Abstract

We investigate the effect of the epitaxial structure and the acceptor doping profile on the efficiency droop in InGaN/GaN LEDs by the physics based simulation of experimental internal quantum efficiency (IQE) characteristics. The device geometry is an integral part of our simulation approach. We demonstrate that even for single quantum well LEDs the droop depends critically on the acceptor doping profile. The Auger recombination was found to increase stronger than with the third power of the carrier density and has been found to dominate the droop in the roll over zone of the IQE. The fitted Auger coefficients are in the range of the values predicted by atomistic simulations.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Influence of polarization-matched AlGaInN barriers in blue InGaN light-emitting diodes

Jih-Yuan Chang and Yen-Kuang Kuo
Opt. Lett. 37(9) 1574-1576 (2012)

Hole injection and electron overflow improvement in InGaN/GaN light-emitting diodes by a tapered AlGaN electron blocking layer

Bing-Chen Lin, Kuo-Ju Chen, Chao-Hsun Wang, Ching-Hsueh Chiu, Yu-Pin Lan, Chien-Chung Lin, Po-Tsung Lee, Min-Hsiung Shih, Yen-Kuang Kuo, and Hao-Chung Kuo
Opt. Express 22(1) 463-469 (2014)

Numerical study of the suppressed efficiency droop in blue InGaN LEDs with polarization-matched configuration

Jih-Yuan Chang, Fang-Ming Chen, Yen-Kuang Kuo, Ya-Hsuan Shih, Jinn-Kong Sheu, Wei-Chih Lai, and Heng Liu
Opt. Lett. 38(16) 3158-3161 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. Laubsch, M. Sabathil, J. Baur, M. Peter, and B. Hahn, “High-Power and High-Efficiency InGaN-Based Light Emitters,” IEEE Trans. Electron Devices 57, 79–87 (2010).
    [Crossref]
  2. J. Piprek, “Efficiency droop in nitride-based light-emitting diodes,” Phys. Status Solidi A 207, 2217–2225 (2010).
    [Crossref]
  3. J. Cho, E. F. Schubert, and J. K. Kim, “Efficiency droop in light-emitting diodes: Challenges and countermeasures,” Laser Photonics Rev. 7, 408–421 (2013).
    [Crossref]
  4. T. T. Mnatsakanov, M. E. Levinshtein, L. I. Pomortseva, S. N. Yurkov, G. S. Simin, and M. Asif Khan, “Carrier mobility model for GaN,” Solid-State Electron. 47, 111–115 (2003).
    [Crossref]
  5. M. Deppner, F. Römer, and B. Witzigmann, “Auger carrier leakage in III-nitride quantum-well light emitting diodes,” Phys. Status Solidi RRL 6, 418–420 (2012).
  6. J. Iveland, L. Martinelli, J. Peretti, J. S. Speck, and C. Weisbuch, “Direct Measurement of Auger Electrons Emitted from a Semiconductor Light-Emitting Diode under Electrical Injection: Identification of the Dominant Mechanism for Efficiency Droop,” Phys. Rev. Lett. 110, 177406 (2013).
    [Crossref] [PubMed]
  7. M. Binder, A. Nirschl, R. Zeisel, T. Hager, H.-J. Lugauer, M. Sabathil, D. Bougeard, J. Wagner, and B. Galler, “Identification of nnp and npp Auger recombination as significant contributor to the efficiency droop in (GaIn)N quantum wells by visualization of hot carriers in photoluminescence,” Appl. Phys. Lett. 103, 071108 (2013).
    [Crossref]
  8. E. Kioupakis, P. Rinke, K. T. Delaney, and C. G. Van de Walle, “Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes,” Appl. Phys. Lett. 98, 161107 (2011).
    [Crossref]
  9. B. Witzigmann, R. G. Veprek, S. Steiger, and J. Kupec, “Comprehensive modeling of optoelectronic nanostructures,” J. Comput. Electron. 8, 389–397 (2009).
    [Crossref]
  10. S. Steiger, R. G. Veprek, and B. Witzigmann, “Unified simulation of transport and luminescence in optoelectronic nanostructures,” J. Comput. Electron. 7, 509–520 (2008).
    [Crossref]
  11. F. Römer, M. Deppner, C. Range, and B. Witzigmann, “Auger recombination and leakage in InGaN/GaN quantum well LEDs,” Proc. SPIE 8986, 89861R (2014).
    [Crossref]
  12. S. Chuang and C. Chang, “k·p Method for Strained Wurtzite Semiconductors,” Phys. Rev. B 54, 2491–2504 (1996).
    [Crossref]
  13. S.-H. Park and S.-L. Chuang, “Crystal-orientation effects on the piezoelectric field and electronic properties of strained wurtzite semiconductors,” Phys. Rev. B 59, 4725–4737 (1999).
    [Crossref]
  14. R. G. Veprek, S. Steiger, and B. Witzigmann, “Reliable k·p band structure calculation for nanostructures using finite elements,” J. Comput. Electron. 7, 521–529 (2008).
    [Crossref]
  15. W. W. Chow, “Modeling of temperature and excitation dependences of efficiency in an InGaN light-emitting diode,” Opt. Express 22(2), 1413–1425 (2014).
    [Crossref] [PubMed]
  16. W. Scheibenzuber, U. Schwarz, R. Veprek, B. Witzigmann, and a. Hangleiter, “Calculation of optical eigenmodes and gain in semipolar and nonpolar InGaN/GaN laser diodes,” Phys. Rev. B 80, 115320 (2009).
    [Crossref]
  17. S. Brochen, J. Brault, S. Chenot, A. Dussaigne, M. Leroux, and B. Damilano, “Dependence of the Mg-related acceptor ionization energy with the acceptor concentration in p-type GaN layers grown by molecular beam epitaxy,” Appl. Phys. Lett. 103, 032102 (2013).
    [Crossref]
  18. T. Tanaka, A. Watanabe, H. Amano, Y. Kobayashi, I. Akasaki, S. Yamazaki, and M. Koike, “p-type conduction in Mg-doped GaN and Al0.08Ga0.92N grown by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 65, 593–594 (1994).
    [Crossref]
  19. J. Piprek, “AlGaN polarization doping effects on the efficiency of blue LEDs,” Proc. SPIE 8262, 82620E (2012).
    [Crossref]
  20. G. Baraff, “Semiclassical description of electron transport in semiconductor quantum-well devices,” Phys. Rev. B 55, 10745 (1997).
    [Crossref]
  21. M. Deppner, F. Römer, and B. Witzigmann, “Auger recombination and carrier transport effects in III-nitride quantum well light emitting diodes,” Proc. SPIE 8619, 86191J (2013).
    [Crossref]
  22. E. Kioupakis, Q. Yan, and C. G. Van de Walle, “Interplay of polarization fields and Auger recombination in the efficiency droop of nitride light-emitting diodes,” Appl. Phys. Lett. 101, 231107 (2012).
    [Crossref]
  23. B. Galler, P. Drechsel, R. Monnard, P. Rode, P. Stauss, S. Froehlich, W. Bergbauer, M. Binder, M. Sabathil, B. Hahn, and J. Wagner, “Influence of indium content and temperature on Auger-like recombination in InGaN quantum wells grown on (111) silicon substrates,” Appl. Phys. Lett. 101, 131111 (2012).
    [Crossref]
  24. C. Kölper, M. Sabathil, F. Römer, M. Mandl, M. Strassburg, and B. Witzigmann, “Core-shell InGaN nanorod light emitting diodes: Electronic and optical device properties,” Phys. Status Solidi A 9, 1–9 (2012).
  25. B. Galler, a. Laubsch, a. Wojcik, H. Lugauer, a. Gomez-Iglesias, M. Sabathil, and B. Hahn, “Investigation of the carrier distribution in InGaN-based multi-quantum-well structures,” Phys. Status Solidi C 8, 2372–2374 (2011).
    [Crossref]
  26. M. Grupen and K. Hess, “Simulation of carrier transport and nonlinearities in quantum-well laser diodes,” IEEE J. Quantum Electron. 34, 120–140 (1998).
    [Crossref]
  27. D. S. Meyaard, J. Cho, E. Fred Schubert, S.-H. Han, M.-H. Kim, and C. Sone, “Analysis of the temperature dependence of the forward voltage characteristics of GaInN light-emitting diodes,” Appl. Phys. Lett. 103, 121103 (2013).
    [Crossref]

