Abstract

Present work experimentally characterizes the optical property of blended plasmonic nanofuids based on gold nanorod (AuNR) with different aspect ratios. The existence of localized surface plasmon resonance was verified from measured extinction coefficient of three AuNR solutions, and spectral tunability of AuNR nanofluid was successfully demonstrated in the visible and near-infrared spectral region. The representative aspect ratio and volume fraction of each sample were then calculated from the relation between extinction coefficient and extinction efficiency, which leads to the design of a blended plasmonic nanofluid having broad-band absorption characteristic in the visible and near-infrared spectral region. The results obtained from this study will facilitate the development of a novel volumetric solar thermal collectors using plasmonic nanofluids.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  2. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phy. Rep. 408, 131–134 (2005).
    [Crossref]
  3. A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett. 1, 84–90 (2006).
    [Crossref]
  4. H. H. Richardson, Z. N. Hickman, A. O. Govorov, A. C. Thomas, W. Zhang, and M. E. Kordesch, “Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting,” Nano Lett. 6, 783–788 (2006).
    [Crossref] [PubMed]
  5. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particle (WILEY-VCH, 2004).
  6. E. Sani, S. Barison, C. Pagura, L. Mercatelli, P. Sansoni, D. Fontani, D. Jafrancesco, and F. Francini, “Carbon nanohorns-based nanofluids as direct sunlight absorbers,” Opt. Express 18, 5179–5187 (2010).
    [Crossref] [PubMed]
  7. E. Sani, L. Mercatelli, S. Barison, C. Pagura, F. Agresti, L. Colla, and P. Sansoni, “Potential of carbon nanohorn-based suspensions for solar thermal collectors,” Sol. Energy Mater. Sol. Cells 95, 2994–3000 (2011).
    [Crossref]
  8. H. Tyagi, P. E. Phelan, and R. Prasher, “Predicted efficiency of a low-temperature nanofluid-based direct absorption solar collector,” ASME J. Sol. Energy Eng. 131, 041004 (2009).
    [Crossref]
  9. V. Khullar, H. Tyagi, P. E. Phelan, T. P. Otanicar, H. Singh, and R. A. Taylor, “Solar energy harvesting using nanofluids-based concentrating solar collector,” J. Nanotech. Eng. Med. 3, 031003 (2012).
    [Crossref]
  10. B. J. Lee, K. Park, T. Walsh, and L. Xu, “Radiative heat transfer analysis in plasmonic nanofluids for direct solar thermal absorption,” ASME J. Sol. Energy Eng. 134, 021009 (2012).
    [Crossref]
  11. M. F. Modest, Radiative Heat Transfer (Academic, 2003).
  12. R. A. Taylor, T. P. Otanicar, Y. Herukerrupu, F. Bremond, G. Rosengarten, E. R. Hawkes, X. Jian, and S. Coulombe, “Feasibility of nanofluid-based optical filter,” Appl. Opt. 52, 1413–1422 (2013).
    [Crossref] [PubMed]
  13. Y.-Y. Yu, S.-S. Chang, C.-L. Lee, and C. R. C. Wang, “Gold nanorods: electrochemical synthesis and optical properties,” J. Phys. Chem. B 101, 6661–6664 (1997).
    [Crossref]
  14. H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6, 827–832 (2006).
    [Crossref] [PubMed]
  15. R. Bardhan, N. K. Gardy, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: nanoshell and nanorods,” ACS Nano 3, 744–752 (2009).
    [Crossref] [PubMed]
  16. N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template,” Adv. Mater. 13, 1389–1393 (2001).
    [Crossref]
  17. S. Park, N. Sinha, and K. Hamad-Schifferli, “Effective size and zeta potential of nanorods by Ferguson analysis,” Langmuir 26, 13071–13075 (2010).
    [Crossref] [PubMed]
  18. L. Gou and C. J. Murphy, “Fine-tuning the shape of gold nanorods,” Chem. Mater. 17, 3668–3672 (2005).
    [Crossref]
  19. B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15, 1957–1962 (2003).
    [Crossref]
  20. M. D. Abramoff, P. J. Magelhaes, and S. J. Ram, “Image processing with ImageJ,” Biophotonics Int. 11, 36–43 (2004).
  21. ASTM, “Reference solar spectral irradiance: Air mass 1.5”, http://rredc.nrel.gov/solar/spectra/am1.5
  22. M. C. J. Large, D. R. McKenzie, and M. I. Large, “Incoherent reflection processes: a discrete approach,” Opt. Commun. 128, 307–314 (1996).
    [Crossref]
  23. S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410–8426 (1999).
    [Crossref]
  24. E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Matter. 16, 1685–1706 (2004).
    [Crossref]
  25. A. Mohammadi, F. Kaminski, V. Sandoghdar, and M. Agio, “Spheroidal nanoparticles as nanoantennas for fluorescence enhancement,” Int. J. Nanotechnol 6, 902–914 (2009).
    [Crossref]
  26. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994).
    [Crossref]
  27. D. E. Palik, Handbook of optical constants of solids (Academic Press, London, 1985).
  28. L. P. Wang, B. J. Lee, X. J. Wang, and Z. M. Zhang, “Spatial and temporal coherence of thermal radiation in asymmetric Fabry-Perot resonance cavities,” Int. J. Heat Mass Transfer 52, 3024–3031 (2009).
    [Crossref]
  29. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape and composition: applications in biological imaging and biomedicine,” J. Phy. Chem. B 110, 7238–7248 (2006).
    [Crossref]
  30. H. Petrova, J. P. Juste, I. Pastoriza-Santos, G. V. Hartland, L. M. Liz-Marzan, and P. Mulvaney, “On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating,” Phys. Chem. Chem. Phys. 8, 814–821 (2006).
    [Crossref] [PubMed]
  31. A. Wijaya and K. Hamad-Schifferli, “Ligand customization and DNA functionalization of gold nanorods via round-trip phase transfer ligand exchange,” Langmuir 24, 9966–9969 (2008).
    [Crossref] [PubMed]
  32. M. B. Mohamed, K. Z. Ismail, S. Link, and M. A. El-Sayed, “Thermal reshaping of gold nanorods in micelles,” J. Phys. Chem. B 102, 9370–9374 (1998).
    [Crossref]

