Abstract

Light-emitting diodes (LEDs) are becoming increasingly important for general lighting applications. The remote phosphor technology, with the phosphor located at a distance from the LEDs, offers an increased extraction efficiency for phosphor converted LEDs compared to intimate phosphor LEDs where the phosphor is placed directly on the die. Additionally, the former offers new design possibilities that are not possible with the latter. In order to further improve the system efficiency of remote phosphor LEDs, realistic simulation models are required to optimize the actual performance. In this work, a complete characterization of a remote phosphor converter (RPC) consisting of a polycarbonate diffuser plate with a phosphor coating on one side via the bi-directional scattering distribution function (BSDF) is performed. Additionally, the bi-spectral BSDF which embraces the wavelength conversion resulting from the interaction of blue light with the RPC is determined. An iterative model to predict the remote phosphor module power and photon budget, including the recuperation of backward scattered light by a mixing chamber, is introduced. The input parameters for the model are the bi-spectral BSDF data for the RPC, the emission of the blue LEDs and the mixing chamber efficiency of the LED module. A good agreement between experimental and simulated results was found, demonstrating the potential of this model to analyze the system efficiency with errors smaller than 4%.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3(4), 180–182 (2009).
    [CrossRef]
  2. A. Keppens, P. Acuña, H. Chen, G. Deconinck, and P. Hanselaer, “Efficiency evaluation of phosphor-white high-power light-emitting diodes,” J. Light Vis. Env. 35(3), 199 (2011).
    [CrossRef]
  3. N. Narendran, Y. Gu, J. P. Freyssinier-Nova, and Y. Zhu, “Extracting phosphor-scattered photons to improve white LED efficiency,” Phys. Status Solidi A 202(6), R60–R62 (2005).
    [CrossRef]
  4. H. Huang, Y. Huang, and C. Tsai, “Planar Lighting System Using Array of Blue LEDs to Excite Yellow Remote Phosphor Film,” J. Disp. Technol. 7(1), 44–51 (2011).
    [CrossRef]
  5. M. Lin, S. Ying, M. Lin, K. Tai, S. Tai, C. Liu, J. Chen, and C. Sun, “Ring Remote Phosphor Structure for Phosphor-Converted White LEDs,” IEEE Photon. Technol. Lett. 22(8), 574–576 (2010).
    [CrossRef]
  6. Y. Zhu and N. Narendran, “Optimizing the Performance of Remote Phosphor LEDs,” J. Light Vis. Env. 32(2), 115–119 (2008).
    [CrossRef]
  7. H. C. Kuo, C. W. Hung, H. C. Chen, K. J. Chen, C. H. Wang, C. W. Sher, C. C. Yeh, C. C. Lin, C. H. Chen, and Y. J. Cheng, “Patterned structure of remote phosphor for phosphor-converted white LEDs,” Opt. Express 19(S4Suppl 4), A930–A936 (2011).
    [CrossRef] [PubMed]
  8. P. Yuen, H. Shiung, and M. Devarajan,IEEE, ed., “Influence of phosphor packaging configurations on the optical performance of Chip on Board phosphor converted Warm White LEDs,” in Proceedings of 5th Annual Symposium on Quality Electronic Design, International Society for Quality Electronic Design, ed. (IEEE, 2013), pp. 329–333.
    [CrossRef]
  9. C. Hoelen, H. Borel, J. de Graaf, M. Keuper, M. Lankhorst, C. Mutter, L. Waumans, and R. Wegh, “Remote phosphor LED modules for general illumination: toward 200 lm/W general lighting LED light sources,” Proc. SPIE 7058, 70580M (2008).
    [CrossRef]
  10. I. U. Perera and N. Narendran, “Thermal management of the remote phosphor layer in LED systems,” Proc. SPIE 8835, 883504 (2013).
    [CrossRef]
  11. A. Keppens, Y. Ohno, G. Deconinck, and P. Hanselaer, “Determining phosphors' effective quantum efficiency for remote phosphor type LED modules,” presented at the Tutorial and Expert Symposium on Spectral and Imaging Methods for Photometry and Radiometry, Bern, Switzerland, 30 July-2 August (2010).
  12. H. Xiao, Y.-J. Lu, T.-M. Shih, L.-H. Zhu, S.-Q. Lin, P. J. Pagni, and Z. Chen, “Improvements on Remote Diffuser-Phosphor-Packaged Light-Emitting Diode Systems,” IEEE Photon. J. 6(2), 1–8 (2014).
    [CrossRef]
  13. K. Yamada, Y. Imai, and K. Ishii, “Optical Simulation of Light Source Devices Composed of Blue LEDs and YAG Phosphor,” J. Light Vis. Env. 27(2), 70 (2003).
  14. Y. Zhu and N. Narendran, “Investigation of Remote-Phosphor White Light-Emitting Diodes with Multi-Phosphor Layers,” Jpn. J. Appl. Phys. 49(1010R), 100203 (2010).
    [CrossRef]
  15. R. Hu and X. Luo, “A Model for Calculating the Bidirectional Scattering Properties of Phosphor Layer in White Light-Emitting Diodes,” J. Lightwave Technol. 30(21), 3376–3380 (2012).
    [CrossRef]
  16. R. Hu, Y. Wang, Y. Zou, X. Chen, S. Liu, and X. Luo, “Study on phosphor sedimentation effect in white light-emitting diode packages by modeling multi-layer phosphors with the modified Kubelka-Munk theory,” J. Appl. Phys. 113(6), 063108 (2013).
    [CrossRef]
  17. R. Hu, H. Zheng, J. Hu, and X. Luo, “Comprehensive Study on the Transmitted and Reflected Light Through the Phosphor Layer in Light-Emitting Diode Packages,” IEEE J. Disp. Technol. 9(6), 447–452 (2013).
    [CrossRef]
  18. C. Sommer, P. Hartmann, P. Pachler, H. Hoschopf, and F. P. Wenzl, “White light quality of phosphor converted light-emitting diodes: A phosphor materials perspective of view,” J. Alloy. Comp. 520, 146–152 (2012).
    [CrossRef]
  19. C. H. Hung and C. H. Tien, “Phosphor-converted LED modeling by bidirectional photometric data,” Opt. Express 18(S3Suppl 3), A261–A271 (2010).
    [CrossRef] [PubMed]
  20. P. Hanselaer, A. Keppens, S. Forment, W. R. Ryckaert, and G. Deconinck, “A new integrating sphere design for spectral radiant flux determination of light-emitting diodes,” J. Meas. Sci. Technol. 20(9), 095111 (2009).
    [CrossRef]
  21. ASTM Standard E1392, 1996(2002), Standard Practice for Angle Resolved Optical Scatter Measurements on Specular or Diffuse Surfaces, 2002.
  22. F. E. Nicodemus, “Geometrical considerations and nomenclature for reflectance,” in Radiometry. E. D. Jones and Bartlett Publishers Inc, ed. (Academic, 1992).
  23. F. B. Leloup, S. Forment, P. Dutré, M. R. Pointer, and P. Hanselaer, “Design of an instrument for measuring the spectral bidirectional scatter distribution function,” Appl. Opt. 47(29), 5454–5467 (2008).
    [PubMed]
  24. A. Keppens, W. R. Ryckaert, G. Deconinck, and P. Hanselaer, “High power light-emitting diode junction temperature determination from current-voltage characteristics,” Appl. Phys. (Berl.) 104(9), 093104 (2008).
    [CrossRef]
  25. N. C. George, K. A. Denault, and R. Seshadri, “Phosphors for solid-state white lighting,” Annu. Rev. Mater. Res. 43(1), 481–501 (2013).
    [CrossRef]
  26. Intematix Corp., “Silicate Product Family,” in Brochure Intematix Corporation, 2013.

