structure and their planar equivalences, demonstrating the absorption enhancement.

Tables (2)

Tables Icon

Table 1 Short Circuit Current Densities (mA/cm2), Day-integrated Hydrogen Production (mmol day−1cm−2), and Internal Quantum Efficiencies for the Opaque and Transparent Contact Designs and Their Planar Equivalence

Tables Icon

Table 2 Short Circuit Current Densities (mA cm−2), Day-integrated Hydrogen Production (mmol day−1cm−2), and Internal Quantum Efficiencies for the Original, Partially-optimized, and Optimized Transparent Contact Designs and Their Planar Equivalences

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P abs = 1 2 ω | E | 2 imag(ε)
C gen = π | E | 2 imag(ε) h

Metrics