Abstract

A mobile Rayleigh Doppler lidar based on the molecular double-edge technique is developed for measuring wind velocity in the middle atmosphere up to 60 km. The lidar uses three lasers with a mean power of 17.5 W at 355 nm each and three 1 m diameter telescopes to receive the backscattered echo: one points to zenith for vertical wind component and temperature measurement; the two others pointing toward east and north are titled at 30° from the zenith for zonal and meridional wind component, respectively. The Doppler shift of the backscattered echo is measured by inter-comparing the signal detected through each of the double-edge channels of a triple Fabry-Perot interferometer (FPI) tuned to either side of the emitted laser line. The third channel of FPI is used for frequency locking and a locking accuracy of 1.8 MHz RMS (root-mean-square) at 355 nm over 2 hours is realized, corresponding to a systematic error of 0.32 m/s. In this paper, we present detailed technical evolutions on system calibration. To validate the performance of the lidar, comparison experiments was carried out in December 2013, which showed good agreement with radiosondes but notable biases with ECMWF (European Centre for Medium range Weather Forecasts) in the height range of overlapping data. Wind observation over one month performed in Delhi (37.371° N, 97.374° E), northwest of China, demonstrated the stability and robustness of the system.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Meriwether and A. J. Gerrard, “Mesosphere inversion layers and stratosphere temperature enhancements,” Rev. Geophys. 42(3), RG3003 (2004).
    [CrossRef]
  2. A. Müllemann and F. J. Lübken, “Horizontal winds in the mesosphere at high latitudes,” Adv. Space Res. 35(11), 1890–1894 (2005).
    [CrossRef]
  3. A. Hertzog, P. Cocquerez, C. Basdevant, G. Boccara, J. Bordereau, B. Brioit, A. Cardonne, R. Guilbon, A. Ravissot, É. Schmitt, J. N. Valdivia, S. Venel, and F. Vial, “Stratéole/vorcore-long-duration, superpressure balloons to study the Antarctic lower stratosphere during the 2005 winter,” J. Atmos. Ocean. Technol. 24(12), 2048–2061 (2007).
    [CrossRef]
  4. P. Hays, M. Dehring, L. Fisk, P. Tchoryk, I. Dors, J. Ryan, J. Wang, M. Hardesty, B. Gentry, and F. Hovis, “Space-based Doppler winds lidar: a vital national need,” In response to national research council (NRC) decadal study request for information (RFI), May (2005).
  5. European Space Agency ESA, ADM-Aeolus science report: ESA SP-1311 (ESA Communication Production Office, 2008).
  6. A. Stoffelen, J. Pailleux, E. Källen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–87 (2005).
    [CrossRef]
  7. O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26(12), 2501–2515 (2009).
    [CrossRef]
  8. U. Paffrath, C. Lemmerz, O. Reitebuch, B. Witschas, I. Nikolaus, and V. Freudenthaler, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part II: Simulations and Rayleigh Receiver Radiometric performance,” J. Atmos. Ocean. Technol. 26(12), 2516–2530 (2009).
    [CrossRef]
  9. M. L. Chanin, A. Garnier, A. Hauchecorne, and J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16(11), 1273–1276 (1989).
    [CrossRef]
  10. A. Garnier and M. L. Chanin, “Description of a Doppler Rayleigh lidar for measuring winds in the middle atmosphere,” Appl. Phys. B 55(1), 35–40 (1992).
    [CrossRef]
  11. C. Souprayen, A. Garnier, A. Hertzog, A. Hauchecorne, and J. Porteneuve, “Rayleigh-Mie Doppler wind lidar for atmospheric measurements. I. Instrumental setup, validation, and first climatological results,” Appl. Opt. 38(12), 2410–2421 (1999).
    [CrossRef] [PubMed]
  12. C. Souprayen, A. Garnier, and A. Hertzog, “Rayleigh-Mie Doppler wind lidar for atmospheric measurements. II. Mie scattering effect, theory, and calibration,” Appl. Opt. 38(12), 2422–2431 (1999).
    [CrossRef] [PubMed]
  13. C. A. Tepley, S. I. Sargoytchev, and C. O. Hines, “Initial Doppler Rayleigh lidar results from Arecibo,” Geophys. Res. Lett. 18(2), 167–170 (1991).
    [CrossRef]
  14. C. A. Tepley, S. I. Sargoytchev, and R. Rojas, “The Doppler Rayleigh lidar system at Arecibo,” IEEE Trans. Geosci. Remote Sens. 31(1), 36–47 (1993).
    [CrossRef]
  15. C. A. Tepley, “Neutral winds of the middle atmosphere observed at Arecibo using a Doppler Rayleigh lidar,” J. Geophys. Res. 99(D12), 25781–25790 (1994).
    [CrossRef]
  16. J. S. Friedman, C. A. Tepley, P. A. Castleberg, and H. Roe, “Middle-atmospheric Doppler lidar using an iodine-vapor edge filter,” Opt. Lett. 22(21), 1648–1650 (1997).
    [CrossRef] [PubMed]
  17. D. Rees, M. Vyssogorets, N. P. Meredith, E. Griffin, and Y. Chaxell, “The Doppler wind and temperature system of the ALOMAR lidar facility: overview and initial results,” J. Atmos. Sol. Terr. Phys. 58(16), 1827–1842 (1996).
    [CrossRef]
  18. U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecorne, and K. Adolfsen, “The ALOMAR Rayleigh/Mie/Raman lidar: Objectives, configuration, and performance,” Ann. Geophys. 18(7), 815–833 (2000).
    [CrossRef]
  19. G. Baumgarten, “Doppler Rayleigh Mie Raman lidar for wind and temperature measurements in the middle atmosphere up to 80 km,” Atmos. Meas. Tech. 3(6), 1509–1518 (2010).
    [CrossRef]
  20. W. Huang, X. Chu, J. Wiig, B. Tan, C. Yamashita, T. Yuan, J. Yue, S. D. Harrell, C.-Y. She, B. P. Williams, J. S. Friedman, and R. M. Hardesty, “Field demonstration of simultaneous wind and temperature measurements from 5 to 50 km with a Na double-edge magneto-optic filter in a multi-frequency Doppler lidar,” Opt. Lett. 34(10), 1552–1554 (2009).
    [PubMed]
  21. B. M. Gentry, H. Chen, and S. X. Li, “Wind measurements with 355-nm molecular Doppler lidar,” Opt. Lett. 25(17), 1231–1233 (2000).
    [CrossRef] [PubMed]
  22. F. Shen, H. H. Cha, J. Dong, D. Kim, D. Sun, and S. O. Kwon, “Design and performance simulation of a molecular Doppler wind lidar,” Chin. Opt. Lett. 7(7), 593–597 (2009).
    [CrossRef]
  23. H. Xia, X. Dou, D. Sun, Z. Shu, X. Xue, Y. Han, D. Hu, Y. L. Han, and T. Cheng, “Mid-altitude wind measurements with mobile Rayleigh Doppler lidar incorporating system-level optical frequency control method,” Opt. Express 20(14), 15286–15300 (2012).
    [CrossRef] [PubMed]
  24. Y. L. Han, X. Dou, D. Sun, H. Xia, Z. Shu, Y. Han, X. Xue, and T. Cheng, “Analysis on wind retrieval methods for Rayleigh Doppler lidar,” Opt. Eng. 53(6), 061607 (2014).
    [CrossRef]
  25. Z. Shu, Z. Shu, H. Xia, D. Sun, Y. Han, C. Hyunki, K. Dukhyeon, G. Wang, B. Sunghoon, and D. Hu, “Low stratospheric wind measurement using mobile Rayleigh Doppler Wind LIDAR,” J. Opt. Soc. Korea. 16(2), 141–144 (2012).
  26. H. Xia, D. Sun, Y. Yang, F. Shen, J. Dong, and T. Kobayashi, “Fabry-Perot interferometer based Mie Doppler lidar for low tropospheric wind observation,” Appl. Opt. 46(29), 7120–7131 (2007).
    [CrossRef] [PubMed]
  27. C. L. Korb, B. M. Gentry, S. X. Li, and C. Flesia, “Theory of the double-edge technique for Doppler lidar wind measurement,” Appl. Opt. 37(15), 3097–3104 (1998).
    [CrossRef] [PubMed]
  28. C. Flesia and C. L. Korb, “Theory of the double-edge molecular technique for Doppler lidar wind measurement,” Appl. Opt. 38(3), 432–440 (1999).
    [CrossRef] [PubMed]
  29. Z. S. Liu, D. Wu, J. T. Liu, K. L. Zhang, W. B. Chen, X. Q. Song, J. W. Hair, and C. Y. She, “Low-altitude atmospheric wind measurement from the combined Mie and Rayleigh backscattering by Doppler lidar with an iodine filter,” Appl. Opt. 41(33), 7079–7086 (2002).
    [CrossRef] [PubMed]
  30. J. A. McKay, “Assessment of a multibeam Fizeau wedge interferometer for Doppler wind lidar,” Appl. Opt. 41(9), 1760–1767 (2002).
    [CrossRef] [PubMed]
  31. D. Bruneau, A. Garnier, A. Hertzog, and J. Porteneuve, “Wind-velocity lidar measurements by use of a Mach-Zehnder interferometer, comparison with a Fabry-Perot interferometer,” Appl. Opt. 43(1), 173–182 (2004).
    [CrossRef] [PubMed]
  32. N. Cézard, A. Dolfi-Bouteyre, J. P. Huignard, and P. H. Flamant, “Performance evaluation of a dual fringe-imaging Michelson interferometer for air parameter measurements with a 355 nm Rayleigh-Mie lidar,” Appl. Opt. 48(12), 2321–2332 (2009).
    [CrossRef] [PubMed]
  33. C. Weitkamp, Range-Resolved Optical Remote Sensing of the Atmosphere (Springer, 2005), pp. 273–281.
  34. A. Hauchecorne, M. L. Chanin, and P. Keckhut, “Climatology and trends of the middle atmospheric temperature (33–87 km) as seen by Rayleigh lidar over the south of France,” J. Geophys. Res. 96(D8), 15297–15309 (1991).
    [CrossRef]
  35. V. Ramaswamy, M. L. Chanin, J. Angell, J. Barnett, D. Gaffen, M. Gelman, P. Keckhut, Y. Koshelkov, J. Labitzke, J. R. Lin, A. O’Neill, J. Nash, W. Randel, R. Rood, K. Shine, M. Shiotani, and R. Swinbank, “Stratospheric temperature trends: Observations and model simulations,” Rev. Geophys. 39(1), 71–122 (2001).
    [CrossRef]
  36. J. A. McKay, “Modeling of direct detection Doppler wind lidar. I. The edge technique,” Appl. Opt. 37(27), 6480–6486 (1998).
    [CrossRef] [PubMed]
  37. J. A. McKay, “Modeling of direct detection Doppler wind lidar. II. The fringe imaging technique,” Appl. Opt. 37(27), 6487–6493 (1998).
    [CrossRef] [PubMed]
  38. J. A. McKay, “Comment on “Theory of the double-edge molecular technique for Doppler lidar wind measurement”,” Appl. Opt. 39(6), 993–996 (2000).
    [CrossRef] [PubMed]
  39. O. Reitebuch, C. Lemmerz, U. Marksteiner, S. Rahm, and B. Witschas, “Airborne lidar observations supporting the ADM-Aeolus mission for global wind profiling,” in 26th Int. Laser Radar Conference, Porto Heli, Greece (2012), S5O-01.
  40. B. Witschas, C. Lemmerz, and O. Reitebuch, “Horizontal LIDAR measurements for the proof of spontaneous Rayleigh-Brillouin scattering in the atmosphere,” Appl. Opt. 51(25), 6207–6219 (2012).
    [CrossRef] [PubMed]
  41. B. Witschas, “Analytical model for Rayleigh-Brillouin line shapes in air,” Appl. Opt. 50(3), 267–270 (2011).
    [CrossRef] [PubMed]
  42. R. G. Seasholtz, “2D velocity and temperature measurements in high speed flows based on spectrally resolved Rayleigh scattering,” in New Trends in Instrumentation for Hypersonic Research, Vol. 224 of NATO ASI Series (Springer, 1993), pp. 399–408.
  43. A. Dabas, M. L. Denneulin, P. Flamant, C. Loth, A. Garnier, and A. Dolfi-Bouteyre, “Correcting winds measured with a Rayleigh Doppler lidar from pressure and temperature effects,” Tellus, Ser. A, Dyn. Meterol. Oceanogr. 60(2), 206–215 (2008).
    [CrossRef]
  44. M. J. McGill, W. R. Skinner, and T. D. Irgang, “Analysis techniques for the recovery of winds and backscatter coefficients from a multiple-channel incoherent Doppler lidar,” Appl. Opt. 36(6), 1253–1268 (1997).
    [CrossRef] [PubMed]
  45. T. Schröder, C. Lemmerz, O. Reitebuch, M. Wirth, C. Wührer, and R. Treichel, “Frequency jitter and spectral width of an injection-seeded Q-switched Nd:YAG laser for a Doppler wind lidar,” Appl. Phys. B 87(3), 437–444 (2007).
    [CrossRef]
  46. B. M. Knudsen, J. M. Rosen, N. T. Kjome, and A. T. Whitten, “Comparison of analyzed stratospheric temperatures and calculated trajectories with long-duration balloon data,” J. Geophys. Res. 101(D14), 19137–19145 (1996).
    [CrossRef]
  47. A. D. Belmont, D. G. Dartt, and G. D. Nastrom, “Variations of stratospheric zonal winds, 20-65 km, 1961-1971,” J. Appl. Meteorol. 14(4), 585–594 (1975).
    [CrossRef]
  48. T. Li, X. Fang, W. Liu, S. Y. Gu, and X. Dou, “Narrowband sodium lidar for the measurements of mesopause region temperature and wind,” Appl. Opt. 51(22), 5401–5411 (2012).
    [CrossRef] [PubMed]

