Abstract

Large and periodic anti-ring arrays are fabricated by using a monolayer of polymer/nanosphere hybrid technique and applied as back reflectors in substrate-type hydrogenated amorphous silicon (a-Si:H) thin-film solar cells. The structure of each anti-ring comprises a nanodome centered inside a nanohole. The excitation of Bloch wave surface plasmon polaritons is observed in the Ag-coated anti-ring arrays. The nanodomes of the anti-ring arrays turn out to enhance large-angle light scattering and increase the effective optical path in the solar cell. The resulting efficiency of an ultrathin a-Si:H (thickness: 150 nm) solar cell is enhanced by 39% compared to that with a flat back reflector and by 13% compared to that with a nanohole back reflector.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, “Photovoltaic technology: the case for thin-film solar cells,” Science 285(5428), 692–698 (1999).
    [CrossRef] [PubMed]
  2. H. W. Deckman, C. R. Wronski, H. Witzke, and E. Yablonovitch, “Optically enhanced amorphous silicon solar cells,” Appl. Phys. Lett. 42(11), 968–970 (1983).
    [CrossRef]
  3. T. Tiedje, B. Abeles, J. M. Cebulka, and J. Pelz, “Photoconductivity enhancement by light trapping in rough amorphous silicon,” Appl. Phys. Lett. 42(8), 712–714 (1983).
    [CrossRef]
  4. K. Sato, Y. Gotoh, Y. Wakayama, Y. Hayasahi, K. Adachi, and H. Nishimura, “Highly textured SnO2: F TCO films for a-Si solar cells,” Rep. Res. Lab. Asahi Glass Co. Ltd. 42, 129–137 (1992).
  5. J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
    [CrossRef]
  6. T. Söderström, F. J. Haug, X. Niquille, and C. Ballif, “TCOs for nip thin film silicon solar cells,” Prog. Photovolt. Res. Appl. 17(3), 165–176 (2009).
    [CrossRef]
  7. H. Sai, K. Saito, and M. Kondo, “Investigation of textured back reflectors with periodic honeycomb patterns in thin-film silicon solar cells for improved photovoltaic performance,” IEEE J. Photovolt. 3(1), 5–10 (2013).
    [CrossRef]
  8. V. E. Ferry, M. A. Verschuuren, H. B. Li, E. Verhagen, R. J. Walters, R. E. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18(S2Suppl 2), A237–A245 (2010).
    [CrossRef] [PubMed]
  9. V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
    [CrossRef] [PubMed]
  10. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
    [CrossRef]
  11. J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
    [CrossRef] [PubMed]
  12. C. M. Hsu, C. Battaglia, C. Pahud, Z. C. Ruan, F. J. Haug, S. H. Fan, C. Ballif, and Y. Cui, “High-efficiency amorphous silicon solar cell on a periodic nanocone back reflector,” Adv. Energy Mater. 2(6), 628–633 (2012).
    [CrossRef]
  13. W.-C. Tu, Y.-T. Chang, C.-H. Yang, D.-J. Yeh, C.-I. Ho, C.-Y. Hsueh, and S.-C. Lee, “Hydrogenated amorphous silicon solar cell on glass substrate patterned by hexagonal nanocylinder array,” Appl. Phys. Lett. 97(19), 193109 (2010).
    [CrossRef]
  14. C.-C. Ho, P.-Y. Chen, K.-H. Lin, W.-T. Juan, and W.-L. Lee, “Fabrication of monolayer of polymer/nanospheres hybrid at a water-air interface,” ACS Appl. Mater. Interfaces 3(2), 204–208 (2011).
    [CrossRef] [PubMed]
  15. C.-I. Ho, D.-J. Yeh, V.-C. Su, C.-H. Yang, P.-C. Yang, M.-Y. Pu, C.-H. Kuan, I.-C. Cheng, and S.-C. Lee, “Plasmonic multilayer nanoparticles enhanced photocurrent in thin film hydrogenated amorphous silicon solar cells,” J. Appl. Phys. 112(2), 023113 (2012).
    [CrossRef]
  16. A. S. Hall, S. A. Friesen, and T. E. Mallouk, “Wafer-scale fabrication of plasmonic crystals from patterned silicon templates prepared by nanosphere lithography,” Nano Lett. 13(6), 2623–2627 (2013).
    [CrossRef] [PubMed]
  17. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
    [CrossRef] [PubMed]
  18. H.-H. Hsiao, H.-F. Huang, S.-C. Lee, and H.-C. Chang, “Investigating far-field spectra and near-field features of extraordinary optical transmission through periodic U- to H-shaped apertures,” IEEE Photon. J. 4(2), 387–398 (2012).
    [CrossRef]
  19. Z. T. Ma and K. Ogusu, “FDTD analysis of 2D triangular-lattice photonic crystals with arbitrary-shape inclusions based on unit cell transformation,” Opt. Commun. 282(7), 1322–1325 (2009).
    [CrossRef]
  20. E. D. Palik, Handbook of Optical Constants of Solids (Academic press, 1985).
  21. S. C. Hagness and A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).
  22. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [CrossRef] [PubMed]
  23. S. A. Maier, Plasmonics: Fundamentals and Applications: Fundamentals and Applications, 1st ed. (Springer, 2007).