2013 (1)

2012 (2)

V. Khullar, H. Tyagi, P. E. Phelan, T. P. Otanicar, H. Singh, and R. A. Taylor, “Solar energy harvesting using nanofluids-based concentrating solar collector,” J. Nanotech. Eng. Med. 3, 031003 (2012).
[Crossref]

B. J. Lee, K. Park, T. Walsh, and L. Xu, “Radiative heat transfer analysis in plasmonic nanofluids for direct solar thermal absorption,” ASME J. Sol. Energy Eng. 134, 021009 (2012).
[Crossref]

2011 (1)

E. Sani, L. Mercatelli, S. Barison, C. Pagura, F. Agresti, L. Colla, and P. Sansoni, “Potential of carbon nanohorn-based suspensions for solar thermal collectors,” Sol. Energy Mater. Sol. Cells 95, 2994–3000 (2011).
[Crossref]

2010 (2)

2009 (4)

R. Bardhan, N. K. Gardy, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: nanoshell and nanorods,” ACS Nano 3, 744–752 (2009).
[Crossref] [PubMed]

H. Tyagi, P. E. Phelan, and R. Prasher, “Predicted efficiency of a low-temperature nanofluid-based direct absorption solar collector,” ASME J. Sol. Energy Eng. 131, 041004 (2009).
[Crossref]

A. Mohammadi, F. Kaminski, V. Sandoghdar, and M. Agio, “Spheroidal nanoparticles as nanoantennas for fluorescence enhancement,” Int. J. Nanotechnol 6, 902–914 (2009).
[Crossref]

L. P. Wang, B. J. Lee, X. J. Wang, and Z. M. Zhang, “Spatial and temporal coherence of thermal radiation in asymmetric Fabry-Perot resonance cavities,” Int. J. Heat Mass Transfer 52, 3024–3031 (2009).
[Crossref]

2008 (1)

A. Wijaya and K. Hamad-Schifferli, “Ligand customization and DNA functionalization of gold nanorods via round-trip phase transfer ligand exchange,” Langmuir 24, 9966–9969 (2008).
[Crossref] [PubMed]

2006 (5)

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape and composition: applications in biological imaging and biomedicine,” J. Phy. Chem. B 110, 7238–7248 (2006).
[Crossref]

H. Petrova, J. P. Juste, I. Pastoriza-Santos, G. V. Hartland, L. M. Liz-Marzan, and P. Mulvaney, “On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating,” Phys. Chem. Chem. Phys. 8, 814–821 (2006).
[Crossref] [PubMed]

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6, 827–832 (2006).
[Crossref] [PubMed]

A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett. 1, 84–90 (2006).
[Crossref]

H. H. Richardson, Z. N. Hickman, A. O. Govorov, A. C. Thomas, W. Zhang, and M. E. Kordesch, “Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting,” Nano Lett. 6, 783–788 (2006).
[Crossref] [PubMed]

2005 (2)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phy. Rep. 408, 131–134 (2005).
[Crossref]

L. Gou and C. J. Murphy, “Fine-tuning the shape of gold nanorods,” Chem. Mater. 17, 3668–3672 (2005).
[Crossref]

2004 (2)

M. D. Abramoff, P. J. Magelhaes, and S. J. Ram, “Image processing with ImageJ,” Biophotonics Int. 11, 36–43 (2004).

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Matter. 16, 1685–1706 (2004).
[Crossref]

2003 (1)

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15, 1957–1962 (2003).
[Crossref]

2001 (1)

N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template,” Adv. Mater. 13, 1389–1393 (2001).
[Crossref]

1999 (1)

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410–8426 (1999).
[Crossref]

1998 (1)

M. B. Mohamed, K. Z. Ismail, S. Link, and M. A. El-Sayed, “Thermal reshaping of gold nanorods in micelles,” J. Phys. Chem. B 102, 9370–9374 (1998).
[Crossref]

1997 (1)

Y.-Y. Yu, S.-S. Chang, C.-L. Lee, and C. R. C. Wang, “Gold nanorods: electrochemical synthesis and optical properties,” J. Phys. Chem. B 101, 6661–6664 (1997).
[Crossref]

1996 (1)

M. C. J. Large, D. R. McKenzie, and M. I. Large, “Incoherent reflection processes: a discrete approach,” Opt. Commun. 128, 307–314 (1996).
[Crossref]

1994 (1)

Abramoff, M. D.

