Abstract

The absorption properties of ZnO nanowire arrays covered with a semiconducting absorbing shell for extremely thin absorber solar cells are theoretically investigated by optical computations of the ideal short-circuit current density with three-dimensional rigorous coupled wave analysis. The effects of nanowire geometrical dimensions on the light trapping and absorption properties are reported through a comprehensive optical mode analysis. It is shown that the high absorptance of these heterostructures is driven by two different regimes originating from the combination of individual nanowire effects and nanowire arrangement effects. In the short wavelength regime, the absorptance is likely dominated by optical modes efficiently coupled with the incident light and interacting with the nearby nanowires (i.e. diffraction), induced by the period of core shell ZnO nanowire arrays. In contrast, in the long wavelength regime, the absorptance is governed by key optically guided modes, related to the diameter of individual core shell ZnO nanowires.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Czaban, D. A. Thompson, and R. R. LaPierre, “GaAs core--shell nanowires for photovoltaic applications,” Nano Lett. 9(1), 148–154 (2009).
    [CrossRef] [PubMed]
  2. O. Gunawan and S. Guha, “Characteristics of vapor-liquid-solid grown silicon nanowire solar cells,” Sol. Energy Mater. Sol. Cells 93(8), 1388–1393 (2009).
    [CrossRef]
  3. G. Jia, M. Steglich, I. Sill, and F. Falk, “Core-shell heterojunction solar cells on silicon nanowire arrays,” Sol. Energy Mater. Sol. Cells 96, 226–230 (2012).
    [CrossRef]
  4. B. O’Donnell, L. Yu, M. Foldyna, and P. Roca i Cabarrocas, “Silicon nanowire solar cells grown by PECVD,” J. Non-Cryst. Solids 358(17), 2299–2302 (2012).
    [CrossRef]
  5. E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
    [CrossRef] [PubMed]
  6. J. Wang, Z. Li, N. Singh, and S. Lee, “Highly-ordered vertical Si nanowire/nanowall decorated solar cells,” Opt. Express 19(23), 23078–23084 (2011).
    [CrossRef] [PubMed]
  7. J. Li, H. Yu, and Y. Li, “Solar energy harnessing in hexagonally arranged Si nanowire arrays and effects of array symmetry on optical characteristics,” Nanotechnology 23(19), 194010 (2012).
    [CrossRef] [PubMed]
  8. K. E. Plass, M. A. Filler, J. M. Spurgeon, B. M. Kayes, S. Maldonado, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, “Flexible polymer-embedded Si wire arrays,” Adv. Mater. 21(3), 325–328 (2009).
    [CrossRef]
  9. M. C. Putnam, S. W. Boettcher, M. D. Kelzenberg, D. B. Turner-Evans, J. M. Spurgeon, E. L. Warren, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Si microwire-array solar cells,” Energy Environ. Sci. 3(8), 1037–1041 (2010).
    [CrossRef]
  10. J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
    [CrossRef] [PubMed]
  11. C. Lévy-Clément, A. Katty, S. Bastide, F. Zenia, I. Mora, and V. Munoz-Sanjose, “A new CdTe/ZnO columnar composite film for Eta-solar cells,” Phys. E 14(1–2), 229–232 (2002).
    [CrossRef]
  12. C. Lévy-Clément, R. Tena-Zaera, M. Ryan, A. Katty, and G. Hodes, “CdSe-sensitized p-CuSCN/nanowire n-ZnO heterojunctions,” Adv. Mater. 17(12), 1512–1515 (2005).
    [CrossRef]
  13. R. Tena-Zaera, A. Katty, S. Bastide, C. Lévy-Clément, B. O’Regan, and V. Munoz-Sanjosé, “ZnO/CdTe/CuSCN, a promising heterostructure to act as inorganic eta-solar cell,” Thin Solid Films 483(1–2), 372–377 (2005).
    [CrossRef]
  14. R. Salazar, A. Delamoreanu, C. Levy-Clement, and V. Ivanova, “ZnO/CdTe and ZnO/CdS core-shell nanowire arrays for extremely thin absorber solar cells,” Energy Procedia 10, 122–127 (2011).
    [CrossRef]
  15. S. Sanchez, D. Aldakov, D. Rouchon, L. Rapenne, A. Delamoreanu, C. Lévy-Clément, and V. Ivanova, “Sensitization of ZnO nanowire arrays with CuInS2 for extremely thin absorber solar cells,” J. Renew. Sustain. Energy 5(1), 011207 (2013).
    [CrossRef]
  16. V. Consonni, G. Rey, J. Bonaime, N. Karst, B. Doisneau, H. Roussel, S. Renet, and D. Bellet, “Synthesis and physical properties of ZnO/CdTe core shell nanowires grown by low-cost deposition methods,” Appl. Phys. Lett. 98(11), 111906 (2011).
    [CrossRef]
  17. H. Chao, J. Cheng, J. Lu, Y. Chang, C. Cheng, and C. Chen, “Growth and characterization of type-II ZnO/ZnTe core-shell nanowire arrays for solar cell applications,” Superlattices Microstruct. 47(1), 160–164 (2010).
    [CrossRef]
  18. J. Xu, X. Yang, H. Wang, X. Chen, C. Luan, Z. Xu, Z. Lu, V. A. L. Roy, W. Zhang, and C. S. Lee, “Arrays of ZnO/ZnxCd1-xSe nanocables: band gap engineering and photovoltaic applications,” Nano Lett. 11(10), 4138–4143 (2011).
    [CrossRef] [PubMed]
  19. X. Wang, H. Zhu, Y. Xu, H. Wang, Y. Tao, S. Hark, X. Xiao, and Q. Li, “Aligned ZnO/CdTe core-shell nanocable arrays on indium tin oxide: synthesis and photoelectrochemical properties,” ACS Nano 4(6), 3302–3308 (2010).
    [CrossRef] [PubMed]
  20. J. Michallon, M. Zanuccoli, A. Kaminski-Cachopo, V. Consonni, A. Morand, D. Bucci, F. Emieux, H. Szambolics, S. Perraud, and I. Semenikhin, “Comparison of optical properties of Si and ZnO/CdTe core/shell nanowire arrays,” Mater. Sci. Eng. B 178(9), 665–669 (2013).
    [CrossRef]
  21. K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
    [CrossRef] [PubMed]
  22. S. Adachi, T. Kimura, and N. Suzuki, “Optical properties of CdTe: Experiment and modeling,” J. Appl. Phys. 74(5), 3435–3441 (1993).
    [CrossRef]
  23. G. Rey, D. Kohen, M. Modreanu, V. Consonni, C. Ternon, and D. Bellet, “Extraction of thin film refractive index from transmittance and reflectance spectra using a graphical inversion method,” Submitted.
  24. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995).
    [CrossRef]
  25. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14(10), 2758–2767 (1997).
    [CrossRef]
  26. D. Bucci, B. Martin, and A. Morand, “Study of propagation modes of bent waveguides and micro-ring resonators by means of the aperiodic Fourier modal method,” Proc. SPIE 7597, 75970U (2010).
    [CrossRef]
  27. D. Bucci, B. Martin, and A. Morand, “Application of the three-dimensional aperiodic Fourier modal method using arc elements in curvilinear coordinates,” J. Opt. Soc. Am. A 29(3), 367–373 (2012).
    [CrossRef]
  28. L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13(5), 1024–1035 (1996).
    [CrossRef]
  29. J. Bischoff, “Formulation of the normal vector RCWA for symmetric crossed gratings in symmetric mountings,” J. Opt. Soc. Am. A 27(5), 1024–1031 (2010).
    [CrossRef] [PubMed]
  30. ASTM, Reference Solar Spectral Irradiance: Air Mass 1.5 spectra, http://rredc.nrel.gov/solar/spectra/am1.5 , last accessed 15/07/2013.
  31. B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, C. M. de Sterke, and R. C. McPhedran, “Modal analysis of enhanced absorption in silicon nanowire arrays,” Opt. Express 19(S5), A1067–A1081 (2011).
    [CrossRef] [PubMed]
  32. L. Wen, X. Li, Z. Zhao, S. Bu, X. Zeng, J. H. Huang, and Y. Wang, “Theoretical consideration of III-V nanowire/Si triple-junction solar cells,” Nanotechnology 23(50), 505202 (2012).
    [CrossRef] [PubMed]
  33. M. D. Kelzenberg, M. C. Putnam, D. B. Turner-Evans, N. S. Lewis, and H. A. Atwater, “Predicted efficiency of Si wire array solar cells,” in 34th IEEE Photovolt. Specialists Conf. (2009), pp. 001948–001953.
    [CrossRef]
  34. M. Zanuccoli, J. Michallon, I. Semenihin, C. Fiegna, A. Kaminski-Cachopo, E. Sangiorgi, and V. Vyurkov, “Numerical simulation of vertical silicon nanowires based heterojunction solar cells,” Energy Procedia 38, 216–222 (2013).
    [CrossRef]
  35. A. Snyder and J. Love, Optical Waveguide Theory (Springer, 1983).
  36. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13(9), 1870–1876 (1996).
    [CrossRef]