2013 (2)

H. Sai, K. Saito, and M. Kondo, “Investigation of textured back reflectors with periodic honeycomb patterns in thin-film silicon solar cells for improved photovoltaic performance,” IEEE J. Photovolt. 3(1), 5–10 (2013).
[CrossRef]

A. S. Hall, S. A. Friesen, and T. E. Mallouk, “Wafer-scale fabrication of plasmonic crystals from patterned silicon templates prepared by nanosphere lithography,” Nano Lett. 13(6), 2623–2627 (2013).
[CrossRef] [PubMed]

2012 (3)

C.-I. Ho, D.-J. Yeh, V.-C. Su, C.-H. Yang, P.-C. Yang, M.-Y. Pu, C.-H. Kuan, I.-C. Cheng, and S.-C. Lee, “Plasmonic multilayer nanoparticles enhanced photocurrent in thin film hydrogenated amorphous silicon solar cells,” J. Appl. Phys. 112(2), 023113 (2012).
[CrossRef]

C. M. Hsu, C. Battaglia, C. Pahud, Z. C. Ruan, F. J. Haug, S. H. Fan, C. Ballif, and Y. Cui, “High-efficiency amorphous silicon solar cell on a periodic nanocone back reflector,” Adv. Energy Mater. 2(6), 628–633 (2012).
[CrossRef]

H.-H. Hsiao, H.-F. Huang, S.-C. Lee, and H.-C. Chang, “Investigating far-field spectra and near-field features of extraordinary optical transmission through periodic U- to H-shaped apertures,” IEEE Photon. J. 4(2), 387–398 (2012).
[CrossRef]

2011 (2)

C.-C. Ho, P.-Y. Chen, K.-H. Lin, W.-T. Juan, and W.-L. Lee, “Fabrication of monolayer of polymer/nanospheres hybrid at a water-air interface,” ACS Appl. Mater. Interfaces 3(2), 204–208 (2011).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

2010 (4)

V. E. Ferry, M. A. Verschuuren, H. B. Li, E. Verhagen, R. J. Walters, R. E. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18(S2Suppl 2), A237–A245 (2010).
[CrossRef] [PubMed]

W.-C. Tu, Y.-T. Chang, C.-H. Yang, D.-J. Yeh, C.-I. Ho, C.-Y. Hsueh, and S.-C. Lee, “Hydrogenated amorphous silicon solar cell on glass substrate patterned by hexagonal nanocylinder array,” Appl. Phys. Lett. 97(19), 193109 (2010).
[CrossRef]

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

2009 (3)

Z. T. Ma and K. Ogusu, “FDTD analysis of 2D triangular-lattice photonic crystals with arbitrary-shape inclusions based on unit cell transformation,” Opt. Commun. 282(7), 1322–1325 (2009).
[CrossRef]

T. Söderström, F. J. Haug, X. Niquille, and C. Ballif, “TCOs for nip thin film silicon solar cells,” Prog. Photovolt. Res. Appl. 17(3), 165–176 (2009).
[CrossRef]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[CrossRef]

2007 (1)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

2004 (1)

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
[CrossRef]

1999 (1)

A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, “Photovoltaic technology: the case for thin-film solar cells,” Science 285(5428), 692–698 (1999).
[CrossRef] [PubMed]

1992 (1)

K. Sato, Y. Gotoh, Y. Wakayama, Y. Hayasahi, K. Adachi, and H. Nishimura, “Highly textured SnO2: F TCO films for a-Si solar cells,” Rep. Res. Lab. Asahi Glass Co. Ltd. 42, 129–137 (1992).

1983 (2)

H. W. Deckman, C. R. Wronski, H. Witzke, and E. Yablonovitch, “Optically enhanced amorphous silicon solar cells,” Appl. Phys. Lett. 42(11), 968–970 (1983).
[CrossRef]

T. Tiedje, B. Abeles, J. M. Cebulka, and J. Pelz, “Photoconductivity enhancement by light trapping in rough amorphous silicon,” Appl. Phys. Lett. 42(8), 712–714 (1983).
[CrossRef]

Abeles, B.

T. Tiedje, B. Abeles, J. M. Cebulka, and J. Pelz, “Photoconductivity enhancement by light trapping in rough amorphous silicon,” Appl. Phys. Lett. 42(8), 712–714 (1983).
[CrossRef]

Adachi, K.