M. D. Abramoff, P. J. Magelhaes, and S. J. Ram, “Image processing with ImageJ,” Biophotonics Int. 11, 36–43 (2004).

Agio, M.

A. Mohammadi, F. Kaminski, V. Sandoghdar, and M. Agio, “Spheroidal nanoparticles as nanoantennas for fluorescence enhancement,” Int. J. Nanotechnol 6, 902–914 (2009).
[Crossref]

Agresti, F.

E. Sani, L. Mercatelli, S. Barison, C. Pagura, F. Agresti, L. Colla, and P. Sansoni, “Potential of carbon nanohorn-based suspensions for solar thermal collectors,” Sol. Energy Mater. Sol. Cells 95, 2994–3000 (2011).
[Crossref]

Bardhan, R.

R. Bardhan, N. K. Gardy, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: nanoshell and nanorods,” ACS Nano 3, 744–752 (2009).
[Crossref] [PubMed]

Barison, S.

E. Sani, L. Mercatelli, S. Barison, C. Pagura, F. Agresti, L. Colla, and P. Sansoni, “Potential of carbon nanohorn-based suspensions for solar thermal collectors,” Sol. Energy Mater. Sol. Cells 95, 2994–3000 (2011).
[Crossref]

E. Sani, S. Barison, C. Pagura, L. Mercatelli, P. Sansoni, D. Fontani, D. Jafrancesco, and F. Francini, “Carbon nanohorns-based nanofluids as direct sunlight absorbers,” Opt. Express 18, 5179–5187 (2010).
[Crossref] [PubMed]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particle (WILEY-VCH, 2004).

Brandl, D. W.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6, 827–832 (2006).
[Crossref] [PubMed]

Bremond, F.

Chang, S.-S.

Y.-Y. Yu, S.-S. Chang, C.-L. Lee, and C. R. C. Wang, “Gold nanorods: electrochemical synthesis and optical properties,” J. Phys. Chem. B 101, 6661–6664 (1997).
[Crossref]

Cole, J. R.

R. Bardhan, N. K. Gardy, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: nanoshell and nanorods,” ACS Nano 3, 744–752 (2009).
[Crossref] [PubMed]

Colla, L.

E. Sani, L. Mercatelli, S. Barison, C. Pagura, F. Agresti, L. Colla, and P. Sansoni, “Potential of carbon nanohorn-based suspensions for solar thermal collectors,” Sol. Energy Mater. Sol. Cells 95, 2994–3000 (2011).
[Crossref]

Coulombe, S.

Draine, B. T.

El-Sayed, I. H.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape and composition: applications in biological imaging and biomedicine,” J. Phy. Chem. B 110, 7238–7248 (2006).
[Crossref]

El-Sayed, M. A.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape and composition: applications in biological imaging and biomedicine,” J. Phy. Chem. B 110, 7238–7248 (2006).
[Crossref]

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15, 1957–1962 (2003).
[Crossref]

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410–8426 (1999).
[Crossref]

M. B. Mohamed, K. Z. Ismail, S. Link, and M. A. El-Sayed, “Thermal reshaping of gold nanorods in micelles,” J. Phys. Chem. B 102, 9370–9374 (1998).
[Crossref]

Fendler, J. H.

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Matter. 16, 1685–1706 (2004).
[Crossref]

Flatau, P. J.

Fontani, D.

Francini, F.

Gardy, N. K.

R. Bardhan, N. K. Gardy, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: nanoshell and nanorods,” ACS Nano 3, 744–752 (2009).
[Crossref] [PubMed]

Gearheart, L.

N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template,” Adv. Mater. 13, 1389–1393 (2001).
[Crossref]

Gou, L.

L. Gou and C. J. Murphy, “Fine-tuning the shape of gold nanorods,” Chem. Mater. 17, 3668–3672 (2005).
[Crossref]

Govorov, A. O.

H. H. Richardson, Z. N. Hickman, A. O. Govorov, A. C. Thomas, W. Zhang, and M. E. Kordesch, “Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting,” Nano Lett. 6, 783–788 (2006).
[Crossref] [PubMed]

A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett. 1, 84–90 (2006).
[Crossref]

Halas, N. J.

R. Bardhan, N. K. Gardy, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: nanoshell and nanorods,” ACS Nano 3, 744–752 (2009).
[Crossref] [PubMed]

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6, 827–832 (2006).
[Crossref] [PubMed]

Hamad-Schifferli, K.