2014 (2)

F. Römer, M. Deppner, C. Range, and B. Witzigmann, “Auger recombination and leakage in InGaN/GaN quantum well LEDs,” Proc. SPIE 8986, 89861R (2014).
[Crossref]

W. W. Chow, “Modeling of temperature and excitation dependences of efficiency in an InGaN light-emitting diode,” Opt. Express 22(2), 1413–1425 (2014).
[Crossref] [PubMed]

2013 (6)

S. Brochen, J. Brault, S. Chenot, A. Dussaigne, M. Leroux, and B. Damilano, “Dependence of the Mg-related acceptor ionization energy with the acceptor concentration in p-type GaN layers grown by molecular beam epitaxy,” Appl. Phys. Lett. 103, 032102 (2013).
[Crossref]

J. Cho, E. F. Schubert, and J. K. Kim, “Efficiency droop in light-emitting diodes: Challenges and countermeasures,” Laser Photonics Rev. 7, 408–421 (2013).
[Crossref]

J. Iveland, L. Martinelli, J. Peretti, J. S. Speck, and C. Weisbuch, “Direct Measurement of Auger Electrons Emitted from a Semiconductor Light-Emitting Diode under Electrical Injection: Identification of the Dominant Mechanism for Efficiency Droop,” Phys. Rev. Lett. 110, 177406 (2013).
[Crossref] [PubMed]

M. Binder, A. Nirschl, R. Zeisel, T. Hager, H.-J. Lugauer, M. Sabathil, D. Bougeard, J. Wagner, and B. Galler, “Identification of nnp and npp Auger recombination as significant contributor to the efficiency droop in (GaIn)N quantum wells by visualization of hot carriers in photoluminescence,” Appl. Phys. Lett. 103, 071108 (2013).
[Crossref]

M. Deppner, F. Römer, and B. Witzigmann, “Auger recombination and carrier transport effects in III-nitride quantum well light emitting diodes,” Proc. SPIE 8619, 86191J (2013).
[Crossref]

D. S. Meyaard, J. Cho, E. Fred Schubert, S.-H. Han, M.-H. Kim, and C. Sone, “Analysis of the temperature dependence of the forward voltage characteristics of GaInN light-emitting diodes,” Appl. Phys. Lett. 103, 121103 (2013).
[Crossref]

2012 (5)

J. Piprek, “AlGaN polarization doping effects on the efficiency of blue LEDs,” Proc. SPIE 8262, 82620E (2012).
[Crossref]

E. Kioupakis, Q. Yan, and C. G. Van de Walle, “Interplay of polarization fields and Auger recombination in the efficiency droop of nitride light-emitting diodes,” Appl. Phys. Lett. 101, 231107 (2012).
[Crossref]

B. Galler, P. Drechsel, R. Monnard, P. Rode, P. Stauss, S. Froehlich, W. Bergbauer, M. Binder, M. Sabathil, B. Hahn, and J. Wagner, “Influence of indium content and temperature on Auger-like recombination in InGaN quantum wells grown on (111) silicon substrates,” Appl. Phys. Lett. 101, 131111 (2012).
[Crossref]

C. Kölper, M. Sabathil, F. Römer, M. Mandl, M. Strassburg, and B. Witzigmann, “Core-shell InGaN nanorod light emitting diodes: Electronic and optical device properties,” Phys. Status Solidi A 9, 1–9 (2012).

M. Deppner, F. Römer, and B. Witzigmann, “Auger carrier leakage in III-nitride quantum-well light emitting diodes,” Phys. Status Solidi RRL 6, 418–420 (2012).

2011 (2)

E. Kioupakis, P. Rinke, K. T. Delaney, and C. G. Van de Walle, “Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes,” Appl. Phys. Lett. 98, 161107 (2011).
[Crossref]

B. Galler, a. Laubsch, a. Wojcik, H. Lugauer, a. Gomez-Iglesias, M. Sabathil, and B. Hahn, “Investigation of the carrier distribution in InGaN-based multi-quantum-well structures,” Phys. Status Solidi C 8, 2372–2374 (2011).
[Crossref]

2010 (2)

A. Laubsch, M. Sabathil, J. Baur, M. Peter, and B. Hahn, “High-Power and High-Efficiency InGaN-Based Light Emitters,” IEEE Trans. Electron Devices 57, 79–87 (2010).
[Crossref]

J. Piprek, “Efficiency droop in nitride-based light-emitting diodes,” Phys. Status Solidi A 207, 2217–2225 (2010).
[Crossref]

2009 (2)

B. Witzigmann, R. G. Veprek, S. Steiger, and J. Kupec, “Comprehensive modeling of optoelectronic nanostructures,” J. Comput. Electron. 8, 389–397 (2009).
[Crossref]

W. Scheibenzuber, U. Schwarz, R. Veprek, B. Witzigmann, and a. Hangleiter, “Calculation of optical eigenmodes and gain in semipolar and nonpolar InGaN/GaN laser diodes,” Phys. Rev. B 80, 115320 (2009).
[Crossref]

2008 (2)

S. Steiger, R. G. Veprek, and B. Witzigmann, “Unified simulation of transport and luminescence in optoelectronic nanostructures,” J. Comput. Electron. 7, 509–520 (2008).
[Crossref]

R. G. Veprek, S. Steiger, and B. Witzigmann, “Reliable k·p band structure calculation for nanostructures using finite elements,” J. Comput. Electron. 7, 521–529 (2008).
[Crossref]

2003 (1)

T. T. Mnatsakanov, M. E. Levinshtein, L. I. Pomortseva, S. N. Yurkov, G. S. Simin, and M. Asif Khan, “Carrier mobility model for GaN,” Solid-State Electron. 47, 111–115 (2003).
[Crossref]

1999 (1)

S.-H. Park and S.-L. Chuang, “Crystal-orientation effects on the piezoelectric field and electronic properties of strained wurtzite semiconductors,” Phys. Rev. B 59, 4725–4737 (1999).
[Crossref]

1998 (1)

M. Grupen and K. Hess, “Simulation of carrier transport and nonlinearities in quantum-well laser diodes,” IEEE J. Quantum Electron. 34, 120–140 (1998).
[Crossref]

1997 (1)

G. Baraff, “Semiclassical description of electron transport in semiconductor quantum-well devices,” Phys. Rev. B 55, 10745 (1997).
[Crossref]

1996 (1)

S. Chuang and C. Chang, “k·p Method for Strained Wurtzite Semiconductors,” Phys. Rev. B 54, 2491–2504 (1996).
[Crossref]

1994 (1)

T. Tanaka, A. Watanabe, H. Amano, Y. Kobayashi, I. Akasaki, S. Yamazaki, and M. Koike, “p-type conduction in Mg-doped GaN and Al0.08Ga0.92N grown by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 65, 593–594 (1994).
[Crossref]

Akasaki, I.