2014 (1)

Y. L. Han, X. Dou, D. Sun, H. Xia, Z. Shu, Y. Han, X. Xue, and T. Cheng, “Analysis on wind retrieval methods for Rayleigh Doppler lidar,” Opt. Eng. 53(6), 061607 (2014).
[CrossRef]

2012 (4)

2011 (1)

2010 (1)

G. Baumgarten, “Doppler Rayleigh Mie Raman lidar for wind and temperature measurements in the middle atmosphere up to 80 km,” Atmos. Meas. Tech. 3(6), 1509–1518 (2010).
[CrossRef]

2009 (5)

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26(12), 2501–2515 (2009).
[CrossRef]

U. Paffrath, C. Lemmerz, O. Reitebuch, B. Witschas, I. Nikolaus, and V. Freudenthaler, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part II: Simulations and Rayleigh Receiver Radiometric performance,” J. Atmos. Ocean. Technol. 26(12), 2516–2530 (2009).
[CrossRef]

N. Cézard, A. Dolfi-Bouteyre, J. P. Huignard, and P. H. Flamant, “Performance evaluation of a dual fringe-imaging Michelson interferometer for air parameter measurements with a 355 nm Rayleigh-Mie lidar,” Appl. Opt. 48(12), 2321–2332 (2009).
[CrossRef] [PubMed]

W. Huang, X. Chu, J. Wiig, B. Tan, C. Yamashita, T. Yuan, J. Yue, S. D. Harrell, C.-Y. She, B. P. Williams, J. S. Friedman, and R. M. Hardesty, “Field demonstration of simultaneous wind and temperature measurements from 5 to 50 km with a Na double-edge magneto-optic filter in a multi-frequency Doppler lidar,” Opt. Lett. 34(10), 1552–1554 (2009).
[PubMed]

F. Shen, H. H. Cha, J. Dong, D. Kim, D. Sun, and S. O. Kwon, “Design and performance simulation of a molecular Doppler wind lidar,” Chin. Opt. Lett. 7(7), 593–597 (2009).
[CrossRef]

2008 (1)

A. Dabas, M. L. Denneulin, P. Flamant, C. Loth, A. Garnier, and A. Dolfi-Bouteyre, “Correcting winds measured with a Rayleigh Doppler lidar from pressure and temperature effects,” Tellus, Ser. A, Dyn. Meterol. Oceanogr. 60(2), 206–215 (2008).
[CrossRef]

2007 (3)

T. Schröder, C. Lemmerz, O. Reitebuch, M. Wirth, C. Wührer, and R. Treichel, “Frequency jitter and spectral width of an injection-seeded Q-switched Nd:YAG laser for a Doppler wind lidar,” Appl. Phys. B 87(3), 437–444 (2007).
[CrossRef]

A. Hertzog, P. Cocquerez, C. Basdevant, G. Boccara, J. Bordereau, B. Brioit, A. Cardonne, R. Guilbon, A. Ravissot, É. Schmitt, J. N. Valdivia, S. Venel, and F. Vial, “Stratéole/vorcore-long-duration, superpressure balloons to study the Antarctic lower stratosphere during the 2005 winter,” J. Atmos. Ocean. Technol. 24(12), 2048–2061 (2007).
[CrossRef]

H. Xia, D. Sun, Y. Yang, F. Shen, J. Dong, and T. Kobayashi, “Fabry-Perot interferometer based Mie Doppler lidar for low tropospheric wind observation,” Appl. Opt. 46(29), 7120–7131 (2007).
[CrossRef] [PubMed]

2005 (2)

A. Stoffelen, J. Pailleux, E. Källen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–87 (2005).
[CrossRef]

A. Müllemann and F. J. Lübken, “Horizontal winds in the mesosphere at high latitudes,” Adv. Space Res. 35(11), 1890–1894 (2005).
[CrossRef]

2004 (2)

2002 (2)

2001 (1)

V. Ramaswamy, M. L. Chanin, J. Angell, J. Barnett, D. Gaffen, M. Gelman, P. Keckhut, Y. Koshelkov, J. Labitzke, J. R. Lin, A. O’Neill, J. Nash, W. Randel, R. Rood, K. Shine, M. Shiotani, and R. Swinbank, “Stratospheric temperature trends: Observations and model simulations,” Rev. Geophys. 39(1), 71–122 (2001).
[CrossRef]

2000 (3)

U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecorne, and K. Adolfsen, “The ALOMAR Rayleigh/Mie/Raman lidar: Objectives, configuration, and performance,” Ann. Geophys. 18(7), 815–833 (2000).
[CrossRef]

B. M. Gentry, H. Chen, and S. X. Li, “Wind measurements with 355-nm molecular Doppler lidar,” Opt. Lett. 25(17), 1231–1233 (2000).
[CrossRef] [PubMed]

J. A. McKay, “Comment on “Theory of the double-edge molecular technique for Doppler lidar wind measurement”,” Appl. Opt. 39(6), 993–996 (2000).
[CrossRef] [PubMed]

1999 (3)

1998 (3)

1997 (2)

1996 (2)

B. M. Knudsen, J. M. Rosen, N. T. Kjome, and A. T. Whitten, “Comparison of analyzed stratospheric temperatures and calculated trajectories with long-duration balloon data,” J. Geophys. Res. 101(D14), 19137–19145 (1996).
[CrossRef]

D. Rees, M. Vyssogorets, N. P. Meredith, E. Griffin, and Y. Chaxell, “The Doppler wind and temperature system of the ALOMAR lidar facility: overview and initial results,” J. Atmos. Sol. Terr. Phys. 58(16), 1827–1842 (1996).
[CrossRef]

1994 (1)

C. A. Tepley, “Neutral winds of the middle atmosphere observed at Arecibo using a Doppler Rayleigh lidar,” J. Geophys. Res. 99(D12), 25781–25790 (1994).
[CrossRef]

1993 (1)

C. A. Tepley, S. I. Sargoytchev, and R. Rojas, “The Doppler Rayleigh lidar system at Arecibo,” IEEE Trans. Geosci. Remote Sens. 31(1), 36–47 (1993).
[CrossRef]

1992 (1)

A. Garnier and M. L. Chanin, “Description of a Doppler Rayleigh lidar for measuring winds in the middle atmosphere,” Appl. Phys. B 55(1), 35–40 (1992).
[CrossRef]

1991 (2)

C. A. Tepley, S. I. Sargoytchev, and C. O. Hines, “Initial Doppler Rayleigh lidar results from Arecibo,” Geophys. Res. Lett. 18(2), 167–170 (1991).
[CrossRef]

A. Hauchecorne, M. L. Chanin, and P. Keckhut, “Climatology and trends of the middle atmospheric temperature (33–87 km) as seen by Rayleigh lidar over the south of France,” J. Geophys. Res. 96(D8), 15297–15309 (1991).
[CrossRef]

1989 (1)

M. L. Chanin, A. Garnier, A. Hauchecorne, and J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16(11), 1273–1276 (1989).
[CrossRef]

1975 (1)

A. D. Belmont, D. G. Dartt, and G. D. Nastrom, “Variations of stratospheric zonal winds, 20-65 km, 1961-1971,” J. Appl. Meteorol. 14(4), 585–594 (1975).
[CrossRef]

Adolfsen, K.