2014 (1)

H. Xiao, Y.-J. Lu, T.-M. Shih, L.-H. Zhu, S.-Q. Lin, P. J. Pagni, and Z. Chen, “Improvements on Remote Diffuser-Phosphor-Packaged Light-Emitting Diode Systems,” IEEE Photon. J. 6(2), 1–8 (2014).
[CrossRef]

2013 (4)

N. C. George, K. A. Denault, and R. Seshadri, “Phosphors for solid-state white lighting,” Annu. Rev. Mater. Res. 43(1), 481–501 (2013).
[CrossRef]

R. Hu, Y. Wang, Y. Zou, X. Chen, S. Liu, and X. Luo, “Study on phosphor sedimentation effect in white light-emitting diode packages by modeling multi-layer phosphors with the modified Kubelka-Munk theory,” J. Appl. Phys. 113(6), 063108 (2013).
[CrossRef]

R. Hu, H. Zheng, J. Hu, and X. Luo, “Comprehensive Study on the Transmitted and Reflected Light Through the Phosphor Layer in Light-Emitting Diode Packages,” IEEE J. Disp. Technol. 9(6), 447–452 (2013).
[CrossRef]

I. U. Perera and N. Narendran, “Thermal management of the remote phosphor layer in LED systems,” Proc. SPIE 8835, 883504 (2013).
[CrossRef]

2012 (2)

C. Sommer, P. Hartmann, P. Pachler, H. Hoschopf, and F. P. Wenzl, “White light quality of phosphor converted light-emitting diodes: A phosphor materials perspective of view,” J. Alloy. Comp. 520, 146–152 (2012).
[CrossRef]

R. Hu and X. Luo, “A Model for Calculating the Bidirectional Scattering Properties of Phosphor Layer in White Light-Emitting Diodes,” J. Lightwave Technol. 30(21), 3376–3380 (2012).
[CrossRef]

2011 (3)

H. C. Kuo, C. W. Hung, H. C. Chen, K. J. Chen, C. H. Wang, C. W. Sher, C. C. Yeh, C. C. Lin, C. H. Chen, and Y. J. Cheng, “Patterned structure of remote phosphor for phosphor-converted white LEDs,” Opt. Express 19(S4Suppl 4), A930–A936 (2011).
[CrossRef] [PubMed]

A. Keppens, P. Acuña, H. Chen, G. Deconinck, and P. Hanselaer, “Efficiency evaluation of phosphor-white high-power light-emitting diodes,” J. Light Vis. Env. 35(3), 199 (2011).
[CrossRef]

H. Huang, Y. Huang, and C. Tsai, “Planar Lighting System Using Array of Blue LEDs to Excite Yellow Remote Phosphor Film,” J. Disp. Technol. 7(1), 44–51 (2011).
[CrossRef]

2010 (3)

M. Lin, S. Ying, M. Lin, K. Tai, S. Tai, C. Liu, J. Chen, and C. Sun, “Ring Remote Phosphor Structure for Phosphor-Converted White LEDs,” IEEE Photon. Technol. Lett. 22(8), 574–576 (2010).
[CrossRef]

Y. Zhu and N. Narendran, “Investigation of Remote-Phosphor White Light-Emitting Diodes with Multi-Phosphor Layers,” Jpn. J. Appl. Phys. 49(1010R), 100203 (2010).
[CrossRef]

C. H. Hung and C. H. Tien, “Phosphor-converted LED modeling by bidirectional photometric data,” Opt. Express 18(S3Suppl 3), A261–A271 (2010).
[CrossRef] [PubMed]

2009 (2)

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3(4), 180–182 (2009).
[CrossRef]

P. Hanselaer, A. Keppens, S. Forment, W. R. Ryckaert, and G. Deconinck, “A new integrating sphere design for spectral radiant flux determination of light-emitting diodes,” J. Meas. Sci. Technol. 20(9), 095111 (2009).
[CrossRef]