2013 (4)

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

S. Sanchez, D. Aldakov, D. Rouchon, L. Rapenne, A. Delamoreanu, C. Lévy-Clément, and V. Ivanova, “Sensitization of ZnO nanowire arrays with CuInS2 for extremely thin absorber solar cells,” J. Renew. Sustain. Energy 5(1), 011207 (2013).
[CrossRef]

J. Michallon, M. Zanuccoli, A. Kaminski-Cachopo, V. Consonni, A. Morand, D. Bucci, F. Emieux, H. Szambolics, S. Perraud, and I. Semenikhin, “Comparison of optical properties of Si and ZnO/CdTe core/shell nanowire arrays,” Mater. Sci. Eng. B 178(9), 665–669 (2013).
[CrossRef]

M. Zanuccoli, J. Michallon, I. Semenihin, C. Fiegna, A. Kaminski-Cachopo, E. Sangiorgi, and V. Vyurkov, “Numerical simulation of vertical silicon nanowires based heterojunction solar cells,” Energy Procedia 38, 216–222 (2013).
[CrossRef]

2012 (5)

L. Wen, X. Li, Z. Zhao, S. Bu, X. Zeng, J. H. Huang, and Y. Wang, “Theoretical consideration of III-V nanowire/Si triple-junction solar cells,” Nanotechnology 23(50), 505202 (2012).
[CrossRef] [PubMed]

D. Bucci, B. Martin, and A. Morand, “Application of the three-dimensional aperiodic Fourier modal method using arc elements in curvilinear coordinates,” J. Opt. Soc. Am. A 29(3), 367–373 (2012).
[CrossRef]

G. Jia, M. Steglich, I. Sill, and F. Falk, “Core-shell heterojunction solar cells on silicon nanowire arrays,” Sol. Energy Mater. Sol. Cells 96, 226–230 (2012).
[CrossRef]

B. O’Donnell, L. Yu, M. Foldyna, and P. Roca i Cabarrocas, “Silicon nanowire solar cells grown by PECVD,” J. Non-Cryst. Solids 358(17), 2299–2302 (2012).
[CrossRef]

J. Li, H. Yu, and Y. Li, “Solar energy harnessing in hexagonally arranged Si nanowire arrays and effects of array symmetry on optical characteristics,” Nanotechnology 23(19), 194010 (2012).
[CrossRef] [PubMed]

2011 (6)

J. Wang, Z. Li, N. Singh, and S. Lee, “Highly-ordered vertical Si nanowire/nanowall decorated solar cells,” Opt. Express 19(23), 23078–23084 (2011).
[CrossRef] [PubMed]

V. Consonni, G. Rey, J. Bonaime, N. Karst, B. Doisneau, H. Roussel, S. Renet, and D. Bellet, “Synthesis and physical properties of ZnO/CdTe core shell nanowires grown by low-cost deposition methods,” Appl. Phys. Lett. 98(11), 111906 (2011).
[CrossRef]

J. Xu, X. Yang, H. Wang, X. Chen, C. Luan, Z. Xu, Z. Lu, V. A. L. Roy, W. Zhang, and C. S. Lee, “Arrays of ZnO/ZnxCd1-xSe nanocables: band gap engineering and photovoltaic applications,” Nano Lett. 11(10), 4138–4143 (2011).
[CrossRef] [PubMed]

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[CrossRef] [PubMed]

R. Salazar, A. Delamoreanu, C. Levy-Clement, and V. Ivanova, “ZnO/CdTe and ZnO/CdS core-shell nanowire arrays for extremely thin absorber solar cells,” Energy Procedia 10, 122–127 (2011).
[CrossRef]

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, C. M. de Sterke, and R. C. McPhedran, “Modal analysis of enhanced absorption in silicon nanowire arrays,” Opt. Express 19(S5), A1067–A1081 (2011).
[CrossRef] [PubMed]

2010 (6)

J. Bischoff, “Formulation of the normal vector RCWA for symmetric crossed gratings in symmetric mountings,” J. Opt. Soc. Am. A 27(5), 1024–1031 (2010).
[CrossRef] [PubMed]

D. Bucci, B. Martin, and A. Morand, “Study of propagation modes of bent waveguides and micro-ring resonators by means of the aperiodic Fourier modal method,” Proc. SPIE 7597, 75970U (2010).
[CrossRef]

X. Wang, H. Zhu, Y. Xu, H. Wang, Y. Tao, S. Hark, X. Xiao, and Q. Li, “Aligned ZnO/CdTe core-shell nanocable arrays on indium tin oxide: synthesis and photoelectrochemical properties,” ACS Nano 4(6), 3302–3308 (2010).
[CrossRef] [PubMed]

H. Chao, J. Cheng, J. Lu, Y. Chang, C. Cheng, and C. Chen, “Growth and characterization of type-II ZnO/ZnTe core-shell nanowire arrays for solar cell applications,” Superlattices Microstruct. 47(1), 160–164 (2010).
[CrossRef]

M. C. Putnam, S. W. Boettcher, M. D. Kelzenberg, D. B. Turner-Evans, J. M. Spurgeon, E. L. Warren, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Si microwire-array solar cells,” Energy Environ. Sci. 3(8), 1037–1041 (2010).
[CrossRef]

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

2009 (3)

J. A. Czaban, D. A. Thompson, and R. R. LaPierre, “GaAs core--shell nanowires for photovoltaic applications,” Nano Lett. 9(1), 148–154 (2009).
[CrossRef] [PubMed]

O. Gunawan and S. Guha, “Characteristics of vapor-liquid-solid grown silicon nanowire solar cells,” Sol. Energy Mater. Sol. Cells 93(8), 1388–1393 (2009).
[CrossRef]

K. E. Plass, M. A. Filler, J. M. Spurgeon, B. M. Kayes, S. Maldonado, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, “Flexible polymer-embedded Si wire arrays,” Adv. Mater. 21(3), 325–328 (2009).
[CrossRef]

2005 (2)

C. Lévy-Clément, R. Tena-Zaera, M. Ryan, A. Katty, and G. Hodes, “CdSe-sensitized p-CuSCN/nanowire n-ZnO heterojunctions,” Adv. Mater. 17(12), 1512–1515 (2005).
[CrossRef]

R. Tena-Zaera, A. Katty, S. Bastide, C. Lévy-Clément, B. O’Regan, and V. Munoz-Sanjosé, “ZnO/CdTe/CuSCN, a promising heterostructure to act as inorganic eta-solar cell,” Thin Solid Films 483(1–2), 372–377 (2005).
[CrossRef]

2002 (1)

C. Lévy-Clément, A. Katty, S. Bastide, F. Zenia, I. Mora, and V. Munoz-Sanjose, “A new CdTe/ZnO columnar composite film for Eta-solar cells,” Phys. E 14(1–2), 229–232 (2002).
[CrossRef]

1997 (1)

1996 (2)

1995 (1)

1993 (1)

S. Adachi, T. Kimura, and N. Suzuki, “Optical properties of CdTe: Experiment and modeling,” J. Appl. Phys. 74(5), 3435–3441 (1993).
[CrossRef]

Aberg, I.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

Adachi, S.

S. Adachi, T. Kimura, and N. Suzuki, “Optical properties of CdTe: Experiment and modeling,” J. Appl. Phys. 74(5), 3435–3441 (1993).
[CrossRef]

Aldakov, D.

S. Sanchez, D. Aldakov, D. Rouchon, L. Rapenne, A. Delamoreanu, C. Lévy-Clément, and V. Ivanova, “Sensitization of ZnO nanowire arrays with CuInS2 for extremely thin absorber solar cells,” J. Renew. Sustain. Energy 5(1), 011207 (2013).
[CrossRef]

Anttu, N.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

Asatryan, A. A.

Asoli, D.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

Atwater, H. A.

M. C. Putnam, S. W. Boettcher, M. D. Kelzenberg, D. B. Turner-Evans, J. M. Spurgeon, E. L. Warren, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Si microwire-array solar cells,” Energy Environ. Sci. 3(8), 1037–1041 (2010).
[CrossRef]

K. E. Plass, M. A. Filler, J. M. Spurgeon, B. M. Kayes, S. Maldonado, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, “Flexible polymer-embedded Si wire arrays,” Adv. Mater. 21(3), 325–328 (2009).
[CrossRef]

Bastide, S.