S. Park, N. Sinha, and K. Hamad-Schifferli, “Effective size and zeta potential of nanorods by Ferguson analysis,” Langmuir 26, 13071–13075 (2010).
[Crossref] [PubMed]

A. Wijaya and K. Hamad-Schifferli, “Ligand customization and DNA functionalization of gold nanorods via round-trip phase transfer ligand exchange,” Langmuir 24, 9966–9969 (2008).
[Crossref] [PubMed]

Hartland, G. V.

H. Petrova, J. P. Juste, I. Pastoriza-Santos, G. V. Hartland, L. M. Liz-Marzan, and P. Mulvaney, “On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating,” Phys. Chem. Chem. Phys. 8, 814–821 (2006).
[Crossref] [PubMed]

Hawkes, E. R.

Herukerrupu, Y.

Hickman, Z. N.

H. H. Richardson, Z. N. Hickman, A. O. Govorov, A. C. Thomas, W. Zhang, and M. E. Kordesch, “Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting,” Nano Lett. 6, 783–788 (2006).
[Crossref] [PubMed]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particle (WILEY-VCH, 2004).

Hutter, E.

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Matter. 16, 1685–1706 (2004).
[Crossref]

Ismail, K. Z.

M. B. Mohamed, K. Z. Ismail, S. Link, and M. A. El-Sayed, “Thermal reshaping of gold nanorods in micelles,” J. Phys. Chem. B 102, 9370–9374 (1998).
[Crossref]

Jafrancesco, D.

Jain, P. K.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape and composition: applications in biological imaging and biomedicine,” J. Phy. Chem. B 110, 7238–7248 (2006).
[Crossref]

Jana, N. R.

N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template,” Adv. Mater. 13, 1389–1393 (2001).
[Crossref]

Jian, X.

Joshi, A.

R. Bardhan, N. K. Gardy, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: nanoshell and nanorods,” ACS Nano 3, 744–752 (2009).
[Crossref] [PubMed]

Juste, J. P.

H. Petrova, J. P. Juste, I. Pastoriza-Santos, G. V. Hartland, L. M. Liz-Marzan, and P. Mulvaney, “On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating,” Phys. Chem. Chem. Phys. 8, 814–821 (2006).
[Crossref] [PubMed]

Kaminski, F.

A. Mohammadi, F. Kaminski, V. Sandoghdar, and M. Agio, “Spheroidal nanoparticles as nanoantennas for fluorescence enhancement,” Int. J. Nanotechnol 6, 902–914 (2009).
[Crossref]

Khullar, V.

V. Khullar, H. Tyagi, P. E. Phelan, T. P. Otanicar, H. Singh, and R. A. Taylor, “Solar energy harvesting using nanofluids-based concentrating solar collector,” J. Nanotech. Eng. Med. 3, 031003 (2012).
[Crossref]

Kordesch, M. E.

H. H. Richardson, Z. N. Hickman, A. O. Govorov, A. C. Thomas, W. Zhang, and M. E. Kordesch, “Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting,” Nano Lett. 6, 783–788 (2006).
[Crossref] [PubMed]

Kotov, N. A.

A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett. 1, 84–90 (2006).
[Crossref]

Large, M. C. J.

M. C. J. Large, D. R. McKenzie, and M. I. Large, “Incoherent reflection processes: a discrete approach,” Opt. Commun. 128, 307–314 (1996).
[Crossref]

Large, M. I.

M. C. J. Large, D. R. McKenzie, and M. I. Large, “Incoherent reflection processes: a discrete approach,” Opt. Commun. 128, 307–314 (1996).
[Crossref]

Le, F.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6, 827–832 (2006).
[Crossref] [PubMed]

Lee, B. J.

B. J. Lee, K. Park, T. Walsh, and L. Xu, “Radiative heat transfer analysis in plasmonic nanofluids for direct solar thermal absorption,” ASME J. Sol. Energy Eng. 134, 021009 (2012).
[Crossref]

L. P. Wang, B. J. Lee, X. J. Wang, and Z. M. Zhang, “Spatial and temporal coherence of thermal radiation in asymmetric Fabry-Perot resonance cavities,” Int. J. Heat Mass Transfer 52, 3024–3031 (2009).
[Crossref]

Lee, C.-L.

Y.-Y. Yu, S.-S. Chang, C.-L. Lee, and C. R. C. Wang, “Gold nanorods: electrochemical synthesis and optical properties,” J. Phys. Chem. B 101, 6661–6664 (1997).
[Crossref]

Lee, J.

A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett. 1, 84–90 (2006).
[Crossref]

Lee, K. S.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape and composition: applications in biological imaging and biomedicine,” J. Phy. Chem. B 110, 7238–7248 (2006).
[Crossref]

Link, S.

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410–8426 (1999).
[Crossref]

M. B. Mohamed, K. Z. Ismail, S. Link, and M. A. El-Sayed, “Thermal reshaping of gold nanorods in micelles,” J. Phys. Chem. B 102, 9370–9374 (1998).
[Crossref]

Liz-Marzan, L. M.

