Abstract

Pristine graphene and a graphene interlayer inserted between indium tin oxide (ITO) and p-GaN have been analyzed and compared with ITO, which is a typical current spreading layer in lateral GaN LEDs. Beyond a certain current injection, the pristine graphene current spreading layer (CSL) malfunctioned due to Joule heat that originated from the high sheet resistance and low work function of the CSL. However, by combining the graphene and the ITO to improve the sheet resistance, it was found to be possible to solve the malfunctioning phenomenon. Moreover, the light output power of an LED with a graphene interlayer was stronger than that of an LED using ITO or graphene CSL. We were able to identify that the improvement originated from the enhanced current spreading by inspecting the contact and conducting the simulation.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express 19(S4), A991–A1007 (2011).
    [CrossRef] [PubMed]
  2. D. F. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Semipolar (20‾2‾1) InGaN/GaN light-emitting diodes high-efficiency solid-state lighting,” J. Disp. Technol. 9, 190–198 (2013).
    [CrossRef]
  3. G. Liu, J. Zhang, C. K. Tan, and N. Tansu, “Efficiency-droop suppression by using large-bandgap AlGaInN thin barrier layers in InGaN quantum-well light-emitting diodes,” IEEE Photonics J. 5(2), 2201011 (2013).
    [CrossRef]
  4. K. T. Delaney, P. Rinke, and C. G. Van de Walle, “Auger recombination rates in nitrides from first principles,” Appl. Phys. Lett. 94(19), 191109 (2009).
    [CrossRef]
  5. C. K. Tan, J. Zhang, X. H. Li, G. Liu, B. O. Tayo, and N. Tansu, “First principle electronic properties of dilute-as GaNAs alloy for visible light emitters,” J. Disp. Technol. 9(4), 272–279 (2013).
    [CrossRef]
  6. V. K. Malyutenko, S. S. Bolgov, and A. D. Podoltsev, “Current crowding effect on the ideality factor and efficiency droop in blue lateral InGaN/GaN light emitting diodes,” Appl. Phys. Lett. 97(25), 251110 (2010).
    [CrossRef]
  7. G. Jo, M. Choe, C. Y. Cho, J. H. Kim, W. Park, S. Lee, W. K. Hong, T. W. Kim, S. J. Park, B. H. Hong, Y. H. Kahng, and T. Lee, “Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes,” Nanotechnology 21(17), 175201 (2010).
    [CrossRef] [PubMed]
  8. J. P. Shim, D. Kim, M. Choe, T. Lee, S. J. Park, and D. S. Lee, “A self-assembled Ag nanoparticle agglomeration process on graphene for enhanced light output in GaN-based LEDs,” Nanotechnology 23(25), 255201 (2012).
    [CrossRef] [PubMed]
  9. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
    [CrossRef]
  10. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
    [CrossRef] [PubMed]
  11. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
    [CrossRef] [PubMed]
  12. G. Williams, B. Seger, and P. V. Kamat, “TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide,” ACS Nano 2(7), 1487–1491 (2008).
    [CrossRef] [PubMed]
  13. C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
    [CrossRef] [PubMed]
  14. S. Kim, D. H. Shin, C. O. Kim, S. S. Kang, J. M. Kim, C. W. Jang, S. S. Joo, J. S. Lee, J. H. Kim, S. H. Choi, and E. Hwang, “Graphene p-n vertical tunneling diodes,” ACS Nano 7(6), 5168–5174 (2013).
    [CrossRef] [PubMed]
  15. M. S. Choi, G. H. Lee, Y. J. Yu, D. Y. Lee, S. H. Lee, P. Kim, J. Hone, and W. J. Yoo, “Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices,” Nat. Commun. 4, 1624 (2013).
    [CrossRef] [PubMed]
  16. S. K. Lee, H. Y. Jang, S. Jang, E. Choi, B. H. Hong, J. Lee, S. Park, and J. H. Ahn, “All graphene-based thin film transistors on flexible plastic substrates,” Nano Lett. 12(7), 3472–3476 (2012).
    [CrossRef] [PubMed]
  17. B. J. Kim, H. Jang, S. K. Lee, B. H. Hong, J. H. Ahn, and J. H. Cho, “High-performance flexible graphene field effect transistors with ion gel gate dielectrics,” Nano Lett. 10(9), 3464–3466 (2010).
    [CrossRef] [PubMed]
  18. T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn, and T. W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
    [CrossRef]
  19. N. Han, T. V. Cuong, M. Han, B. D. Ryu, S. Chandramohan, J. B. Park, J. H. Kang, Y. J. Park, K. B. Ko, H. Y. Kim, H. K. Kim, J. H. Ryu, Y. S. Katharria, C. J. Choi, and C. H. Hong, “Improved heat dissipation in gallium nitride light-emitting diodes with embedded graphene oxide pattern,” Nat. Commun. 4, 1452 (2013).
    [CrossRef] [PubMed]
  20. K. Chung, C. H. Lee, and G. C. Yi, “Transferable GaN layers grown on ZnO-coated graphene layers for optoelectronic devices,” Science 330(6004), 655–657 (2010).
    [CrossRef] [PubMed]
  21. X. Miao, S. Tongay, M. K. Petterson, K. Berke, A. G. Rinzler, B. R. Appleton, and A. F. Hebard, “High efficiency graphene solar cells by chemical doping,” Nano Lett. 12(6), 2745–2750 (2012).