2008 (4)

A. Keppens, W. R. Ryckaert, G. Deconinck, and P. Hanselaer, “High power light-emitting diode junction temperature determination from current-voltage characteristics,” Appl. Phys. (Berl.) 104(9), 093104 (2008).
[CrossRef]

F. B. Leloup, S. Forment, P. Dutré, M. R. Pointer, and P. Hanselaer, “Design of an instrument for measuring the spectral bidirectional scatter distribution function,” Appl. Opt. 47(29), 5454–5467 (2008).
[PubMed]

Y. Zhu and N. Narendran, “Optimizing the Performance of Remote Phosphor LEDs,” J. Light Vis. Env. 32(2), 115–119 (2008).
[CrossRef]

C. Hoelen, H. Borel, J. de Graaf, M. Keuper, M. Lankhorst, C. Mutter, L. Waumans, and R. Wegh, “Remote phosphor LED modules for general illumination: toward 200 lm/W general lighting LED light sources,” Proc. SPIE 7058, 70580M (2008).
[CrossRef]

2005 (1)

N. Narendran, Y. Gu, J. P. Freyssinier-Nova, and Y. Zhu, “Extracting phosphor-scattered photons to improve white LED efficiency,” Phys. Status Solidi A 202(6), R60–R62 (2005).
[CrossRef]

2003 (1)

K. Yamada, Y. Imai, and K. Ishii, “Optical Simulation of Light Source Devices Composed of Blue LEDs and YAG Phosphor,” J. Light Vis. Env. 27(2), 70 (2003).

Acuña, P.

A. Keppens, P. Acuña, H. Chen, G. Deconinck, and P. Hanselaer, “Efficiency evaluation of phosphor-white high-power light-emitting diodes,” J. Light Vis. Env. 35(3), 199 (2011).
[CrossRef]

Borel, H.

C. Hoelen, H. Borel, J. de Graaf, M. Keuper, M. Lankhorst, C. Mutter, L. Waumans, and R. Wegh, “Remote phosphor LED modules for general illumination: toward 200 lm/W general lighting LED light sources,” Proc. SPIE 7058, 70580M (2008).
[CrossRef]

Chen, C. H.

Chen, H.

A. Keppens, P. Acuña, H. Chen, G. Deconinck, and P. Hanselaer, “Efficiency evaluation of phosphor-white high-power light-emitting diodes,” J. Light Vis. Env. 35(3), 199 (2011).
[CrossRef]

Chen, H. C.

Chen, J.

M. Lin, S. Ying, M. Lin, K. Tai, S. Tai, C. Liu, J. Chen, and C. Sun, “Ring Remote Phosphor Structure for Phosphor-Converted White LEDs,” IEEE Photon. Technol. Lett. 22(8), 574–576 (2010).
[CrossRef]

Chen, K. J.

Chen, X.

R. Hu, Y. Wang, Y. Zou, X. Chen, S. Liu, and X. Luo, “Study on phosphor sedimentation effect in white light-emitting diode packages by modeling multi-layer phosphors with the modified Kubelka-Munk theory,” J. Appl. Phys. 113(6), 063108 (2013).
[CrossRef]

Chen, Z.

H. Xiao, Y.-J. Lu, T.-M. Shih, L.-H. Zhu, S.-Q. Lin, P. J. Pagni, and Z. Chen, “Improvements on Remote Diffuser-Phosphor-Packaged Light-Emitting Diode Systems,” IEEE Photon. J. 6(2), 1–8 (2014).
[CrossRef]

Cheng, Y. J.

de Graaf, J.

C. Hoelen, H. Borel, J. de Graaf, M. Keuper, M. Lankhorst, C. Mutter, L. Waumans, and R. Wegh, “Remote phosphor LED modules for general illumination: toward 200 lm/W general lighting LED light sources,” Proc. SPIE 7058, 70580M (2008).
[CrossRef]

Deconinck, G.

A. Keppens, P. Acuña, H. Chen, G. Deconinck, and P. Hanselaer, “Efficiency evaluation of phosphor-white high-power light-emitting diodes,” J. Light Vis. Env. 35(3), 199 (2011).
[CrossRef]

P. Hanselaer, A. Keppens, S. Forment, W. R. Ryckaert, and G. Deconinck, “A new integrating sphere design for spectral radiant flux determination of light-emitting diodes,” J. Meas. Sci. Technol. 20(9), 095111 (2009).
[CrossRef]

A. Keppens, W. R. Ryckaert, G. Deconinck, and P. Hanselaer, “High power light-emitting diode junction temperature determination from current-voltage characteristics,” Appl. Phys. (Berl.) 104(9), 093104 (2008).
[CrossRef]

Denault, K. A.

N. C. George, K. A. Denault, and R. Seshadri, “Phosphors for solid-state white lighting,” Annu. Rev. Mater. Res. 43(1), 481–501 (2013).
[CrossRef]

DenBaars, S. P.

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3(4), 180–182 (2009).
[CrossRef]

Dutré, P.

Forment, S.

P. Hanselaer, A. Keppens, S. Forment, W. R. Ryckaert, and G. Deconinck, “A new integrating sphere design for spectral radiant flux determination of light-emitting diodes,” J. Meas. Sci. Technol. 20(9), 095111 (2009).
[CrossRef]

F. B. Leloup, S. Forment, P. Dutré, M. R. Pointer, and P. Hanselaer, “Design of an instrument for measuring the spectral bidirectional scatter distribution function,” Appl. Opt. 47(29), 5454–5467 (2008).
[PubMed]

Freyssinier-Nova, J. P.

