Abstract

Semiconducting nanowire arrays have emerged as a promising route toward achieving high efficiencies in solar cells. Here we propose a perpendicular elliptical silicon nanowire (PEE-SiNW) array for broadband light absorption in thin film silicon solar cells. Simulation results reveal that light absorption enhancement is originated from the split of the principal modes as well as the excitation of high order modes caused by the asymmetry of the elliptical nanowires and the enhanced mode coupling between adjacent elliptical nanowires attained by the appropriate arrangement of nanowires. An ultimate efficiency of 29.1% is achieved for the optimal PEE-SiNW array, which is 16.4% higher than that of the circular SiNW array with the same fill fraction.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
    [CrossRef] [PubMed]
  2. J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
    [CrossRef] [PubMed]
  3. V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, and S. H. Christiansen, “Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters,” Nano Lett. 9(4), 1549–1554 (2009).
    [CrossRef] [PubMed]
  4. O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett. 8(9), 2638–2642 (2008).
    [CrossRef] [PubMed]
  5. K. Peng, Y. Xu, Y. Wu, Y. Yan, S.-T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1(11), 1062–1067 (2005).
    [CrossRef] [PubMed]
  6. B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys. 97, 114302 (2005).
  7. E. C. Garnett and P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc. 130(29), 9224–9225 (2008).
    [CrossRef] [PubMed]
  8. L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
    [CrossRef] [PubMed]
  9. J. Kupec, R. L. Stoop, and B. Witzigmann, “Light absorption and emission in nanowire array solar cells,” Opt. Express 18(26), 27589–27605 (2010).
    [CrossRef] [PubMed]
  10. L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
    [CrossRef] [PubMed]
  11. J. Li, H. Yu, S. M. Wong, X. Li, G. Zhang, P. G.-Q. Lo, and D.-L. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell application,” Appl. Phys. Lett. 95(24), 243113 (2009).
    [CrossRef]
  12. C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17(22), 19371–19381 (2009).
    [CrossRef] [PubMed]
  13. Q. G. Du, C. H. Kam, H. V. Demir, H. Y. Yu, and X. W. Sun, “Broadband absorption enhancement in randomly positioned silicon nanowire arrays for solar cell applications,” Opt. Lett. 36(10), 1884–1886 (2011).
    [CrossRef] [PubMed]
  14. H. Bao and X. Ruan, “Optical absorption enhancement in disordered vertical silicon nanowire arrays for photovoltaic applications,” Opt. Lett. 35(20), 3378–3380 (2010).
    [CrossRef] [PubMed]
  15. C. Lin and M. L. Povinelli, “Optimal design of aperiodic, vertical silicon nanowire structures for photovoltaics,” Opt. Express 19(S5), A1148–A1154 (2011).
    [CrossRef] [PubMed]
  16. B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and C. Martijn de Sterke, “Nanowire array photovoltaics: Radial disorder versus design for optimal efficiency,” Appl. Phys. Lett. 101(17), 173902 (2012).
    [CrossRef]
  17. S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
    [CrossRef] [PubMed]
  18. E. Schonbrun, K. Seo, and K. B. Crozier, “Reconfigurable imaging systems using elliptical nanowires,” Nano Lett. 11(10), 4299–4303 (2011).
    [CrossRef] [PubMed]
  19. H. C. Jeon, C.-J. Heo, S. Y. Lee, and S.-M. Yang, “Hierarchically ordered arrays of noncircular silicon nanowires featured by holographic lithography toward a high-fidelity sensing platform,” Adv. Funct. Mater. 22(20), 4268–4274 (2012).
    [CrossRef]
  20. S. W. Lee, M. T. McDowell, J. W. Choi, and Y. Cui, “Anomalous shape changes of silicon nanopillars by electrochemical lithiation,” Nano Lett. 11(7), 3034–3039 (2011).
    [CrossRef] [PubMed]
  21. L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
    [CrossRef] [PubMed]
  22. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  23. NREL, “Reference Solar Spectral Irradiance: Air Mass 1.5,” retrieved 2011, http://rredc.nrel.gov/solar/spectra/am1.5/ .
  24. C. Yeh and F. Shimabukuro, The Essence of Dielectric Waveguides (Springer, 2008).
  25. Z. Xia, Y. Wu, R. Liu, Z. Liang, J. Zhou, and P. Tang, “Misaligned conformal gratings enhanced light trapping in thin film silicon solar cells,” Opt. Express 21(S3), A548–A557 (2013).
    [CrossRef] [PubMed]
  26. S. S. Wang and R. Magnusson, “Multilayer waveguide-grating filters,” Appl. Opt. 34(14), 2414–2420 (1995).
    [CrossRef] [PubMed]
  27. A. A. Maradudin and A. R. McGurn, “Out of plane propagation of electromagnetic waves in a two-dimensional periodic dielectric medium,” J. Mod. Opt. 41(2), 275–284 (1994).
    [CrossRef]
  28. D. Duché, L. Escoubas, J.-J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Appl. Phys. Lett. 92(19), 193310 (2008).
    [CrossRef]
  29. B. Wang and P. W. Leu, “Tunable and selective resonant absorption in vertical nanowires,” Opt. Lett. 37(18), 3756–3758 (2012).
    [CrossRef] [PubMed]
  30. N. Anttu and H. Q. Xu, “Efficient light management in vertical nanowire arrays for photovoltaics,” Opt. Express 21(S3), A558–A575 (2013).
    [CrossRef] [PubMed]
  31. I. Gómez-Castellanos, “Intensity distributions and cutoff frequencies of linearly polarized modes for a step-index elliptical optical fiber,” Opt. Eng. 46(4), 045003 (2007).
    [CrossRef]
  32. R. Black and L. Gagnon, Optical Waveguide Modes: Polarization, Coupling and Symmetry (McGraw-Hill Education, 2010).
  33. L. Cao, P. Fan, and M. L. Brongersma, “Optical coupling of deep-subwavelength semiconductor nanowires,” Nano Lett. 11(4), 1463–1468 (2011).
    [CrossRef] [PubMed]
  34. B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and C. M. de Sterke, “Absorption enhancing proximity effects in aperiodic nanowire arrays,” Opt. Express 21(S6), A964–A969 (2013).
    [CrossRef] [PubMed]
  35. B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, C. M. de Sterke, and R. C. McPhedran, “Modal analysis of enhanced absorption in silicon nanowire arrays,” Opt. Express 19(S5), A1067–A1081 (2011).
    [CrossRef] [PubMed]