K. Sato, Y. Gotoh, Y. Wakayama, Y. Hayasahi, K. Adachi, and H. Nishimura, “Highly textured SnO2: F TCO films for a-Si solar cells,” Rep. Res. Lab. Asahi Glass Co. Ltd. 42, 129–137 (1992).

Atwater, H. A.

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. Li, E. Verhagen, R. J. Walters, R. E. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18(S2Suppl 2), A237–A245 (2010).
[CrossRef] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[CrossRef]

Ballif, C.

C. M. Hsu, C. Battaglia, C. Pahud, Z. C. Ruan, F. J. Haug, S. H. Fan, C. Ballif, and Y. Cui, “High-efficiency amorphous silicon solar cell on a periodic nanocone back reflector,” Adv. Energy Mater. 2(6), 628–633 (2012).
[CrossRef]

T. Söderström, F. J. Haug, X. Niquille, and C. Ballif, “TCOs for nip thin film silicon solar cells,” Prog. Photovolt. Res. Appl. 17(3), 165–176 (2009).
[CrossRef]

Battaglia, C.

C. M. Hsu, C. Battaglia, C. Pahud, Z. C. Ruan, F. J. Haug, S. H. Fan, C. Ballif, and Y. Cui, “High-efficiency amorphous silicon solar cell on a periodic nanocone back reflector,” Adv. Energy Mater. 2(6), 628–633 (2012).
[CrossRef]

Cebulka, J. M.

T. Tiedje, B. Abeles, J. M. Cebulka, and J. Pelz, “Photoconductivity enhancement by light trapping in rough amorphous silicon,” Appl. Phys. Lett. 42(8), 712–714 (1983).
[CrossRef]

Chang, H.-C.

H.-H. Hsiao, H.-F. Huang, S.-C. Lee, and H.-C. Chang, “Investigating far-field spectra and near-field features of extraordinary optical transmission through periodic U- to H-shaped apertures,” IEEE Photon. J. 4(2), 387–398 (2012).
[CrossRef]

Chang, Y.-T.

W.-C. Tu, Y.-T. Chang, C.-H. Yang, D.-J. Yeh, C.-I. Ho, C.-Y. Hsueh, and S.-C. Lee, “Hydrogenated amorphous silicon solar cell on glass substrate patterned by hexagonal nanocylinder array,” Appl. Phys. Lett. 97(19), 193109 (2010).
[CrossRef]

Chen, P.-Y.

C.-C. Ho, P.-Y. Chen, K.-H. Lin, W.-T. Juan, and W.-L. Lee, “Fabrication of monolayer of polymer/nanospheres hybrid at a water-air interface,” ACS Appl. Mater. Interfaces 3(2), 204–208 (2011).
[CrossRef] [PubMed]

Cheng, I.-C.

C.-I. Ho, D.-J. Yeh, V.-C. Su, C.-H. Yang, P.-C. Yang, M.-Y. Pu, C.-H. Kuan, I.-C. Cheng, and S.-C. Lee, “Plasmonic multilayer nanoparticles enhanced photocurrent in thin film hydrogenated amorphous silicon solar cells,” J. Appl. Phys. 112(2), 023113 (2012).
[CrossRef]

Cui, Y.

C. M. Hsu, C. Battaglia, C. Pahud, Z. C. Ruan, F. J. Haug, S. H. Fan, C. Ballif, and Y. Cui, “High-efficiency amorphous silicon solar cell on a periodic nanocone back reflector,” Adv. Energy Mater. 2(6), 628–633 (2012).
[CrossRef]

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

Deckman, H. W.

H. W. Deckman, C. R. Wronski, H. Witzke, and E. Yablonovitch, “Optically enhanced amorphous silicon solar cells,” Appl. Phys. Lett. 42(11), 968–970 (1983).
[CrossRef]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

Fan, S.

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

Fan, S. H.

C. M. Hsu, C. Battaglia, C. Pahud, Z. C. Ruan, F. J. Haug, S. H. Fan, C. Ballif, and Y. Cui, “High-efficiency amorphous silicon solar cell on a periodic nanocone back reflector,” Adv. Energy Mater. 2(6), 628–633 (2012).
[CrossRef]

Ferry, V. E.

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. Li, E. Verhagen, R. J. Walters, R. E. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18(S2Suppl 2), A237–A245 (2010).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[CrossRef]

Friesen, S. A.

A. S. Hall, S. A. Friesen, and T. E. Mallouk, “Wafer-scale fabrication of plasmonic crystals from patterned silicon templates prepared by nanosphere lithography,” Nano Lett. 13(6), 2623–2627 (2013).
[CrossRef] [PubMed]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

Gotoh, Y.