R. Tena-Zaera, A. Katty, S. Bastide, C. Lévy-Clément, B. O’Regan, and V. Munoz-Sanjosé, “ZnO/CdTe/CuSCN, a promising heterostructure to act as inorganic eta-solar cell,” Thin Solid Films 483(1–2), 372–377 (2005).
[CrossRef]

C. Lévy-Clément, A. Katty, S. Bastide, F. Zenia, I. Mora, and V. Munoz-Sanjose, “A new CdTe/ZnO columnar composite film for Eta-solar cells,” Phys. E 14(1–2), 229–232 (2002).
[CrossRef]

Bellet, D.

V. Consonni, G. Rey, J. Bonaime, N. Karst, B. Doisneau, H. Roussel, S. Renet, and D. Bellet, “Synthesis and physical properties of ZnO/CdTe core shell nanowires grown by low-cost deposition methods,” Appl. Phys. Lett. 98(11), 111906 (2011).
[CrossRef]

G. Rey, D. Kohen, M. Modreanu, V. Consonni, C. Ternon, and D. Bellet, “Extraction of thin film refractive index from transmittance and reflectance spectra using a graphical inversion method,” Submitted.

Bischoff, J.

Boettcher, S. W.

M. C. Putnam, S. W. Boettcher, M. D. Kelzenberg, D. B. Turner-Evans, J. M. Spurgeon, E. L. Warren, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Si microwire-array solar cells,” Energy Environ. Sci. 3(8), 1037–1041 (2010).
[CrossRef]

Bonaime, J.

V. Consonni, G. Rey, J. Bonaime, N. Karst, B. Doisneau, H. Roussel, S. Renet, and D. Bellet, “Synthesis and physical properties of ZnO/CdTe core shell nanowires grown by low-cost deposition methods,” Appl. Phys. Lett. 98(11), 111906 (2011).
[CrossRef]

Borgström, M. T.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

Botten, L. C.

Briggs, R. M.

M. C. Putnam, S. W. Boettcher, M. D. Kelzenberg, D. B. Turner-Evans, J. M. Spurgeon, E. L. Warren, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Si microwire-array solar cells,” Energy Environ. Sci. 3(8), 1037–1041 (2010).
[CrossRef]

Brunschwig, B. S.

K. E. Plass, M. A. Filler, J. M. Spurgeon, B. M. Kayes, S. Maldonado, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, “Flexible polymer-embedded Si wire arrays,” Adv. Mater. 21(3), 325–328 (2009).
[CrossRef]

Bu, S.

L. Wen, X. Li, Z. Zhao, S. Bu, X. Zeng, J. H. Huang, and Y. Wang, “Theoretical consideration of III-V nanowire/Si triple-junction solar cells,” Nanotechnology 23(50), 505202 (2012).
[CrossRef] [PubMed]

Bucci, D.

J. Michallon, M. Zanuccoli, A. Kaminski-Cachopo, V. Consonni, A. Morand, D. Bucci, F. Emieux, H. Szambolics, S. Perraud, and I. Semenikhin, “Comparison of optical properties of Si and ZnO/CdTe core/shell nanowire arrays,” Mater. Sci. Eng. B 178(9), 665–669 (2013).
[CrossRef]

D. Bucci, B. Martin, and A. Morand, “Application of the three-dimensional aperiodic Fourier modal method using arc elements in curvilinear coordinates,” J. Opt. Soc. Am. A 29(3), 367–373 (2012).
[CrossRef]

D. Bucci, B. Martin, and A. Morand, “Study of propagation modes of bent waveguides and micro-ring resonators by means of the aperiodic Fourier modal method,” Proc. SPIE 7597, 75970U (2010).
[CrossRef]

Chang, Y.

H. Chao, J. Cheng, J. Lu, Y. Chang, C. Cheng, and C. Chen, “Growth and characterization of type-II ZnO/ZnTe core-shell nanowire arrays for solar cell applications,” Superlattices Microstruct. 47(1), 160–164 (2010).
[CrossRef]

Chao, H.

H. Chao, J. Cheng, J. Lu, Y. Chang, C. Cheng, and C. Chen, “Growth and characterization of type-II ZnO/ZnTe core-shell nanowire arrays for solar cell applications,” Superlattices Microstruct. 47(1), 160–164 (2010).
[CrossRef]

Chen, C.

H. Chao, J. Cheng, J. Lu, Y. Chang, C. Cheng, and C. Chen, “Growth and characterization of type-II ZnO/ZnTe core-shell nanowire arrays for solar cell applications,” Superlattices Microstruct. 47(1), 160–164 (2010).
[CrossRef]

Chen, X.

J. Xu, X. Yang, H. Wang, X. Chen, C. Luan, Z. Xu, Z. Lu, V. A. L. Roy, W. Zhang, and C. S. Lee, “Arrays of ZnO/ZnxCd1-xSe nanocables: band gap engineering and photovoltaic applications,” Nano Lett. 11(10), 4138–4143 (2011).
[CrossRef] [PubMed]

Cheng, C.

H. Chao, J. Cheng, J. Lu, Y. Chang, C. Cheng, and C. Chen, “Growth and characterization of type-II ZnO/ZnTe core-shell nanowire arrays for solar cell applications,” Superlattices Microstruct. 47(1), 160–164 (2010).
[CrossRef]

Cheng, J.

H. Chao, J. Cheng, J. Lu, Y. Chang, C. Cheng, and C. Chen, “Growth and characterization of type-II ZnO/ZnTe core-shell nanowire arrays for solar cell applications,” Superlattices Microstruct. 47(1), 160–164 (2010).
[CrossRef]

Consonni, V.

J. Michallon, M. Zanuccoli, A. Kaminski-Cachopo, V. Consonni, A. Morand, D. Bucci, F. Emieux, H. Szambolics, S. Perraud, and I. Semenikhin, “Comparison of optical properties of Si and ZnO/CdTe core/shell nanowire arrays,” Mater. Sci. Eng. B 178(9), 665–669 (2013).
[CrossRef]

V. Consonni, G. Rey, J. Bonaime, N. Karst, B. Doisneau, H. Roussel, S. Renet, and D. Bellet, “Synthesis and physical properties of ZnO/CdTe core shell nanowires grown by low-cost deposition methods,” Appl. Phys. Lett. 98(11), 111906 (2011).
[CrossRef]

G. Rey, D. Kohen, M. Modreanu, V. Consonni, C. Ternon, and D. Bellet, “Extraction of thin film refractive index from transmittance and reflectance spectra using a graphical inversion method,” Submitted.

Crozier, K. B.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[CrossRef] [PubMed]

Czaban, J. A.

J. A. Czaban, D. A. Thompson, and R. R. LaPierre, “GaAs core--shell nanowires for photovoltaic applications,” Nano Lett. 9(1), 148–154 (2009).
[CrossRef] [PubMed]

Dan, Y.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[CrossRef] [PubMed]

de Sterke, C. M.

Delamoreanu, A.

S. Sanchez, D. Aldakov, D. Rouchon, L. Rapenne, A. Delamoreanu, C. Lévy-Clément, and V. Ivanova, “Sensitization of ZnO nanowire arrays with CuInS2 for extremely thin absorber solar cells,” J. Renew. Sustain. Energy 5(1), 011207 (2013).
[CrossRef]

R. Salazar, A. Delamoreanu, C. Levy-Clement, and V. Ivanova, “ZnO/CdTe and ZnO/CdS core-shell nanowire arrays for extremely thin absorber solar cells,” Energy Procedia 10, 122–127 (2011).
[CrossRef]

Deppert, K.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

Dimroth, F.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

Doisneau, B.

V. Consonni, G. Rey, J. Bonaime, N. Karst, B. Doisneau, H. Roussel, S. Renet, and D. Bellet, “Synthesis and physical properties of ZnO/CdTe core shell nanowires grown by low-cost deposition methods,” Appl. Phys. Lett. 98(11), 111906 (2011).
[CrossRef]

Dossou, K. B.

Ellenbogen, T.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[CrossRef] [PubMed]

Emieux, F.

J. Michallon, M. Zanuccoli, A. Kaminski-Cachopo, V. Consonni, A. Morand, D. Bucci, F. Emieux, H. Szambolics, S. Perraud, and I. Semenikhin, “Comparison of optical properties of Si and ZnO/CdTe core/shell nanowire arrays,” Mater. Sci. Eng. B 178(9), 665–669 (2013).
[CrossRef]

Falk, F.

G. Jia, M. Steglich, I. Sill, and F. Falk, “Core-shell heterojunction solar cells on silicon nanowire arrays,” Sol. Energy Mater. Sol. Cells 96, 226–230 (2012).
[CrossRef]

Fiegna, C.

M. Zanuccoli, J. Michallon, I. Semenihin, C. Fiegna, A. Kaminski-Cachopo, E. Sangiorgi, and V. Vyurkov, “Numerical simulation of vertical silicon nanowires based heterojunction solar cells,” Energy Procedia 38, 216–222 (2013).
[CrossRef]

Filler, M. A.