    [CrossRef] [PubMed]
  22. S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
    [CrossRef] [PubMed]
  23. B. J. Kim, C. Lee, Y. Jung, K. H. Baik, M. A. Mastro, J. K. Hite, C. R. Eddy, and J. Kim, “Large-area transparent conductive few-layer graphene electrode in GaN-based ultra-violet light-emitting diodes,” Appl. Phys. Lett. 99(14), 143101 (2011).
    [CrossRef]
  24. B. J. Kim, C. Lee, M. A. Mastro, J. K. Hite, C. R. Eddy, F. Ren, S. J. Pearton, and J. Kim, “Buried graphene electrodes on GaN-based ultra-violet light-emitting diodes,” Appl. Phys. Lett. 101(3), 031108 (2012).
    [CrossRef]
  25. X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8(1), 323–327 (2008).
    [CrossRef] [PubMed]
  26. J. M. Lee, H. Y. Jeong, K. J. Choi, and W. I. Park, “Metal/graphene sheets as p-type transparent conducting electrodes in GaN light emitting diodes,” Appl. Phys. Lett. 99(4), 041115 (2011).
    [CrossRef]
  27. Z. Li, J. Kang, Z. Liu, C. Du, X. Lee, X. Li, L. Wang, X. Yi, H. Zhu, and G. Wang, “Enhanced performance of GaN-based light-emitting diodes with graphene/Ag nanowires hybrid films,” AIP Adv. 3(4), 042134 (2013).
    [CrossRef]
  28. X. Kun, X. Chen, D. Jun, Z. Yanxu, G. Weiling, M. Mingming, Z. Lei, and S. Jie, “Graphene transparent electrodes grown by rapid chemical vapor deposition with ultrathin indium tin oxide contact layers for GaN light emitting diodes,” Appl. Phys. Lett. 102(16), 162102 (2013).
    [CrossRef]
  29. J. P. Shim, T. H. Seo, J. H. Min, C. M. Kang, E. K. Suh, and D. S. Lee, “Thin Ni film on graphene current spreading layer for GaN-based blue and ultra-violet light-emitting diodes,” Appl. Phys. Lett. 102(15), 151115 (2013).
    [CrossRef]
  30. K. Joo, S. K. Jerng, Y. S. Kim, B. Kim, S. Moon, D. Moon, G. D. Lee, Y. K. Song, S. H. Chun, and E. Yoon, “Reduction of graphene damages during the fabrication of InGaN/GaN light emitting diodes with graphene electrodes,” Nanotechnology 23(42), 425302 (2012).
    [CrossRef] [PubMed]
  31. D. H. Youn, Y. J. Yu, H. Choi, S. H. Kim, S. Y. Choi, and C. G. Choi, “Graphene transparent electrode for enhanced optical power and thermal stability in GaN light-emitting diodes,” Nanotechnology 24(7), 075202 (2013).
    [CrossRef] [PubMed]
  32. Y. Wang, S. W. Tong, X. F. Xu, B. Özyilmaz, and K. P. Loh, “Interface engineering of layer-by-layer stacked graphene anodes for high-performance organic solar cells,” Adv. Mater. 23(13), 1514–1518 (2011).
    [CrossRef] [PubMed]
  33. X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
    [CrossRef] [PubMed]
  34. H. J. Shin, W. M. Choi, D. Choi, G. H. Han, S. M. Yoon, H. K. Park, S. W. Kim, Y. W. Jin, S. Y. Lee, J. M. Kim, J. Y. Choi, and Y. H. Lee, “Control of electronic structure of graphene by various dopants and their effects on a nanogenerator,” J. Am. Chem. Soc. 132(44), 15603–15609 (2010).
    [CrossRef] [PubMed]
  35. X. Guo and E. F. Schubert, “Current crowding and optical saturation effects in GaInN/GaN light-emitting diodes grown on insulating substrates,” Appl. Phys. Lett. 78(21), 3337–3339 (2001).
    [CrossRef]
  36. Z. Ni, Y. Wang, T. Yu, and Z. Shen, “Raman spectroscopy and imaging of graphene,” Nano Res. 1(4), 273–291 (2008).
    [CrossRef]
  37. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
    [CrossRef] [PubMed]
  38. Y. Park, V. Choong, Y. Gao, B. R. Hsieh, and C. W. Tang, “Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy,” Appl. Phys. Lett. 68(19), 2699–2701 (1996).
    [CrossRef]
  39. T. H. Seo, K. J. Lee, A. H. Park, C. H. Hong, E. K. Suh, S. J. Chae, Y. H. Lee, T. V. Cuong, V. H. Pham, J. S. Chung, E. J. Kim, and S. R. Jeon, “Enhanced light output power of near UV light emitting diodes with graphene / indium tin oxide nanodot nodes for transparent and current spreading electrode,” Opt. Express 19(23), 23111–23117 (2011).
    [CrossRef] [PubMed]
  40. X. Kun, X. Chen, D. Jun, Z. Yanxu, G. Weiling, M. Mingming, Z. Lei, and S. Jie, “Graphene transparent electrodes grown by rapid chemical vapor deposition with ultrathin indium tin oxide contact layers for GaN light emitting diodes,” Appl. Phys. Lett. 102(16), 162102 (2013).
    [CrossRef]
  41. J. Yun, J. I. Shim, and D. S. Shin, “Current, voltage and temperature distribution modeling of light-emitting diodes based on electrical and thermal circuit analysis,” Semicond. Sci. Technol. 28(8), 085001 (2013).
    [CrossRef]
  42. J. Yun, D. P. Han, J. I. Shim, and D. S. Shin, “Three-dimensional analysis of temperature distributions based on circuit modeling of light-emitting diodes,” IEEE Trans. Electron. Dev. 59(6), 1799–1802 (2012).
    [CrossRef]