N. Narendran, Y. Gu, J. P. Freyssinier-Nova, and Y. Zhu, “Extracting phosphor-scattered photons to improve white LED efficiency,” Phys. Status Solidi A 202(6), R60–R62 (2005).
[CrossRef]

George, N. C.

N. C. George, K. A. Denault, and R. Seshadri, “Phosphors for solid-state white lighting,” Annu. Rev. Mater. Res. 43(1), 481–501 (2013).
[CrossRef]

Gu, Y.

N. Narendran, Y. Gu, J. P. Freyssinier-Nova, and Y. Zhu, “Extracting phosphor-scattered photons to improve white LED efficiency,” Phys. Status Solidi A 202(6), R60–R62 (2005).
[CrossRef]

Hanselaer, P.

A. Keppens, P. Acuña, H. Chen, G. Deconinck, and P. Hanselaer, “Efficiency evaluation of phosphor-white high-power light-emitting diodes,” J. Light Vis. Env. 35(3), 199 (2011).
[CrossRef]

P. Hanselaer, A. Keppens, S. Forment, W. R. Ryckaert, and G. Deconinck, “A new integrating sphere design for spectral radiant flux determination of light-emitting diodes,” J. Meas. Sci. Technol. 20(9), 095111 (2009).
[CrossRef]

F. B. Leloup, S. Forment, P. Dutré, M. R. Pointer, and P. Hanselaer, “Design of an instrument for measuring the spectral bidirectional scatter distribution function,” Appl. Opt. 47(29), 5454–5467 (2008).
[PubMed]

A. Keppens, W. R. Ryckaert, G. Deconinck, and P. Hanselaer, “High power light-emitting diode junction temperature determination from current-voltage characteristics,” Appl. Phys. (Berl.) 104(9), 093104 (2008).
[CrossRef]

Hartmann, P.

C. Sommer, P. Hartmann, P. Pachler, H. Hoschopf, and F. P. Wenzl, “White light quality of phosphor converted light-emitting diodes: A phosphor materials perspective of view,” J. Alloy. Comp. 520, 146–152 (2012).
[CrossRef]

Hoelen, C.

C. Hoelen, H. Borel, J. de Graaf, M. Keuper, M. Lankhorst, C. Mutter, L. Waumans, and R. Wegh, “Remote phosphor LED modules for general illumination: toward 200 lm/W general lighting LED light sources,” Proc. SPIE 7058, 70580M (2008).
[CrossRef]

Hoschopf, H.

C. Sommer, P. Hartmann, P. Pachler, H. Hoschopf, and F. P. Wenzl, “White light quality of phosphor converted light-emitting diodes: A phosphor materials perspective of view,” J. Alloy. Comp. 520, 146–152 (2012).
[CrossRef]

Hu, J.

R. Hu, H. Zheng, J. Hu, and X. Luo, “Comprehensive Study on the Transmitted and Reflected Light Through the Phosphor Layer in Light-Emitting Diode Packages,” IEEE J. Disp. Technol. 9(6), 447–452 (2013).
[CrossRef]

Hu, R.

R. Hu, H. Zheng, J. Hu, and X. Luo, “Comprehensive Study on the Transmitted and Reflected Light Through the Phosphor Layer in Light-Emitting Diode Packages,” IEEE J. Disp. Technol. 9(6), 447–452 (2013).
[CrossRef]

R. Hu, Y. Wang, Y. Zou, X. Chen, S. Liu, and X. Luo, “Study on phosphor sedimentation effect in white light-emitting diode packages by modeling multi-layer phosphors with the modified Kubelka-Munk theory,” J. Appl. Phys. 113(6), 063108 (2013).
[CrossRef]

R. Hu and X. Luo, “A Model for Calculating the Bidirectional Scattering Properties of Phosphor Layer in White Light-Emitting Diodes,” J. Lightwave Technol. 30(21), 3376–3380 (2012).
[CrossRef]

Huang, H.

H. Huang, Y. Huang, and C. Tsai, “Planar Lighting System Using Array of Blue LEDs to Excite Yellow Remote Phosphor Film,” J. Disp. Technol. 7(1), 44–51 (2011).
[CrossRef]

Huang, Y.

H. Huang, Y. Huang, and C. Tsai, “Planar Lighting System Using Array of Blue LEDs to Excite Yellow Remote Phosphor Film,” J. Disp. Technol. 7(1), 44–51 (2011).
[CrossRef]

Hung, C. H.

Hung, C. W.

Imai, Y.

K. Yamada, Y. Imai, and K. Ishii, “Optical Simulation of Light Source Devices Composed of Blue LEDs and YAG Phosphor,” J. Light Vis. Env. 27(2), 70 (2003).

Ishii, K.

K. Yamada, Y. Imai, and K. Ishii, “Optical Simulation of Light Source Devices Composed of Blue LEDs and YAG Phosphor,” J. Light Vis. Env. 27(2), 70 (2003).

Keppens, A.

A. Keppens, P. Acuña, H. Chen, G. Deconinck, and P. Hanselaer, “Efficiency evaluation of phosphor-white high-power light-emitting diodes,” J. Light Vis. Env. 35(3), 199 (2011).
[CrossRef]

P. Hanselaer, A. Keppens, S. Forment, W. R. Ryckaert, and G. Deconinck, “A new integrating sphere design for spectral radiant flux determination of light-emitting diodes,” J. Meas. Sci. Technol. 20(9), 095111 (2009).
[CrossRef]

A. Keppens, W. R. Ryckaert, G. Deconinck, and P. Hanselaer, “High power light-emitting diode junction temperature determination from current-voltage characteristics,” Appl. Phys. (Berl.) 104(9), 093104 (2008).
[CrossRef]

Keuper, M.