K. E. Plass, M. A. Filler, J. M. Spurgeon, B. M. Kayes, S. Maldonado, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, “Flexible polymer-embedded Si wire arrays,” Adv. Mater. 21(3), 325–328 (2009).
[CrossRef]

Foldyna, M.

B. O’Donnell, L. Yu, M. Foldyna, and P. Roca i Cabarrocas, “Silicon nanowire solar cells grown by PECVD,” J. Non-Cryst. Solids 358(17), 2299–2302 (2012).
[CrossRef]

Fuss-Kailuweit, P.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

Garnett, E.

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

Gaylord, T. K.

Grann, E. B.

Guha, S.

O. Gunawan and S. Guha, “Characteristics of vapor-liquid-solid grown silicon nanowire solar cells,” Sol. Energy Mater. Sol. Cells 93(8), 1388–1393 (2009).
[CrossRef]

Gunawan, O.

O. Gunawan and S. Guha, “Characteristics of vapor-liquid-solid grown silicon nanowire solar cells,” Sol. Energy Mater. Sol. Cells 93(8), 1388–1393 (2009).
[CrossRef]

Hark, S.

X. Wang, H. Zhu, Y. Xu, H. Wang, Y. Tao, S. Hark, X. Xiao, and Q. Li, “Aligned ZnO/CdTe core-shell nanocable arrays on indium tin oxide: synthesis and photoelectrochemical properties,” ACS Nano 4(6), 3302–3308 (2010).
[CrossRef] [PubMed]

Hodes, G.

C. Lévy-Clément, R. Tena-Zaera, M. Ryan, A. Katty, and G. Hodes, “CdSe-sensitized p-CuSCN/nanowire n-ZnO heterojunctions,” Adv. Mater. 17(12), 1512–1515 (2005).
[CrossRef]

Huang, J. H.

L. Wen, X. Li, Z. Zhao, S. Bu, X. Zeng, J. H. Huang, and Y. Wang, “Theoretical consideration of III-V nanowire/Si triple-junction solar cells,” Nanotechnology 23(50), 505202 (2012).
[CrossRef] [PubMed]

Huffman, M.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

Ivanova, V.

S. Sanchez, D. Aldakov, D. Rouchon, L. Rapenne, A. Delamoreanu, C. Lévy-Clément, and V. Ivanova, “Sensitization of ZnO nanowire arrays with CuInS2 for extremely thin absorber solar cells,” J. Renew. Sustain. Energy 5(1), 011207 (2013).
[CrossRef]

R. Salazar, A. Delamoreanu, C. Levy-Clement, and V. Ivanova, “ZnO/CdTe and ZnO/CdS core-shell nanowire arrays for extremely thin absorber solar cells,” Energy Procedia 10, 122–127 (2011).
[CrossRef]

Jia, G.

G. Jia, M. Steglich, I. Sill, and F. Falk, “Core-shell heterojunction solar cells on silicon nanowire arrays,” Sol. Energy Mater. Sol. Cells 96, 226–230 (2012).
[CrossRef]

Kaminski-Cachopo, A.

J. Michallon, M. Zanuccoli, A. Kaminski-Cachopo, V. Consonni, A. Morand, D. Bucci, F. Emieux, H. Szambolics, S. Perraud, and I. Semenikhin, “Comparison of optical properties of Si and ZnO/CdTe core/shell nanowire arrays,” Mater. Sci. Eng. B 178(9), 665–669 (2013).
[CrossRef]

M. Zanuccoli, J. Michallon, I. Semenihin, C. Fiegna, A. Kaminski-Cachopo, E. Sangiorgi, and V. Vyurkov, “Numerical simulation of vertical silicon nanowires based heterojunction solar cells,” Energy Procedia 38, 216–222 (2013).
[CrossRef]

Karst, N.

V. Consonni, G. Rey, J. Bonaime, N. Karst, B. Doisneau, H. Roussel, S. Renet, and D. Bellet, “Synthesis and physical properties of ZnO/CdTe core shell nanowires grown by low-cost deposition methods,” Appl. Phys. Lett. 98(11), 111906 (2011).
[CrossRef]

Katty, A.

C. Lévy-Clément, R. Tena-Zaera, M. Ryan, A. Katty, and G. Hodes, “CdSe-sensitized p-CuSCN/nanowire n-ZnO heterojunctions,” Adv. Mater. 17(12), 1512–1515 (2005).
[CrossRef]

R. Tena-Zaera, A. Katty, S. Bastide, C. Lévy-Clément, B. O’Regan, and V. Munoz-Sanjosé, “ZnO/CdTe/CuSCN, a promising heterostructure to act as inorganic eta-solar cell,” Thin Solid Films 483(1–2), 372–377 (2005).
[CrossRef]

C. Lévy-Clément, A. Katty, S. Bastide, F. Zenia, I. Mora, and V. Munoz-Sanjose, “A new CdTe/ZnO columnar composite film for Eta-solar cells,” Phys. E 14(1–2), 229–232 (2002).
[CrossRef]

Kayes, B. M.

K. E. Plass, M. A. Filler, J. M. Spurgeon, B. M. Kayes, S. Maldonado, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, “Flexible polymer-embedded Si wire arrays,” Adv. Mater. 21(3), 325–328 (2009).
[CrossRef]

Kelzenberg, M. D.

M. C. Putnam, S. W. Boettcher, M. D. Kelzenberg, D. B. Turner-Evans, J. M. Spurgeon, E. L. Warren, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Si microwire-array solar cells,” Energy Environ. Sci. 3(8), 1037–1041 (2010).
[CrossRef]

Kimura, T.

S. Adachi, T. Kimura, and N. Suzuki, “Optical properties of CdTe: Experiment and modeling,” J. Appl. Phys. 74(5), 3435–3441 (1993).
[CrossRef]

Kohen, D.

G. Rey, D. Kohen, M. Modreanu, V. Consonni, C. Ternon, and D. Bellet, “Extraction of thin film refractive index from transmittance and reflectance spectra using a graphical inversion method,” Submitted.

LaPierre, R. R.

J. A. Czaban, D. A. Thompson, and R. R. LaPierre, “GaAs core--shell nanowires for photovoltaic applications,” Nano Lett. 9(1), 148–154 (2009).
[CrossRef] [PubMed]

Lee, C. S.

J. Xu, X. Yang, H. Wang, X. Chen, C. Luan, Z. Xu, Z. Lu, V. A. L. Roy, W. Zhang, and C. S. Lee, “Arrays of ZnO/ZnxCd1-xSe nanocables: band gap engineering and photovoltaic applications,” Nano Lett. 11(10), 4138–4143 (2011).
[CrossRef] [PubMed]

Lee, S.

Levy-Clement, C.

R. Salazar, A. Delamoreanu, C. Levy-Clement, and V. Ivanova, “ZnO/CdTe and ZnO/CdS core-shell nanowire arrays for extremely thin absorber solar cells,” Energy Procedia 10, 122–127 (2011).
[CrossRef]

Lévy-Clément, C.

S. Sanchez, D. Aldakov, D. Rouchon, L. Rapenne, A. Delamoreanu, C. Lévy-Clément, and V. Ivanova, “Sensitization of ZnO nanowire arrays with CuInS2 for extremely thin absorber solar cells,” J. Renew. Sustain. Energy 5(1), 011207 (2013).
[CrossRef]

R. Tena-Zaera, A. Katty, S. Bastide, C. Lévy-Clément, B. O’Regan, and V. Munoz-Sanjosé, “ZnO/CdTe/CuSCN, a promising heterostructure to act as inorganic eta-solar cell,” Thin Solid Films 483(1–2), 372–377 (2005).
[CrossRef]

C. Lévy-Clément, R. Tena-Zaera, M. Ryan, A. Katty, and G. Hodes, “CdSe-sensitized p-CuSCN/nanowire n-ZnO heterojunctions,” Adv. Mater. 17(12), 1512–1515 (2005).
[CrossRef]

C. Lévy-Clément, A. Katty, S. Bastide, F. Zenia, I. Mora, and V. Munoz-Sanjose, “A new CdTe/ZnO columnar composite film for Eta-solar cells,” Phys. E 14(1–2), 229–232 (2002).
[CrossRef]

Lewis, N. S.

M. C. Putnam, S. W. Boettcher, M. D. Kelzenberg, D. B. Turner-Evans, J. M. Spurgeon, E. L. Warren, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Si microwire-array solar cells,” Energy Environ. Sci. 3(8), 1037–1041 (2010).
[CrossRef]

K. E. Plass, M. A. Filler, J. M. Spurgeon, B. M. Kayes, S. Maldonado, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, “Flexible polymer-embedded Si wire arrays,” Adv. Mater. 21(3), 325–328 (2009).
[CrossRef]

Li, J.