2013 (3)

2012 (3)

B. Wang and P. W. Leu, “Tunable and selective resonant absorption in vertical nanowires,” Opt. Lett. 37(18), 3756–3758 (2012).
[CrossRef] [PubMed]

H. C. Jeon, C.-J. Heo, S. Y. Lee, and S.-M. Yang, “Hierarchically ordered arrays of noncircular silicon nanowires featured by holographic lithography toward a high-fidelity sensing platform,” Adv. Funct. Mater. 22(20), 4268–4274 (2012).
[CrossRef]

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and C. Martijn de Sterke, “Nanowire array photovoltaics: Radial disorder versus design for optimal efficiency,” Appl. Phys. Lett. 101(17), 173902 (2012).
[CrossRef]

2011 (6)

2010 (5)

H. Bao and X. Ruan, “Optical absorption enhancement in disordered vertical silicon nanowire arrays for photovoltaic applications,” Opt. Lett. 35(20), 3378–3380 (2010).
[CrossRef] [PubMed]

J. Kupec, R. L. Stoop, and B. Witzigmann, “Light absorption and emission in nanowire array solar cells,” Opt. Express 18(26), 27589–27605 (2010).
[CrossRef] [PubMed]

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[CrossRef] [PubMed]

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[CrossRef] [PubMed]

2009 (5)

J. Li, H. Yu, S. M. Wong, X. Li, G. Zhang, P. G.-Q. Lo, and D.-L. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell application,” Appl. Phys. Lett. 95(24), 243113 (2009).
[CrossRef]

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[CrossRef] [PubMed]

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, and S. H. Christiansen, “Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters,” Nano Lett. 9(4), 1549–1554 (2009).
[CrossRef] [PubMed]

C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17(22), 19371–19381 (2009).
[CrossRef] [PubMed]

2008 (3)

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett. 8(9), 2638–2642 (2008).
[CrossRef] [PubMed]

E. C. Garnett and P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc. 130(29), 9224–9225 (2008).
[CrossRef] [PubMed]

D. Duché, L. Escoubas, J.-J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Appl. Phys. Lett. 92(19), 193310 (2008).
[CrossRef]

2007 (2)

I. Gómez-Castellanos, “Intensity distributions and cutoff frequencies of linearly polarized modes for a step-index elliptical optical fiber,” Opt. Eng. 46(4), 045003 (2007).
[CrossRef]

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
[CrossRef] [PubMed]

2005 (2)

K. Peng, Y. Xu, Y. Wu, Y. Yan, S.-T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1(11), 1062–1067 (2005).
[CrossRef] [PubMed]

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys. 97, 114302 (2005).