2013 (12)

D. F. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Semipolar (20‾2‾1) InGaN/GaN light-emitting diodes high-efficiency solid-state lighting,” J. Disp. Technol. 9, 190–198 (2013).
[CrossRef]

G. Liu, J. Zhang, C. K. Tan, and N. Tansu, “Efficiency-droop suppression by using large-bandgap AlGaInN thin barrier layers in InGaN quantum-well light-emitting diodes,” IEEE Photonics J. 5(2), 2201011 (2013).
[CrossRef]

C. K. Tan, J. Zhang, X. H. Li, G. Liu, B. O. Tayo, and N. Tansu, “First principle electronic properties of dilute-as GaNAs alloy for visible light emitters,” J. Disp. Technol. 9(4), 272–279 (2013).
[CrossRef]

S. Kim, D. H. Shin, C. O. Kim, S. S. Kang, J. M. Kim, C. W. Jang, S. S. Joo, J. S. Lee, J. H. Kim, S. H. Choi, and E. Hwang, “Graphene p-n vertical tunneling diodes,” ACS Nano 7(6), 5168–5174 (2013).
[CrossRef] [PubMed]

M. S. Choi, G. H. Lee, Y. J. Yu, D. Y. Lee, S. H. Lee, P. Kim, J. Hone, and W. J. Yoo, “Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices,” Nat. Commun. 4, 1624 (2013).
[CrossRef] [PubMed]

N. Han, T. V. Cuong, M. Han, B. D. Ryu, S. Chandramohan, J. B. Park, J. H. Kang, Y. J. Park, K. B. Ko, H. Y. Kim, H. K. Kim, J. H. Ryu, Y. S. Katharria, C. J. Choi, and C. H. Hong, “Improved heat dissipation in gallium nitride light-emitting diodes with embedded graphene oxide pattern,” Nat. Commun. 4, 1452 (2013).
[CrossRef] [PubMed]