H. Petrova, J. P. Juste, I. Pastoriza-Santos, G. V. Hartland, L. M. Liz-Marzan, and P. Mulvaney, “On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating,” Phys. Chem. Chem. Phys. 8, 814–821 (2006).
[Crossref] [PubMed]

Magelhaes, P. J.

M. D. Abramoff, P. J. Magelhaes, and S. J. Ram, “Image processing with ImageJ,” Biophotonics Int. 11, 36–43 (2004).

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phy. Rep. 408, 131–134 (2005).
[Crossref]

McKenzie, D. R.

M. C. J. Large, D. R. McKenzie, and M. I. Large, “Incoherent reflection processes: a discrete approach,” Opt. Commun. 128, 307–314 (1996).
[Crossref]

Mercatelli, L.

E. Sani, L. Mercatelli, S. Barison, C. Pagura, F. Agresti, L. Colla, and P. Sansoni, “Potential of carbon nanohorn-based suspensions for solar thermal collectors,” Sol. Energy Mater. Sol. Cells 95, 2994–3000 (2011).
[Crossref]

E. Sani, S. Barison, C. Pagura, L. Mercatelli, P. Sansoni, D. Fontani, D. Jafrancesco, and F. Francini, “Carbon nanohorns-based nanofluids as direct sunlight absorbers,” Opt. Express 18, 5179–5187 (2010).
[Crossref] [PubMed]

Modest, M. F.

M. F. Modest, Radiative Heat Transfer (Academic, 2003).

Mohamed, M. B.

M. B. Mohamed, K. Z. Ismail, S. Link, and M. A. El-Sayed, “Thermal reshaping of gold nanorods in micelles,” J. Phys. Chem. B 102, 9370–9374 (1998).
[Crossref]

Mohammadi, A.

A. Mohammadi, F. Kaminski, V. Sandoghdar, and M. Agio, “Spheroidal nanoparticles as nanoantennas for fluorescence enhancement,” Int. J. Nanotechnol 6, 902–914 (2009).
[Crossref]

Mulvaney, P.

H. Petrova, J. P. Juste, I. Pastoriza-Santos, G. V. Hartland, L. M. Liz-Marzan, and P. Mulvaney, “On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating,” Phys. Chem. Chem. Phys. 8, 814–821 (2006).
[Crossref] [PubMed]

Murphy, C. J.

L. Gou and C. J. Murphy, “Fine-tuning the shape of gold nanorods,” Chem. Mater. 17, 3668–3672 (2005).
[Crossref]

N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template,” Adv. Mater. 13, 1389–1393 (2001).
[Crossref]

Nikoobakht, B.

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15, 1957–1962 (2003).
[Crossref]

Nordlander, P.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6, 827–832 (2006).
[Crossref] [PubMed]

Otanicar, T. P.

R. A. Taylor, T. P. Otanicar, Y. Herukerrupu, F. Bremond, G. Rosengarten, E. R. Hawkes, X. Jian, and S. Coulombe, “Feasibility of nanofluid-based optical filter,” Appl. Opt. 52, 1413–1422 (2013).
[Crossref] [PubMed]

V. Khullar, H. Tyagi, P. E. Phelan, T. P. Otanicar, H. Singh, and R. A. Taylor, “Solar energy harvesting using nanofluids-based concentrating solar collector,” J. Nanotech. Eng. Med. 3, 031003 (2012).
[Crossref]

Pagura, C.

E. Sani, L. Mercatelli, S. Barison, C. Pagura, F. Agresti, L. Colla, and P. Sansoni, “Potential of carbon nanohorn-based suspensions for solar thermal collectors,” Sol. Energy Mater. Sol. Cells 95, 2994–3000 (2011).
[Crossref]

E. Sani, S. Barison, C. Pagura, L. Mercatelli, P. Sansoni, D. Fontani, D. Jafrancesco, and F. Francini, “Carbon nanohorns-based nanofluids as direct sunlight absorbers,” Opt. Express 18, 5179–5187 (2010).
[Crossref] [PubMed]

Palik, D. E.

D. E. Palik, Handbook of optical constants of solids (Academic Press, London, 1985).

Park, K.

B. J. Lee, K. Park, T. Walsh, and L. Xu, “Radiative heat transfer analysis in plasmonic nanofluids for direct solar thermal absorption,” ASME J. Sol. Energy Eng. 134, 021009 (2012).
[Crossref]

Park, S.

S. Park, N. Sinha, and K. Hamad-Schifferli, “Effective size and zeta potential of nanorods by Ferguson analysis,” Langmuir 26, 13071–13075 (2010).
[Crossref] [PubMed]

Pastoriza-Santos, I.

H. Petrova, J. P. Juste, I. Pastoriza-Santos, G. V. Hartland, L. M. Liz-Marzan, and P. Mulvaney, “On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating,” Phys. Chem. Chem. Phys. 8, 814–821 (2006).
[Crossref] [PubMed]

Petrova, H.