K. Sato, Y. Gotoh, Y. Wakayama, Y. Hayasahi, K. Adachi, and H. Nishimura, “Highly textured SnO2: F TCO films for a-Si solar cells,” Rep. Res. Lab. Asahi Glass Co. Ltd. 42, 129–137 (1992).

Hall, A. S.

A. S. Hall, S. A. Friesen, and T. E. Mallouk, “Wafer-scale fabrication of plasmonic crystals from patterned silicon templates prepared by nanosphere lithography,” Nano Lett. 13(6), 2623–2627 (2013).
[CrossRef] [PubMed]

Haug, F. J.

C. M. Hsu, C. Battaglia, C. Pahud, Z. C. Ruan, F. J. Haug, S. H. Fan, C. Ballif, and Y. Cui, “High-efficiency amorphous silicon solar cell on a periodic nanocone back reflector,” Adv. Energy Mater. 2(6), 628–633 (2012).
[CrossRef]

T. Söderström, F. J. Haug, X. Niquille, and C. Ballif, “TCOs for nip thin film silicon solar cells,” Prog. Photovolt. Res. Appl. 17(3), 165–176 (2009).
[CrossRef]

Hayasahi, Y.

K. Sato, Y. Gotoh, Y. Wakayama, Y. Hayasahi, K. Adachi, and H. Nishimura, “Highly textured SnO2: F TCO films for a-Si solar cells,” Rep. Res. Lab. Asahi Glass Co. Ltd. 42, 129–137 (1992).

Ho, C.-C.

C.-C. Ho, P.-Y. Chen, K.-H. Lin, W.-T. Juan, and W.-L. Lee, “Fabrication of monolayer of polymer/nanospheres hybrid at a water-air interface,” ACS Appl. Mater. Interfaces 3(2), 204–208 (2011).
[CrossRef] [PubMed]

Ho, C.-I.

C.-I. Ho, D.-J. Yeh, V.-C. Su, C.-H. Yang, P.-C. Yang, M.-Y. Pu, C.-H. Kuan, I.-C. Cheng, and S.-C. Lee, “Plasmonic multilayer nanoparticles enhanced photocurrent in thin film hydrogenated amorphous silicon solar cells,” J. Appl. Phys. 112(2), 023113 (2012).
[CrossRef]

W.-C. Tu, Y.-T. Chang, C.-H. Yang, D.-J. Yeh, C.-I. Ho, C.-Y. Hsueh, and S.-C. Lee, “Hydrogenated amorphous silicon solar cell on glass substrate patterned by hexagonal nanocylinder array,” Appl. Phys. Lett. 97(19), 193109 (2010).
[CrossRef]

Hsiao, H.-H.

H.-H. Hsiao, H.-F. Huang, S.-C. Lee, and H.-C. Chang, “Investigating far-field spectra and near-field features of extraordinary optical transmission through periodic U- to H-shaped apertures,” IEEE Photon. J. 4(2), 387–398 (2012).
[CrossRef]

Hsu, C. M.

C. M. Hsu, C. Battaglia, C. Pahud, Z. C. Ruan, F. J. Haug, S. H. Fan, C. Ballif, and Y. Cui, “High-efficiency amorphous silicon solar cell on a periodic nanocone back reflector,” Adv. Energy Mater. 2(6), 628–633 (2012).
[CrossRef]

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

Hsueh, C.-Y.

W.-C. Tu, Y.-T. Chang, C.-H. Yang, D.-J. Yeh, C.-I. Ho, C.-Y. Hsueh, and S.-C. Lee, “Hydrogenated amorphous silicon solar cell on glass substrate patterned by hexagonal nanocylinder array,” Appl. Phys. Lett. 97(19), 193109 (2010).
[CrossRef]

Huang, H.-F.

H.-H. Hsiao, H.-F. Huang, S.-C. Lee, and H.-C. Chang, “Investigating far-field spectra and near-field features of extraordinary optical transmission through periodic U- to H-shaped apertures,” IEEE Photon. J. 4(2), 387–398 (2012).
[CrossRef]

Juan, W.-T.

C.-C. Ho, P.-Y. Chen, K.-H. Lin, W.-T. Juan, and W.-L. Lee, “Fabrication of monolayer of polymer/nanospheres hybrid at a water-air interface,” ACS Appl. Mater. Interfaces 3(2), 204–208 (2011).
[CrossRef] [PubMed]

Keppner, H.

A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, “Photovoltaic technology: the case for thin-film solar cells,” Science 285(5428), 692–698 (1999).
[CrossRef] [PubMed]

Kondo, M.