1995 (1)

1994 (1)

A. A. Maradudin and A. R. McGurn, “Out of plane propagation of electromagnetic waves in a two-dimensional periodic dielectric medium,” J. Mod. Opt. 41(2), 275–284 (1994).
[CrossRef]

Algra, R. E.

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett. 8(9), 2638–2642 (2008).
[CrossRef] [PubMed]

Andrä, G.

V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, and S. H. Christiansen, “Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters,” Nano Lett. 9(4), 1549–1554 (2009).
[CrossRef] [PubMed]

Anttu, N.

Asatryan, A. A.

Atwater, H. A.

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys. 97, 114302 (2005).

Bakkers, E. P. A. M.

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett. 8(9), 2638–2642 (2008).
[CrossRef] [PubMed]

Bao, H.

Berger, A.

V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, and S. H. Christiansen, “Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters,” Nano Lett. 9(4), 1549–1554 (2009).
[CrossRef] [PubMed]

Botten, L. C.

Brongersma, M. L.

L. Cao, P. Fan, and M. L. Brongersma, “Optical coupling of deep-subwavelength semiconductor nanowires,” Nano Lett. 11(4), 1463–1468 (2011).
[CrossRef] [PubMed]

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[CrossRef] [PubMed]

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[CrossRef] [PubMed]

Burkhard, G. F.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Cai, W.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[CrossRef] [PubMed]

Cao, L.

L. Cao, P. Fan, and M. L. Brongersma, “Optical coupling of deep-subwavelength semiconductor nanowires,” Nano Lett. 11(4), 1463–1468 (2011).
[CrossRef] [PubMed]

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[CrossRef] [PubMed]

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[CrossRef] [PubMed]

Chen, G.

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[CrossRef] [PubMed]

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
[CrossRef] [PubMed]

Choi, J. W.

S. W. Lee, M. T. McDowell, J. W. Choi, and Y. Cui, “Anomalous shape changes of silicon nanopillars by electrochemical lithiation,” Nano Lett. 11(7), 3034–3039 (2011).
[CrossRef] [PubMed]

Christiansen, S. H.

V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, and S. H. Christiansen, “Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters,” Nano Lett. 9(4), 1549–1554 (2009).
[CrossRef] [PubMed]

Clemens, B. M.

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[CrossRef] [PubMed]

Connor, S. T.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Crozier, K. B.

E. Schonbrun, K. Seo, and K. B. Crozier, “Reconfigurable imaging systems using elliptical nanowires,” Nano Lett. 11(10), 4299–4303 (2011).
[CrossRef] [PubMed]

Cui, Y.

S. W. Lee, M. T. McDowell, J. W. Choi, and Y. Cui, “Anomalous shape changes of silicon nanopillars by electrochemical lithiation,” Nano Lett. 11(7), 3034–3039 (2011).
[CrossRef] [PubMed]

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

de Sterke, C. M.

Demir, H. V.

Dossou, K. B.

Du, Q. G.

Duché, D.

D. Duché, L. Escoubas, J.-J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Appl. Phys. Lett. 92(19), 193310 (2008).
[CrossRef]

Escoubas, L.

D. Duché, L. Escoubas, J.-J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Appl. Phys. Lett. 92(19), 193310 (2008).
[CrossRef]

Falk, F.

V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, and S. H. Christiansen, “Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters,” Nano Lett. 9(4), 1549–1554 (2009).
[CrossRef] [PubMed]

Fan, P.

L. Cao, P. Fan, and M. L. Brongersma, “Optical coupling of deep-subwavelength semiconductor nanowires,” Nano Lett. 11(4), 1463–1468 (2011).
[CrossRef] [PubMed]

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[CrossRef] [PubMed]

Fan, S.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[CrossRef] [PubMed]

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Flory, F.

D. Duché, L. Escoubas, J.-J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Appl. Phys. Lett. 92(19), 193310 (2008).
[CrossRef]

Garnett, E.