C. Hoelen, H. Borel, J. de Graaf, M. Keuper, M. Lankhorst, C. Mutter, L. Waumans, and R. Wegh, “Remote phosphor LED modules for general illumination: toward 200 lm/W general lighting LED light sources,” Proc. SPIE 7058, 70580M (2008).
[CrossRef]

Kuo, H. C.

Lankhorst, M.

C. Hoelen, H. Borel, J. de Graaf, M. Keuper, M. Lankhorst, C. Mutter, L. Waumans, and R. Wegh, “Remote phosphor LED modules for general illumination: toward 200 lm/W general lighting LED light sources,” Proc. SPIE 7058, 70580M (2008).
[CrossRef]

Leloup, F. B.

Lin, C. C.

Lin, M.

M. Lin, S. Ying, M. Lin, K. Tai, S. Tai, C. Liu, J. Chen, and C. Sun, “Ring Remote Phosphor Structure for Phosphor-Converted White LEDs,” IEEE Photon. Technol. Lett. 22(8), 574–576 (2010).
[CrossRef]

M. Lin, S. Ying, M. Lin, K. Tai, S. Tai, C. Liu, J. Chen, and C. Sun, “Ring Remote Phosphor Structure for Phosphor-Converted White LEDs,” IEEE Photon. Technol. Lett. 22(8), 574–576 (2010).
[CrossRef]

Lin, S.-Q.

H. Xiao, Y.-J. Lu, T.-M. Shih, L.-H. Zhu, S.-Q. Lin, P. J. Pagni, and Z. Chen, “Improvements on Remote Diffuser-Phosphor-Packaged Light-Emitting Diode Systems,” IEEE Photon. J. 6(2), 1–8 (2014).
[CrossRef]

Liu, C.

M. Lin, S. Ying, M. Lin, K. Tai, S. Tai, C. Liu, J. Chen, and C. Sun, “Ring Remote Phosphor Structure for Phosphor-Converted White LEDs,” IEEE Photon. Technol. Lett. 22(8), 574–576 (2010).
[CrossRef]

Liu, S.

R. Hu, Y. Wang, Y. Zou, X. Chen, S. Liu, and X. Luo, “Study on phosphor sedimentation effect in white light-emitting diode packages by modeling multi-layer phosphors with the modified Kubelka-Munk theory,” J. Appl. Phys. 113(6), 063108 (2013).
[CrossRef]

Lu, Y.-J.

H. Xiao, Y.-J. Lu, T.-M. Shih, L.-H. Zhu, S.-Q. Lin, P. J. Pagni, and Z. Chen, “Improvements on Remote Diffuser-Phosphor-Packaged Light-Emitting Diode Systems,” IEEE Photon. J. 6(2), 1–8 (2014).
[CrossRef]

Luo, X.

R. Hu, Y. Wang, Y. Zou, X. Chen, S. Liu, and X. Luo, “Study on phosphor sedimentation effect in white light-emitting diode packages by modeling multi-layer phosphors with the modified Kubelka-Munk theory,” J. Appl. Phys. 113(6), 063108 (2013).
[CrossRef]

R. Hu, H. Zheng, J. Hu, and X. Luo, “Comprehensive Study on the Transmitted and Reflected Light Through the Phosphor Layer in Light-Emitting Diode Packages,” IEEE J. Disp. Technol. 9(6), 447–452 (2013).
[CrossRef]

R. Hu and X. Luo, “A Model for Calculating the Bidirectional Scattering Properties of Phosphor Layer in White Light-Emitting Diodes,” J. Lightwave Technol. 30(21), 3376–3380 (2012).
[CrossRef]

Mutter, C.

C. Hoelen, H. Borel, J. de Graaf, M. Keuper, M. Lankhorst, C. Mutter, L. Waumans, and R. Wegh, “Remote phosphor LED modules for general illumination: toward 200 lm/W general lighting LED light sources,” Proc. SPIE 7058, 70580M (2008).
[CrossRef]

Nakamura, S.

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3(4), 180–182 (2009).
[CrossRef]

Narendran, N.

I. U. Perera and N. Narendran, “Thermal management of the remote phosphor layer in LED systems,” Proc. SPIE 8835, 883504 (2013).
[CrossRef]

Y. Zhu and N. Narendran, “Investigation of Remote-Phosphor White Light-Emitting Diodes with Multi-Phosphor Layers,” Jpn. J. Appl. Phys. 49(1010R), 100203 (2010).
[CrossRef]

Y. Zhu and N. Narendran, “Optimizing the Performance of Remote Phosphor LEDs,” J. Light Vis. Env. 32(2), 115–119 (2008).
[CrossRef]

N. Narendran, Y. Gu, J. P. Freyssinier-Nova, and Y. Zhu, “Extracting phosphor-scattered photons to improve white LED efficiency,” Phys. Status Solidi A 202(6), R60–R62 (2005).
[CrossRef]

Pachler, P.

C. Sommer, P. Hartmann, P. Pachler, H. Hoschopf, and F. P. Wenzl, “White light quality of phosphor converted light-emitting diodes: A phosphor materials perspective of view,” J. Alloy. Comp. 520, 146–152 (2012).
[CrossRef]

Pagni, P. J.

H. Xiao, Y.-J. Lu, T.-M. Shih, L.-H. Zhu, S.-Q. Lin, P. J. Pagni, and Z. Chen, “Improvements on Remote Diffuser-Phosphor-Packaged Light-Emitting Diode Systems,” IEEE Photon. J. 6(2), 1–8 (2014).
[CrossRef]

Perera, I. U.

I. U. Perera and N. Narendran, “Thermal management of the remote phosphor layer in LED systems,” Proc. SPIE 8835, 883504 (2013).
[CrossRef]

Pimputkar, S.

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3(4), 180–182 (2009).
[CrossRef]

Pointer, M. R.

Ryckaert, W. R.