U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecorne, and K. Adolfsen, “The ALOMAR Rayleigh/Mie/Raman lidar: Objectives, configuration, and performance,” Ann. Geophys. 18(7), 815–833 (2000).
[CrossRef]

Andersson, E.

A. Stoffelen, J. Pailleux, E. Källen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–87 (2005).
[CrossRef]

Angell, J.

V. Ramaswamy, M. L. Chanin, J. Angell, J. Barnett, D. Gaffen, M. Gelman, P. Keckhut, Y. Koshelkov, J. Labitzke, J. R. Lin, A. O’Neill, J. Nash, W. Randel, R. Rood, K. Shine, M. Shiotani, and R. Swinbank, “Stratospheric temperature trends: Observations and model simulations,” Rev. Geophys. 39(1), 71–122 (2001).
[CrossRef]

Barnett, J.

V. Ramaswamy, M. L. Chanin, J. Angell, J. Barnett, D. Gaffen, M. Gelman, P. Keckhut, Y. Koshelkov, J. Labitzke, J. R. Lin, A. O’Neill, J. Nash, W. Randel, R. Rood, K. Shine, M. Shiotani, and R. Swinbank, “Stratospheric temperature trends: Observations and model simulations,” Rev. Geophys. 39(1), 71–122 (2001).
[CrossRef]

Basdevant, C.

A. Hertzog, P. Cocquerez, C. Basdevant, G. Boccara, J. Bordereau, B. Brioit, A. Cardonne, R. Guilbon, A. Ravissot, É. Schmitt, J. N. Valdivia, S. Venel, and F. Vial, “Stratéole/vorcore-long-duration, superpressure balloons to study the Antarctic lower stratosphere during the 2005 winter,” J. Atmos. Ocean. Technol. 24(12), 2048–2061 (2007).
[CrossRef]

Baumgarten, G.

G. Baumgarten, “Doppler Rayleigh Mie Raman lidar for wind and temperature measurements in the middle atmosphere up to 80 km,” Atmos. Meas. Tech. 3(6), 1509–1518 (2010).
[CrossRef]

U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecorne, and K. Adolfsen, “The ALOMAR Rayleigh/Mie/Raman lidar: Objectives, configuration, and performance,” Ann. Geophys. 18(7), 815–833 (2000).
[CrossRef]

Belmont, A. D.

A. D. Belmont, D. G. Dartt, and G. D. Nastrom, “Variations of stratospheric zonal winds, 20-65 km, 1961-1971,” J. Appl. Meteorol. 14(4), 585–594 (1975).
[CrossRef]

Boccara, G.

A. Hertzog, P. Cocquerez, C. Basdevant, G. Boccara, J. Bordereau, B. Brioit, A. Cardonne, R. Guilbon, A. Ravissot, É. Schmitt, J. N. Valdivia, S. Venel, and F. Vial, “Stratéole/vorcore-long-duration, superpressure balloons to study the Antarctic lower stratosphere during the 2005 winter,” J. Atmos. Ocean. Technol. 24(12), 2048–2061 (2007).
[CrossRef]

Bordereau, J.

A. Hertzog, P. Cocquerez, C. Basdevant, G. Boccara, J. Bordereau, B. Brioit, A. Cardonne, R. Guilbon, A. Ravissot, É. Schmitt, J. N. Valdivia, S. Venel, and F. Vial, “Stratéole/vorcore-long-duration, superpressure balloons to study the Antarctic lower stratosphere during the 2005 winter,” J. Atmos. Ocean. Technol. 24(12), 2048–2061 (2007).
[CrossRef]

Brioit, B.

A. Hertzog, P. Cocquerez, C. Basdevant, G. Boccara, J. Bordereau, B. Brioit, A. Cardonne, R. Guilbon, A. Ravissot, É. Schmitt, J. N. Valdivia, S. Venel, and F. Vial, “Stratéole/vorcore-long-duration, superpressure balloons to study the Antarctic lower stratosphere during the 2005 winter,” J. Atmos. Ocean. Technol. 24(12), 2048–2061 (2007).
[CrossRef]

Bruneau, D.

Cardonne, A.

A. Hertzog, P. Cocquerez, C. Basdevant, G. Boccara, J. Bordereau, B. Brioit, A. Cardonne, R. Guilbon, A. Ravissot, É. Schmitt, J. N. Valdivia, S. Venel, and F. Vial, “Stratéole/vorcore-long-duration, superpressure balloons to study the Antarctic lower stratosphere during the 2005 winter,” J. Atmos. Ocean. Technol. 24(12), 2048–2061 (2007).
[CrossRef]

Castleberg, P. A.

Cézard, N.

Cha, H. H.

Chaloupy, M.

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26(12), 2501–2515 (2009).
[CrossRef]

Chanin, M. L.

V. Ramaswamy, M. L. Chanin, J. Angell, J. Barnett, D. Gaffen, M. Gelman, P. Keckhut, Y. Koshelkov, J. Labitzke, J. R. Lin, A. O’Neill, J. Nash, W. Randel, R. Rood, K. Shine, M. Shiotani, and R. Swinbank, “Stratospheric temperature trends: Observations and model simulations,” Rev. Geophys. 39(1), 71–122 (2001).
[CrossRef]

A. Garnier and M. L. Chanin, “Description of a Doppler Rayleigh lidar for measuring winds in the middle atmosphere,” Appl. Phys. B 55(1), 35–40 (1992).
[CrossRef]

A. Hauchecorne, M. L. Chanin, and P. Keckhut, “Climatology and trends of the middle atmospheric temperature (33–87 km) as seen by Rayleigh lidar over the south of France,” J. Geophys. Res. 96(D8), 15297–15309 (1991).
[CrossRef]

M. L. Chanin, A. Garnier, A. Hauchecorne, and J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16(11), 1273–1276 (1989).
[CrossRef]

Chaxell, Y.

D. Rees, M. Vyssogorets, N. P. Meredith, E. Griffin, and Y. Chaxell, “The Doppler wind and temperature system of the ALOMAR lidar facility: overview and initial results,” J. Atmos. Sol. Terr. Phys. 58(16), 1827–1842 (1996).
[CrossRef]

Chen, H.

Chen, W. B.

Cheng, T.

Chu, X.

Cocquerez, P.

A. Hertzog, P. Cocquerez, C. Basdevant, G. Boccara, J. Bordereau, B. Brioit, A. Cardonne, R. Guilbon, A. Ravissot, É. Schmitt, J. N. Valdivia, S. Venel, and F. Vial, “Stratéole/vorcore-long-duration, superpressure balloons to study the Antarctic lower stratosphere during the 2005 winter,” J. Atmos. Ocean. Technol. 24(12), 2048–2061 (2007).
[CrossRef]

Culoma, A.

A. Stoffelen, J. Pailleux, E. Källen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–87 (2005).
[CrossRef]

Dabas, A.

A. Dabas, M. L. Denneulin, P. Flamant, C. Loth, A. Garnier, and A. Dolfi-Bouteyre, “Correcting winds measured with a Rayleigh Doppler lidar from pressure and temperature effects,” Tellus, Ser. A, Dyn. Meterol. Oceanogr. 60(2), 206–215 (2008).
[CrossRef]

Dartt, D. G.

A. D. Belmont, D. G. Dartt, and G. D. Nastrom, “Variations of stratospheric zonal winds, 20-65 km, 1961-1971,” J. Appl. Meteorol. 14(4), 585–594 (1975).
[CrossRef]

Denneulin, M. L.

A. Dabas, M. L. Denneulin, P. Flamant, C. Loth, A. Garnier, and A. Dolfi-Bouteyre, “Correcting winds measured with a Rayleigh Doppler lidar from pressure and temperature effects,” Tellus, Ser. A, Dyn. Meterol. Oceanogr. 60(2), 206–215 (2008).
[CrossRef]

Dolfi-Bouteyre, A.

N. Cézard, A. Dolfi-Bouteyre, J. P. Huignard, and P. H. Flamant, “Performance evaluation of a dual fringe-imaging Michelson interferometer for air parameter measurements with a 355 nm Rayleigh-Mie lidar,” Appl. Opt. 48(12), 2321–2332 (2009).
[CrossRef] [PubMed]

A. Dabas, M. L. Denneulin, P. Flamant, C. Loth, A. Garnier, and A. Dolfi-Bouteyre, “Correcting winds measured with a Rayleigh Doppler lidar from pressure and temperature effects,” Tellus, Ser. A, Dyn. Meterol. Oceanogr. 60(2), 206–215 (2008).
[CrossRef]

Dong, J.