Z. Li, J. Kang, Z. Liu, C. Du, X. Lee, X. Li, L. Wang, X. Yi, H. Zhu, and G. Wang, “Enhanced performance of GaN-based light-emitting diodes with graphene/Ag nanowires hybrid films,” AIP Adv. 3(4), 042134 (2013).
[CrossRef]

X. Kun, X. Chen, D. Jun, Z. Yanxu, G. Weiling, M. Mingming, Z. Lei, and S. Jie, “Graphene transparent electrodes grown by rapid chemical vapor deposition with ultrathin indium tin oxide contact layers for GaN light emitting diodes,” Appl. Phys. Lett. 102(16), 162102 (2013).
[CrossRef]

J. P. Shim, T. H. Seo, J. H. Min, C. M. Kang, E. K. Suh, and D. S. Lee, “Thin Ni film on graphene current spreading layer for GaN-based blue and ultra-violet light-emitting diodes,” Appl. Phys. Lett. 102(15), 151115 (2013).
[CrossRef]

D. H. Youn, Y. J. Yu, H. Choi, S. H. Kim, S. Y. Choi, and C. G. Choi, “Graphene transparent electrode for enhanced optical power and thermal stability in GaN light-emitting diodes,” Nanotechnology 24(7), 075202 (2013).
[CrossRef] [PubMed]

X. Kun, X. Chen, D. Jun, Z. Yanxu, G. Weiling, M. Mingming, Z. Lei, and S. Jie, “Graphene transparent electrodes grown by rapid chemical vapor deposition with ultrathin indium tin oxide contact layers for GaN light emitting diodes,” Appl. Phys. Lett. 102(16), 162102 (2013).
[CrossRef]

J. Yun, J. I. Shim, and D. S. Shin, “Current, voltage and temperature distribution modeling of light-emitting diodes based on electrical and thermal circuit analysis,” Semicond. Sci. Technol. 28(8), 085001 (2013).
[CrossRef]

2012 (8)

J. Yun, D. P. Han, J. I. Shim, and D. S. Shin, “Three-dimensional analysis of temperature distributions based on circuit modeling of light-emitting diodes,” IEEE Trans. Electron. Dev. 59(6), 1799–1802 (2012).
[CrossRef]

T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn, and T. W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
[CrossRef]

K. Joo, S. K. Jerng, Y. S. Kim, B. Kim, S. Moon, D. Moon, G. D. Lee, Y. K. Song, S. H. Chun, and E. Yoon, “Reduction of graphene damages during the fabrication of InGaN/GaN light emitting diodes with graphene electrodes,” Nanotechnology 23(42), 425302 (2012).
[CrossRef] [PubMed]

X. Miao, S. Tongay, M. K. Petterson, K. Berke, A. G. Rinzler, B. R. Appleton, and A. F. Hebard, “High efficiency graphene solar cells by chemical doping,” Nano Lett. 12(6), 2745–2750 (2012).
[CrossRef] [PubMed]

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[CrossRef] [PubMed]

B. J. Kim, C. Lee, M. A. Mastro, J. K. Hite, C. R. Eddy, F. Ren, S. J. Pearton, and J. Kim, “Buried graphene electrodes on GaN-based ultra-violet light-emitting diodes,” Appl. Phys. Lett. 101(3), 031108 (2012).
[CrossRef]

S. K. Lee, H. Y. Jang, S. Jang, E. Choi, B. H. Hong, J. Lee, S. Park, and J. H. Ahn, “All graphene-based thin film transistors on flexible plastic substrates,” Nano Lett. 12(7), 3472–3476 (2012).
[CrossRef] [PubMed]

J. P. Shim, D. Kim, M. Choe, T. Lee, S. J. Park, and D. S. Lee, “A self-assembled Ag nanoparticle agglomeration process on graphene for enhanced light output in GaN-based LEDs,” Nanotechnology 23(25), 255201 (2012).
[CrossRef] [PubMed]

2011 (5)

H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express 19(S4), A991–A1007 (2011).
[CrossRef] [PubMed]

B. J. Kim, C. Lee, Y. Jung, K. H. Baik, M. A. Mastro, J. K. Hite, C. R. Eddy, and J. Kim, “Large-area transparent conductive few-layer graphene electrode in GaN-based ultra-violet light-emitting diodes,” Appl. Phys. Lett. 99(14), 143101 (2011).
[CrossRef]