H. Sai, K. Saito, and M. Kondo, “Investigation of textured back reflectors with periodic honeycomb patterns in thin-film silicon solar cells for improved photovoltaic performance,” IEEE J. Photovolt. 3(1), 5–10 (2013).
[CrossRef]

Kuan, C.-H.

C.-I. Ho, D.-J. Yeh, V.-C. Su, C.-H. Yang, P.-C. Yang, M.-Y. Pu, C.-H. Kuan, I.-C. Cheng, and S.-C. Lee, “Plasmonic multilayer nanoparticles enhanced photocurrent in thin film hydrogenated amorphous silicon solar cells,” J. Appl. Phys. 112(2), 023113 (2012).
[CrossRef]

Lare, M. C.

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

Lee, S.-C.

C.-I. Ho, D.-J. Yeh, V.-C. Su, C.-H. Yang, P.-C. Yang, M.-Y. Pu, C.-H. Kuan, I.-C. Cheng, and S.-C. Lee, “Plasmonic multilayer nanoparticles enhanced photocurrent in thin film hydrogenated amorphous silicon solar cells,” J. Appl. Phys. 112(2), 023113 (2012).
[CrossRef]

H.-H. Hsiao, H.-F. Huang, S.-C. Lee, and H.-C. Chang, “Investigating far-field spectra and near-field features of extraordinary optical transmission through periodic U- to H-shaped apertures,” IEEE Photon. J. 4(2), 387–398 (2012).
[CrossRef]

W.-C. Tu, Y.-T. Chang, C.-H. Yang, D.-J. Yeh, C.-I. Ho, C.-Y. Hsueh, and S.-C. Lee, “Hydrogenated amorphous silicon solar cell on glass substrate patterned by hexagonal nanocylinder array,” Appl. Phys. Lett. 97(19), 193109 (2010).
[CrossRef]

Lee, W.-L.

C.-C. Ho, P.-Y. Chen, K.-H. Lin, W.-T. Juan, and W.-L. Lee, “Fabrication of monolayer of polymer/nanospheres hybrid at a water-air interface,” ACS Appl. Mater. Interfaces 3(2), 204–208 (2011).
[CrossRef] [PubMed]

Li, H. B.

Li, H. B. T.

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[CrossRef]

Lin, K.-H.

C.-C. Ho, P.-Y. Chen, K.-H. Lin, W.-T. Juan, and W.-L. Lee, “Fabrication of monolayer of polymer/nanospheres hybrid at a water-air interface,” ACS Appl. Mater. Interfaces 3(2), 204–208 (2011).
[CrossRef] [PubMed]

Ma, Z. T.

Z. T. Ma and K. Ogusu, “FDTD analysis of 2D triangular-lattice photonic crystals with arbitrary-shape inclusions based on unit cell transformation,” Opt. Commun. 282(7), 1322–1325 (2009).
[CrossRef]

Mallouk, T. E.

A. S. Hall, S. A. Friesen, and T. E. Mallouk, “Wafer-scale fabrication of plasmonic crystals from patterned silicon templates prepared by nanosphere lithography,” Nano Lett. 13(6), 2623–2627 (2013).
[CrossRef] [PubMed]

Müller, J.

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
[CrossRef]

Niquille, X.

T. Söderström, F. J. Haug, X. Niquille, and C. Ballif, “TCOs for nip thin film silicon solar cells,” Prog. Photovolt. Res. Appl. 17(3), 165–176 (2009).
[CrossRef]

Nishimura, H.

K. Sato, Y. Gotoh, Y. Wakayama, Y. Hayasahi, K. Adachi, and H. Nishimura, “Highly textured SnO2: F TCO films for a-Si solar cells,” Rep. Res. Lab. Asahi Glass Co. Ltd. 42, 129–137 (1992).

Ogusu, K.

Z. T. Ma and K. Ogusu, “FDTD analysis of 2D triangular-lattice photonic crystals with arbitrary-shape inclusions based on unit cell transformation,” Opt. Commun. 282(7), 1322–1325 (2009).
[CrossRef]

Pahud, C.

C. M. Hsu, C. Battaglia, C. Pahud, Z. C. Ruan, F. J. Haug, S. H. Fan, C. Ballif, and Y. Cui, “High-efficiency amorphous silicon solar cell on a periodic nanocone back reflector,” Adv. Energy Mater. 2(6), 628–633 (2012).
[CrossRef]

Pelz, J.

T. Tiedje, B. Abeles, J. M. Cebulka, and J. Pelz, “Photoconductivity enhancement by light trapping in rough amorphous silicon,” Appl. Phys. Lett. 42(8), 712–714 (1983).
[CrossRef]

Polman, A.

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. Li, E. Verhagen, R. J. Walters, R. E. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18(S2Suppl 2), A237–A245 (2010).
[CrossRef] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[CrossRef]

Pu, M.-Y.