Dou, X.

Dukhyeon, K.

Z. Shu, Z. Shu, H. Xia, D. Sun, Y. Han, C. Hyunki, K. Dukhyeon, G. Wang, B. Sunghoon, and D. Hu, “Low stratospheric wind measurement using mobile Rayleigh Doppler Wind LIDAR,” J. Opt. Soc. Korea. 16(2), 141–144 (2012).

Durand, Y.

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26(12), 2501–2515 (2009).
[CrossRef]

Endemann, M.

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26(12), 2501–2515 (2009).
[CrossRef]

A. Stoffelen, J. Pailleux, E. Källen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–87 (2005).
[CrossRef]

Fabre, F.

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26(12), 2501–2515 (2009).
[CrossRef]

Fang, X.

Fiedler, J.

U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecorne, and K. Adolfsen, “The ALOMAR Rayleigh/Mie/Raman lidar: Objectives, configuration, and performance,” Ann. Geophys. 18(7), 815–833 (2000).
[CrossRef]

Flamant, P.

A. Dabas, M. L. Denneulin, P. Flamant, C. Loth, A. Garnier, and A. Dolfi-Bouteyre, “Correcting winds measured with a Rayleigh Doppler lidar from pressure and temperature effects,” Tellus, Ser. A, Dyn. Meterol. Oceanogr. 60(2), 206–215 (2008).
[CrossRef]

A. Stoffelen, J. Pailleux, E. Källen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–87 (2005).
[CrossRef]

Flamant, P. H.

Flesia, C.

Freudenthaler, V.

U. Paffrath, C. Lemmerz, O. Reitebuch, B. Witschas, I. Nikolaus, and V. Freudenthaler, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part II: Simulations and Rayleigh Receiver Radiometric performance,” J. Atmos. Ocean. Technol. 26(12), 2516–2530 (2009).
[CrossRef]

Fricke, K. H.

U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecorne, and K. Adolfsen, “The ALOMAR Rayleigh/Mie/Raman lidar: Objectives, configuration, and performance,” Ann. Geophys. 18(7), 815–833 (2000).
[CrossRef]

Friedman, J. S.

Gaffen, D.

V. Ramaswamy, M. L. Chanin, J. Angell, J. Barnett, D. Gaffen, M. Gelman, P. Keckhut, Y. Koshelkov, J. Labitzke, J. R. Lin, A. O’Neill, J. Nash, W. Randel, R. Rood, K. Shine, M. Shiotani, and R. Swinbank, “Stratospheric temperature trends: Observations and model simulations,” Rev. Geophys. 39(1), 71–122 (2001).
[CrossRef]

Garnier, A.

A. Dabas, M. L. Denneulin, P. Flamant, C. Loth, A. Garnier, and A. Dolfi-Bouteyre, “Correcting winds measured with a Rayleigh Doppler lidar from pressure and temperature effects,” Tellus, Ser. A, Dyn. Meterol. Oceanogr. 60(2), 206–215 (2008).
[CrossRef]

D. Bruneau, A. Garnier, A. Hertzog, and J. Porteneuve, “Wind-velocity lidar measurements by use of a Mach-Zehnder interferometer, comparison with a Fabry-Perot interferometer,” Appl. Opt. 43(1), 173–182 (2004).
[CrossRef] [PubMed]

C. Souprayen, A. Garnier, and A. Hertzog, “Rayleigh-Mie Doppler wind lidar for atmospheric measurements. II. Mie scattering effect, theory, and calibration,” Appl. Opt. 38(12), 2422–2431 (1999).
[CrossRef] [PubMed]

C. Souprayen, A. Garnier, A. Hertzog, A. Hauchecorne, and J. Porteneuve, “Rayleigh-Mie Doppler wind lidar for atmospheric measurements. I. Instrumental setup, validation, and first climatological results,” Appl. Opt. 38(12), 2410–2421 (1999).
[CrossRef] [PubMed]

A. Garnier and M. L. Chanin, “Description of a Doppler Rayleigh lidar for measuring winds in the middle atmosphere,” Appl. Phys. B 55(1), 35–40 (1992).
[CrossRef]

M. L. Chanin, A. Garnier, A. Hauchecorne, and J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16(11), 1273–1276 (1989).
[CrossRef]

Gelman, M.

V. Ramaswamy, M. L. Chanin, J. Angell, J. Barnett, D. Gaffen, M. Gelman, P. Keckhut, Y. Koshelkov, J. Labitzke, J. R. Lin, A. O’Neill, J. Nash, W. Randel, R. Rood, K. Shine, M. Shiotani, and R. Swinbank, “Stratospheric temperature trends: Observations and model simulations,” Rev. Geophys. 39(1), 71–122 (2001).
[CrossRef]

Gentry, B. M.

Gerrard, A. J.

J. W. Meriwether and A. J. Gerrard, “Mesosphere inversion layers and stratosphere temperature enhancements,” Rev. Geophys. 42(3), RG3003 (2004).
[CrossRef]

Griffin, E.

D. Rees, M. Vyssogorets, N. P. Meredith, E. Griffin, and Y. Chaxell, “The Doppler wind and temperature system of the ALOMAR lidar facility: overview and initial results,” J. Atmos. Sol. Terr. Phys. 58(16), 1827–1842 (1996).
[CrossRef]

Gu, S. Y.

Guilbon, R.

A. Hertzog, P. Cocquerez, C. Basdevant, G. Boccara, J. Bordereau, B. Brioit, A. Cardonne, R. Guilbon, A. Ravissot, É. Schmitt, J. N. Valdivia, S. Venel, and F. Vial, “Stratéole/vorcore-long-duration, superpressure balloons to study the Antarctic lower stratosphere during the 2005 winter,” J. Atmos. Ocean. Technol. 24(12), 2048–2061 (2007).
[CrossRef]

Hair, J. W.

Han, Y.

Y. L. Han, X. Dou, D. Sun, H. Xia, Z. Shu, Y. Han, X. Xue, and T. Cheng, “Analysis on wind retrieval methods for Rayleigh Doppler lidar,” Opt. Eng. 53(6), 061607 (2014).
[CrossRef]

H. Xia, X. Dou, D. Sun, Z. Shu, X. Xue, Y. Han, D. Hu, Y. L. Han, and T. Cheng, “Mid-altitude wind measurements with mobile Rayleigh Doppler lidar incorporating system-level optical frequency control method,” Opt. Express 20(14), 15286–15300 (2012).
[CrossRef] [PubMed]

Z. Shu, Z. Shu, H. Xia, D. Sun, Y. Han, C. Hyunki, K. Dukhyeon, G. Wang, B. Sunghoon, and D. Hu, “Low stratospheric wind measurement using mobile Rayleigh Doppler Wind LIDAR,” J. Opt. Soc. Korea. 16(2), 141–144 (2012).

Han, Y. L.

Hardesty, R. M.

Harrell, S. D.

Hauchecorne, A.

U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecorne, and K. Adolfsen, “The ALOMAR Rayleigh/Mie/Raman lidar: Objectives, configuration, and performance,” Ann. Geophys. 18(7), 815–833 (2000).
[CrossRef]

C. Souprayen, A. Garnier, A. Hertzog, A. Hauchecorne, and J. Porteneuve, “Rayleigh-Mie Doppler wind lidar for atmospheric measurements. I. Instrumental setup, validation, and first climatological results,” Appl. Opt. 38(12), 2410–2421 (1999).
[CrossRef] [PubMed]

A. Hauchecorne, M. L. Chanin, and P. Keckhut, “Climatology and trends of the middle atmospheric temperature (33–87 km) as seen by Rayleigh lidar over the south of France,” J. Geophys. Res. 96(D8), 15297–15309 (1991).
[CrossRef]

M. L. Chanin, A. Garnier, A. Hauchecorne, and J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16(11), 1273–1276 (1989).
[CrossRef]

Hertzog, A.

Hines, C. O.

C. A. Tepley, S. I. Sargoytchev, and C. O. Hines, “Initial Doppler Rayleigh lidar results from Arecibo,” Geophys. Res. Lett. 18(2), 167–170 (1991).
[CrossRef]

Hu, D.

H. Xia, X. Dou, D. Sun, Z. Shu, X. Xue, Y. Han, D. Hu, Y. L. Han, and T. Cheng, “Mid-altitude wind measurements with mobile Rayleigh Doppler lidar incorporating system-level optical frequency control method,” Opt. Express 20(14), 15286–15300 (2012).
[CrossRef] [PubMed]

Z. Shu, Z. Shu, H. Xia, D. Sun, Y. Han, C. Hyunki, K. Dukhyeon, G. Wang, B. Sunghoon, and D. Hu, “Low stratospheric wind measurement using mobile Rayleigh Doppler Wind LIDAR,” J. Opt. Soc. Korea. 16(2), 141–144 (2012).

Huang, W.

Huignard, J. P.

Hyunki, C.

Z. Shu, Z. Shu, H. Xia, D. Sun, Y. Han, C. Hyunki, K. Dukhyeon, G. Wang, B. Sunghoon, and D. Hu, “Low stratospheric wind measurement using mobile Rayleigh Doppler Wind LIDAR,” J. Opt. Soc. Korea. 16(2), 141–144 (2012).

Ingmann, P.

A. Stoffelen, J. Pailleux, E. Källen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–87 (2005).
[CrossRef]

Irgang, T. D.

Isaksen, L.

A. Stoffelen, J. Pailleux, E. Källen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–87 (2005).
[CrossRef]

Källen, E.

A. Stoffelen, J. Pailleux, E. Källen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–87 (2005).
[CrossRef]

Keckhut, P.