J. Li, H. Yu, and Y. Li, “Solar energy harnessing in hexagonally arranged Si nanowire arrays and effects of array symmetry on optical characteristics,” Nanotechnology 23(19), 194010 (2012).
[CrossRef] [PubMed]

Li, L.

Li, Q.

X. Wang, H. Zhu, Y. Xu, H. Wang, Y. Tao, S. Hark, X. Xiao, and Q. Li, “Aligned ZnO/CdTe core-shell nanocable arrays on indium tin oxide: synthesis and photoelectrochemical properties,” ACS Nano 4(6), 3302–3308 (2010).
[CrossRef] [PubMed]

Li, X.

L. Wen, X. Li, Z. Zhao, S. Bu, X. Zeng, J. H. Huang, and Y. Wang, “Theoretical consideration of III-V nanowire/Si triple-junction solar cells,” Nanotechnology 23(50), 505202 (2012).
[CrossRef] [PubMed]

Li, Y.

J. Li, H. Yu, and Y. Li, “Solar energy harnessing in hexagonally arranged Si nanowire arrays and effects of array symmetry on optical characteristics,” Nanotechnology 23(19), 194010 (2012).
[CrossRef] [PubMed]

Li, Z.

Lu, J.

H. Chao, J. Cheng, J. Lu, Y. Chang, C. Cheng, and C. Chen, “Growth and characterization of type-II ZnO/ZnTe core-shell nanowire arrays for solar cell applications,” Superlattices Microstruct. 47(1), 160–164 (2010).
[CrossRef]

Lu, Z.

J. Xu, X. Yang, H. Wang, X. Chen, C. Luan, Z. Xu, Z. Lu, V. A. L. Roy, W. Zhang, and C. S. Lee, “Arrays of ZnO/ZnxCd1-xSe nanocables: band gap engineering and photovoltaic applications,” Nano Lett. 11(10), 4138–4143 (2011).
[CrossRef] [PubMed]

Luan, C.

J. Xu, X. Yang, H. Wang, X. Chen, C. Luan, Z. Xu, Z. Lu, V. A. L. Roy, W. Zhang, and C. S. Lee, “Arrays of ZnO/ZnxCd1-xSe nanocables: band gap engineering and photovoltaic applications,” Nano Lett. 11(10), 4138–4143 (2011).
[CrossRef] [PubMed]

Magnusson, M. H.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

Maldonado, S.

K. E. Plass, M. A. Filler, J. M. Spurgeon, B. M. Kayes, S. Maldonado, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, “Flexible polymer-embedded Si wire arrays,” Adv. Mater. 21(3), 325–328 (2009).
[CrossRef]

Martin, B.

D. Bucci, B. Martin, and A. Morand, “Application of the three-dimensional aperiodic Fourier modal method using arc elements in curvilinear coordinates,” J. Opt. Soc. Am. A 29(3), 367–373 (2012).
[CrossRef]

D. Bucci, B. Martin, and A. Morand, “Study of propagation modes of bent waveguides and micro-ring resonators by means of the aperiodic Fourier modal method,” Proc. SPIE 7597, 75970U (2010).
[CrossRef]

McPhedran, R. C.

Michallon, J.

J. Michallon, M. Zanuccoli, A. Kaminski-Cachopo, V. Consonni, A. Morand, D. Bucci, F. Emieux, H. Szambolics, S. Perraud, and I. Semenikhin, “Comparison of optical properties of Si and ZnO/CdTe core/shell nanowire arrays,” Mater. Sci. Eng. B 178(9), 665–669 (2013).
[CrossRef]

M. Zanuccoli, J. Michallon, I. Semenihin, C. Fiegna, A. Kaminski-Cachopo, E. Sangiorgi, and V. Vyurkov, “Numerical simulation of vertical silicon nanowires based heterojunction solar cells,” Energy Procedia 38, 216–222 (2013).
[CrossRef]

Modreanu, M.

G. Rey, D. Kohen, M. Modreanu, V. Consonni, C. Ternon, and D. Bellet, “Extraction of thin film refractive index from transmittance and reflectance spectra using a graphical inversion method,” Submitted.

Moharam, M. G.

Mora, I.

C. Lévy-Clément, A. Katty, S. Bastide, F. Zenia, I. Mora, and V. Munoz-Sanjose, “A new CdTe/ZnO columnar composite film for Eta-solar cells,” Phys. E 14(1–2), 229–232 (2002).
[CrossRef]

Morand, A.

J. Michallon, M. Zanuccoli, A. Kaminski-Cachopo, V. Consonni, A. Morand, D. Bucci, F. Emieux, H. Szambolics, S. Perraud, and I. Semenikhin, “Comparison of optical properties of Si and ZnO/CdTe core/shell nanowire arrays,” Mater. Sci. Eng. B 178(9), 665–669 (2013).
[CrossRef]

D. Bucci, B. Martin, and A. Morand, “Application of the three-dimensional aperiodic Fourier modal method using arc elements in curvilinear coordinates,” J. Opt. Soc. Am. A 29(3), 367–373 (2012).
[CrossRef]

D. Bucci, B. Martin, and A. Morand, “Study of propagation modes of bent waveguides and micro-ring resonators by means of the aperiodic Fourier modal method,” Proc. SPIE 7597, 75970U (2010).
[CrossRef]

Munoz-Sanjose, V.

C. Lévy-Clément, A. Katty, S. Bastide, F. Zenia, I. Mora, and V. Munoz-Sanjose, “A new CdTe/ZnO columnar composite film for Eta-solar cells,” Phys. E 14(1–2), 229–232 (2002).
[CrossRef]

Munoz-Sanjosé, V.

R. Tena-Zaera, A. Katty, S. Bastide, C. Lévy-Clément, B. O’Regan, and V. Munoz-Sanjosé, “ZnO/CdTe/CuSCN, a promising heterostructure to act as inorganic eta-solar cell,” Thin Solid Films 483(1–2), 372–377 (2005).
[CrossRef]

O’Donnell, B.

B. O’Donnell, L. Yu, M. Foldyna, and P. Roca i Cabarrocas, “Silicon nanowire solar cells grown by PECVD,” J. Non-Cryst. Solids 358(17), 2299–2302 (2012).
[CrossRef]

O’Regan, B.

R. Tena-Zaera, A. Katty, S. Bastide, C. Lévy-Clément, B. O’Regan, and V. Munoz-Sanjosé, “ZnO/CdTe/CuSCN, a promising heterostructure to act as inorganic eta-solar cell,” Thin Solid Films 483(1–2), 372–377 (2005).
[CrossRef]

Perraud, S.

J. Michallon, M. Zanuccoli, A. Kaminski-Cachopo, V. Consonni, A. Morand, D. Bucci, F. Emieux, H. Szambolics, S. Perraud, and I. Semenikhin, “Comparison of optical properties of Si and ZnO/CdTe core/shell nanowire arrays,” Mater. Sci. Eng. B 178(9), 665–669 (2013).
[CrossRef]

Plass, K. E.

K. E. Plass, M. A. Filler, J. M. Spurgeon, B. M. Kayes, S. Maldonado, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, “Flexible polymer-embedded Si wire arrays,” Adv. Mater. 21(3), 325–328 (2009).
[CrossRef]

Pommet, D. A.

Poulton, C. G.

Putnam, M. C.

M. C. Putnam, S. W. Boettcher, M. D. Kelzenberg, D. B. Turner-Evans, J. M. Spurgeon, E. L. Warren, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Si microwire-array solar cells,” Energy Environ. Sci. 3(8), 1037–1041 (2010).
[CrossRef]

Rapenne, L.

S. Sanchez, D. Aldakov, D. Rouchon, L. Rapenne, A. Delamoreanu, C. Lévy-Clément, and V. Ivanova, “Sensitization of ZnO nanowire arrays with CuInS2 for extremely thin absorber solar cells,” J. Renew. Sustain. Energy 5(1), 011207 (2013).
[CrossRef]

Renet, S.

V. Consonni, G. Rey, J. Bonaime, N. Karst, B. Doisneau, H. Roussel, S. Renet, and D. Bellet, “Synthesis and physical properties of ZnO/CdTe core shell nanowires grown by low-cost deposition methods,” Appl. Phys. Lett. 98(11), 111906 (2011).
[CrossRef]

Rey, G.

V. Consonni, G. Rey, J. Bonaime, N. Karst, B. Doisneau, H. Roussel, S. Renet, and D. Bellet, “Synthesis and physical properties of ZnO/CdTe core shell nanowires grown by low-cost deposition methods,” Appl. Phys. Lett. 98(11), 111906 (2011).
[CrossRef]

G. Rey, D. Kohen, M. Modreanu, V. Consonni, C. Ternon, and D. Bellet, “Extraction of thin film refractive index from transmittance and reflectance spectra using a graphical inversion method,” Submitted.