H. Petrova, J. P. Juste, I. Pastoriza-Santos, G. V. Hartland, L. M. Liz-Marzan, and P. Mulvaney, “On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating,” Phys. Chem. Chem. Phys. 8, 814–821 (2006).
[Crossref] [PubMed]

Phelan, P. E.

V. Khullar, H. Tyagi, P. E. Phelan, T. P. Otanicar, H. Singh, and R. A. Taylor, “Solar energy harvesting using nanofluids-based concentrating solar collector,” J. Nanotech. Eng. Med. 3, 031003 (2012).
[Crossref]

H. Tyagi, P. E. Phelan, and R. Prasher, “Predicted efficiency of a low-temperature nanofluid-based direct absorption solar collector,” ASME J. Sol. Energy Eng. 131, 041004 (2009).
[Crossref]

Prasher, R.

H. Tyagi, P. E. Phelan, and R. Prasher, “Predicted efficiency of a low-temperature nanofluid-based direct absorption solar collector,” ASME J. Sol. Energy Eng. 131, 041004 (2009).
[Crossref]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Ram, S. J.

M. D. Abramoff, P. J. Magelhaes, and S. J. Ram, “Image processing with ImageJ,” Biophotonics Int. 11, 36–43 (2004).

Richardson, H.

A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett. 1, 84–90 (2006).
[Crossref]

Richardson, H. H.

H. H. Richardson, Z. N. Hickman, A. O. Govorov, A. C. Thomas, W. Zhang, and M. E. Kordesch, “Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting,” Nano Lett. 6, 783–788 (2006).
[Crossref] [PubMed]

Rosengarten, G.

Sandoghdar, V.

A. Mohammadi, F. Kaminski, V. Sandoghdar, and M. Agio, “Spheroidal nanoparticles as nanoantennas for fluorescence enhancement,” Int. J. Nanotechnol 6, 902–914 (2009).
[Crossref]

Sani, E.

E. Sani, L. Mercatelli, S. Barison, C. Pagura, F. Agresti, L. Colla, and P. Sansoni, “Potential of carbon nanohorn-based suspensions for solar thermal collectors,” Sol. Energy Mater. Sol. Cells 95, 2994–3000 (2011).
[Crossref]

E. Sani, S. Barison, C. Pagura, L. Mercatelli, P. Sansoni, D. Fontani, D. Jafrancesco, and F. Francini, “Carbon nanohorns-based nanofluids as direct sunlight absorbers,” Opt. Express 18, 5179–5187 (2010).
[Crossref] [PubMed]

Sansoni, P.

E. Sani, L. Mercatelli, S. Barison, C. Pagura, F. Agresti, L. Colla, and P. Sansoni, “Potential of carbon nanohorn-based suspensions for solar thermal collectors,” Sol. Energy Mater. Sol. Cells 95, 2994–3000 (2011).
[Crossref]

E. Sani, S. Barison, C. Pagura, L. Mercatelli, P. Sansoni, D. Fontani, D. Jafrancesco, and F. Francini, “Carbon nanohorns-based nanofluids as direct sunlight absorbers,” Opt. Express 18, 5179–5187 (2010).
[Crossref] [PubMed]

Singh, H.

V. Khullar, H. Tyagi, P. E. Phelan, T. P. Otanicar, H. Singh, and R. A. Taylor, “Solar energy harvesting using nanofluids-based concentrating solar collector,” J. Nanotech. Eng. Med. 3, 031003 (2012).
[Crossref]

Sinha, N.

S. Park, N. Sinha, and K. Hamad-Schifferli, “Effective size and zeta potential of nanorods by Ferguson analysis,” Langmuir 26, 13071–13075 (2010).
[Crossref] [PubMed]

Skeini, T.

A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett. 1, 84–90 (2006).
[Crossref]

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phy. Rep. 408, 131–134 (2005).
[Crossref]

Taylor, R. A.

R. A. Taylor, T. P. Otanicar, Y. Herukerrupu, F. Bremond, G. Rosengarten, E. R. Hawkes, X. Jian, and S. Coulombe, “Feasibility of nanofluid-based optical filter,” Appl. Opt. 52, 1413–1422 (2013).
[Crossref] [PubMed]

V. Khullar, H. Tyagi, P. E. Phelan, T. P. Otanicar, H. Singh, and R. A. Taylor, “Solar energy harvesting using nanofluids-based concentrating solar collector,” J. Nanotech. Eng. Med. 3, 031003 (2012).
[Crossref]

Thomas, A. C.

H. H. Richardson, Z. N. Hickman, A. O. Govorov, A. C. Thomas, W. Zhang, and M. E. Kordesch, “Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting,” Nano Lett. 6, 783–788 (2006).
[Crossref] [PubMed]

Tyagi, H.

V. Khullar, H. Tyagi, P. E. Phelan, T. P. Otanicar, H. Singh, and R. A. Taylor, “Solar energy harvesting using nanofluids-based concentrating solar collector,” J. Nanotech. Eng. Med. 3, 031003 (2012).
[Crossref]

H. Tyagi, P. E. Phelan, and R. Prasher, “Predicted efficiency of a low-temperature nanofluid-based direct absorption solar collector,” ASME J. Sol. Energy Eng. 131, 041004 (2009).
[Crossref]

Walsh, T.