T. Tanaka, A. Watanabe, H. Amano, Y. Kobayashi, I. Akasaki, S. Yamazaki, and M. Koike, “p-type conduction in Mg-doped GaN and Al0.08Ga0.92N grown by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 65, 593–594 (1994).
[Crossref]

Amano, H.

T. Tanaka, A. Watanabe, H. Amano, Y. Kobayashi, I. Akasaki, S. Yamazaki, and M. Koike, “p-type conduction in Mg-doped GaN and Al0.08Ga0.92N grown by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 65, 593–594 (1994).
[Crossref]

Asif Khan, M.

T. T. Mnatsakanov, M. E. Levinshtein, L. I. Pomortseva, S. N. Yurkov, G. S. Simin, and M. Asif Khan, “Carrier mobility model for GaN,” Solid-State Electron. 47, 111–115 (2003).
[Crossref]

Baraff, G.

G. Baraff, “Semiclassical description of electron transport in semiconductor quantum-well devices,” Phys. Rev. B 55, 10745 (1997).
[Crossref]

Baur, J.

A. Laubsch, M. Sabathil, J. Baur, M. Peter, and B. Hahn, “High-Power and High-Efficiency InGaN-Based Light Emitters,” IEEE Trans. Electron Devices 57, 79–87 (2010).
[Crossref]

Bergbauer, W.

B. Galler, P. Drechsel, R. Monnard, P. Rode, P. Stauss, S. Froehlich, W. Bergbauer, M. Binder, M. Sabathil, B. Hahn, and J. Wagner, “Influence of indium content and temperature on Auger-like recombination in InGaN quantum wells grown on (111) silicon substrates,” Appl. Phys. Lett. 101, 131111 (2012).
[Crossref]

Binder, M.

M. Binder, A. Nirschl, R. Zeisel, T. Hager, H.-J. Lugauer, M. Sabathil, D. Bougeard, J. Wagner, and B. Galler, “Identification of nnp and npp Auger recombination as significant contributor to the efficiency droop in (GaIn)N quantum wells by visualization of hot carriers in photoluminescence,” Appl. Phys. Lett. 103, 071108 (2013).
[Crossref]

B. Galler, P. Drechsel, R. Monnard, P. Rode, P. Stauss, S. Froehlich, W. Bergbauer, M. Binder, M. Sabathil, B. Hahn, and J. Wagner, “Influence of indium content and temperature on Auger-like recombination in InGaN quantum wells grown on (111) silicon substrates,” Appl. Phys. Lett. 101, 131111 (2012).
[Crossref]

Bougeard, D.

M. Binder, A. Nirschl, R. Zeisel, T. Hager, H.-J. Lugauer, M. Sabathil, D. Bougeard, J. Wagner, and B. Galler, “Identification of nnp and npp Auger recombination as significant contributor to the efficiency droop in (GaIn)N quantum wells by visualization of hot carriers in photoluminescence,” Appl. Phys. Lett. 103, 071108 (2013).
[Crossref]

Brault, J.

S. Brochen, J. Brault, S. Chenot, A. Dussaigne, M. Leroux, and B. Damilano, “Dependence of the Mg-related acceptor ionization energy with the acceptor concentration in p-type GaN layers grown by molecular beam epitaxy,” Appl. Phys. Lett. 103, 032102 (2013).
[Crossref]

Brochen, S.

S. Brochen, J. Brault, S. Chenot, A. Dussaigne, M. Leroux, and B. Damilano, “Dependence of the Mg-related acceptor ionization energy with the acceptor concentration in p-type GaN layers grown by molecular beam epitaxy,” Appl. Phys. Lett. 103, 032102 (2013).
[Crossref]

Chang, C.

S. Chuang and C. Chang, “k·p Method for Strained Wurtzite Semiconductors,” Phys. Rev. B 54, 2491–2504 (1996).
[Crossref]

Chenot, S.

S. Brochen, J. Brault, S. Chenot, A. Dussaigne, M. Leroux, and B. Damilano, “Dependence of the Mg-related acceptor ionization energy with the acceptor concentration in p-type GaN layers grown by molecular beam epitaxy,” Appl. Phys. Lett. 103, 032102 (2013).
[Crossref]

Cho, J.

J. Cho, E. F. Schubert, and J. K. Kim, “Efficiency droop in light-emitting diodes: Challenges and countermeasures,” Laser Photonics Rev. 7, 408–421 (2013).
[Crossref]

D. S. Meyaard, J. Cho, E. Fred Schubert, S.-H. Han, M.-H. Kim, and C. Sone, “Analysis of the temperature dependence of the forward voltage characteristics of GaInN light-emitting diodes,” Appl. Phys. Lett. 103, 121103 (2013).
[Crossref]

Chow, W. W.

Chuang, S.

S. Chuang and C. Chang, “k·p Method for Strained Wurtzite Semiconductors,” Phys. Rev. B 54, 2491–2504 (1996).
[Crossref]

Chuang, S.-L.

S.-H. Park and S.-L. Chuang, “Crystal-orientation effects on the piezoelectric field and electronic properties of strained wurtzite semiconductors,” Phys. Rev. B 59, 4725–4737 (1999).
[Crossref]

Damilano, B.

S. Brochen, J. Brault, S. Chenot, A. Dussaigne, M. Leroux, and B. Damilano, “Dependence of the Mg-related acceptor ionization energy with the acceptor concentration in p-type GaN layers grown by molecular beam epitaxy,” Appl. Phys. Lett. 103, 032102 (2013).
[Crossref]

Delaney, K. T.

E. Kioupakis, P. Rinke, K. T. Delaney, and C. G. Van de Walle, “Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes,” Appl. Phys. Lett. 98, 161107 (2011).
[Crossref]

Deppner, M.

F. Römer, M. Deppner, C. Range, and B. Witzigmann, “Auger recombination and leakage in InGaN/GaN quantum well LEDs,” Proc. SPIE 8986, 89861R (2014).
[Crossref]

M. Deppner, F. Römer, and B. Witzigmann, “Auger recombination and carrier transport effects in III-nitride quantum well light emitting diodes,” Proc. SPIE 8619, 86191J (2013).
[Crossref]

M. Deppner, F. Römer, and B. Witzigmann, “Auger carrier leakage in III-nitride quantum-well light emitting diodes,” Phys. Status Solidi RRL 6, 418–420 (2012).

Drechsel, P.

B. Galler, P. Drechsel, R. Monnard, P. Rode, P. Stauss, S. Froehlich, W. Bergbauer, M. Binder, M. Sabathil, B. Hahn, and J. Wagner, “Influence of indium content and temperature on Auger-like recombination in InGaN quantum wells grown on (111) silicon substrates,” Appl. Phys. Lett. 101, 131111 (2012).
[Crossref]

Dussaigne, A.