V. Ramaswamy, M. L. Chanin, J. Angell, J. Barnett, D. Gaffen, M. Gelman, P. Keckhut, Y. Koshelkov, J. Labitzke, J. R. Lin, A. O’Neill, J. Nash, W. Randel, R. Rood, K. Shine, M. Shiotani, and R. Swinbank, “Stratospheric temperature trends: Observations and model simulations,” Rev. Geophys. 39(1), 71–122 (2001).
[CrossRef]

A. Hauchecorne, M. L. Chanin, and P. Keckhut, “Climatology and trends of the middle atmospheric temperature (33–87 km) as seen by Rayleigh lidar over the south of France,” J. Geophys. Res. 96(D8), 15297–15309 (1991).
[CrossRef]

Kim, D.

Kjome, N. T.

B. M. Knudsen, J. M. Rosen, N. T. Kjome, and A. T. Whitten, “Comparison of analyzed stratospheric temperatures and calculated trajectories with long-duration balloon data,” J. Geophys. Res. 101(D14), 19137–19145 (1996).
[CrossRef]

Knudsen, B. M.

B. M. Knudsen, J. M. Rosen, N. T. Kjome, and A. T. Whitten, “Comparison of analyzed stratospheric temperatures and calculated trajectories with long-duration balloon data,” J. Geophys. Res. 101(D14), 19137–19145 (1996).
[CrossRef]

Kobayashi, T.

Korb, C. L.

Koshelkov, Y.

V. Ramaswamy, M. L. Chanin, J. Angell, J. Barnett, D. Gaffen, M. Gelman, P. Keckhut, Y. Koshelkov, J. Labitzke, J. R. Lin, A. O’Neill, J. Nash, W. Randel, R. Rood, K. Shine, M. Shiotani, and R. Swinbank, “Stratospheric temperature trends: Observations and model simulations,” Rev. Geophys. 39(1), 71–122 (2001).
[CrossRef]

Kwon, S. O.

Labitzke, J.

V. Ramaswamy, M. L. Chanin, J. Angell, J. Barnett, D. Gaffen, M. Gelman, P. Keckhut, Y. Koshelkov, J. Labitzke, J. R. Lin, A. O’Neill, J. Nash, W. Randel, R. Rood, K. Shine, M. Shiotani, and R. Swinbank, “Stratospheric temperature trends: Observations and model simulations,” Rev. Geophys. 39(1), 71–122 (2001).
[CrossRef]

Lemmerz, C.

B. Witschas, C. Lemmerz, and O. Reitebuch, “Horizontal LIDAR measurements for the proof of spontaneous Rayleigh-Brillouin scattering in the atmosphere,” Appl. Opt. 51(25), 6207–6219 (2012).
[CrossRef] [PubMed]

U. Paffrath, C. Lemmerz, O. Reitebuch, B. Witschas, I. Nikolaus, and V. Freudenthaler, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part II: Simulations and Rayleigh Receiver Radiometric performance,” J. Atmos. Ocean. Technol. 26(12), 2516–2530 (2009).
[CrossRef]

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26(12), 2501–2515 (2009).
[CrossRef]

T. Schröder, C. Lemmerz, O. Reitebuch, M. Wirth, C. Wührer, and R. Treichel, “Frequency jitter and spectral width of an injection-seeded Q-switched Nd:YAG laser for a Doppler wind lidar,” Appl. Phys. B 87(3), 437–444 (2007).
[CrossRef]

Li, S. X.

Li, T.

Lin, J. R.

V. Ramaswamy, M. L. Chanin, J. Angell, J. Barnett, D. Gaffen, M. Gelman, P. Keckhut, Y. Koshelkov, J. Labitzke, J. R. Lin, A. O’Neill, J. Nash, W. Randel, R. Rood, K. Shine, M. Shiotani, and R. Swinbank, “Stratospheric temperature trends: Observations and model simulations,” Rev. Geophys. 39(1), 71–122 (2001).
[CrossRef]

Liu, J. T.

Liu, W.

Liu, Z. S.

Loth, C.

A. Dabas, M. L. Denneulin, P. Flamant, C. Loth, A. Garnier, and A. Dolfi-Bouteyre, “Correcting winds measured with a Rayleigh Doppler lidar from pressure and temperature effects,” Tellus, Ser. A, Dyn. Meterol. Oceanogr. 60(2), 206–215 (2008).
[CrossRef]

Lübken, F. J.

A. Müllemann and F. J. Lübken, “Horizontal winds in the mesosphere at high latitudes,” Adv. Space Res. 35(11), 1890–1894 (2005).
[CrossRef]

McGill, M. J.

McKay, J. A.

Meredith, N. P.

D. Rees, M. Vyssogorets, N. P. Meredith, E. Griffin, and Y. Chaxell, “The Doppler wind and temperature system of the ALOMAR lidar facility: overview and initial results,” J. Atmos. Sol. Terr. Phys. 58(16), 1827–1842 (1996).
[CrossRef]

Meriwether, J. W.

J. W. Meriwether and A. J. Gerrard, “Mesosphere inversion layers and stratosphere temperature enhancements,” Rev. Geophys. 42(3), RG3003 (2004).
[CrossRef]

Meynart, R.

A. Stoffelen, J. Pailleux, E. Källen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–87 (2005).
[CrossRef]

Müllemann, A.

A. Müllemann and F. J. Lübken, “Horizontal winds in the mesosphere at high latitudes,” Adv. Space Res. 35(11), 1890–1894 (2005).
[CrossRef]

Nagel, E.

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26(12), 2501–2515 (2009).
[CrossRef]

Nash, J.

V. Ramaswamy, M. L. Chanin, J. Angell, J. Barnett, D. Gaffen, M. Gelman, P. Keckhut, Y. Koshelkov, J. Labitzke, J. R. Lin, A. O’Neill, J. Nash, W. Randel, R. Rood, K. Shine, M. Shiotani, and R. Swinbank, “Stratospheric temperature trends: Observations and model simulations,” Rev. Geophys. 39(1), 71–122 (2001).
[CrossRef]

Nastrom, G. D.

A. D. Belmont, D. G. Dartt, and G. D. Nastrom, “Variations of stratospheric zonal winds, 20-65 km, 1961-1971,” J. Appl. Meteorol. 14(4), 585–594 (1975).
[CrossRef]

Nelke, G.

U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecorne, and K. Adolfsen, “The ALOMAR Rayleigh/Mie/Raman lidar: Objectives, configuration, and performance,” Ann. Geophys. 18(7), 815–833 (2000).
[CrossRef]

Nikolaus, I.

U. Paffrath, C. Lemmerz, O. Reitebuch, B. Witschas, I. Nikolaus, and V. Freudenthaler, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part II: Simulations and Rayleigh Receiver Radiometric performance,” J. Atmos. Ocean. Technol. 26(12), 2516–2530 (2009).
[CrossRef]

O’Neill, A.

V. Ramaswamy, M. L. Chanin, J. Angell, J. Barnett, D. Gaffen, M. Gelman, P. Keckhut, Y. Koshelkov, J. Labitzke, J. R. Lin, A. O’Neill, J. Nash, W. Randel, R. Rood, K. Shine, M. Shiotani, and R. Swinbank, “Stratospheric temperature trends: Observations and model simulations,” Rev. Geophys. 39(1), 71–122 (2001).
[CrossRef]

Paffrath, U.

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26(12), 2501–2515 (2009).
[CrossRef]

U. Paffrath, C. Lemmerz, O. Reitebuch, B. Witschas, I. Nikolaus, and V. Freudenthaler, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part II: Simulations and Rayleigh Receiver Radiometric performance,” J. Atmos. Ocean. Technol. 26(12), 2516–2530 (2009).
[CrossRef]

Pailleux, J.

A. Stoffelen, J. Pailleux, E. Källen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–87 (2005).
[CrossRef]

Porteneuve, J.

Ramaswamy, V.

V. Ramaswamy, M. L. Chanin, J. Angell, J. Barnett, D. Gaffen, M. Gelman, P. Keckhut, Y. Koshelkov, J. Labitzke, J. R. Lin, A. O’Neill, J. Nash, W. Randel, R. Rood, K. Shine, M. Shiotani, and R. Swinbank, “Stratospheric temperature trends: Observations and model simulations,” Rev. Geophys. 39(1), 71–122 (2001).
[CrossRef]

Randel, W.

V. Ramaswamy, M. L. Chanin, J. Angell, J. Barnett, D. Gaffen, M. Gelman, P. Keckhut, Y. Koshelkov, J. Labitzke, J. R. Lin, A. O’Neill, J. Nash, W. Randel, R. Rood, K. Shine, M. Shiotani, and R. Swinbank, “Stratospheric temperature trends: Observations and model simulations,” Rev. Geophys. 39(1), 71–122 (2001).
[CrossRef]

Ravissot, A.

A. Hertzog, P. Cocquerez, C. Basdevant, G. Boccara, J. Bordereau, B. Brioit, A. Cardonne, R. Guilbon, A. Ravissot, É. Schmitt, J. N. Valdivia, S. Venel, and F. Vial, “Stratéole/vorcore-long-duration, superpressure balloons to study the Antarctic lower stratosphere during the 2005 winter,” J. Atmos. Ocean. Technol. 24(12), 2048–2061 (2007).
[CrossRef]

Rees, D.

U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecorne, and K. Adolfsen, “The ALOMAR Rayleigh/Mie/Raman lidar: Objectives, configuration, and performance,” Ann. Geophys. 18(7), 815–833 (2000).
[CrossRef]

D. Rees, M. Vyssogorets, N. P. Meredith, E. Griffin, and Y. Chaxell, “The Doppler wind and temperature system of the ALOMAR lidar facility: overview and initial results,” J. Atmos. Sol. Terr. Phys. 58(16), 1827–1842 (1996).
[CrossRef]

Reitebuch, O.