B. J. Lee, K. Park, T. Walsh, and L. Xu, “Radiative heat transfer analysis in plasmonic nanofluids for direct solar thermal absorption,” ASME J. Sol. Energy Eng. 134, 021009 (2012).
[Crossref]

Wang, C. R. C.

Y.-Y. Yu, S.-S. Chang, C.-L. Lee, and C. R. C. Wang, “Gold nanorods: electrochemical synthesis and optical properties,” J. Phys. Chem. B 101, 6661–6664 (1997).
[Crossref]

Wang, H.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6, 827–832 (2006).
[Crossref] [PubMed]

Wang, L. P.

L. P. Wang, B. J. Lee, X. J. Wang, and Z. M. Zhang, “Spatial and temporal coherence of thermal radiation in asymmetric Fabry-Perot resonance cavities,” Int. J. Heat Mass Transfer 52, 3024–3031 (2009).
[Crossref]

Wang, X. J.

L. P. Wang, B. J. Lee, X. J. Wang, and Z. M. Zhang, “Spatial and temporal coherence of thermal radiation in asymmetric Fabry-Perot resonance cavities,” Int. J. Heat Mass Transfer 52, 3024–3031 (2009).
[Crossref]

Wijaya, A.

A. Wijaya and K. Hamad-Schifferli, “Ligand customization and DNA functionalization of gold nanorods via round-trip phase transfer ligand exchange,” Langmuir 24, 9966–9969 (2008).
[Crossref] [PubMed]

Xu, L.

B. J. Lee, K. Park, T. Walsh, and L. Xu, “Radiative heat transfer analysis in plasmonic nanofluids for direct solar thermal absorption,” ASME J. Sol. Energy Eng. 134, 021009 (2012).
[Crossref]

Yu, Y.-Y.

Y.-Y. Yu, S.-S. Chang, C.-L. Lee, and C. R. C. Wang, “Gold nanorods: electrochemical synthesis and optical properties,” J. Phys. Chem. B 101, 6661–6664 (1997).
[Crossref]

Zayats, A. V.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phy. Rep. 408, 131–134 (2005).
[Crossref]

Zhang, W.

A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett. 1, 84–90 (2006).
[Crossref]

H. H. Richardson, Z. N. Hickman, A. O. Govorov, A. C. Thomas, W. Zhang, and M. E. Kordesch, “Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting,” Nano Lett. 6, 783–788 (2006).
[Crossref] [PubMed]

Zhang, Z. M.

L. P. Wang, B. J. Lee, X. J. Wang, and Z. M. Zhang, “Spatial and temporal coherence of thermal radiation in asymmetric Fabry-Perot resonance cavities,” Int. J. Heat Mass Transfer 52, 3024–3031 (2009).
[Crossref]

ACS Nano (1)

R. Bardhan, N. K. Gardy, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: nanoshell and nanorods,” ACS Nano 3, 744–752 (2009).
[Crossref] [PubMed]

Adv. Mater. (1)

N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template,” Adv. Mater. 13, 1389–1393 (2001).
[Crossref]

Adv. Matter. (1)

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Matter. 16, 1685–1706 (2004).
[Crossref]

Appl. Opt. (1)

ASME J. Sol. Energy Eng. (2)

B. J. Lee, K. Park, T. Walsh, and L. Xu, “Radiative heat transfer analysis in plasmonic nanofluids for direct solar thermal absorption,” ASME J. Sol. Energy Eng. 134, 021009 (2012).
[Crossref]

H. Tyagi, P. E. Phelan, and R. Prasher, “Predicted efficiency of a low-temperature nanofluid-based direct absorption solar collector,” ASME J. Sol. Energy Eng. 131, 041004 (2009).
[Crossref]

Biophotonics Int. (1)

M. D. Abramoff, P. J. Magelhaes, and S. J. Ram, “Image processing with ImageJ,” Biophotonics Int. 11, 36–43 (2004).

Chem. Mater. (2)

L. Gou and C. J. Murphy, “Fine-tuning the shape of gold nanorods,” Chem. Mater. 17, 3668–3672 (2005).
[Crossref]

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15, 1957–1962 (2003).
[Crossref]

Int. J. Heat Mass Transfer (1)

L. P. Wang, B. J. Lee, X. J. Wang, and Z. M. Zhang, “Spatial and temporal coherence of thermal radiation in asymmetric Fabry-Perot resonance cavities,” Int. J. Heat Mass Transfer 52, 3024–3031 (2009).
[Crossref]

Int. J. Nanotechnol (1)

A. Mohammadi, F. Kaminski, V. Sandoghdar, and M. Agio, “Spheroidal nanoparticles as nanoantennas for fluorescence enhancement,” Int. J. Nanotechnol 6, 902–914 (2009).
[Crossref]