S. Brochen, J. Brault, S. Chenot, A. Dussaigne, M. Leroux, and B. Damilano, “Dependence of the Mg-related acceptor ionization energy with the acceptor concentration in p-type GaN layers grown by molecular beam epitaxy,” Appl. Phys. Lett. 103, 032102 (2013).
[Crossref]

Fred Schubert, E.

D. S. Meyaard, J. Cho, E. Fred Schubert, S.-H. Han, M.-H. Kim, and C. Sone, “Analysis of the temperature dependence of the forward voltage characteristics of GaInN light-emitting diodes,” Appl. Phys. Lett. 103, 121103 (2013).
[Crossref]

Froehlich, S.

B. Galler, P. Drechsel, R. Monnard, P. Rode, P. Stauss, S. Froehlich, W. Bergbauer, M. Binder, M. Sabathil, B. Hahn, and J. Wagner, “Influence of indium content and temperature on Auger-like recombination in InGaN quantum wells grown on (111) silicon substrates,” Appl. Phys. Lett. 101, 131111 (2012).
[Crossref]

Galler, B.

M. Binder, A. Nirschl, R. Zeisel, T. Hager, H.-J. Lugauer, M. Sabathil, D. Bougeard, J. Wagner, and B. Galler, “Identification of nnp and npp Auger recombination as significant contributor to the efficiency droop in (GaIn)N quantum wells by visualization of hot carriers in photoluminescence,” Appl. Phys. Lett. 103, 071108 (2013).
[Crossref]

B. Galler, P. Drechsel, R. Monnard, P. Rode, P. Stauss, S. Froehlich, W. Bergbauer, M. Binder, M. Sabathil, B. Hahn, and J. Wagner, “Influence of indium content and temperature on Auger-like recombination in InGaN quantum wells grown on (111) silicon substrates,” Appl. Phys. Lett. 101, 131111 (2012).
[Crossref]

B. Galler, a. Laubsch, a. Wojcik, H. Lugauer, a. Gomez-Iglesias, M. Sabathil, and B. Hahn, “Investigation of the carrier distribution in InGaN-based multi-quantum-well structures,” Phys. Status Solidi C 8, 2372–2374 (2011).
[Crossref]

Gomez-Iglesias, a.

B. Galler, a. Laubsch, a. Wojcik, H. Lugauer, a. Gomez-Iglesias, M. Sabathil, and B. Hahn, “Investigation of the carrier distribution in InGaN-based multi-quantum-well structures,” Phys. Status Solidi C 8, 2372–2374 (2011).
[Crossref]

Grupen, M.

M. Grupen and K. Hess, “Simulation of carrier transport and nonlinearities in quantum-well laser diodes,” IEEE J. Quantum Electron. 34, 120–140 (1998).
[Crossref]

Hager, T.

M. Binder, A. Nirschl, R. Zeisel, T. Hager, H.-J. Lugauer, M. Sabathil, D. Bougeard, J. Wagner, and B. Galler, “Identification of nnp and npp Auger recombination as significant contributor to the efficiency droop in (GaIn)N quantum wells by visualization of hot carriers in photoluminescence,” Appl. Phys. Lett. 103, 071108 (2013).
[Crossref]

Hahn, B.

B. Galler, P. Drechsel, R. Monnard, P. Rode, P. Stauss, S. Froehlich, W. Bergbauer, M. Binder, M. Sabathil, B. Hahn, and J. Wagner, “Influence of indium content and temperature on Auger-like recombination in InGaN quantum wells grown on (111) silicon substrates,” Appl. Phys. Lett. 101, 131111 (2012).
[Crossref]

B. Galler, a. Laubsch, a. Wojcik, H. Lugauer, a. Gomez-Iglesias, M. Sabathil, and B. Hahn, “Investigation of the carrier distribution in InGaN-based multi-quantum-well structures,” Phys. Status Solidi C 8, 2372–2374 (2011).
[Crossref]

A. Laubsch, M. Sabathil, J. Baur, M. Peter, and B. Hahn, “High-Power and High-Efficiency InGaN-Based Light Emitters,” IEEE Trans. Electron Devices 57, 79–87 (2010).
[Crossref]

Han, S.-H.

D. S. Meyaard, J. Cho, E. Fred Schubert, S.-H. Han, M.-H. Kim, and C. Sone, “Analysis of the temperature dependence of the forward voltage characteristics of GaInN light-emitting diodes,” Appl. Phys. Lett. 103, 121103 (2013).
[Crossref]

Hangleiter, a.

W. Scheibenzuber, U. Schwarz, R. Veprek, B. Witzigmann, and a. Hangleiter, “Calculation of optical eigenmodes and gain in semipolar and nonpolar InGaN/GaN laser diodes,” Phys. Rev. B 80, 115320 (2009).
[Crossref]

Hess, K.

M. Grupen and K. Hess, “Simulation of carrier transport and nonlinearities in quantum-well laser diodes,” IEEE J. Quantum Electron. 34, 120–140 (1998).
[Crossref]

Iveland, J.

J. Iveland, L. Martinelli, J. Peretti, J. S. Speck, and C. Weisbuch, “Direct Measurement of Auger Electrons Emitted from a Semiconductor Light-Emitting Diode under Electrical Injection: Identification of the Dominant Mechanism for Efficiency Droop,” Phys. Rev. Lett. 110, 177406 (2013).
[Crossref] [PubMed]

Kim, J. K.

J. Cho, E. F. Schubert, and J. K. Kim, “Efficiency droop in light-emitting diodes: Challenges and countermeasures,” Laser Photonics Rev. 7, 408–421 (2013).
[Crossref]

Kim, M.-H.

D. S. Meyaard, J. Cho, E. Fred Schubert, S.-H. Han, M.-H. Kim, and C. Sone, “Analysis of the temperature dependence of the forward voltage characteristics of GaInN light-emitting diodes,” Appl. Phys. Lett. 103, 121103 (2013).
[Crossref]

Kioupakis, E.

E. Kioupakis, Q. Yan, and C. G. Van de Walle, “Interplay of polarization fields and Auger recombination in the efficiency droop of nitride light-emitting diodes,” Appl. Phys. Lett. 101, 231107 (2012).
[Crossref]

E. Kioupakis, P. Rinke, K. T. Delaney, and C. G. Van de Walle, “Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes,” Appl. Phys. Lett. 98, 161107 (2011).
[Crossref]

Kobayashi, Y.

T. Tanaka, A. Watanabe, H. Amano, Y. Kobayashi, I. Akasaki, S. Yamazaki, and M. Koike, “p-type conduction in Mg-doped GaN and Al0.08Ga0.92N grown by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 65, 593–594 (1994).
[Crossref]

Koike, M.

T. Tanaka, A. Watanabe, H. Amano, Y. Kobayashi, I. Akasaki, S. Yamazaki, and M. Koike, “p-type conduction in Mg-doped GaN and Al0.08Ga0.92N grown by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 65, 593–594 (1994).
[Crossref]

Kölper, C.