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

Garnett, E. C.

E. C. Garnett and P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc. 130(29), 9224–9225 (2008).
[CrossRef] [PubMed]

Gawlik, A.

V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, and S. H. Christiansen, “Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters,” Nano Lett. 9(4), 1549–1554 (2009).
[CrossRef] [PubMed]

Gómez-Castellanos, I.

I. Gómez-Castellanos, “Intensity distributions and cutoff frequencies of linearly polarized modes for a step-index elliptical optical fiber,” Opt. Eng. 46(4), 045003 (2007).
[CrossRef]

Han, S. E.

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[CrossRef] [PubMed]

Heo, C.-J.

H. C. Jeon, C.-J. Heo, S. Y. Lee, and S.-M. Yang, “Hierarchically ordered arrays of noncircular silicon nanowires featured by holographic lithography toward a high-fidelity sensing platform,” Adv. Funct. Mater. 22(20), 4268–4274 (2012).
[CrossRef]

Hsu, C.-M.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Hu, L.

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
[CrossRef] [PubMed]

Jeon, H. C.

H. C. Jeon, C.-J. Heo, S. Y. Lee, and S.-M. Yang, “Hierarchically ordered arrays of noncircular silicon nanowires featured by holographic lithography toward a high-fidelity sensing platform,” Adv. Funct. Mater. 22(20), 4268–4274 (2012).
[CrossRef]

Kam, C. H.

Kayes, B. M.

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys. 97, 114302 (2005).

Kupec, J.

Kwong, D.-L.

J. Li, H. Yu, S. M. Wong, X. Li, G. Zhang, P. G.-Q. Lo, and D.-L. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell application,” Appl. Phys. Lett. 95(24), 243113 (2009).
[CrossRef]

Lagendijk, A.

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett. 8(9), 2638–2642 (2008).
[CrossRef] [PubMed]

Lee, S. W.

S. W. Lee, M. T. McDowell, J. W. Choi, and Y. Cui, “Anomalous shape changes of silicon nanopillars by electrochemical lithiation,” Nano Lett. 11(7), 3034–3039 (2011).
[CrossRef] [PubMed]

Lee, S. Y.

H. C. Jeon, C.-J. Heo, S. Y. Lee, and S.-M. Yang, “Hierarchically ordered arrays of noncircular silicon nanowires featured by holographic lithography toward a high-fidelity sensing platform,” Adv. Funct. Mater. 22(20), 4268–4274 (2012).
[CrossRef]

Lee, S.-T.

K. Peng, Y. Xu, Y. Wu, Y. Yan, S.-T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1(11), 1062–1067 (2005).
[CrossRef] [PubMed]

Leu, P. W.

Lewis, N. S.

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys. 97, 114302 (2005).

Li, J.

J. Li, H. Yu, S. M. Wong, X. Li, G. Zhang, P. G.-Q. Lo, and D.-L. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell application,” Appl. Phys. Lett. 95(24), 243113 (2009).
[CrossRef]

Li, X.

J. Li, H. Yu, S. M. Wong, X. Li, G. Zhang, P. G.-Q. Lo, and D.-L. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell application,” Appl. Phys. Lett. 95(24), 243113 (2009).
[CrossRef]

Liang, Z.

Lin, C.

Liu, R.

Lo, P. G.-Q.

J. Li, H. Yu, S. M. Wong, X. Li, G. Zhang, P. G.-Q. Lo, and D.-L. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell application,” Appl. Phys. Lett. 95(24), 243113 (2009).
[CrossRef]

Magnusson, R.

Maradudin, A. A.

A. A. Maradudin and A. R. McGurn, “Out of plane propagation of electromagnetic waves in a two-dimensional periodic dielectric medium,” J. Mod. Opt. 41(2), 275–284 (1994).
[CrossRef]

Martijn de Sterke, C.

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and C. Martijn de Sterke, “Nanowire array photovoltaics: Radial disorder versus design for optimal efficiency,” Appl. Phys. Lett. 101(17), 173902 (2012).
[CrossRef]

McDowell, M. T.

S. W. Lee, M. T. McDowell, J. W. Choi, and Y. Cui, “Anomalous shape changes of silicon nanopillars by electrochemical lithiation,” Nano Lett. 11(7), 3034–3039 (2011).
[CrossRef] [PubMed]

McGehee, M.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

McGurn, A. R.