B. Witschas, C. Lemmerz, and O. Reitebuch, “Horizontal LIDAR measurements for the proof of spontaneous Rayleigh-Brillouin scattering in the atmosphere,” Appl. Opt. 51(25), 6207–6219 (2012).
[CrossRef] [PubMed]

U. Paffrath, C. Lemmerz, O. Reitebuch, B. Witschas, I. Nikolaus, and V. Freudenthaler, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part II: Simulations and Rayleigh Receiver Radiometric performance,” J. Atmos. Ocean. Technol. 26(12), 2516–2530 (2009).
[CrossRef]

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26(12), 2501–2515 (2009).
[CrossRef]

T. Schröder, C. Lemmerz, O. Reitebuch, M. Wirth, C. Wührer, and R. Treichel, “Frequency jitter and spectral width of an injection-seeded Q-switched Nd:YAG laser for a Doppler wind lidar,” Appl. Phys. B 87(3), 437–444 (2007).
[CrossRef]

Roe, H.

Rojas, R.

C. A. Tepley, S. I. Sargoytchev, and R. Rojas, “The Doppler Rayleigh lidar system at Arecibo,” IEEE Trans. Geosci. Remote Sens. 31(1), 36–47 (1993).
[CrossRef]

Rood, R.

V. Ramaswamy, M. L. Chanin, J. Angell, J. Barnett, D. Gaffen, M. Gelman, P. Keckhut, Y. Koshelkov, J. Labitzke, J. R. Lin, A. O’Neill, J. Nash, W. Randel, R. Rood, K. Shine, M. Shiotani, and R. Swinbank, “Stratospheric temperature trends: Observations and model simulations,” Rev. Geophys. 39(1), 71–122 (2001).
[CrossRef]

Rosen, J. M.

B. M. Knudsen, J. M. Rosen, N. T. Kjome, and A. T. Whitten, “Comparison of analyzed stratospheric temperatures and calculated trajectories with long-duration balloon data,” J. Geophys. Res. 101(D14), 19137–19145 (1996).
[CrossRef]

Sargoytchev, S. I.

C. A. Tepley, S. I. Sargoytchev, and R. Rojas, “The Doppler Rayleigh lidar system at Arecibo,” IEEE Trans. Geosci. Remote Sens. 31(1), 36–47 (1993).
[CrossRef]

C. A. Tepley, S. I. Sargoytchev, and C. O. Hines, “Initial Doppler Rayleigh lidar results from Arecibo,” Geophys. Res. Lett. 18(2), 167–170 (1991).
[CrossRef]

Schmitt, É.

A. Hertzog, P. Cocquerez, C. Basdevant, G. Boccara, J. Bordereau, B. Brioit, A. Cardonne, R. Guilbon, A. Ravissot, É. Schmitt, J. N. Valdivia, S. Venel, and F. Vial, “Stratéole/vorcore-long-duration, superpressure balloons to study the Antarctic lower stratosphere during the 2005 winter,” J. Atmos. Ocean. Technol. 24(12), 2048–2061 (2007).
[CrossRef]

Schröder, T.

T. Schröder, C. Lemmerz, O. Reitebuch, M. Wirth, C. Wührer, and R. Treichel, “Frequency jitter and spectral width of an injection-seeded Q-switched Nd:YAG laser for a Doppler wind lidar,” Appl. Phys. B 87(3), 437–444 (2007).
[CrossRef]

Schyberg, H.

A. Stoffelen, J. Pailleux, E. Källen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–87 (2005).
[CrossRef]

She, C. Y.

She, C.-Y.

Shen, F.

Shine, K.

V. Ramaswamy, M. L. Chanin, J. Angell, J. Barnett, D. Gaffen, M. Gelman, P. Keckhut, Y. Koshelkov, J. Labitzke, J. R. Lin, A. O’Neill, J. Nash, W. Randel, R. Rood, K. Shine, M. Shiotani, and R. Swinbank, “Stratospheric temperature trends: Observations and model simulations,” Rev. Geophys. 39(1), 71–122 (2001).
[CrossRef]

Shiotani, M.

V. Ramaswamy, M. L. Chanin, J. Angell, J. Barnett, D. Gaffen, M. Gelman, P. Keckhut, Y. Koshelkov, J. Labitzke, J. R. Lin, A. O’Neill, J. Nash, W. Randel, R. Rood, K. Shine, M. Shiotani, and R. Swinbank, “Stratospheric temperature trends: Observations and model simulations,” Rev. Geophys. 39(1), 71–122 (2001).
[CrossRef]

Shu, Z.

Y. L. Han, X. Dou, D. Sun, H. Xia, Z. Shu, Y. Han, X. Xue, and T. Cheng, “Analysis on wind retrieval methods for Rayleigh Doppler lidar,” Opt. Eng. 53(6), 061607 (2014).
[CrossRef]

H. Xia, X. Dou, D. Sun, Z. Shu, X. Xue, Y. Han, D. Hu, Y. L. Han, and T. Cheng, “Mid-altitude wind measurements with mobile Rayleigh Doppler lidar incorporating system-level optical frequency control method,” Opt. Express 20(14), 15286–15300 (2012).
[CrossRef] [PubMed]

Z. Shu, Z. Shu, H. Xia, D. Sun, Y. Han, C. Hyunki, K. Dukhyeon, G. Wang, B. Sunghoon, and D. Hu, “Low stratospheric wind measurement using mobile Rayleigh Doppler Wind LIDAR,” J. Opt. Soc. Korea. 16(2), 141–144 (2012).

Z. Shu, Z. Shu, H. Xia, D. Sun, Y. Han, C. Hyunki, K. Dukhyeon, G. Wang, B. Sunghoon, and D. Hu, “Low stratospheric wind measurement using mobile Rayleigh Doppler Wind LIDAR,” J. Opt. Soc. Korea. 16(2), 141–144 (2012).

Skinner, W. R.

Song, X. Q.

Souprayen, C.

Stoffelen, A.

A. Stoffelen, J. Pailleux, E. Källen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–87 (2005).
[CrossRef]

Sun, D.

Sunghoon, B.

Z. Shu, Z. Shu, H. Xia, D. Sun, Y. Han, C. Hyunki, K. Dukhyeon, G. Wang, B. Sunghoon, and D. Hu, “Low stratospheric wind measurement using mobile Rayleigh Doppler Wind LIDAR,” J. Opt. Soc. Korea. 16(2), 141–144 (2012).

Swinbank, R.

V. Ramaswamy, M. L. Chanin, J. Angell, J. Barnett, D. Gaffen, M. Gelman, P. Keckhut, Y. Koshelkov, J. Labitzke, J. R. Lin, A. O’Neill, J. Nash, W. Randel, R. Rood, K. Shine, M. Shiotani, and R. Swinbank, “Stratospheric temperature trends: Observations and model simulations,” Rev. Geophys. 39(1), 71–122 (2001).
[CrossRef]

Tan, B.

Tepley, C. A.

J. S. Friedman, C. A. Tepley, P. A. Castleberg, and H. Roe, “Middle-atmospheric Doppler lidar using an iodine-vapor edge filter,” Opt. Lett. 22(21), 1648–1650 (1997).
[CrossRef] [PubMed]

C. A. Tepley, “Neutral winds of the middle atmosphere observed at Arecibo using a Doppler Rayleigh lidar,” J. Geophys. Res. 99(D12), 25781–25790 (1994).
[CrossRef]

C. A. Tepley, S. I. Sargoytchev, and R. Rojas, “The Doppler Rayleigh lidar system at Arecibo,” IEEE Trans. Geosci. Remote Sens. 31(1), 36–47 (1993).
[CrossRef]

C. A. Tepley, S. I. Sargoytchev, and C. O. Hines, “Initial Doppler Rayleigh lidar results from Arecibo,” Geophys. Res. Lett. 18(2), 167–170 (1991).
[CrossRef]

Treichel, R.

T. Schröder, C. Lemmerz, O. Reitebuch, M. Wirth, C. Wührer, and R. Treichel, “Frequency jitter and spectral width of an injection-seeded Q-switched Nd:YAG laser for a Doppler wind lidar,” Appl. Phys. B 87(3), 437–444 (2007).
[CrossRef]

Valdivia, J. N.

A. Hertzog, P. Cocquerez, C. Basdevant, G. Boccara, J. Bordereau, B. Brioit, A. Cardonne, R. Guilbon, A. Ravissot, É. Schmitt, J. N. Valdivia, S. Venel, and F. Vial, “Stratéole/vorcore-long-duration, superpressure balloons to study the Antarctic lower stratosphere during the 2005 winter,” J. Atmos. Ocean. Technol. 24(12), 2048–2061 (2007).
[CrossRef]

Vaughan, J. M.

A. Stoffelen, J. Pailleux, E. Källen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–87 (2005).
[CrossRef]

Venel, S.

A. Hertzog, P. Cocquerez, C. Basdevant, G. Boccara, J. Bordereau, B. Brioit, A. Cardonne, R. Guilbon, A. Ravissot, É. Schmitt, J. N. Valdivia, S. Venel, and F. Vial, “Stratéole/vorcore-long-duration, superpressure balloons to study the Antarctic lower stratosphere during the 2005 winter,” J. Atmos. Ocean. Technol. 24(12), 2048–2061 (2007).
[CrossRef]

Vial, F.

A. Hertzog, P. Cocquerez, C. Basdevant, G. Boccara, J. Bordereau, B. Brioit, A. Cardonne, R. Guilbon, A. Ravissot, É. Schmitt, J. N. Valdivia, S. Venel, and F. Vial, “Stratéole/vorcore-long-duration, superpressure balloons to study the Antarctic lower stratosphere during the 2005 winter,” J. Atmos. Ocean. Technol. 24(12), 2048–2061 (2007).
[CrossRef]

von Cossart, G.

U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecorne, and K. Adolfsen, “The ALOMAR Rayleigh/Mie/Raman lidar: Objectives, configuration, and performance,” Ann. Geophys. 18(7), 815–833 (2000).
[CrossRef]

von Zahn, U.

U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecorne, and K. Adolfsen, “The ALOMAR Rayleigh/Mie/Raman lidar: Objectives, configuration, and performance,” Ann. Geophys. 18(7), 815–833 (2000).
[CrossRef]

Vyssogorets, M.