P. Hanselaer, A. Keppens, S. Forment, W. R. Ryckaert, and G. Deconinck, “A new integrating sphere design for spectral radiant flux determination of light-emitting diodes,” J. Meas. Sci. Technol. 20(9), 095111 (2009).
[CrossRef]

A. Keppens, W. R. Ryckaert, G. Deconinck, and P. Hanselaer, “High power light-emitting diode junction temperature determination from current-voltage characteristics,” Appl. Phys. (Berl.) 104(9), 093104 (2008).
[CrossRef]

Seshadri, R.

N. C. George, K. A. Denault, and R. Seshadri, “Phosphors for solid-state white lighting,” Annu. Rev. Mater. Res. 43(1), 481–501 (2013).
[CrossRef]

Sher, C. W.

Shih, T.-M.

H. Xiao, Y.-J. Lu, T.-M. Shih, L.-H. Zhu, S.-Q. Lin, P. J. Pagni, and Z. Chen, “Improvements on Remote Diffuser-Phosphor-Packaged Light-Emitting Diode Systems,” IEEE Photon. J. 6(2), 1–8 (2014).
[CrossRef]

Sommer, C.

C. Sommer, P. Hartmann, P. Pachler, H. Hoschopf, and F. P. Wenzl, “White light quality of phosphor converted light-emitting diodes: A phosphor materials perspective of view,” J. Alloy. Comp. 520, 146–152 (2012).
[CrossRef]

Speck, J. S.

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3(4), 180–182 (2009).
[CrossRef]

Sun, C.

M. Lin, S. Ying, M. Lin, K. Tai, S. Tai, C. Liu, J. Chen, and C. Sun, “Ring Remote Phosphor Structure for Phosphor-Converted White LEDs,” IEEE Photon. Technol. Lett. 22(8), 574–576 (2010).
[CrossRef]

Tai, K.

M. Lin, S. Ying, M. Lin, K. Tai, S. Tai, C. Liu, J. Chen, and C. Sun, “Ring Remote Phosphor Structure for Phosphor-Converted White LEDs,” IEEE Photon. Technol. Lett. 22(8), 574–576 (2010).
[CrossRef]

Tai, S.

M. Lin, S. Ying, M. Lin, K. Tai, S. Tai, C. Liu, J. Chen, and C. Sun, “Ring Remote Phosphor Structure for Phosphor-Converted White LEDs,” IEEE Photon. Technol. Lett. 22(8), 574–576 (2010).
[CrossRef]

Tien, C. H.

Tsai, C.

H. Huang, Y. Huang, and C. Tsai, “Planar Lighting System Using Array of Blue LEDs to Excite Yellow Remote Phosphor Film,” J. Disp. Technol. 7(1), 44–51 (2011).
[CrossRef]

Wang, C. H.

Wang, Y.

R. Hu, Y. Wang, Y. Zou, X. Chen, S. Liu, and X. Luo, “Study on phosphor sedimentation effect in white light-emitting diode packages by modeling multi-layer phosphors with the modified Kubelka-Munk theory,” J. Appl. Phys. 113(6), 063108 (2013).
[CrossRef]

Waumans, L.

C. Hoelen, H. Borel, J. de Graaf, M. Keuper, M. Lankhorst, C. Mutter, L. Waumans, and R. Wegh, “Remote phosphor LED modules for general illumination: toward 200 lm/W general lighting LED light sources,” Proc. SPIE 7058, 70580M (2008).
[CrossRef]

Wegh, R.

C. Hoelen, H. Borel, J. de Graaf, M. Keuper, M. Lankhorst, C. Mutter, L. Waumans, and R. Wegh, “Remote phosphor LED modules for general illumination: toward 200 lm/W general lighting LED light sources,” Proc. SPIE 7058, 70580M (2008).
[CrossRef]

Wenzl, F. P.

C. Sommer, P. Hartmann, P. Pachler, H. Hoschopf, and F. P. Wenzl, “White light quality of phosphor converted light-emitting diodes: A phosphor materials perspective of view,” J. Alloy. Comp. 520, 146–152 (2012).
[CrossRef]

Xiao, H.

H. Xiao, Y.-J. Lu, T.-M. Shih, L.-H. Zhu, S.-Q. Lin, P. J. Pagni, and Z. Chen, “Improvements on Remote Diffuser-Phosphor-Packaged Light-Emitting Diode Systems,” IEEE Photon. J. 6(2), 1–8 (2014).
[CrossRef]

Yamada, K.

K. Yamada, Y. Imai, and K. Ishii, “Optical Simulation of Light Source Devices Composed of Blue LEDs and YAG Phosphor,” J. Light Vis. Env. 27(2), 70 (2003).

Yeh, C. C.

Ying, S.

M. Lin, S. Ying, M. Lin, K. Tai, S. Tai, C. Liu, J. Chen, and C. Sun, “Ring Remote Phosphor Structure for Phosphor-Converted White LEDs,” IEEE Photon. Technol. Lett. 22(8), 574–576 (2010).
[CrossRef]

Zheng, H.

R. Hu, H. Zheng, J. Hu, and X. Luo, “Comprehensive Study on the Transmitted and Reflected Light Through the Phosphor Layer in Light-Emitting Diode Packages,” IEEE J. Disp. Technol. 9(6), 447–452 (2013).
[CrossRef]

Zhu, L.-H.

H. Xiao, Y.-J. Lu, T.-M. Shih, L.-H. Zhu, S.-Q. Lin, P. J. Pagni, and Z. Chen, “Improvements on Remote Diffuser-Phosphor-Packaged Light-Emitting Diode Systems,” IEEE Photon. J. 6(2), 1–8 (2014).
[CrossRef]

Zhu, Y.