C.-I. Ho, D.-J. Yeh, V.-C. Su, C.-H. Yang, P.-C. Yang, M.-Y. Pu, C.-H. Kuan, I.-C. Cheng, and S.-C. Lee, “Plasmonic multilayer nanoparticles enhanced photocurrent in thin film hydrogenated amorphous silicon solar cells,” J. Appl. Phys. 112(2), 023113 (2012).
[CrossRef]

Rech, B.

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
[CrossRef]

Ruan, Z. C.

C. M. Hsu, C. Battaglia, C. Pahud, Z. C. Ruan, F. J. Haug, S. H. Fan, C. Ballif, and Y. Cui, “High-efficiency amorphous silicon solar cell on a periodic nanocone back reflector,” Adv. Energy Mater. 2(6), 628–633 (2012).
[CrossRef]

Sai, H.

H. Sai, K. Saito, and M. Kondo, “Investigation of textured back reflectors with periodic honeycomb patterns in thin-film silicon solar cells for improved photovoltaic performance,” IEEE J. Photovolt. 3(1), 5–10 (2013).
[CrossRef]

Saito, K.

H. Sai, K. Saito, and M. Kondo, “Investigation of textured back reflectors with periodic honeycomb patterns in thin-film silicon solar cells for improved photovoltaic performance,” IEEE J. Photovolt. 3(1), 5–10 (2013).
[CrossRef]

Sato, K.

K. Sato, Y. Gotoh, Y. Wakayama, Y. Hayasahi, K. Adachi, and H. Nishimura, “Highly textured SnO2: F TCO films for a-Si solar cells,” Rep. Res. Lab. Asahi Glass Co. Ltd. 42, 129–137 (1992).

Schropp, R. E.

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. Li, E. Verhagen, R. J. Walters, R. E. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18(S2Suppl 2), A237–A245 (2010).
[CrossRef] [PubMed]

Schropp, R. E. I.

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[CrossRef]

Shah, A.

A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, “Photovoltaic technology: the case for thin-film solar cells,” Science 285(5428), 692–698 (1999).
[CrossRef] [PubMed]

Söderström, T.

T. Söderström, F. J. Haug, X. Niquille, and C. Ballif, “TCOs for nip thin film silicon solar cells,” Prog. Photovolt. Res. Appl. 17(3), 165–176 (2009).
[CrossRef]

Springer, J.

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
[CrossRef]

Su, V.-C.

C.-I. Ho, D.-J. Yeh, V.-C. Su, C.-H. Yang, P.-C. Yang, M.-Y. Pu, C.-H. Kuan, I.-C. Cheng, and S.-C. Lee, “Plasmonic multilayer nanoparticles enhanced photocurrent in thin film hydrogenated amorphous silicon solar cells,” J. Appl. Phys. 112(2), 023113 (2012).
[CrossRef]

Tiedje, T.

T. Tiedje, B. Abeles, J. M. Cebulka, and J. Pelz, “Photoconductivity enhancement by light trapping in rough amorphous silicon,” Appl. Phys. Lett. 42(8), 712–714 (1983).
[CrossRef]

Torres, P.

A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, “Photovoltaic technology: the case for thin-film solar cells,” Science 285(5428), 692–698 (1999).
[CrossRef] [PubMed]

Tscharner, R.

A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, “Photovoltaic technology: the case for thin-film solar cells,” Science 285(5428), 692–698 (1999).
[CrossRef] [PubMed]

Tu, W.-C.

W.-C. Tu, Y.-T. Chang, C.-H. Yang, D.-J. Yeh, C.-I. Ho, C.-Y. Hsueh, and S.-C. Lee, “Hydrogenated amorphous silicon solar cell on glass substrate patterned by hexagonal nanocylinder array,” Appl. Phys. Lett. 97(19), 193109 (2010).
[CrossRef]

Vanecek, M.

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
[CrossRef]

Verhagen, E.

Verschuuren, M. A.

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. Li, E. Verhagen, R. J. Walters, R. E. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18(S2Suppl 2), A237–A245 (2010).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[CrossRef]

Wakayama, Y.

K. Sato, Y. Gotoh, Y. Wakayama, Y. Hayasahi, K. Adachi, and H. Nishimura, “Highly textured SnO2: F TCO films for a-Si solar cells,” Rep. Res. Lab. Asahi Glass Co. Ltd. 42, 129–137 (1992).

Walters, R. J.

Witzke, H.

H. W. Deckman, C. R. Wronski, H. Witzke, and E. Yablonovitch, “Optically enhanced amorphous silicon solar cells,” Appl. Phys. Lett. 42(11), 968–970 (1983).
[CrossRef]

Wronski, C. R.