D. Rees, M. Vyssogorets, N. P. Meredith, E. Griffin, and Y. Chaxell, “The Doppler wind and temperature system of the ALOMAR lidar facility: overview and initial results,” J. Atmos. Sol. Terr. Phys. 58(16), 1827–1842 (1996).
[CrossRef]

Wang, G.

Z. Shu, Z. Shu, H. Xia, D. Sun, Y. Han, C. Hyunki, K. Dukhyeon, G. Wang, B. Sunghoon, and D. Hu, “Low stratospheric wind measurement using mobile Rayleigh Doppler Wind LIDAR,” J. Opt. Soc. Korea. 16(2), 141–144 (2012).

Wergen, W.

A. Stoffelen, J. Pailleux, E. Källen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–87 (2005).
[CrossRef]

Whitten, A. T.

B. M. Knudsen, J. M. Rosen, N. T. Kjome, and A. T. Whitten, “Comparison of analyzed stratospheric temperatures and calculated trajectories with long-duration balloon data,” J. Geophys. Res. 101(D14), 19137–19145 (1996).
[CrossRef]

Wiig, J.

Williams, B. P.

Wirth, M.

T. Schröder, C. Lemmerz, O. Reitebuch, M. Wirth, C. Wührer, and R. Treichel, “Frequency jitter and spectral width of an injection-seeded Q-switched Nd:YAG laser for a Doppler wind lidar,” Appl. Phys. B 87(3), 437–444 (2007).
[CrossRef]

Witschas, B.

B. Witschas, C. Lemmerz, and O. Reitebuch, “Horizontal LIDAR measurements for the proof of spontaneous Rayleigh-Brillouin scattering in the atmosphere,” Appl. Opt. 51(25), 6207–6219 (2012).
[CrossRef] [PubMed]

B. Witschas, “Analytical model for Rayleigh-Brillouin line shapes in air,” Appl. Opt. 50(3), 267–270 (2011).
[CrossRef] [PubMed]

U. Paffrath, C. Lemmerz, O. Reitebuch, B. Witschas, I. Nikolaus, and V. Freudenthaler, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part II: Simulations and Rayleigh Receiver Radiometric performance,” J. Atmos. Ocean. Technol. 26(12), 2516–2530 (2009).
[CrossRef]

Wu, D.

Wührer, C.

T. Schröder, C. Lemmerz, O. Reitebuch, M. Wirth, C. Wührer, and R. Treichel, “Frequency jitter and spectral width of an injection-seeded Q-switched Nd:YAG laser for a Doppler wind lidar,” Appl. Phys. B 87(3), 437–444 (2007).
[CrossRef]

Xia, H.

Y. L. Han, X. Dou, D. Sun, H. Xia, Z. Shu, Y. Han, X. Xue, and T. Cheng, “Analysis on wind retrieval methods for Rayleigh Doppler lidar,” Opt. Eng. 53(6), 061607 (2014).
[CrossRef]

H. Xia, X. Dou, D. Sun, Z. Shu, X. Xue, Y. Han, D. Hu, Y. L. Han, and T. Cheng, “Mid-altitude wind measurements with mobile Rayleigh Doppler lidar incorporating system-level optical frequency control method,” Opt. Express 20(14), 15286–15300 (2012).
[CrossRef] [PubMed]

Z. Shu, Z. Shu, H. Xia, D. Sun, Y. Han, C. Hyunki, K. Dukhyeon, G. Wang, B. Sunghoon, and D. Hu, “Low stratospheric wind measurement using mobile Rayleigh Doppler Wind LIDAR,” J. Opt. Soc. Korea. 16(2), 141–144 (2012).

H. Xia, D. Sun, Y. Yang, F. Shen, J. Dong, and T. Kobayashi, “Fabry-Perot interferometer based Mie Doppler lidar for low tropospheric wind observation,” Appl. Opt. 46(29), 7120–7131 (2007).
[CrossRef] [PubMed]

Xue, X.

Yamashita, C.

Yang, Y.

Yuan, T.

Yue, J.

Zhang, K. L.

Adv. Space Res. (1)

A. Müllemann and F. J. Lübken, “Horizontal winds in the mesosphere at high latitudes,” Adv. Space Res. 35(11), 1890–1894 (2005).
[CrossRef]

Ann. Geophys. (1)

U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecorne, and K. Adolfsen, “The ALOMAR Rayleigh/Mie/Raman lidar: Objectives, configuration, and performance,” Ann. Geophys. 18(7), 815–833 (2000).
[CrossRef]

Appl. Opt. (16)

M. J. McGill, W. R. Skinner, and T. D. Irgang, “Analysis techniques for the recovery of winds and backscatter coefficients from a multiple-channel incoherent Doppler lidar,” Appl. Opt. 36(6), 1253–1268 (1997).
[CrossRef] [PubMed]

J. A. McKay, “Modeling of direct detection Doppler wind lidar. I. The edge technique,” Appl. Opt. 37(27), 6480–6486 (1998).
[CrossRef] [PubMed]

J. A. McKay, “Modeling of direct detection Doppler wind lidar. II. The fringe imaging technique,” Appl. Opt. 37(27), 6487–6493 (1998).
[CrossRef] [PubMed]

J. A. McKay, “Comment on “Theory of the double-edge molecular technique for Doppler lidar wind measurement”,” Appl. Opt. 39(6), 993–996 (2000).
[CrossRef] [PubMed]

C. L. Korb, B. M. Gentry, S. X. Li, and C. Flesia, “Theory of the double-edge technique for Doppler lidar wind measurement,” Appl. Opt. 37(15), 3097–3104 (1998).
[CrossRef] [PubMed]

C. Flesia and C. L. Korb, “Theory of the double-edge molecular technique for Doppler lidar wind measurement,” Appl. Opt. 38(3), 432–440 (1999).
[CrossRef] [PubMed]

C. Souprayen, A. Garnier, A. Hertzog, A. Hauchecorne, and J. Porteneuve, “Rayleigh-Mie Doppler wind lidar for atmospheric measurements. I. Instrumental setup, validation, and first climatological results,” Appl. Opt. 38(12), 2410–2421 (1999).
[CrossRef] [PubMed]

C. Souprayen, A. Garnier, and A. Hertzog, “Rayleigh-Mie Doppler wind lidar for atmospheric measurements. II. Mie scattering effect, theory, and calibration,” Appl. Opt. 38(12), 2422–2431 (1999).
[CrossRef] [PubMed]

J. A. McKay, “Assessment of a multibeam Fizeau wedge interferometer for Doppler wind lidar,” Appl. Opt. 41(9), 1760–1767 (2002).
[CrossRef] [PubMed]

Z. S. Liu, D. Wu, J. T. Liu, K. L. Zhang, W. B. Chen, X. Q. Song, J. W. Hair, and C. Y. She, “Low-altitude atmospheric wind measurement from the combined Mie and Rayleigh backscattering by Doppler lidar with an iodine filter,” Appl. Opt. 41(33), 7079–7086 (2002).
[CrossRef] [PubMed]

D. Bruneau, A. Garnier, A. Hertzog, and J. Porteneuve, “Wind-velocity lidar measurements by use of a Mach-Zehnder interferometer, comparison with a Fabry-Perot interferometer,” Appl. Opt. 43(1), 173–182 (2004).
[CrossRef] [PubMed]

H. Xia, D. Sun, Y. Yang, F. Shen, J. Dong, and T. Kobayashi, “Fabry-Perot interferometer based Mie Doppler lidar for low tropospheric wind observation,” Appl. Opt. 46(29), 7120–7131 (2007).
[CrossRef] [PubMed]

N. Cézard, A. Dolfi-Bouteyre, J. P. Huignard, and P. H. Flamant, “Performance evaluation of a dual fringe-imaging Michelson interferometer for air parameter measurements with a 355 nm Rayleigh-Mie lidar,” Appl. Opt. 48(12), 2321–2332 (2009).
[CrossRef] [PubMed]

B. Witschas, “Analytical model for Rayleigh-Brillouin line shapes in air,” Appl. Opt. 50(3), 267–270 (2011).
[CrossRef] [PubMed]

T. Li, X. Fang, W. Liu, S. Y. Gu, and X. Dou, “Narrowband sodium lidar for the measurements of mesopause region temperature and wind,” Appl. Opt. 51(22), 5401–5411 (2012).
[CrossRef] [PubMed]

B. Witschas, C. Lemmerz, and O. Reitebuch, “Horizontal LIDAR measurements for the proof of spontaneous Rayleigh-Brillouin scattering in the atmosphere,” Appl. Opt. 51(25), 6207–6219 (2012).
[CrossRef] [PubMed]

Appl. Phys. B (2)

T. Schröder, C. Lemmerz, O. Reitebuch, M. Wirth, C. Wührer, and R. Treichel, “Frequency jitter and spectral width of an injection-seeded Q-switched Nd:YAG laser for a Doppler wind lidar,” Appl. Phys. B 87(3), 437–444 (2007).
[CrossRef]

A. Garnier and M. L. Chanin, “Description of a Doppler Rayleigh lidar for measuring winds in the middle atmosphere,” Appl. Phys. B 55(1), 35–40 (1992).
[CrossRef]

Atmos. Meas. Tech. (1)

G. Baumgarten, “Doppler Rayleigh Mie Raman lidar for wind and temperature measurements in the middle atmosphere up to 80 km,” Atmos. Meas. Tech. 3(6), 1509–1518 (2010).
[CrossRef]

Bull. Am. Meteorol. Soc. (1)

A. Stoffelen, J. Pailleux, E. Källen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–87 (2005).
[CrossRef]

Chin. Opt. Lett. (1)

Geophys. Res. Lett. (2)

M. L. Chanin, A. Garnier, A. Hauchecorne, and J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16(11), 1273–1276 (1989).
[CrossRef]