J. M. Lee, H. Y. Jeong, K. J. Choi, and W. I. Park, “Metal/graphene sheets as p-type transparent conducting electrodes in GaN light emitting diodes,” Appl. Phys. Lett. 99(4), 041115 (2011).
[CrossRef]

Y. Wang, S. W. Tong, X. F. Xu, B. Özyilmaz, and K. P. Loh, “Interface engineering of layer-by-layer stacked graphene anodes for high-performance organic solar cells,” Adv. Mater. 23(13), 1514–1518 (2011).
[CrossRef] [PubMed]

T. H. Seo, K. J. Lee, A. H. Park, C. H. Hong, E. K. Suh, S. J. Chae, Y. H. Lee, T. V. Cuong, V. H. Pham, J. S. Chung, E. J. Kim, and S. R. Jeon, “Enhanced light output power of near UV light emitting diodes with graphene / indium tin oxide nanodot nodes for transparent and current spreading electrode,” Opt. Express 19(23), 23111–23117 (2011).
[CrossRef] [PubMed]

2010 (6)

H. J. Shin, W. M. Choi, D. Choi, G. H. Han, S. M. Yoon, H. K. Park, S. W. Kim, Y. W. Jin, S. Y. Lee, J. M. Kim, J. Y. Choi, and Y. H. Lee, “Control of electronic structure of graphene by various dopants and their effects on a nanogenerator,” J. Am. Chem. Soc. 132(44), 15603–15609 (2010).
[CrossRef] [PubMed]

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[CrossRef] [PubMed]

K. Chung, C. H. Lee, and G. C. Yi, “Transferable GaN layers grown on ZnO-coated graphene layers for optoelectronic devices,” Science 330(6004), 655–657 (2010).
[CrossRef] [PubMed]

B. J. Kim, H. Jang, S. K. Lee, B. H. Hong, J. H. Ahn, and J. H. Cho, “High-performance flexible graphene field effect transistors with ion gel gate dielectrics,” Nano Lett. 10(9), 3464–3466 (2010).
[CrossRef] [PubMed]

V. K. Malyutenko, S. S. Bolgov, and A. D. Podoltsev, “Current crowding effect on the ideality factor and efficiency droop in blue lateral InGaN/GaN light emitting diodes,” Appl. Phys. Lett. 97(25), 251110 (2010).
[CrossRef]

G. Jo, M. Choe, C. Y. Cho, J. H. Kim, W. Park, S. Lee, W. K. Hong, T. W. Kim, S. J. Park, B. H. Hong, Y. H. Kahng, and T. Lee, “Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes,” Nanotechnology 21(17), 175201 (2010).
[CrossRef] [PubMed]

2009 (5)

K. T. Delaney, P. Rinke, and C. G. Van de Walle, “Auger recombination rates in nitrides from first principles,” Appl. Phys. Lett. 94(19), 191109 (2009).
[CrossRef]

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[CrossRef]

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[CrossRef] [PubMed]

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[CrossRef] [PubMed]

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[CrossRef] [PubMed]

2008 (3)

Z. Ni, Y. Wang, T. Yu, and Z. Shen, “Raman spectroscopy and imaging of graphene,” Nano Res. 1(4), 273–291 (2008).
[CrossRef]

X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8(1), 323–327 (2008).
[CrossRef] [PubMed]

G. Williams, B. Seger, and P. V. Kamat, “TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide,” ACS Nano 2(7), 1487–1491 (2008).
[CrossRef] [PubMed]

2006 (1)

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[CrossRef] [PubMed]

2001 (1)

X. Guo and E. F. Schubert, “Current crowding and optical saturation effects in GaInN/GaN light-emitting diodes grown on insulating substrates,” Appl. Phys. Lett. 78(21), 3337–3339 (2001).
[CrossRef]

1996 (1)

Y. Park, V. Choong, Y. Gao, B. R. Hsieh, and C. W. Tang, “Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy,” Appl. Phys. Lett. 68(19), 2699–2701 (1996).
[CrossRef]

Ahn, J. H.