A. A. Maradudin and A. R. McGurn, “Out of plane propagation of electromagnetic waves in a two-dimensional periodic dielectric medium,” J. Mod. Opt. 41(2), 275–284 (1994).
[CrossRef]

McPhedran, R. C.

Muskens, O. L.

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett. 8(9), 2638–2642 (2008).
[CrossRef] [PubMed]

Park, J.-S.

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[CrossRef] [PubMed]

Peng, K.

K. Peng, Y. Xu, Y. Wu, Y. Yan, S.-T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1(11), 1062–1067 (2005).
[CrossRef] [PubMed]

Plentz, J.

V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, and S. H. Christiansen, “Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters,” Nano Lett. 9(4), 1549–1554 (2009).
[CrossRef] [PubMed]

Poulton, C. G.

Povinelli, M. L.

Rivas, J. G.

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett. 8(9), 2638–2642 (2008).
[CrossRef] [PubMed]

Ruan, X.

Schonbrun, E.

E. Schonbrun, K. Seo, and K. B. Crozier, “Reconfigurable imaging systems using elliptical nanowires,” Nano Lett. 11(10), 4299–4303 (2011).
[CrossRef] [PubMed]

Schuller, J. A.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[CrossRef] [PubMed]

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[CrossRef] [PubMed]

Seo, K.

E. Schonbrun, K. Seo, and K. B. Crozier, “Reconfigurable imaging systems using elliptical nanowires,” Nano Lett. 11(10), 4299–4303 (2011).
[CrossRef] [PubMed]

Simon, J.-J.

D. Duché, L. Escoubas, J.-J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Appl. Phys. Lett. 92(19), 193310 (2008).
[CrossRef]

Sivakov, V.

V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, and S. H. Christiansen, “Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters,” Nano Lett. 9(4), 1549–1554 (2009).
[CrossRef] [PubMed]

Stoop, R. L.

Sturmberg, B. C. P.

Sun, X. W.

Tang, P.

Torchio, P.

D. Duché, L. Escoubas, J.-J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Appl. Phys. Lett. 92(19), 193310 (2008).
[CrossRef]

Vasudev, A. P.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[CrossRef] [PubMed]

Vervisch, W.

D. Duché, L. Escoubas, J.-J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Appl. Phys. Lett. 92(19), 193310 (2008).
[CrossRef]

Wang, B.

Wang, Q.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Wang, S. S.

White, J. S.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[CrossRef] [PubMed]

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[CrossRef] [PubMed]

Witzigmann, B.

Wong, S. M.

J. Li, H. Yu, S. M. Wong, X. Li, G. Zhang, P. G.-Q. Lo, and D.-L. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell application,” Appl. Phys. Lett. 95(24), 243113 (2009).
[CrossRef]

Wu, Y.

Z. Xia, Y. Wu, R. Liu, Z. Liang, J. Zhou, and P. Tang, “Misaligned conformal gratings enhanced light trapping in thin film silicon solar cells,” Opt. Express 21(S3), A548–A557 (2013).
[CrossRef] [PubMed]

K. Peng, Y. Xu, Y. Wu, Y. Yan, S.-T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1(11), 1062–1067 (2005).
[CrossRef] [PubMed]

Xia, Z.

Xu, H. Q.

Xu, Y.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

K. Peng, Y. Xu, Y. Wu, Y. Yan, S.-T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1(11), 1062–1067 (2005).
[CrossRef] [PubMed]

Yan, Y.

K. Peng, Y. Xu, Y. Wu, Y. Yan, S.-T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1(11), 1062–1067 (2005).
[CrossRef] [PubMed]

Yang, P.

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

E. C. Garnett and P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc. 130(29), 9224–9225 (2008).
[CrossRef] [PubMed]

Yang, S.-M.

H. C. Jeon, C.-J. Heo, S. Y. Lee, and S.-M. Yang, “Hierarchically ordered arrays of noncircular silicon nanowires featured by holographic lithography toward a high-fidelity sensing platform,” Adv. Funct. Mater. 22(20), 4268–4274 (2012).
[CrossRef]

Yu, H.

J. Li, H. Yu, S. M. Wong, X. Li, G. Zhang, P. G.-Q. Lo, and D.-L. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell application,” Appl. Phys. Lett. 95(24), 243113 (2009).
[CrossRef]

Yu, H. Y.