C. A. Tepley, S. I. Sargoytchev, and C. O. Hines, “Initial Doppler Rayleigh lidar results from Arecibo,” Geophys. Res. Lett. 18(2), 167–170 (1991).
[CrossRef]

IEEE Trans. Geosci. Remote Sens. (1)

C. A. Tepley, S. I. Sargoytchev, and R. Rojas, “The Doppler Rayleigh lidar system at Arecibo,” IEEE Trans. Geosci. Remote Sens. 31(1), 36–47 (1993).
[CrossRef]

J. Appl. Meteorol. (1)

A. D. Belmont, D. G. Dartt, and G. D. Nastrom, “Variations of stratospheric zonal winds, 20-65 km, 1961-1971,” J. Appl. Meteorol. 14(4), 585–594 (1975).
[CrossRef]

J. Atmos. Ocean. Technol. (3)

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26(12), 2501–2515 (2009).
[CrossRef]

U. Paffrath, C. Lemmerz, O. Reitebuch, B. Witschas, I. Nikolaus, and V. Freudenthaler, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part II: Simulations and Rayleigh Receiver Radiometric performance,” J. Atmos. Ocean. Technol. 26(12), 2516–2530 (2009).
[CrossRef]

A. Hertzog, P. Cocquerez, C. Basdevant, G. Boccara, J. Bordereau, B. Brioit, A. Cardonne, R. Guilbon, A. Ravissot, É. Schmitt, J. N. Valdivia, S. Venel, and F. Vial, “Stratéole/vorcore-long-duration, superpressure balloons to study the Antarctic lower stratosphere during the 2005 winter,” J. Atmos. Ocean. Technol. 24(12), 2048–2061 (2007).
[CrossRef]

J. Atmos. Sol. Terr. Phys. (1)

D. Rees, M. Vyssogorets, N. P. Meredith, E. Griffin, and Y. Chaxell, “The Doppler wind and temperature system of the ALOMAR lidar facility: overview and initial results,” J. Atmos. Sol. Terr. Phys. 58(16), 1827–1842 (1996).
[CrossRef]

J. Geophys. Res. (3)

B. M. Knudsen, J. M. Rosen, N. T. Kjome, and A. T. Whitten, “Comparison of analyzed stratospheric temperatures and calculated trajectories with long-duration balloon data,” J. Geophys. Res. 101(D14), 19137–19145 (1996).
[CrossRef]

A. Hauchecorne, M. L. Chanin, and P. Keckhut, “Climatology and trends of the middle atmospheric temperature (33–87 km) as seen by Rayleigh lidar over the south of France,” J. Geophys. Res. 96(D8), 15297–15309 (1991).
[CrossRef]

C. A. Tepley, “Neutral winds of the middle atmosphere observed at Arecibo using a Doppler Rayleigh lidar,” J. Geophys. Res. 99(D12), 25781–25790 (1994).
[CrossRef]

J. Opt. Soc. Korea. (1)

Z. Shu, Z. Shu, H. Xia, D. Sun, Y. Han, C. Hyunki, K. Dukhyeon, G. Wang, B. Sunghoon, and D. Hu, “Low stratospheric wind measurement using mobile Rayleigh Doppler Wind LIDAR,” J. Opt. Soc. Korea. 16(2), 141–144 (2012).

Opt. Eng. (1)

Y. L. Han, X. Dou, D. Sun, H. Xia, Z. Shu, Y. Han, X. Xue, and T. Cheng, “Analysis on wind retrieval methods for Rayleigh Doppler lidar,” Opt. Eng. 53(6), 061607 (2014).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Rev. Geophys. (2)

V. Ramaswamy, M. L. Chanin, J. Angell, J. Barnett, D. Gaffen, M. Gelman, P. Keckhut, Y. Koshelkov, J. Labitzke, J. R. Lin, A. O’Neill, J. Nash, W. Randel, R. Rood, K. Shine, M. Shiotani, and R. Swinbank, “Stratospheric temperature trends: Observations and model simulations,” Rev. Geophys. 39(1), 71–122 (2001).
[CrossRef]

J. W. Meriwether and A. J. Gerrard, “Mesosphere inversion layers and stratosphere temperature enhancements,” Rev. Geophys. 42(3), RG3003 (2004).
[CrossRef]

Tellus, Ser. A, Dyn. Meterol. Oceanogr. (1)

A. Dabas, M. L. Denneulin, P. Flamant, C. Loth, A. Garnier, and A. Dolfi-Bouteyre, “Correcting winds measured with a Rayleigh Doppler lidar from pressure and temperature effects,” Tellus, Ser. A, Dyn. Meterol. Oceanogr. 60(2), 206–215 (2008).
[CrossRef]

Other (5)

O. Reitebuch, C. Lemmerz, U. Marksteiner, S. Rahm, and B. Witschas, “Airborne lidar observations supporting the ADM-Aeolus mission for global wind profiling,” in 26th Int. Laser Radar Conference, Porto Heli, Greece (2012), S5O-01.

R. G. Seasholtz, “2D velocity and temperature measurements in high speed flows based on spectrally resolved Rayleigh scattering,” in New Trends in Instrumentation for Hypersonic Research, Vol. 224 of NATO ASI Series (Springer, 1993), pp. 399–408.

P. Hays, M. Dehring, L. Fisk, P. Tchoryk, I. Dors, J. Ryan, J. Wang, M. Hardesty, B. Gentry, and F. Hovis, “Space-based Doppler winds lidar: a vital national need,” In response to national research council (NRC) decadal study request for information (RFI), May (2005).

European Space Agency ESA, ADM-Aeolus science report: ESA SP-1311 (ESA Communication Production Office, 2008).

C. Weitkamp, Range-Resolved Optical Remote Sensing of the Atmosphere (Springer, 2005), pp. 273–281.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic view of the lidar receiver setup. Three cones are drawn for the eastward, northward and vertical pointing. The east and north pointing are at an angle of 30° from the zenith. The vertical and horizontal components of wind vector are determined by them, as shown in this figure.

Fig. 2
Fig. 2

(a) Evolution of the wind velocity error versus the full width at half maximum (FWHM) of FPI bandpasses and spectral spacing between the double-edge channels (in units of Rayleigh spectrum width ΔνR at 226.5 K). (b) The Doppler sensitivity, i.e., percentage change in the normalized signal for a velocity of 1 m/s, plotted as a function of spectral spacing (in unit of FWHM of the FPI). T = 226.5 K.

Fig. 3
Fig. 3

Schematic view of the lidar optical setup: BS, beam splitter; IS, integrating sphere, MF, multimode fiber; FOBS, fiber-optic beam splitter; PMT, photomultiplier tube; FPI, Fabry-Perot interferometer; TR, transient recorder.

Fig. 4
Fig. 4

Data acquisition timing sequence

Fig. 5
Fig. 5

Experimental result of integrating sphere stretching effect. The diameter of the integrating sphere used in this experiment is 25 cm. Both the input and exit port areas are 0.785 cm2. The experimental result is a 256 shots average.

Fig. 6
Fig. 6

Illumination patterns under the function of the integrating sphere. (a) is the output illumination pattern by directly coupled into an multimode fiber and (c) is its normalized intensity distribution; (c) is the output illumination pattern coupled from the integrating sphere and (d) is its normalized intensity.

Fig. 7
Fig. 7

Stability of the locked transmission and corresponding systemic error in LOS wind velocity. (a) presents the result of short-term tracking and simultaneous wind deviation over 2 hours on Oct. 12; (b) gives the long-term tracking for 11 days and mean statistics standard error in LOS wind velocity.

Fig. 8
Fig. 8

(Top) Plotted actual atmospheric transmission curves with least-square fitted lines; The curve of locking channel is scanned by portion of the outgoing laser, while the two others are scanned by vertical backscatter from average of 6 km~6.75 km altitude, which are broaden by the random thermal motions of atmospheric particles. Each plot is 600 shots accumulated (~12 second) and the adjacent plots is changed in discrete frequency steps of about 190 MHz; (Bottom) Residual between measurement and fitted lines shape normalized to its peak level; the red line depict the fitting result with a set of Tenti S6 model line shapes subtract the central Gaussian line.

Fig. 9
Fig. 9

The variation of FPI temperature and wind deviation with respect to time; in the upper right corner, the result of FFT analysis is present.

Fig. 10
Fig. 10

(a) The USTC Rayleigh Doppler lidar in experiment. (b) Profiles of backscattered signals at 02:00 Am, Dec. 7, 2013. The height resolution is changed from 0.2 km to 1 km at 40 km altitude.

Fig. 11
Fig. 11

Lidar backscatter ratio, temperature and vertical wind measured by the Rayleigh Doppler lidar (solid line with error bars) on 21 December 2013. The temperature measurement is compared with ECMWF (olive plots), CIRA model (green plots), and radiosonde measurement (blue dashed line). The sparse-line area indicates altitudes with aerosol contribution as measured by the lidar.

Fig. 12
Fig. 12

Profiles of horizontal wind velocity and direction measured by the Rayleigh Doppler lidar compared with data from radiosonde at LT 22:40, December 21 and at LT 06:54, December 23. The upper altitudes of aerosol loaded region on two days is 27.5 km, as is the sparse-line area presented in this figure. This result is 6000 shots accumulated.

Fig. 13
Fig. 13

Time-altitude cross section of semi-continuous horizontal wind field observed by mobile Rayleigh Doppler lidar in December 2013. For every night, 6 hours’ measurement is presented in this figure from LT 00:00 to 06:00 with time resolution of half an hour. The maximum velocity and direction error in this experiment are estimated to be 9.2 m/s and 14.3°, respectively.

Tables (1)

Tables Icon

Table 1 Key parameters of the mobile Rayleigh Doppler Lidar

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

R(z)= C N 1 (z)- N 2 (z) C N 1 (z)+ N 2 (z) .
V h (z)= λ 2sinθ Δ v d (z)
ε= 1 ΘSNR ,
Δv(T)= 5.1GHz 75.44nm Δl(T),

Metrics