S. K. Lee, H. Y. Jang, S. Jang, E. Choi, B. H. Hong, J. Lee, S. Park, and J. H. Ahn, “All graphene-based thin film transistors on flexible plastic substrates,” Nano Lett. 12(7), 3472–3476 (2012).
[CrossRef] [PubMed]

T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn, and T. W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
[CrossRef]

B. J. Kim, H. Jang, S. K. Lee, B. H. Hong, J. H. Ahn, and J. H. Cho, “High-performance flexible graphene field effect transistors with ion gel gate dielectrics,” Nano Lett. 10(9), 3464–3466 (2010).
[CrossRef] [PubMed]

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[CrossRef] [PubMed]

An, J.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[CrossRef] [PubMed]

Appleton, B. R.

X. Miao, S. Tongay, M. K. Petterson, K. Berke, A. G. Rinzler, B. R. Appleton, and A. F. Hebard, “High efficiency graphene solar cells by chemical doping,” Nano Lett. 12(6), 2745–2750 (2012).
[CrossRef] [PubMed]

Bae, S. H.

T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn, and T. W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
[CrossRef]

Baik, K. H.

B. J. Kim, C. Lee, Y. Jung, K. H. Baik, M. A. Mastro, J. K. Hite, C. R. Eddy, and J. Kim, “Large-area transparent conductive few-layer graphene electrode in GaN-based ultra-violet light-emitting diodes,” Appl. Phys. Lett. 99(14), 143101 (2011).
[CrossRef]

Banerjee, S. K.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[CrossRef] [PubMed]

Berke, K.

X. Miao, S. Tongay, M. K. Petterson, K. Berke, A. G. Rinzler, B. R. Appleton, and A. F. Hebard, “High efficiency graphene solar cells by chemical doping,” Nano Lett. 12(6), 2745–2750 (2012).
[CrossRef] [PubMed]

Bolgov, S. S.

V. K. Malyutenko, S. S. Bolgov, and A. D. Podoltsev, “Current crowding effect on the ideality factor and efficiency droop in blue lateral InGaN/GaN light emitting diodes,” Appl. Phys. Lett. 97(25), 251110 (2010).
[CrossRef]

Borysiak, M.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[CrossRef] [PubMed]

Cai, W.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[CrossRef] [PubMed]

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[CrossRef] [PubMed]

Casiraghi, C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[CrossRef] [PubMed]

Castro Neto, A. H.

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[CrossRef]

Chae, S. J.

Chandramohan, S.

N. Han, T. V. Cuong, M. Han, B. D. Ryu, S. Chandramohan, J. B. Park, J. H. Kang, Y. J. Park, K. B. Ko, H. Y. Kim, H. K. Kim, J. H. Ryu, Y. S. Katharria, C. J. Choi, and C. H. Hong, “Improved heat dissipation in gallium nitride light-emitting diodes with embedded graphene oxide pattern,” Nat. Commun. 4, 1452 (2013).
[CrossRef] [PubMed]

Chen, D.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[CrossRef] [PubMed]

Chen, X.

X. Kun, X. Chen, D. Jun, Z. Yanxu, G. Weiling, M. Mingming, Z. Lei, and S. Jie, “Graphene transparent electrodes grown by rapid chemical vapor deposition with ultrathin indium tin oxide contact layers for GaN light emitting diodes,” Appl. Phys. Lett. 102(16), 162102 (2013).
[CrossRef]

X. Kun, X. Chen, D. Jun, Z. Yanxu, G. Weiling, M. Mingming, Z. Lei, and S. Jie, “Graphene transparent electrodes grown by rapid chemical vapor deposition with ultrathin indium tin oxide contact layers for GaN light emitting diodes,” Appl. Phys. Lett. 102(16), 162102 (2013).
[CrossRef]

Cho, C. Y.

G. Jo, M. Choe, C. Y. Cho, J. H. Kim, W. Park, S. Lee, W. K. Hong, T. W. Kim, S. J. Park, B. H. Hong, Y. H. Kahng, and T. Lee, “Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes,” Nanotechnology 21(17), 175201 (2010).
[CrossRef] [PubMed]

Cho, J. H.

B. J. Kim, H. Jang, S. K. Lee, B. H. Hong, J. H. Ahn, and J. H. Cho, “High-performance flexible graphene field effect transistors with ion gel gate dielectrics,” Nano Lett. 10(9), 3464–3466 (2010).
[CrossRef] [PubMed]

Choe, M.