Y. Zhu and N. Narendran, “Investigation of Remote-Phosphor White Light-Emitting Diodes with Multi-Phosphor Layers,” Jpn. J. Appl. Phys. 49(1010R), 100203 (2010).
[CrossRef]

Y. Zhu and N. Narendran, “Optimizing the Performance of Remote Phosphor LEDs,” J. Light Vis. Env. 32(2), 115–119 (2008).
[CrossRef]

N. Narendran, Y. Gu, J. P. Freyssinier-Nova, and Y. Zhu, “Extracting phosphor-scattered photons to improve white LED efficiency,” Phys. Status Solidi A 202(6), R60–R62 (2005).
[CrossRef]

Zou, Y.

R. Hu, Y. Wang, Y. Zou, X. Chen, S. Liu, and X. Luo, “Study on phosphor sedimentation effect in white light-emitting diode packages by modeling multi-layer phosphors with the modified Kubelka-Munk theory,” J. Appl. Phys. 113(6), 063108 (2013).
[CrossRef]

Annu. Rev. Mater. Res. (1)

N. C. George, K. A. Denault, and R. Seshadri, “Phosphors for solid-state white lighting,” Annu. Rev. Mater. Res. 43(1), 481–501 (2013).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. (Berl.) (1)

A. Keppens, W. R. Ryckaert, G. Deconinck, and P. Hanselaer, “High power light-emitting diode junction temperature determination from current-voltage characteristics,” Appl. Phys. (Berl.) 104(9), 093104 (2008).
[CrossRef]

IEEE J. Disp. Technol. (1)

R. Hu, H. Zheng, J. Hu, and X. Luo, “Comprehensive Study on the Transmitted and Reflected Light Through the Phosphor Layer in Light-Emitting Diode Packages,” IEEE J. Disp. Technol. 9(6), 447–452 (2013).
[CrossRef]

IEEE Photon. J. (1)

H. Xiao, Y.-J. Lu, T.-M. Shih, L.-H. Zhu, S.-Q. Lin, P. J. Pagni, and Z. Chen, “Improvements on Remote Diffuser-Phosphor-Packaged Light-Emitting Diode Systems,” IEEE Photon. J. 6(2), 1–8 (2014).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Lin, S. Ying, M. Lin, K. Tai, S. Tai, C. Liu, J. Chen, and C. Sun, “Ring Remote Phosphor Structure for Phosphor-Converted White LEDs,” IEEE Photon. Technol. Lett. 22(8), 574–576 (2010).
[CrossRef]

J. Alloy. Comp. (1)

C. Sommer, P. Hartmann, P. Pachler, H. Hoschopf, and F. P. Wenzl, “White light quality of phosphor converted light-emitting diodes: A phosphor materials perspective of view,” J. Alloy. Comp. 520, 146–152 (2012).
[CrossRef]

J. Appl. Phys. (1)

R. Hu, Y. Wang, Y. Zou, X. Chen, S. Liu, and X. Luo, “Study on phosphor sedimentation effect in white light-emitting diode packages by modeling multi-layer phosphors with the modified Kubelka-Munk theory,” J. Appl. Phys. 113(6), 063108 (2013).
[CrossRef]

J. Disp. Technol. (1)

H. Huang, Y. Huang, and C. Tsai, “Planar Lighting System Using Array of Blue LEDs to Excite Yellow Remote Phosphor Film,” J. Disp. Technol. 7(1), 44–51 (2011).
[CrossRef]

J. Light Vis. Env. (3)

Y. Zhu and N. Narendran, “Optimizing the Performance of Remote Phosphor LEDs,” J. Light Vis. Env. 32(2), 115–119 (2008).
[CrossRef]

K. Yamada, Y. Imai, and K. Ishii, “Optical Simulation of Light Source Devices Composed of Blue LEDs and YAG Phosphor,” J. Light Vis. Env. 27(2), 70 (2003).

A. Keppens, P. Acuña, H. Chen, G. Deconinck, and P. Hanselaer, “Efficiency evaluation of phosphor-white high-power light-emitting diodes,” J. Light Vis. Env. 35(3), 199 (2011).
[CrossRef]

J. Lightwave Technol. (1)

J. Meas. Sci. Technol. (1)

P. Hanselaer, A. Keppens, S. Forment, W. R. Ryckaert, and G. Deconinck, “A new integrating sphere design for spectral radiant flux determination of light-emitting diodes,” J. Meas. Sci. Technol. 20(9), 095111 (2009).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Zhu and N. Narendran, “Investigation of Remote-Phosphor White Light-Emitting Diodes with Multi-Phosphor Layers,” Jpn. J. Appl. Phys. 49(1010R), 100203 (2010).
[CrossRef]

Nat. Photonics (1)

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3(4), 180–182 (2009).
[CrossRef]

Opt. Express (2)

Phys. Status Solidi A (1)

N. Narendran, Y. Gu, J. P. Freyssinier-Nova, and Y. Zhu, “Extracting phosphor-scattered photons to improve white LED efficiency,” Phys. Status Solidi A 202(6), R60–R62 (2005).
[CrossRef]

Proc. SPIE (2)

C. Hoelen, H. Borel, J. de Graaf, M. Keuper, M. Lankhorst, C. Mutter, L. Waumans, and R. Wegh, “Remote phosphor LED modules for general illumination: toward 200 lm/W general lighting LED light sources,” Proc. SPIE 7058, 70580M (2008).
[CrossRef]

I. U. Perera and N. Narendran, “Thermal management of the remote phosphor layer in LED systems,” Proc. SPIE 8835, 883504 (2013).
[CrossRef]

Other (5)

A. Keppens, Y. Ohno, G. Deconinck, and P. Hanselaer, “Determining phosphors' effective quantum efficiency for remote phosphor type LED modules,” presented at the Tutorial and Expert Symposium on Spectral and Imaging Methods for Photometry and Radiometry, Bern, Switzerland, 30 July-2 August (2010).