Yu, Z.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[CrossRef] [PubMed]

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Zhang, G.

J. Li, H. Yu, S. M. Wong, X. Li, G. Zhang, P. G.-Q. Lo, and D.-L. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell application,” Appl. Phys. Lett. 95(24), 243113 (2009).
[CrossRef]

Zhou, J.

Zhu, J.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

K. Peng, Y. Xu, Y. Wu, Y. Yan, S.-T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1(11), 1062–1067 (2005).
[CrossRef] [PubMed]

Adv. Funct. Mater. (1)

H. C. Jeon, C.-J. Heo, S. Y. Lee, and S.-M. Yang, “Hierarchically ordered arrays of noncircular silicon nanowires featured by holographic lithography toward a high-fidelity sensing platform,” Adv. Funct. Mater. 22(20), 4268–4274 (2012).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

D. Duché, L. Escoubas, J.-J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Appl. Phys. Lett. 92(19), 193310 (2008).
[CrossRef]

J. Li, H. Yu, S. M. Wong, X. Li, G. Zhang, P. G.-Q. Lo, and D.-L. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell application,” Appl. Phys. Lett. 95(24), 243113 (2009).
[CrossRef]

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and C. Martijn de Sterke, “Nanowire array photovoltaics: Radial disorder versus design for optimal efficiency,” Appl. Phys. Lett. 101(17), 173902 (2012).
[CrossRef]

J. Am. Chem. Soc. (1)

E. C. Garnett and P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc. 130(29), 9224–9225 (2008).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys. 97, 114302 (2005).

J. Mod. Opt. (1)

A. A. Maradudin and A. R. McGurn, “Out of plane propagation of electromagnetic waves in a two-dimensional periodic dielectric medium,” J. Mod. Opt. 41(2), 275–284 (1994).
[CrossRef]

Nano Lett. (10)

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[CrossRef] [PubMed]

S. W. Lee, M. T. McDowell, J. W. Choi, and Y. Cui, “Anomalous shape changes of silicon nanopillars by electrochemical lithiation,” Nano Lett. 11(7), 3034–3039 (2011).
[CrossRef] [PubMed]

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
[CrossRef] [PubMed]

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[CrossRef] [PubMed]

E. Schonbrun, K. Seo, and K. B. Crozier, “Reconfigurable imaging systems using elliptical nanowires,” Nano Lett. 11(10), 4299–4303 (2011).
[CrossRef] [PubMed]

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, and S. H. Christiansen, “Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters,” Nano Lett. 9(4), 1549–1554 (2009).
[CrossRef] [PubMed]

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett. 8(9), 2638–2642 (2008).
[CrossRef] [PubMed]

L. Cao, P. Fan, and M. L. Brongersma, “Optical coupling of deep-subwavelength semiconductor nanowires,” Nano Lett. 11(4), 1463–1468 (2011).
[CrossRef] [PubMed]

Nat. Mater. (1)

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[CrossRef] [PubMed]

Opt. Eng. (1)

I. Gómez-Castellanos, “Intensity distributions and cutoff frequencies of linearly polarized modes for a step-index elliptical optical fiber,” Opt. Eng. 46(4), 045003 (2007).
[CrossRef]

Opt. Express (7)

Opt. Lett. (3)

Small (1)

K. Peng, Y. Xu, Y. Wu, Y. Yan, S.-T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1(11), 1062–1067 (2005).
[CrossRef] [PubMed]

Other (4)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

NREL, “Reference Solar Spectral Irradiance: Air Mass 1.5,” retrieved 2011, http://rredc.nrel.gov/solar/spectra/am1.5/ .

C. Yeh and F. Shimabukuro, The Essence of Dielectric Waveguides (Springer, 2008).

R. Black and L. Gagnon, Optical Waveguide Modes: Polarization, Coupling and Symmetry (McGraw-Hill Education, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the (a)–(b) PEE- and (c)–(d) PAE-SiNW arrays. (a), (c) pespective, and (b), (d) cross section view. dma and dmi are the diameter of the major and minor axis respectively, and θ is the angle between the major axes and the x or y axis. The unit cell of the two arrays is enclosed by red dashed lines.