C. Kölper, M. Sabathil, F. Römer, M. Mandl, M. Strassburg, and B. Witzigmann, “Core-shell InGaN nanorod light emitting diodes: Electronic and optical device properties,” Phys. Status Solidi A 9, 1–9 (2012).

Kupec, J.

B. Witzigmann, R. G. Veprek, S. Steiger, and J. Kupec, “Comprehensive modeling of optoelectronic nanostructures,” J. Comput. Electron. 8, 389–397 (2009).
[Crossref]

Laubsch, a.

B. Galler, a. Laubsch, a. Wojcik, H. Lugauer, a. Gomez-Iglesias, M. Sabathil, and B. Hahn, “Investigation of the carrier distribution in InGaN-based multi-quantum-well structures,” Phys. Status Solidi C 8, 2372–2374 (2011).
[Crossref]

A. Laubsch, M. Sabathil, J. Baur, M. Peter, and B. Hahn, “High-Power and High-Efficiency InGaN-Based Light Emitters,” IEEE Trans. Electron Devices 57, 79–87 (2010).
[Crossref]

Leroux, M.

S. Brochen, J. Brault, S. Chenot, A. Dussaigne, M. Leroux, and B. Damilano, “Dependence of the Mg-related acceptor ionization energy with the acceptor concentration in p-type GaN layers grown by molecular beam epitaxy,” Appl. Phys. Lett. 103, 032102 (2013).
[Crossref]

Levinshtein, M. E.

T. T. Mnatsakanov, M. E. Levinshtein, L. I. Pomortseva, S. N. Yurkov, G. S. Simin, and M. Asif Khan, “Carrier mobility model for GaN,” Solid-State Electron. 47, 111–115 (2003).
[Crossref]

Lugauer, H.

B. Galler, a. Laubsch, a. Wojcik, H. Lugauer, a. Gomez-Iglesias, M. Sabathil, and B. Hahn, “Investigation of the carrier distribution in InGaN-based multi-quantum-well structures,” Phys. Status Solidi C 8, 2372–2374 (2011).
[Crossref]

Lugauer, H.-J.

M. Binder, A. Nirschl, R. Zeisel, T. Hager, H.-J. Lugauer, M. Sabathil, D. Bougeard, J. Wagner, and B. Galler, “Identification of nnp and npp Auger recombination as significant contributor to the efficiency droop in (GaIn)N quantum wells by visualization of hot carriers in photoluminescence,” Appl. Phys. Lett. 103, 071108 (2013).
[Crossref]

Mandl, M.

C. Kölper, M. Sabathil, F. Römer, M. Mandl, M. Strassburg, and B. Witzigmann, “Core-shell InGaN nanorod light emitting diodes: Electronic and optical device properties,” Phys. Status Solidi A 9, 1–9 (2012).

Martinelli, L.

J. Iveland, L. Martinelli, J. Peretti, J. S. Speck, and C. Weisbuch, “Direct Measurement of Auger Electrons Emitted from a Semiconductor Light-Emitting Diode under Electrical Injection: Identification of the Dominant Mechanism for Efficiency Droop,” Phys. Rev. Lett. 110, 177406 (2013).
[Crossref] [PubMed]

Meyaard, D. S.

D. S. Meyaard, J. Cho, E. Fred Schubert, S.-H. Han, M.-H. Kim, and C. Sone, “Analysis of the temperature dependence of the forward voltage characteristics of GaInN light-emitting diodes,” Appl. Phys. Lett. 103, 121103 (2013).
[Crossref]

Mnatsakanov, T. T.

T. T. Mnatsakanov, M. E. Levinshtein, L. I. Pomortseva, S. N. Yurkov, G. S. Simin, and M. Asif Khan, “Carrier mobility model for GaN,” Solid-State Electron. 47, 111–115 (2003).
[Crossref]

Monnard, R.

B. Galler, P. Drechsel, R. Monnard, P. Rode, P. Stauss, S. Froehlich, W. Bergbauer, M. Binder, M. Sabathil, B. Hahn, and J. Wagner, “Influence of indium content and temperature on Auger-like recombination in InGaN quantum wells grown on (111) silicon substrates,” Appl. Phys. Lett. 101, 131111 (2012).
[Crossref]

Nirschl, A.

M. Binder, A. Nirschl, R. Zeisel, T. Hager, H.-J. Lugauer, M. Sabathil, D. Bougeard, J. Wagner, and B. Galler, “Identification of nnp and npp Auger recombination as significant contributor to the efficiency droop in (GaIn)N quantum wells by visualization of hot carriers in photoluminescence,” Appl. Phys. Lett. 103, 071108 (2013).
[Crossref]

Park, S.-H.

S.-H. Park and S.-L. Chuang, “Crystal-orientation effects on the piezoelectric field and electronic properties of strained wurtzite semiconductors,” Phys. Rev. B 59, 4725–4737 (1999).
[Crossref]

Peretti, J.

J. Iveland, L. Martinelli, J. Peretti, J. S. Speck, and C. Weisbuch, “Direct Measurement of Auger Electrons Emitted from a Semiconductor Light-Emitting Diode under Electrical Injection: Identification of the Dominant Mechanism for Efficiency Droop,” Phys. Rev. Lett. 110, 177406 (2013).
[Crossref] [PubMed]

Peter, M.

A. Laubsch, M. Sabathil, J. Baur, M. Peter, and B. Hahn, “High-Power and High-Efficiency InGaN-Based Light Emitters,” IEEE Trans. Electron Devices 57, 79–87 (2010).
[Crossref]

Piprek, J.

J. Piprek, “AlGaN polarization doping effects on the efficiency of blue LEDs,” Proc. SPIE 8262, 82620E (2012).
[Crossref]

J. Piprek, “Efficiency droop in nitride-based light-emitting diodes,” Phys. Status Solidi A 207, 2217–2225 (2010).
[Crossref]

Pomortseva, L. I.

T. T. Mnatsakanov, M. E. Levinshtein, L. I. Pomortseva, S. N. Yurkov, G. S. Simin, and M. Asif Khan, “Carrier mobility model for GaN,” Solid-State Electron. 47, 111–115 (2003).
[Crossref]

Range, C.

F. Römer, M. Deppner, C. Range, and B. Witzigmann, “Auger recombination and leakage in InGaN/GaN quantum well LEDs,” Proc. SPIE 8986, 89861R (2014).
[Crossref]

Rinke, P.

E. Kioupakis, P. Rinke, K. T. Delaney, and C. G. Van de Walle, “Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes,” Appl. Phys. Lett. 98, 161107 (2011).
[Crossref]

Rode, P.

B. Galler, P. Drechsel, R. Monnard, P. Rode, P. Stauss, S. Froehlich, W. Bergbauer, M. Binder, M. Sabathil, B. Hahn, and J. Wagner, “Influence of indium content and temperature on Auger-like recombination in InGaN quantum wells grown on (111) silicon substrates,” Appl. Phys. Lett. 101, 131111 (2012).
[Crossref]

Römer, F.

F. Römer, M. Deppner, C. Range, and B. Witzigmann, “Auger recombination and leakage in InGaN/GaN quantum well LEDs,” Proc. SPIE 8986, 89861R (2014).
[Crossref]

M. Deppner, F. Römer, and B. Witzigmann, “Auger recombination and carrier transport effects in III-nitride quantum well light emitting diodes,” Proc. SPIE 8619, 86191J (2013).
[Crossref]

C. Kölper, M. Sabathil, F. Römer, M. Mandl, M. Strassburg, and B. Witzigmann, “Core-shell InGaN nanorod light emitting diodes: Electronic and optical device properties,” Phys. Status Solidi A 9, 1–9 (2012).