Roca i Cabarrocas, P.

B. O’Donnell, L. Yu, M. Foldyna, and P. Roca i Cabarrocas, “Silicon nanowire solar cells grown by PECVD,” J. Non-Cryst. Solids 358(17), 2299–2302 (2012).
[CrossRef]

Rouchon, D.

S. Sanchez, D. Aldakov, D. Rouchon, L. Rapenne, A. Delamoreanu, C. Lévy-Clément, and V. Ivanova, “Sensitization of ZnO nanowire arrays with CuInS2 for extremely thin absorber solar cells,” J. Renew. Sustain. Energy 5(1), 011207 (2013).
[CrossRef]

Roussel, H.

V. Consonni, G. Rey, J. Bonaime, N. Karst, B. Doisneau, H. Roussel, S. Renet, and D. Bellet, “Synthesis and physical properties of ZnO/CdTe core shell nanowires grown by low-cost deposition methods,” Appl. Phys. Lett. 98(11), 111906 (2011).
[CrossRef]

Roy, V. A. L.

J. Xu, X. Yang, H. Wang, X. Chen, C. Luan, Z. Xu, Z. Lu, V. A. L. Roy, W. Zhang, and C. S. Lee, “Arrays of ZnO/ZnxCd1-xSe nanocables: band gap engineering and photovoltaic applications,” Nano Lett. 11(10), 4138–4143 (2011).
[CrossRef] [PubMed]

Ryan, M.

C. Lévy-Clément, R. Tena-Zaera, M. Ryan, A. Katty, and G. Hodes, “CdSe-sensitized p-CuSCN/nanowire n-ZnO heterojunctions,” Adv. Mater. 17(12), 1512–1515 (2005).
[CrossRef]

Salazar, R.

R. Salazar, A. Delamoreanu, C. Levy-Clement, and V. Ivanova, “ZnO/CdTe and ZnO/CdS core-shell nanowire arrays for extremely thin absorber solar cells,” Energy Procedia 10, 122–127 (2011).
[CrossRef]

Samuelson, L.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

Sanchez, S.

S. Sanchez, D. Aldakov, D. Rouchon, L. Rapenne, A. Delamoreanu, C. Lévy-Clément, and V. Ivanova, “Sensitization of ZnO nanowire arrays with CuInS2 for extremely thin absorber solar cells,” J. Renew. Sustain. Energy 5(1), 011207 (2013).
[CrossRef]

Sangiorgi, E.

M. Zanuccoli, J. Michallon, I. Semenihin, C. Fiegna, A. Kaminski-Cachopo, E. Sangiorgi, and V. Vyurkov, “Numerical simulation of vertical silicon nanowires based heterojunction solar cells,” Energy Procedia 38, 216–222 (2013).
[CrossRef]

Schonbrun, E.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[CrossRef] [PubMed]

Semenihin, I.

M. Zanuccoli, J. Michallon, I. Semenihin, C. Fiegna, A. Kaminski-Cachopo, E. Sangiorgi, and V. Vyurkov, “Numerical simulation of vertical silicon nanowires based heterojunction solar cells,” Energy Procedia 38, 216–222 (2013).
[CrossRef]

Semenikhin, I.

J. Michallon, M. Zanuccoli, A. Kaminski-Cachopo, V. Consonni, A. Morand, D. Bucci, F. Emieux, H. Szambolics, S. Perraud, and I. Semenikhin, “Comparison of optical properties of Si and ZnO/CdTe core/shell nanowire arrays,” Mater. Sci. Eng. B 178(9), 665–669 (2013).
[CrossRef]

Seo, K.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[CrossRef] [PubMed]

Siefer, G.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

Sill, I.

G. Jia, M. Steglich, I. Sill, and F. Falk, “Core-shell heterojunction solar cells on silicon nanowire arrays,” Sol. Energy Mater. Sol. Cells 96, 226–230 (2012).
[CrossRef]

Singh, N.

Spurgeon, J. M.

M. C. Putnam, S. W. Boettcher, M. D. Kelzenberg, D. B. Turner-Evans, J. M. Spurgeon, E. L. Warren, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Si microwire-array solar cells,” Energy Environ. Sci. 3(8), 1037–1041 (2010).
[CrossRef]

K. E. Plass, M. A. Filler, J. M. Spurgeon, B. M. Kayes, S. Maldonado, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, “Flexible polymer-embedded Si wire arrays,” Adv. Mater. 21(3), 325–328 (2009).
[CrossRef]

Steglich, M.

G. Jia, M. Steglich, I. Sill, and F. Falk, “Core-shell heterojunction solar cells on silicon nanowire arrays,” Sol. Energy Mater. Sol. Cells 96, 226–230 (2012).
[CrossRef]

Steinvurzel, P.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[CrossRef] [PubMed]

Sturmberg, B. C. P.

Suzuki, N.

S. Adachi, T. Kimura, and N. Suzuki, “Optical properties of CdTe: Experiment and modeling,” J. Appl. Phys. 74(5), 3435–3441 (1993).
[CrossRef]

Szambolics, H.

J. Michallon, M. Zanuccoli, A. Kaminski-Cachopo, V. Consonni, A. Morand, D. Bucci, F. Emieux, H. Szambolics, S. Perraud, and I. Semenikhin, “Comparison of optical properties of Si and ZnO/CdTe core/shell nanowire arrays,” Mater. Sci. Eng. B 178(9), 665–669 (2013).
[CrossRef]

Tao, Y.

X. Wang, H. Zhu, Y. Xu, H. Wang, Y. Tao, S. Hark, X. Xiao, and Q. Li, “Aligned ZnO/CdTe core-shell nanocable arrays on indium tin oxide: synthesis and photoelectrochemical properties,” ACS Nano 4(6), 3302–3308 (2010).
[CrossRef] [PubMed]

Tena-Zaera, R.

R. Tena-Zaera, A. Katty, S. Bastide, C. Lévy-Clément, B. O’Regan, and V. Munoz-Sanjosé, “ZnO/CdTe/CuSCN, a promising heterostructure to act as inorganic eta-solar cell,” Thin Solid Films 483(1–2), 372–377 (2005).
[CrossRef]

C. Lévy-Clément, R. Tena-Zaera, M. Ryan, A. Katty, and G. Hodes, “CdSe-sensitized p-CuSCN/nanowire n-ZnO heterojunctions,” Adv. Mater. 17(12), 1512–1515 (2005).
[CrossRef]

Ternon, C.

G. Rey, D. Kohen, M. Modreanu, V. Consonni, C. Ternon, and D. Bellet, “Extraction of thin film refractive index from transmittance and reflectance spectra using a graphical inversion method,” Submitted.

Thompson, D. A.

J. A. Czaban, D. A. Thompson, and R. R. LaPierre, “GaAs core--shell nanowires for photovoltaic applications,” Nano Lett. 9(1), 148–154 (2009).
[CrossRef] [PubMed]

Turner-Evans, D. B.

M. C. Putnam, S. W. Boettcher, M. D. Kelzenberg, D. B. Turner-Evans, J. M. Spurgeon, E. L. Warren, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Si microwire-array solar cells,” Energy Environ. Sci. 3(8), 1037–1041 (2010).
[CrossRef]

Vyurkov, V.

M. Zanuccoli, J. Michallon, I. Semenihin, C. Fiegna, A. Kaminski-Cachopo, E. Sangiorgi, and V. Vyurkov, “Numerical simulation of vertical silicon nanowires based heterojunction solar cells,” Energy Procedia 38, 216–222 (2013).
[CrossRef]

Wallentin, J.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

Wang, H.

J. Xu, X. Yang, H. Wang, X. Chen, C. Luan, Z. Xu, Z. Lu, V. A. L. Roy, W. Zhang, and C. S. Lee, “Arrays of ZnO/ZnxCd1-xSe nanocables: band gap engineering and photovoltaic applications,” Nano Lett. 11(10), 4138–4143 (2011).
[CrossRef] [PubMed]

X. Wang, H. Zhu, Y. Xu, H. Wang, Y. Tao, S. Hark, X. Xiao, and Q. Li, “Aligned ZnO/CdTe core-shell nanocable arrays on indium tin oxide: synthesis and photoelectrochemical properties,” ACS Nano 4(6), 3302–3308 (2010).
[CrossRef] [PubMed]

Wang, J.

Wang, X.

X. Wang, H. Zhu, Y. Xu, H. Wang, Y. Tao, S. Hark, X. Xiao, and Q. Li, “Aligned ZnO/CdTe core-shell nanocable arrays on indium tin oxide: synthesis and photoelectrochemical properties,” ACS Nano 4(6), 3302–3308 (2010).
[CrossRef] [PubMed]

Wang, Y.