H. W. Deckman, C. R. Wronski, H. Witzke, and E. Yablonovitch, “Optically enhanced amorphous silicon solar cells,” Appl. Phys. Lett. 42(11), 968–970 (1983).
[CrossRef]

Wyrsch, N.

A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, “Photovoltaic technology: the case for thin-film solar cells,” Science 285(5428), 692–698 (1999).
[CrossRef] [PubMed]

Yablonovitch, E.

H. W. Deckman, C. R. Wronski, H. Witzke, and E. Yablonovitch, “Optically enhanced amorphous silicon solar cells,” Appl. Phys. Lett. 42(11), 968–970 (1983).
[CrossRef]

Yang, C.-H.

C.-I. Ho, D.-J. Yeh, V.-C. Su, C.-H. Yang, P.-C. Yang, M.-Y. Pu, C.-H. Kuan, I.-C. Cheng, and S.-C. Lee, “Plasmonic multilayer nanoparticles enhanced photocurrent in thin film hydrogenated amorphous silicon solar cells,” J. Appl. Phys. 112(2), 023113 (2012).
[CrossRef]

W.-C. Tu, Y.-T. Chang, C.-H. Yang, D.-J. Yeh, C.-I. Ho, C.-Y. Hsueh, and S.-C. Lee, “Hydrogenated amorphous silicon solar cell on glass substrate patterned by hexagonal nanocylinder array,” Appl. Phys. Lett. 97(19), 193109 (2010).
[CrossRef]

Yang, P.-C.

C.-I. Ho, D.-J. Yeh, V.-C. Su, C.-H. Yang, P.-C. Yang, M.-Y. Pu, C.-H. Kuan, I.-C. Cheng, and S.-C. Lee, “Plasmonic multilayer nanoparticles enhanced photocurrent in thin film hydrogenated amorphous silicon solar cells,” J. Appl. Phys. 112(2), 023113 (2012).
[CrossRef]

Yeh, D.-J.

C.-I. Ho, D.-J. Yeh, V.-C. Su, C.-H. Yang, P.-C. Yang, M.-Y. Pu, C.-H. Kuan, I.-C. Cheng, and S.-C. Lee, “Plasmonic multilayer nanoparticles enhanced photocurrent in thin film hydrogenated amorphous silicon solar cells,” J. Appl. Phys. 112(2), 023113 (2012).
[CrossRef]

W.-C. Tu, Y.-T. Chang, C.-H. Yang, D.-J. Yeh, C.-I. Ho, C.-Y. Hsueh, and S.-C. Lee, “Hydrogenated amorphous silicon solar cell on glass substrate patterned by hexagonal nanocylinder array,” Appl. Phys. Lett. 97(19), 193109 (2010).
[CrossRef]

Yu, Z.

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

Zhu, J.

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

ACS Appl. Mater. Interfaces (1)

C.-C. Ho, P.-Y. Chen, K.-H. Lin, W.-T. Juan, and W.-L. Lee, “Fabrication of monolayer of polymer/nanospheres hybrid at a water-air interface,” ACS Appl. Mater. Interfaces 3(2), 204–208 (2011).
[CrossRef] [PubMed]

Adv. Energy Mater. (1)

C. M. Hsu, C. Battaglia, C. Pahud, Z. C. Ruan, F. J. Haug, S. H. Fan, C. Ballif, and Y. Cui, “High-efficiency amorphous silicon solar cell on a periodic nanocone back reflector,” Adv. Energy Mater. 2(6), 628–633 (2012).
[CrossRef]

Appl. Phys. Lett. (4)

W.-C. Tu, Y.-T. Chang, C.-H. Yang, D.-J. Yeh, C.-I. Ho, C.-Y. Hsueh, and S.-C. Lee, “Hydrogenated amorphous silicon solar cell on glass substrate patterned by hexagonal nanocylinder array,” Appl. Phys. Lett. 97(19), 193109 (2010).
[CrossRef]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[CrossRef]

H. W. Deckman, C. R. Wronski, H. Witzke, and E. Yablonovitch, “Optically enhanced amorphous silicon solar cells,” Appl. Phys. Lett. 42(11), 968–970 (1983).
[CrossRef]

T. Tiedje, B. Abeles, J. M. Cebulka, and J. Pelz, “Photoconductivity enhancement by light trapping in rough amorphous silicon,” Appl. Phys. Lett. 42(8), 712–714 (1983).
[CrossRef]

IEEE J. Photovolt. (1)

H. Sai, K. Saito, and M. Kondo, “Investigation of textured back reflectors with periodic honeycomb patterns in thin-film silicon solar cells for improved photovoltaic performance,” IEEE J. Photovolt. 3(1), 5–10 (2013).
[CrossRef]

IEEE Photon. J. (1)