M. Deppner, F. Römer, and B. Witzigmann, “Auger carrier leakage in III-nitride quantum-well light emitting diodes,” Phys. Status Solidi RRL 6, 418–420 (2012).

Sabathil, M.

M. Binder, A. Nirschl, R. Zeisel, T. Hager, H.-J. Lugauer, M. Sabathil, D. Bougeard, J. Wagner, and B. Galler, “Identification of nnp and npp Auger recombination as significant contributor to the efficiency droop in (GaIn)N quantum wells by visualization of hot carriers in photoluminescence,” Appl. Phys. Lett. 103, 071108 (2013).
[Crossref]

C. Kölper, M. Sabathil, F. Römer, M. Mandl, M. Strassburg, and B. Witzigmann, “Core-shell InGaN nanorod light emitting diodes: Electronic and optical device properties,” Phys. Status Solidi A 9, 1–9 (2012).

B. Galler, P. Drechsel, R. Monnard, P. Rode, P. Stauss, S. Froehlich, W. Bergbauer, M. Binder, M. Sabathil, B. Hahn, and J. Wagner, “Influence of indium content and temperature on Auger-like recombination in InGaN quantum wells grown on (111) silicon substrates,” Appl. Phys. Lett. 101, 131111 (2012).
[Crossref]

B. Galler, a. Laubsch, a. Wojcik, H. Lugauer, a. Gomez-Iglesias, M. Sabathil, and B. Hahn, “Investigation of the carrier distribution in InGaN-based multi-quantum-well structures,” Phys. Status Solidi C 8, 2372–2374 (2011).
[Crossref]

A. Laubsch, M. Sabathil, J. Baur, M. Peter, and B. Hahn, “High-Power and High-Efficiency InGaN-Based Light Emitters,” IEEE Trans. Electron Devices 57, 79–87 (2010).
[Crossref]

Scheibenzuber, W.

W. Scheibenzuber, U. Schwarz, R. Veprek, B. Witzigmann, and a. Hangleiter, “Calculation of optical eigenmodes and gain in semipolar and nonpolar InGaN/GaN laser diodes,” Phys. Rev. B 80, 115320 (2009).
[Crossref]

Schubert, E. F.

J. Cho, E. F. Schubert, and J. K. Kim, “Efficiency droop in light-emitting diodes: Challenges and countermeasures,” Laser Photonics Rev. 7, 408–421 (2013).
[Crossref]

Schwarz, U.

W. Scheibenzuber, U. Schwarz, R. Veprek, B. Witzigmann, and a. Hangleiter, “Calculation of optical eigenmodes and gain in semipolar and nonpolar InGaN/GaN laser diodes,” Phys. Rev. B 80, 115320 (2009).
[Crossref]

Simin, G. S.

T. T. Mnatsakanov, M. E. Levinshtein, L. I. Pomortseva, S. N. Yurkov, G. S. Simin, and M. Asif Khan, “Carrier mobility model for GaN,” Solid-State Electron. 47, 111–115 (2003).
[Crossref]

Sone, C.

D. S. Meyaard, J. Cho, E. Fred Schubert, S.-H. Han, M.-H. Kim, and C. Sone, “Analysis of the temperature dependence of the forward voltage characteristics of GaInN light-emitting diodes,” Appl. Phys. Lett. 103, 121103 (2013).
[Crossref]

Speck, J. S.

J. Iveland, L. Martinelli, J. Peretti, J. S. Speck, and C. Weisbuch, “Direct Measurement of Auger Electrons Emitted from a Semiconductor Light-Emitting Diode under Electrical Injection: Identification of the Dominant Mechanism for Efficiency Droop,” Phys. Rev. Lett. 110, 177406 (2013).
[Crossref] [PubMed]

Stauss, P.

B. Galler, P. Drechsel, R. Monnard, P. Rode, P. Stauss, S. Froehlich, W. Bergbauer, M. Binder, M. Sabathil, B. Hahn, and J. Wagner, “Influence of indium content and temperature on Auger-like recombination in InGaN quantum wells grown on (111) silicon substrates,” Appl. Phys. Lett. 101, 131111 (2012).
[Crossref]

Steiger, S.

B. Witzigmann, R. G. Veprek, S. Steiger, and J. Kupec, “Comprehensive modeling of optoelectronic nanostructures,” J. Comput. Electron. 8, 389–397 (2009).
[Crossref]

S. Steiger, R. G. Veprek, and B. Witzigmann, “Unified simulation of transport and luminescence in optoelectronic nanostructures,” J. Comput. Electron. 7, 509–520 (2008).
[Crossref]

R. G. Veprek, S. Steiger, and B. Witzigmann, “Reliable k·p band structure calculation for nanostructures using finite elements,” J. Comput. Electron. 7, 521–529 (2008).
[Crossref]

Strassburg, M.

C. Kölper, M. Sabathil, F. Römer, M. Mandl, M. Strassburg, and B. Witzigmann, “Core-shell InGaN nanorod light emitting diodes: Electronic and optical device properties,” Phys. Status Solidi A 9, 1–9 (2012).

Tanaka, T.

T. Tanaka, A. Watanabe, H. Amano, Y. Kobayashi, I. Akasaki, S. Yamazaki, and M. Koike, “p-type conduction in Mg-doped GaN and Al0.08Ga0.92N grown by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 65, 593–594 (1994).
[Crossref]

Van de Walle, C. G.

E. Kioupakis, Q. Yan, and C. G. Van de Walle, “Interplay of polarization fields and Auger recombination in the efficiency droop of nitride light-emitting diodes,” Appl. Phys. Lett. 101, 231107 (2012).
[Crossref]

E. Kioupakis, P. Rinke, K. T. Delaney, and C. G. Van de Walle, “Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes,” Appl. Phys. Lett. 98, 161107 (2011).
[Crossref]

Veprek, R.

W. Scheibenzuber, U. Schwarz, R. Veprek, B. Witzigmann, and a. Hangleiter, “Calculation of optical eigenmodes and gain in semipolar and nonpolar InGaN/GaN laser diodes,” Phys. Rev. B 80, 115320 (2009).
[Crossref]

Veprek, R. G.

B. Witzigmann, R. G. Veprek, S. Steiger, and J. Kupec, “Comprehensive modeling of optoelectronic nanostructures,” J. Comput. Electron. 8, 389–397 (2009).
[Crossref]

R. G. Veprek, S. Steiger, and B. Witzigmann, “Reliable k·p band structure calculation for nanostructures using finite elements,” J. Comput. Electron. 7, 521–529 (2008).
[Crossref]

S. Steiger, R. G. Veprek, and B. Witzigmann, “Unified simulation of transport and luminescence in optoelectronic nanostructures,” J. Comput. Electron. 7, 509–520 (2008).
[Crossref]

Wagner, J.