L. Wen, X. Li, Z. Zhao, S. Bu, X. Zeng, J. H. Huang, and Y. Wang, “Theoretical consideration of III-V nanowire/Si triple-junction solar cells,” Nanotechnology 23(50), 505202 (2012).
[CrossRef] [PubMed]

Warren, E. L.

M. C. Putnam, S. W. Boettcher, M. D. Kelzenberg, D. B. Turner-Evans, J. M. Spurgeon, E. L. Warren, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Si microwire-array solar cells,” Energy Environ. Sci. 3(8), 1037–1041 (2010).
[CrossRef]

Wen, L.

L. Wen, X. Li, Z. Zhao, S. Bu, X. Zeng, J. H. Huang, and Y. Wang, “Theoretical consideration of III-V nanowire/Si triple-junction solar cells,” Nanotechnology 23(50), 505202 (2012).
[CrossRef] [PubMed]

Witzigmann, B.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

Wober, M.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[CrossRef] [PubMed]

Xiao, X.

X. Wang, H. Zhu, Y. Xu, H. Wang, Y. Tao, S. Hark, X. Xiao, and Q. Li, “Aligned ZnO/CdTe core-shell nanocable arrays on indium tin oxide: synthesis and photoelectrochemical properties,” ACS Nano 4(6), 3302–3308 (2010).
[CrossRef] [PubMed]

Xu, H. Q.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

Xu, J.

J. Xu, X. Yang, H. Wang, X. Chen, C. Luan, Z. Xu, Z. Lu, V. A. L. Roy, W. Zhang, and C. S. Lee, “Arrays of ZnO/ZnxCd1-xSe nanocables: band gap engineering and photovoltaic applications,” Nano Lett. 11(10), 4138–4143 (2011).
[CrossRef] [PubMed]

Xu, Y.

X. Wang, H. Zhu, Y. Xu, H. Wang, Y. Tao, S. Hark, X. Xiao, and Q. Li, “Aligned ZnO/CdTe core-shell nanocable arrays on indium tin oxide: synthesis and photoelectrochemical properties,” ACS Nano 4(6), 3302–3308 (2010).
[CrossRef] [PubMed]

Xu, Z.

J. Xu, X. Yang, H. Wang, X. Chen, C. Luan, Z. Xu, Z. Lu, V. A. L. Roy, W. Zhang, and C. S. Lee, “Arrays of ZnO/ZnxCd1-xSe nanocables: band gap engineering and photovoltaic applications,” Nano Lett. 11(10), 4138–4143 (2011).
[CrossRef] [PubMed]

Yang, P.

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

Yang, X.

J. Xu, X. Yang, H. Wang, X. Chen, C. Luan, Z. Xu, Z. Lu, V. A. L. Roy, W. Zhang, and C. S. Lee, “Arrays of ZnO/ZnxCd1-xSe nanocables: band gap engineering and photovoltaic applications,” Nano Lett. 11(10), 4138–4143 (2011).
[CrossRef] [PubMed]

Yu, H.

J. Li, H. Yu, and Y. Li, “Solar energy harnessing in hexagonally arranged Si nanowire arrays and effects of array symmetry on optical characteristics,” Nanotechnology 23(19), 194010 (2012).
[CrossRef] [PubMed]

Yu, L.

B. O’Donnell, L. Yu, M. Foldyna, and P. Roca i Cabarrocas, “Silicon nanowire solar cells grown by PECVD,” J. Non-Cryst. Solids 358(17), 2299–2302 (2012).
[CrossRef]

Zanuccoli, M.

M. Zanuccoli, J. Michallon, I. Semenihin, C. Fiegna, A. Kaminski-Cachopo, E. Sangiorgi, and V. Vyurkov, “Numerical simulation of vertical silicon nanowires based heterojunction solar cells,” Energy Procedia 38, 216–222 (2013).
[CrossRef]

J. Michallon, M. Zanuccoli, A. Kaminski-Cachopo, V. Consonni, A. Morand, D. Bucci, F. Emieux, H. Szambolics, S. Perraud, and I. Semenikhin, “Comparison of optical properties of Si and ZnO/CdTe core/shell nanowire arrays,” Mater. Sci. Eng. B 178(9), 665–669 (2013).
[CrossRef]

Zeng, X.

L. Wen, X. Li, Z. Zhao, S. Bu, X. Zeng, J. H. Huang, and Y. Wang, “Theoretical consideration of III-V nanowire/Si triple-junction solar cells,” Nanotechnology 23(50), 505202 (2012).
[CrossRef] [PubMed]

Zenia, F.

C. Lévy-Clément, A. Katty, S. Bastide, F. Zenia, I. Mora, and V. Munoz-Sanjose, “A new CdTe/ZnO columnar composite film for Eta-solar cells,” Phys. E 14(1–2), 229–232 (2002).
[CrossRef]

Zhang, W.

J. Xu, X. Yang, H. Wang, X. Chen, C. Luan, Z. Xu, Z. Lu, V. A. L. Roy, W. Zhang, and C. S. Lee, “Arrays of ZnO/ZnxCd1-xSe nanocables: band gap engineering and photovoltaic applications,” Nano Lett. 11(10), 4138–4143 (2011).
[CrossRef] [PubMed]

Zhao, Z.

L. Wen, X. Li, Z. Zhao, S. Bu, X. Zeng, J. H. Huang, and Y. Wang, “Theoretical consideration of III-V nanowire/Si triple-junction solar cells,” Nanotechnology 23(50), 505202 (2012).
[CrossRef] [PubMed]

Zhu, H.

X. Wang, H. Zhu, Y. Xu, H. Wang, Y. Tao, S. Hark, X. Xiao, and Q. Li, “Aligned ZnO/CdTe core-shell nanocable arrays on indium tin oxide: synthesis and photoelectrochemical properties,” ACS Nano 4(6), 3302–3308 (2010).
[CrossRef] [PubMed]

ACS Nano (1)

X. Wang, H. Zhu, Y. Xu, H. Wang, Y. Tao, S. Hark, X. Xiao, and Q. Li, “Aligned ZnO/CdTe core-shell nanocable arrays on indium tin oxide: synthesis and photoelectrochemical properties,” ACS Nano 4(6), 3302–3308 (2010).
[CrossRef] [PubMed]

Adv. Mater. (2)

C. Lévy-Clément, R. Tena-Zaera, M. Ryan, A. Katty, and G. Hodes, “CdSe-sensitized p-CuSCN/nanowire n-ZnO heterojunctions,” Adv. Mater. 17(12), 1512–1515 (2005).
[CrossRef]

K. E. Plass, M. A. Filler, J. M. Spurgeon, B. M. Kayes, S. Maldonado, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, “Flexible polymer-embedded Si wire arrays,” Adv. Mater. 21(3), 325–328 (2009).
[CrossRef]

Appl. Phys. Lett. (1)

V. Consonni, G. Rey, J. Bonaime, N. Karst, B. Doisneau, H. Roussel, S. Renet, and D. Bellet, “Synthesis and physical properties of ZnO/CdTe core shell nanowires grown by low-cost deposition methods,” Appl. Phys. Lett. 98(11), 111906 (2011).
[CrossRef]

Energy Environ. Sci. (1)

M. C. Putnam, S. W. Boettcher, M. D. Kelzenberg, D. B. Turner-Evans, J. M. Spurgeon, E. L. Warren, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Si microwire-array solar cells,” Energy Environ. Sci. 3(8), 1037–1041 (2010).
[CrossRef]

Energy Procedia (2)

R. Salazar, A. Delamoreanu, C. Levy-Clement, and V. Ivanova, “ZnO/CdTe and ZnO/CdS core-shell nanowire arrays for extremely thin absorber solar cells,” Energy Procedia 10, 122–127 (2011).
[CrossRef]

M. Zanuccoli, J. Michallon, I. Semenihin, C. Fiegna, A. Kaminski-Cachopo, E. Sangiorgi, and V. Vyurkov, “Numerical simulation of vertical silicon nanowires based heterojunction solar cells,” Energy Procedia 38, 216–222 (2013).
[CrossRef]

J. Appl. Phys. (1)

S. Adachi, T. Kimura, and N. Suzuki, “Optical properties of CdTe: Experiment and modeling,” J. Appl. Phys. 74(5), 3435–3441 (1993).
[CrossRef]

J. Non-Cryst. Solids (1)

B. O’Donnell, L. Yu, M. Foldyna, and P. Roca i Cabarrocas, “Silicon nanowire solar cells grown by PECVD,” J. Non-Cryst. Solids 358(17), 2299–2302 (2012).
[CrossRef]