J. Nanotech. Eng. Med. (1)

V. Khullar, H. Tyagi, P. E. Phelan, T. P. Otanicar, H. Singh, and R. A. Taylor, “Solar energy harvesting using nanofluids-based concentrating solar collector,” J. Nanotech. Eng. Med. 3, 031003 (2012).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phy. Chem. B (1)

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape and composition: applications in biological imaging and biomedicine,” J. Phy. Chem. B 110, 7238–7248 (2006).
[Crossref]

J. Phys. Chem. B (3)

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410–8426 (1999).
[Crossref]

M. B. Mohamed, K. Z. Ismail, S. Link, and M. A. El-Sayed, “Thermal reshaping of gold nanorods in micelles,” J. Phys. Chem. B 102, 9370–9374 (1998).
[Crossref]

Y.-Y. Yu, S.-S. Chang, C.-L. Lee, and C. R. C. Wang, “Gold nanorods: electrochemical synthesis and optical properties,” J. Phys. Chem. B 101, 6661–6664 (1997).
[Crossref]

Langmuir (2)

S. Park, N. Sinha, and K. Hamad-Schifferli, “Effective size and zeta potential of nanorods by Ferguson analysis,” Langmuir 26, 13071–13075 (2010).
[Crossref] [PubMed]

A. Wijaya and K. Hamad-Schifferli, “Ligand customization and DNA functionalization of gold nanorods via round-trip phase transfer ligand exchange,” Langmuir 24, 9966–9969 (2008).
[Crossref] [PubMed]

Nano Lett. (2)

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6, 827–832 (2006).
[Crossref] [PubMed]

H. H. Richardson, Z. N. Hickman, A. O. Govorov, A. C. Thomas, W. Zhang, and M. E. Kordesch, “Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting,” Nano Lett. 6, 783–788 (2006).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett. 1, 84–90 (2006).
[Crossref]

Opt. Commun. (1)

M. C. J. Large, D. R. McKenzie, and M. I. Large, “Incoherent reflection processes: a discrete approach,” Opt. Commun. 128, 307–314 (1996).
[Crossref]

Opt. Express (1)

Phy. Rep. (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phy. Rep. 408, 131–134 (2005).
[Crossref]

Phys. Chem. Chem. Phys. (1)

H. Petrova, J. P. Juste, I. Pastoriza-Santos, G. V. Hartland, L. M. Liz-Marzan, and P. Mulvaney, “On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating,” Phys. Chem. Chem. Phys. 8, 814–821 (2006).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

E. Sani, L. Mercatelli, S. Barison, C. Pagura, F. Agresti, L. Colla, and P. Sansoni, “Potential of carbon nanohorn-based suspensions for solar thermal collectors,” Sol. Energy Mater. Sol. Cells 95, 2994–3000 (2011).
[Crossref]

Other (5)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particle (WILEY-VCH, 2004).

M. F. Modest, Radiative Heat Transfer (Academic, 2003).

ASTM, “Reference solar spectral irradiance: Air mass 1.5”, http://rredc.nrel.gov/solar/spectra/am1.5

D. E. Palik, Handbook of optical constants of solids (Academic Press, London, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

TEM images of AuNR samples: (a) ‘Short’; (b) ‘Mid’; and (c) ‘Long’. Histograms of the aspect ratio of each sample are also shown in (d), (e), and (f), respectively. The representative aspect ratio is obtained from the fitting analysis of the measured extinction coefficient.

Fig. 2
Fig. 2

Three-layer model of cuvette filled with nanofluid. ρ and ρ′ represents reflectance of a component to the beam coming from the left and right, respectively.

Fig. 3
Fig. 3

Extinction coefficient of 1/50 diluted AuNR nanofluids. Measured extinction coefficients of CTAB solution (10 mM) as well as DI water are also plotted for comparison purpose. The calculated value of H2O is based the tabulated data in [27].

Fig. 4
Fig. 4

(a) Extinction (solid) and scattering (dashed) efficiency of the suspension of randomly oriented AuNRs with different aspect ratios in water and (b) The linear relation between peak position and nanorod aspect ratio.

Fig. 5
Fig. 5

Calculated extinction coefficient using extinction efficiency compared with measured extinction coefficient.

Fig. 6
Fig. 6

Expected extinction coefficient of blended nanofluid calculating by summing measured extinction coefficient of gold nanorod samples weighted by their portions in the blended nanofluid.

Fig. 7
Fig. 7

Measured and expected extinction coefficient of blended nanofluid at the total volume fraction of 0.0001%.

Tables (1)

Tables Icon

Table 1 Average and standard deviation of diameter, length, and aspect ratio of synthesized AuNR samples.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I sample I 0 = ( 1 ρ 1 ) 2 ( 1 ρ 3 ) exp ( s 4 π k 2 λ ) 1 ρ 1 ρ 2 ρ 3 { ρ 2 ( 1 ρ 1 ρ 2 ) + [ exp ( s 4 π k 2 λ ) ] 2 ρ 1 }
κ nanofluid = ( 1 i f i ) κ CTAB + i ( 3 f i 4 r eff , i ) Q ext , i

Metrics