M. Binder, A. Nirschl, R. Zeisel, T. Hager, H.-J. Lugauer, M. Sabathil, D. Bougeard, J. Wagner, and B. Galler, “Identification of nnp and npp Auger recombination as significant contributor to the efficiency droop in (GaIn)N quantum wells by visualization of hot carriers in photoluminescence,” Appl. Phys. Lett. 103, 071108 (2013).
[Crossref]

B. Galler, P. Drechsel, R. Monnard, P. Rode, P. Stauss, S. Froehlich, W. Bergbauer, M. Binder, M. Sabathil, B. Hahn, and J. Wagner, “Influence of indium content and temperature on Auger-like recombination in InGaN quantum wells grown on (111) silicon substrates,” Appl. Phys. Lett. 101, 131111 (2012).
[Crossref]

Watanabe, A.

T. Tanaka, A. Watanabe, H. Amano, Y. Kobayashi, I. Akasaki, S. Yamazaki, and M. Koike, “p-type conduction in Mg-doped GaN and Al0.08Ga0.92N grown by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 65, 593–594 (1994).
[Crossref]

Weisbuch, C.

J. Iveland, L. Martinelli, J. Peretti, J. S. Speck, and C. Weisbuch, “Direct Measurement of Auger Electrons Emitted from a Semiconductor Light-Emitting Diode under Electrical Injection: Identification of the Dominant Mechanism for Efficiency Droop,” Phys. Rev. Lett. 110, 177406 (2013).
[Crossref] [PubMed]

Witzigmann, B.

F. Römer, M. Deppner, C. Range, and B. Witzigmann, “Auger recombination and leakage in InGaN/GaN quantum well LEDs,” Proc. SPIE 8986, 89861R (2014).
[Crossref]

M. Deppner, F. Römer, and B. Witzigmann, “Auger recombination and carrier transport effects in III-nitride quantum well light emitting diodes,” Proc. SPIE 8619, 86191J (2013).
[Crossref]

C. Kölper, M. Sabathil, F. Römer, M. Mandl, M. Strassburg, and B. Witzigmann, “Core-shell InGaN nanorod light emitting diodes: Electronic and optical device properties,” Phys. Status Solidi A 9, 1–9 (2012).

M. Deppner, F. Römer, and B. Witzigmann, “Auger carrier leakage in III-nitride quantum-well light emitting diodes,” Phys. Status Solidi RRL 6, 418–420 (2012).

B. Witzigmann, R. G. Veprek, S. Steiger, and J. Kupec, “Comprehensive modeling of optoelectronic nanostructures,” J. Comput. Electron. 8, 389–397 (2009).
[Crossref]

W. Scheibenzuber, U. Schwarz, R. Veprek, B. Witzigmann, and a. Hangleiter, “Calculation of optical eigenmodes and gain in semipolar and nonpolar InGaN/GaN laser diodes,” Phys. Rev. B 80, 115320 (2009).
[Crossref]

S. Steiger, R. G. Veprek, and B. Witzigmann, “Unified simulation of transport and luminescence in optoelectronic nanostructures,” J. Comput. Electron. 7, 509–520 (2008).
[Crossref]

R. G. Veprek, S. Steiger, and B. Witzigmann, “Reliable k·p band structure calculation for nanostructures using finite elements,” J. Comput. Electron. 7, 521–529 (2008).
[Crossref]

Wojcik, a.

B. Galler, a. Laubsch, a. Wojcik, H. Lugauer, a. Gomez-Iglesias, M. Sabathil, and B. Hahn, “Investigation of the carrier distribution in InGaN-based multi-quantum-well structures,” Phys. Status Solidi C 8, 2372–2374 (2011).
[Crossref]

Yamazaki, S.

T. Tanaka, A. Watanabe, H. Amano, Y. Kobayashi, I. Akasaki, S. Yamazaki, and M. Koike, “p-type conduction in Mg-doped GaN and Al0.08Ga0.92N grown by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 65, 593–594 (1994).
[Crossref]

Yan, Q.

E. Kioupakis, Q. Yan, and C. G. Van de Walle, “Interplay of polarization fields and Auger recombination in the efficiency droop of nitride light-emitting diodes,” Appl. Phys. Lett. 101, 231107 (2012).
[Crossref]

Yurkov, S. N.

T. T. Mnatsakanov, M. E. Levinshtein, L. I. Pomortseva, S. N. Yurkov, G. S. Simin, and M. Asif Khan, “Carrier mobility model for GaN,” Solid-State Electron. 47, 111–115 (2003).
[Crossref]

Zeisel, R.

M. Binder, A. Nirschl, R. Zeisel, T. Hager, H.-J. Lugauer, M. Sabathil, D. Bougeard, J. Wagner, and B. Galler, “Identification of nnp and npp Auger recombination as significant contributor to the efficiency droop in (GaIn)N quantum wells by visualization of hot carriers in photoluminescence,” Appl. Phys. Lett. 103, 071108 (2013).
[Crossref]

Appl. Phys. Lett. (7)

M. Binder, A. Nirschl, R. Zeisel, T. Hager, H.-J. Lugauer, M. Sabathil, D. Bougeard, J. Wagner, and B. Galler, “Identification of nnp and npp Auger recombination as significant contributor to the efficiency droop in (GaIn)N quantum wells by visualization of hot carriers in photoluminescence,” Appl. Phys. Lett. 103, 071108 (2013).
[Crossref]

E. Kioupakis, P. Rinke, K. T. Delaney, and C. G. Van de Walle, “Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes,” Appl. Phys. Lett. 98, 161107 (2011).
[Crossref]

S. Brochen, J. Brault, S. Chenot, A. Dussaigne, M. Leroux, and B. Damilano, “Dependence of the Mg-related acceptor ionization energy with the acceptor concentration in p-type GaN layers grown by molecular beam epitaxy,” Appl. Phys. Lett. 103, 032102 (2013).
[Crossref]

T. Tanaka, A. Watanabe, H. Amano, Y. Kobayashi, I. Akasaki, S. Yamazaki, and M. Koike, “p-type conduction in Mg-doped GaN and Al0.08Ga0.92N grown by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 65, 593–594 (1994).
[Crossref]

E. Kioupakis, Q. Yan, and C. G. Van de Walle, “Interplay of polarization fields and Auger recombination in the efficiency droop of nitride light-emitting diodes,” Appl. Phys. Lett. 101, 231107 (2012).
[Crossref]

B. Galler, P. Drechsel, R. Monnard, P. Rode, P. Stauss, S. Froehlich, W. Bergbauer, M. Binder, M. Sabathil, B. Hahn, and J. Wagner, “Influence of indium content and temperature on Auger-like recombination in InGaN quantum wells grown on (111) silicon substrates,” Appl. Phys. Lett. 101, 131111 (2012).
[Crossref]

D. S. Meyaard, J. Cho, E. Fred Schubert, S.-H. Han, M.-H. Kim, and C. Sone, “Analysis of the temperature dependence of the forward voltage characteristics of GaInN light-emitting diodes,” Appl. Phys. Lett. 103, 121103 (2013).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Grupen and K. Hess, “Simulation of carrier transport and nonlinearities in quantum-well laser diodes,” IEEE J. Quantum Electron. 34, 120–140 (1998).
[Crossref]

IEEE Trans. Electron Devices (1)

A. Laubsch, M. Sabathil, J. Baur, M. Peter, and B. Hahn, “High-Power and High-Efficiency InGaN-Based Light Emitters,” IEEE Trans. Electron Devices 57, 79–87 (2010).
[Crossref]