J. Opt. Soc. Am. A (6)

J. Renew. Sustain. Energy (1)

S. Sanchez, D. Aldakov, D. Rouchon, L. Rapenne, A. Delamoreanu, C. Lévy-Clément, and V. Ivanova, “Sensitization of ZnO nanowire arrays with CuInS2 for extremely thin absorber solar cells,” J. Renew. Sustain. Energy 5(1), 011207 (2013).
[CrossRef]

Mater. Sci. Eng. B (1)

J. Michallon, M. Zanuccoli, A. Kaminski-Cachopo, V. Consonni, A. Morand, D. Bucci, F. Emieux, H. Szambolics, S. Perraud, and I. Semenikhin, “Comparison of optical properties of Si and ZnO/CdTe core/shell nanowire arrays,” Mater. Sci. Eng. B 178(9), 665–669 (2013).
[CrossRef]

Nano Lett. (4)

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[CrossRef] [PubMed]

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

J. A. Czaban, D. A. Thompson, and R. R. LaPierre, “GaAs core--shell nanowires for photovoltaic applications,” Nano Lett. 9(1), 148–154 (2009).
[CrossRef] [PubMed]

J. Xu, X. Yang, H. Wang, X. Chen, C. Luan, Z. Xu, Z. Lu, V. A. L. Roy, W. Zhang, and C. S. Lee, “Arrays of ZnO/ZnxCd1-xSe nanocables: band gap engineering and photovoltaic applications,” Nano Lett. 11(10), 4138–4143 (2011).
[CrossRef] [PubMed]

Nanotechnology (2)

L. Wen, X. Li, Z. Zhao, S. Bu, X. Zeng, J. H. Huang, and Y. Wang, “Theoretical consideration of III-V nanowire/Si triple-junction solar cells,” Nanotechnology 23(50), 505202 (2012).
[CrossRef] [PubMed]

J. Li, H. Yu, and Y. Li, “Solar energy harnessing in hexagonally arranged Si nanowire arrays and effects of array symmetry on optical characteristics,” Nanotechnology 23(19), 194010 (2012).
[CrossRef] [PubMed]

Opt. Express (2)

Phys. E (1)

C. Lévy-Clément, A. Katty, S. Bastide, F. Zenia, I. Mora, and V. Munoz-Sanjose, “A new CdTe/ZnO columnar composite film for Eta-solar cells,” Phys. E 14(1–2), 229–232 (2002).
[CrossRef]

Proc. SPIE (1)

D. Bucci, B. Martin, and A. Morand, “Study of propagation modes of bent waveguides and micro-ring resonators by means of the aperiodic Fourier modal method,” Proc. SPIE 7597, 75970U (2010).
[CrossRef]

Science (1)

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

Sol. Energy Mater. Sol. Cells (2)

O. Gunawan and S. Guha, “Characteristics of vapor-liquid-solid grown silicon nanowire solar cells,” Sol. Energy Mater. Sol. Cells 93(8), 1388–1393 (2009).
[CrossRef]

G. Jia, M. Steglich, I. Sill, and F. Falk, “Core-shell heterojunction solar cells on silicon nanowire arrays,” Sol. Energy Mater. Sol. Cells 96, 226–230 (2012).
[CrossRef]

Superlattices Microstruct. (1)

H. Chao, J. Cheng, J. Lu, Y. Chang, C. Cheng, and C. Chen, “Growth and characterization of type-II ZnO/ZnTe core-shell nanowire arrays for solar cell applications,” Superlattices Microstruct. 47(1), 160–164 (2010).
[CrossRef]

Thin Solid Films (1)

R. Tena-Zaera, A. Katty, S. Bastide, C. Lévy-Clément, B. O’Regan, and V. Munoz-Sanjosé, “ZnO/CdTe/CuSCN, a promising heterostructure to act as inorganic eta-solar cell,” Thin Solid Films 483(1–2), 372–377 (2005).
[CrossRef]

Other (4)

G. Rey, D. Kohen, M. Modreanu, V. Consonni, C. Ternon, and D. Bellet, “Extraction of thin film refractive index from transmittance and reflectance spectra using a graphical inversion method,” Submitted.

ASTM, Reference Solar Spectral Irradiance: Air Mass 1.5 spectra, http://rredc.nrel.gov/solar/spectra/am1.5 , last accessed 15/07/2013.

M. D. Kelzenberg, M. C. Putnam, D. B. Turner-Evans, N. S. Lewis, and H. A. Atwater, “Predicted efficiency of Si wire array solar cells,” in 34th IEEE Photovolt. Specialists Conf. (2009), pp. 001948–001953.
[CrossRef]

A. Snyder and J. Love, Optical Waveguide Theory (Springer, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic view of (a) the ZnO/CdTe core shell NW arrays on FTO/glass substrate and of (b) semi-infinite NW arrays for the optical mode analysis.

Fig. 2
Fig. 2

(a) Ideal Jsc map as a function of P and D/P. (b) Ideal Jsc as a function of D/P for the two sets of geometrical dimensions A and B.

Fig. 3
Fig. 3

Absorptance characteristics for ZnO/CdTe core shell NW arrays with D = 200 nm and various periods (i.e., set of geometrical dimensions A).

Fig. 4
Fig. 4

(a) The real part of the normalized propagation constant (i.e. β r λ / 2 π ) and (b) the absorptance for the 5 selected optical modes found for the optimal geometrical dimensions with D = 200 nm and P = 350 nm. The real part of the refractive indices (i.e. n) for ZnO and CdTe is also reported in (a) for comparison. (c) Maps of the modulus of the electric field Ex for the optical mode 4 for various wavelength

Fig. 5
Fig. 5

Characteristics of the key optically guided mode found for the optimal geometrical dimensions with D = 200 nm and P = 350 nm. (a) Absorptance versus wavelength for the key optically guided mode, for the ZnO/CdTe nano-fibre array, for the array comprising both the ZnO/CdTe nano-fibre and the CdTe cap, and for the complete structure. (b) Electric field distribution factors ρx and ρy versus wavelength and (c) coupling factor of the key optically guided mode versus wavelength. (d) Maps of the modulus of the electric field Ex for the key optically guided mode represented for various wavelengths.

Fig. 6
Fig. 6

Monochromatic and polychromatic radial generation rate maps in the ZnO/CdTe core shell NW calculated for the optimal geometrical dimensions with D = 200 nm and P = 350 nm. (a) Linear scale within the first 600 nm from the top of the CdTe cap and (b) logarithmic scale for the whole NW.

Fig. 7
Fig. 7

Absorptance of the key optically guided mode 1 (solid line) and of the ZnO/CdTe nano-fibre arrays (dotted line) for the set of geometrical dimensions B (i.e., P = 600 nm and different values of D). (a) For D = 150, 175, 200 nm and (b-c) for D = 300, 400, 480, 550 nm.

Fig. 8
Fig. 8

Characteristics of the key optically guided modes found for the geometrical dimensions with D = 480 nm and P = 600 nm. (a) Absorptance versus wavelength for the key optically guided modes (k.m.) and for the ZnO/CdTe nano-fibre array. (b) Electric field distribution factors ρx and ρy versus wavelength and (c) coupling factor of the key optically guided modes versus wavelength. (d) Maps of the module of the electric field Ex for the key optically guided modes represented for various wavelengths.

Fig. 9
Fig. 9

Convergence of both the ideal Jsc and the surface integrated generation rate G versus the harmonic number for both Fourier series. It has been calculated for the ZnO/CdTe NW arrays with P = 350 nm and D = 210 nm. The reference value is calculated with 25x25 harmonics.

Fig. 10
Fig. 10

Procedure to compute the radial generation rate map. 3D generation rate is averaged over a circle perimeter to determine the radial generation rate.

Tables (1)

Tables Icon

Table 1 Number of optically guided modes (resp. key optically guided modes) obtained for different D and λ, for the set of geometrical dimensions B with P = 600 nm.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E x mode =C(x,y)exp(jωt)exp(-jβz),
A(λ)=1R(λ)T(λ),
J sc = q hc A(λ) I AM1.5g (λ)λdλ ,
ρ x = CdTe | E(x,y) | 2 dx all | E(x,y) | 2 dx | y=middle ρ y = CdTe | E(x,y) | 2 dy all | E(x,y) | 2 dy | x=middle ,
G(x,y,z,λ)= π[ ε(x,y,z,λ) ] | E(x,y,z,λ) | 2 h ,
P absorbed = | Sw | 2 P modal [ 1exp( 2(β)L ) ],
G(r,θ,z,λ)= π[ε(r,θ,z,λ)] | E(r,θ,z,λ) | 2 h ,
G(r,z,λ)= 1 2π θ=0 2π G(r,θ,z,λ) dθ,
G(r,z)= λ I AM1.5g (λ) I incident G(r,z,λ) dλ,

Metrics