Fig. 2
Fig. 2

Ultimate efficiency as a function of the major and minor axis of the PEE-SiNW array. The dashed lines are the contours of the constant fill fraction fπdmadmi/4a2 for the SiNW arrays. The major and minor axis of the SiNW array at A are 550 and 375 nm, and the diameter of the SiNW array at B and C is 454 and 550 nm, respectively.

Fig. 3
Fig. 3

Absorption spectra corresponding to the structures indicated by A, B, and C in Fig. 2. The incident light is normal and unpolarized. The thin lines are the calculated spectra of the arrays, while the thick ones are the smoothed results of the calculated spectra.

Fig. 4
Fig. 4

Absorption as a function of the wavelength and nanowire diameter (or major axis) of the (a) circular, (b) PAE-, and (c) PEE-SiNW arrays. The black lines in (a) correspond to analytical solutions for the HE1m modes, and the dashed and dot-dashed lines in (b) and (c) to analytical solutions for the eHE1m and oHE1m modes, respectively. The pre-subscripts o and e refer to odd and even respectively. The vertical dashed lines denote the structures with the fill fraction of 0.45.

Fig. 5
Fig. 5

Dispersion relations of the (a) circular, (b) PAE, and (c) PEE nanowire arrays in the direction of the nanowire axis. The fill fraction of all the three arrays is 0.45. The dielectric coefficient of the nanowires is chosen as 13.69, while the major and minor axis of the elliptical nanowire are 550 and 375 nm respectively. Dashed lines are the dispersion relations of light in homogeneous silicon material.

Fig. 6
Fig. 6

Magnetic field distribution of the circular and elliptical nanowire arrays corresponding to the positions denoted by the characters in Fig. 4. The patterns b1, b3, and b5 are for the x component of the magnetic field illuminated by light with its electric field polarized in y direction, while the others are for the y component of the magnetic field illuminated by light with its electric field polarized in x direction.

Fig. 7
Fig. 7

Ultimate efficiency of the PAE- and PEE-SiNW arrays as a function of the rotation angle of the nanowires. The rotation angles of the nanowires for three typical positions: (a) and (d) 0°, (b) and (e) 25°, and (c) and (f) 45° are schematically depicted in the insets.

Fig. 8
Fig. 8

Ultimate efficiency of the circular and elliptical nanowire arrays as a function of the incident angle of the light. The five nanowire arrays have the identical fill fraction of 0.45, and the lattice spacing of 600 nm. The ratio of the major and minor axis of the elliptical nanowire is 550/375.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

η= 300nm λ g I(λ) A(λ) λ λ g dλ 300nm 4000nm I(λ) dλ ,
( Ce ' 1 ( γ 1 2 ) C e 1 ( γ 1 2 ) + γ 1 2 γ 0 2 Fek ' 1 ( γ 0 2 ) Fe k 1 ( γ 0 2 ) )( Se ' 1 ( γ 1 2 ) S e 1 ( γ 1 2 ) + n 0 2 n 1 2 γ 1 2 γ 0 2 Gek ' 1 ( γ 0 2 ) Ge k 1 ( γ 0 2 ) ) + β 2 k 0 2 n 1 2 ( r=1 χ r,1 α 1,r ) α 1,1 ( s=1 ν s,1 β 1,s ) β 1,1 ( 1+ γ 1 2 γ 0 2 ) 2 =0
α m,r = 0 2π c e m (η, γ 0 2 ) c e r (η, γ 1 2 )dη/ 0 2π c e r 2 (η, γ 1 2 )dη , β m,r = 0 2π s e m (η, γ 0 2 ) s e r (η, γ 1 2 )dη/ 0 2π s e r 2 (η, γ 1 2 )dη , χ r,n = 0 2π ce ' r (η, γ 1 2 ) s e n (η, γ 1 2 )dη/ 0 2π s e n 2 (η, γ 1 2 )dη , ν r,n = 0 2π se ' r (η, γ 1 2 ) c e n (η, γ 1 2 )dη/ 0 2π c e r 2 (η, γ 1 2 )dη .
γ 1 2 =( r ma 2 r mi 2 )( k 0 2 n 1 2 β 2 )/4, γ 0 2 =( r ma 2 r mi 2 )( β 2 k 0 2 n 0 2 )/4.
C e 1 S e 1 , Ce ' 1 Se ' 1 , Fe k 1 Ge k 1 , Fek ' 1 Gek ' 1 , α 1,n β 1,n , ν 1,n χ 1,n .

Metrics