H.-H. Hsiao, H.-F. Huang, S.-C. Lee, and H.-C. Chang, “Investigating far-field spectra and near-field features of extraordinary optical transmission through periodic U- to H-shaped apertures,” IEEE Photon. J. 4(2), 387–398 (2012).
[CrossRef]

J. Appl. Phys. (1)

C.-I. Ho, D.-J. Yeh, V.-C. Su, C.-H. Yang, P.-C. Yang, M.-Y. Pu, C.-H. Kuan, I.-C. Cheng, and S.-C. Lee, “Plasmonic multilayer nanoparticles enhanced photocurrent in thin film hydrogenated amorphous silicon solar cells,” J. Appl. Phys. 112(2), 023113 (2012).
[CrossRef]

Nano Lett. (3)

A. S. Hall, S. A. Friesen, and T. E. Mallouk, “Wafer-scale fabrication of plasmonic crystals from patterned silicon templates prepared by nanosphere lithography,” Nano Lett. 13(6), 2623–2627 (2013).
[CrossRef] [PubMed]

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Nature (1)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

Opt. Commun. (1)

Z. T. Ma and K. Ogusu, “FDTD analysis of 2D triangular-lattice photonic crystals with arbitrary-shape inclusions based on unit cell transformation,” Opt. Commun. 282(7), 1322–1325 (2009).
[CrossRef]

Opt. Express (1)

Prog. Photovolt. Res. Appl. (1)

T. Söderström, F. J. Haug, X. Niquille, and C. Ballif, “TCOs for nip thin film silicon solar cells,” Prog. Photovolt. Res. Appl. 17(3), 165–176 (2009).
[CrossRef]

Rep. Res. Lab. Asahi Glass Co. Ltd. (1)

K. Sato, Y. Gotoh, Y. Wakayama, Y. Hayasahi, K. Adachi, and H. Nishimura, “Highly textured SnO2: F TCO films for a-Si solar cells,” Rep. Res. Lab. Asahi Glass Co. Ltd. 42, 129–137 (1992).

Science (1)

A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, “Photovoltaic technology: the case for thin-film solar cells,” Science 285(5428), 692–698 (1999).
[CrossRef] [PubMed]

Sol. Energy (1)

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
[CrossRef]

Other (3)

E. D. Palik, Handbook of Optical Constants of Solids (Academic press, 1985).

S. C. Hagness and A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

S. A. Maier, Plasmonics: Fundamentals and Applications: Fundamentals and Applications, 1st ed. (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematics of fabrication process of the (a) nanohole array and (b) anti-ring array using a monolayer polymer/nanosphere hybrid with selective ion etching. The CF4 plasma can etch through the unprotected SiO2 under the nanospheres.

Fig. 2
Fig. 2

Scanning electron micrographs of (a) a nanohole array and (b) an anti-ring array and atomic force micrographs of (c) a nanohole array and (d) an anti-ring array. The white scale bars are 1 μm. The insets of (a) and (b) show the laser diffraction patterns of the nanohole and the anti-ring arrays, respectively. Sharp hexagonal diffraction peaks imply a good periodicity of the surface structures.

Fig. 3
Fig. 3

(a) Measured specular reflectance and reflective haze spectra of Ag-coated nanohole and Ag-coated anti-ring arrays. Dips are observed in the reflectance spectra, and the haze value of the anti-ring array is higher. (b) Simulated specular reflectance spectra. The inset shows the configuration used in the simulation.

Fig. 4
Fig. 4

Simulated cross-sectional |Ex| distribution for the Ag-coated (a) nanohole structure and (b) anti-ring structure, and |Ez| distribution for the Ag-coated (c) nanohole structure and (d) anti-ring structure at a wavelength of 580 nm.

Fig. 5
Fig. 5

Angle-resolved reflectance spectra of (a) Ag-coated nanohole array and (b) Ag-coated anti-ring arrays. The large-angle reflectance of the anti-ring array is higher that of the nanohole array.

Fig. 6
Fig. 6

(a) J-V curves and (b) measured EQE spectra of a-Si:H thin-film solar cells with anti-ring, nanohole, and flat back reflectors.

Fig. 7
Fig. 7

(a) Simulated absorption spectra of full cells with nanohole and anti-ring back reflectors. Simulated cross-sectional |Ez| distribution for full cell with (b) nanohole back reflector and (c) anti-ring back reflector at a wavelength of 690 nm.

Tables (1)

Tables Icon

Table 1 Performance Parameters of a-Si:H Thin-film Solar Cells Fabricated on Flat, Nanohole, and Anti-ring Back Reflectors

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

k s p p = k i n c + i G 1 + j G 2
λ s p p = 3 2 a i 2 + i j + j 2 ε d ε m ε d + ε m
R= S P z,scat ds S P z,inc ds

Metrics