J. Comput. Electron. (3)

B. Witzigmann, R. G. Veprek, S. Steiger, and J. Kupec, “Comprehensive modeling of optoelectronic nanostructures,” J. Comput. Electron. 8, 389–397 (2009).
[Crossref]

S. Steiger, R. G. Veprek, and B. Witzigmann, “Unified simulation of transport and luminescence in optoelectronic nanostructures,” J. Comput. Electron. 7, 509–520 (2008).
[Crossref]

R. G. Veprek, S. Steiger, and B. Witzigmann, “Reliable k·p band structure calculation for nanostructures using finite elements,” J. Comput. Electron. 7, 521–529 (2008).
[Crossref]

Laser Photonics Rev. (1)

J. Cho, E. F. Schubert, and J. K. Kim, “Efficiency droop in light-emitting diodes: Challenges and countermeasures,” Laser Photonics Rev. 7, 408–421 (2013).
[Crossref]

Opt. Express (1)

Phys. Rev. B (4)

W. Scheibenzuber, U. Schwarz, R. Veprek, B. Witzigmann, and a. Hangleiter, “Calculation of optical eigenmodes and gain in semipolar and nonpolar InGaN/GaN laser diodes,” Phys. Rev. B 80, 115320 (2009).
[Crossref]

S. Chuang and C. Chang, “k·p Method for Strained Wurtzite Semiconductors,” Phys. Rev. B 54, 2491–2504 (1996).
[Crossref]

S.-H. Park and S.-L. Chuang, “Crystal-orientation effects on the piezoelectric field and electronic properties of strained wurtzite semiconductors,” Phys. Rev. B 59, 4725–4737 (1999).
[Crossref]

G. Baraff, “Semiclassical description of electron transport in semiconductor quantum-well devices,” Phys. Rev. B 55, 10745 (1997).
[Crossref]

Phys. Rev. Lett. (1)

J. Iveland, L. Martinelli, J. Peretti, J. S. Speck, and C. Weisbuch, “Direct Measurement of Auger Electrons Emitted from a Semiconductor Light-Emitting Diode under Electrical Injection: Identification of the Dominant Mechanism for Efficiency Droop,” Phys. Rev. Lett. 110, 177406 (2013).
[Crossref] [PubMed]

Phys. Status Solidi A (2)

J. Piprek, “Efficiency droop in nitride-based light-emitting diodes,” Phys. Status Solidi A 207, 2217–2225 (2010).
[Crossref]

C. Kölper, M. Sabathil, F. Römer, M. Mandl, M. Strassburg, and B. Witzigmann, “Core-shell InGaN nanorod light emitting diodes: Electronic and optical device properties,” Phys. Status Solidi A 9, 1–9 (2012).

Phys. Status Solidi C (1)

B. Galler, a. Laubsch, a. Wojcik, H. Lugauer, a. Gomez-Iglesias, M. Sabathil, and B. Hahn, “Investigation of the carrier distribution in InGaN-based multi-quantum-well structures,” Phys. Status Solidi C 8, 2372–2374 (2011).
[Crossref]

Phys. Status Solidi RRL (1)

M. Deppner, F. Römer, and B. Witzigmann, “Auger carrier leakage in III-nitride quantum-well light emitting diodes,” Phys. Status Solidi RRL 6, 418–420 (2012).

Proc. SPIE (3)

J. Piprek, “AlGaN polarization doping effects on the efficiency of blue LEDs,” Proc. SPIE 8262, 82620E (2012).
[Crossref]

F. Römer, M. Deppner, C. Range, and B. Witzigmann, “Auger recombination and leakage in InGaN/GaN quantum well LEDs,” Proc. SPIE 8986, 89861R (2014).
[Crossref]

M. Deppner, F. Römer, and B. Witzigmann, “Auger recombination and carrier transport effects in III-nitride quantum well light emitting diodes,” Proc. SPIE 8619, 86191J (2013).
[Crossref]

Solid-State Electron. (1)

T. T. Mnatsakanov, M. E. Levinshtein, L. I. Pomortseva, S. N. Yurkov, G. S. Simin, and M. Asif Khan, “Carrier mobility model for GaN,” Solid-State Electron. 47, 111–115 (2003).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Operation scheme of the device simulation for an SQW LED.
Fig. 2
Fig. 2 Left: SQW LED design (a) with abrupt doping profile and p-doped spacer layer between EBL and barrier. Right: SQW LED design (c) with graded doping in the EBL. The acceptor doping density NA and the ionized acceptor density NA,ion are shown for 10 Acm−2 (solid) and 1000 Acm−2 (dashed). The ionized acceptor density decreases with increasing hole injection.
Fig. 3
Fig. 3 Measured IQE data (crosses) from [23] versus IQE simulation for the SQW design with EBL (a) (solid), without EBL (b) (dash dot), and with graded doping in the EBL (c) (dashed).
Fig. 4
Fig. 4 Equivalent current contributions to SRH, radiative, and Auger recombination as well as direct carrier leakage versus the total current. Curves (a) hold for the abrupt doping profile design. Curves (c) are for the graded doping profile. The inset depicts the Auger recombination versus the third power of nq,avg = (nq + pq)/2 in the QW.
Fig. 5
Fig. 5 Band structure and quasi Fermi levels of the design (a) with abrupt doping profile and the design (c) with graded doping at 10 Acm−2 and 1000 Acm−2. The barrier height difference between (a) and (c) reduces with rising current.
Fig. 6
Fig. 6 Effective scattering time for electrons (triangles) and holes (squares) and relative effective radiative (stars) and Auger coefficient (diamonds) for the design with abrupt doping profile and EBL.
Fig. 7
Fig. 7 Measured IQE data (crosses) from [24] versus IQE simulation for different graded doping in the EBL. The maximum doping density is NA = 2 × 1019 cm−3 for (a) (solid) and NA = 1.5 × 1019 cm−3 for (b) (dashed)
Fig. 8
Fig. 8 Equivalent current contributions to SRH, radiative, and Auger recombination as well as direct carrier leakage versus the total current for the MQW LED and for the doping profiles (a) and (b).
Fig. 9
Fig. 9 Luminescence contribution of each QW for the MQW LED with doping profile (a). The quantum well (1) is next to the n-region. The quantum well (5) is next to the EBL.
Fig. 10
Fig. 10 Band structure and quasi Fermi levels of the MQW LED (a) at 10 Acm−2 (solid) and 1000 Acm−2 (dashed).

Tables (2)

Tables Icon

Table 1 Model parameters of the SQW LED simulations.

Tables Icon

Table 2 Model parameters of the MQW LED simulations.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

B eff = d QW R rad q n q p q n i , q 2 .
R sc , e = n τ sc ( 1 exp ( E F , q E F k B T ) ) ( 1 n q N q ) σ sc ( x q ) .
τ eff = n σ sc d x q R sc d x q .
R Aug , e q = C n n q ( n q p q n i , q 2 ) ψ e 2 ψ h d x q R Aug , h q = C p n q ( n q p q n i , q 2 ) ψ h 2 ψ e d x q
C eff = d QW 2 R Aug , e q n q ( n q p q n i , q 2 ) + d QW 2 R Aug , h q p q ( n q p q n i , q 2 ) .

Metrics