ASTM Standard E1392, 1996(2002), Standard Practice for Angle Resolved Optical Scatter Measurements on Specular or Diffuse Surfaces, 2002.

F. E. Nicodemus, “Geometrical considerations and nomenclature for reflectance,” in Radiometry. E. D. Jones and Bartlett Publishers Inc, ed. (Academic, 1992).

P. Yuen, H. Shiung, and M. Devarajan,IEEE, ed., “Influence of phosphor packaging configurations on the optical performance of Chip on Board phosphor converted Warm White LEDs,” in Proceedings of 5th Annual Symposium on Quality Electronic Design, International Society for Quality Electronic Design, ed. (IEEE, 2013), pp. 329–333.
[CrossRef]

Intematix Corp., “Silicate Product Family,” in Brochure Intematix Corporation, 2013.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Intimate white phosphor converted LEDs (upper row) and remote phosphor concept (lower row) applied to: single die package (left), chip on board package (middle), and module (right).

Fig. 2
Fig. 2

Mixing Chamber with blue LEDs (left) and remote phosphor converter (right).

Fig. 3
Fig. 3

Elastic scattering (no wavelength conversion) and scattering with wavelength conversion both occur in the RPC when it is illuminated with short-wavelength radiation within the excitation region. ‘B’ and ‘F’ stand for backwards and forwards scattering, ‘b’ and ‘y’ for blue and yellow, ‘i’ and ‘s’ for incident and scattered, respectively.

Fig. 4
Fig. 4

Measurement setup of the bidirectional scattering distribution function.

Fig. 5
Fig. 5

Excitation and emission spectrum of the RPC CL-830.

Fig. 6
Fig. 6

Forward (T) and backward (R) BSDF values at 460 nm of the RPC CL830 for three angles of incidence (5°, 45°and 56 °).

Fig. 7
Fig. 7

Weighted average blue-blue BSDF over the range (λ = 450 nm – 470 nm) for backward and forward directions.

Fig. 8
Fig. 8

Forward (T) and backward (R) scattering of yellow light when yellow light is incident (yiys) on the RPC Intematix CL830 (λ = 475 nm – 780 nm).

Fig. 9
Fig. 9

Schematic representation of the iterative model and power budget calculations for the remote phosphor LED module.

Fig. 10
Fig. 10

Cumulative extracted power and losses in function of iteration.

Tables (3)

Tables Icon

Table 1 Radiometric and photometric characteristics of the blue LEDs and the MC

Tables Icon

Table 2 Total Integrated Scatter and Absorbed Power (second column) and photons (third column) by the elastic scattering and scattering with wavelength conversion of blue and yellow light with the phosphor RPC (45° angle of incidence).

Tables Icon

Table 3 Power budget comparison between results obtained through the iterative model and from measurements

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

q e ( θ i , ϕ i , θ s , ϕ s )= d L e,λ,s ( θ i , ϕ i , θ s , ϕ s ) d E e,λ,i ( θ i , ϕ i ) [ 1 sr ]
q e,λ ( θ i , ϕ i , θ s , ϕ s , λ i , λ s )= d q e d λ i [ 1 srnm ]
L e.λ = q e (λ) E e,λ (λ)
L e = 450 470 q e (λ) E e,λ Δλ= q e Λ i =blue, Λ s =blue 450 470 E e,λ Δλ
q e Λ i =blue, Λ s =blue = 450 470 q e ( θ i , ϕ i , θ s , ϕ s ,λ ) E e,λ ( θ i , ϕ i ,λ )Δλ 450 470 E e,λ ( θ i , ϕ i ,λ )Δλ
TI S bibs = Φ e,s Φ e,i
TI S bibs = 0 2π 0 π/2 q e Λ i =blue, Λ s =blue cos θ s sin θ s Δ θ s Δ ϕ s
q e Λ i =yellow, Λ s =yellow = 470 740 q e ( θ i , ϕ i , θ s , ϕ s ,λ ) E e,λ ( θ i , ϕ i ,λ )Δλ 470 740 E e,λ ( θ i , ϕ i ,λ )Δλ
L e,λ ( λ s )= 450 470 q e,λ E e,λ Δ λ i = q e,λ ( θ i , ϕ i , θ s , ϕ s , λ s ) Λ i =blue 450 470 E e,λ Δ λ i
q e,λ ( θ i , ϕ i , θ s , ϕ s , λ s ) Λ i =blue = 450 470 q e,λ E e,λ Δ λ i 450 470 E e,λ Δ λ i
L e = 470 740 q e,λ ( θ i , ϕ i , θ s , ϕ s , λ s ) Λ i =blue E e Δ λ s = q e,λ ( θ i , ϕ i , θ s , ϕ s ) Λ i =blue Λ s =yellow E e Δ Λ s
q e.λ ( θ i , ϕ i , θ s , ϕ s ) Λ i =blue Λ s =yellow = 470 740 q e,λ ( θ i , ϕ i , θ s , ϕ s , λ s ) Λ i =blue Δ λ s Δ Λ s
TI S biys = 0 2π 0 π/2 q e ( θ i , ϕ i , θ s , ϕ s , λ s ) Λ i =blue Λ s =yellow Δ Λ s cos θ s sin θ s Δ θ s Δ ϕ s
Φ e,s = Φ e,s photons 470 740 Φ e,λ,s hcΔλ 470 740 Φ e,λ,s λΔλ
Φ e,i = Φ e,i photons 450 470 Φ e,λ,i hcΔλ 450 470 Φ e,λ,i λΔλ
Φ e,s photons Φ e,i photons = 450 470 Φ e,λ,i hcΔλ 450 470 Φ e,λ,i λΔλ 470 740 Φ e,λ,s hcΔλ 470 740 Φ e,λ,s λΔλ TI S biys

Metrics