J. P. Shim, D. Kim, M. Choe, T. Lee, S. J. Park, and D. S. Lee, “A self-assembled Ag nanoparticle agglomeration process on graphene for enhanced light output in GaN-based LEDs,” Nanotechnology 23(25), 255201 (2012).
[CrossRef] [PubMed]

G. Jo, M. Choe, C. Y. Cho, J. H. Kim, W. Park, S. Lee, W. K. Hong, T. W. Kim, S. J. Park, B. H. Hong, Y. H. Kahng, and T. Lee, “Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes,” Nanotechnology 21(17), 175201 (2010).
[CrossRef] [PubMed]

Choi, C. G.

D. H. Youn, Y. J. Yu, H. Choi, S. H. Kim, S. Y. Choi, and C. G. Choi, “Graphene transparent electrode for enhanced optical power and thermal stability in GaN light-emitting diodes,” Nanotechnology 24(7), 075202 (2013).
[CrossRef] [PubMed]

Choi, C. J.

N. Han, T. V. Cuong, M. Han, B. D. Ryu, S. Chandramohan, J. B. Park, J. H. Kang, Y. J. Park, K. B. Ko, H. Y. Kim, H. K. Kim, J. H. Ryu, Y. S. Katharria, C. J. Choi, and C. H. Hong, “Improved heat dissipation in gallium nitride light-emitting diodes with embedded graphene oxide pattern,” Nat. Commun. 4, 1452 (2013).
[CrossRef] [PubMed]

Choi, D.

H. J. Shin, W. M. Choi, D. Choi, G. H. Han, S. M. Yoon, H. K. Park, S. W. Kim, Y. W. Jin, S. Y. Lee, J. M. Kim, J. Y. Choi, and Y. H. Lee, “Control of electronic structure of graphene by various dopants and their effects on a nanogenerator,” J. Am. Chem. Soc. 132(44), 15603–15609 (2010).
[CrossRef] [PubMed]

Choi, E.

S. K. Lee, H. Y. Jang, S. Jang, E. Choi, B. H. Hong, J. Lee, S. Park, and J. H. Ahn, “All graphene-based thin film transistors on flexible plastic substrates,” Nano Lett. 12(7), 3472–3476 (2012).
[CrossRef] [PubMed]

Choi, H.

D. H. Youn, Y. J. Yu, H. Choi, S. H. Kim, S. Y. Choi, and C. G. Choi, “Graphene transparent electrode for enhanced optical power and thermal stability in GaN light-emitting diodes,” Nanotechnology 24(7), 075202 (2013).
[CrossRef] [PubMed]

Choi, J. Y.

H. J. Shin, W. M. Choi, D. Choi, G. H. Han, S. M. Yoon, H. K. Park, S. W. Kim, Y. W. Jin, S. Y. Lee, J. M. Kim, J. Y. Choi, and Y. H. Lee, “Control of electronic structure of graphene by various dopants and their effects on a nanogenerator,” J. Am. Chem. Soc. 132(44), 15603–15609 (2010).
[CrossRef] [PubMed]

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[CrossRef] [PubMed]

Choi, K. J.

J. M. Lee, H. Y. Jeong, K. J. Choi, and W. I. Park, “Metal/graphene sheets as p-type transparent conducting electrodes in GaN light emitting diodes,” Appl. Phys. Lett. 99(4), 041115 (2011).
[CrossRef]

Choi, M. R.

T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn, and T. W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
[CrossRef]

Choi, M. S.

M. S. Choi, G. H. Lee, Y. J. Yu, D. Y. Lee, S. H. Lee, P. Kim, J. Hone, and W. J. Yoo, “Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices,” Nat. Commun. 4, 1624 (2013).
[CrossRef] [PubMed]

Choi, S. H.

S. Kim, D. H. Shin, C. O. Kim, S. S. Kang, J. M. Kim, C. W. Jang, S. S. Joo, J. S. Lee, J. H. Kim, S. H. Choi, and E. Hwang, “Graphene p-n vertical tunneling diodes,” ACS Nano 7(6), 5168–5174 (2013).
[CrossRef] [PubMed]

Choi, S. Y.

D. H. Youn, Y. J. Yu, H. Choi, S. H. Kim, S. Y. Choi, and C. G. Choi, “Graphene transparent electrode for enhanced optical power and thermal stability in GaN light-emitting diodes,” Nanotechnology 24(7), 075202 (2013).
[CrossRef] [PubMed]

Choi, W. M.

H. J. Shin, W. M. Choi, D. Choi, G. H. Han, S. M. Yoon, H. K. Park, S. W. Kim, Y. W. Jin, S. Y. Lee, J. M. Kim, J. Y. Choi, and Y. H. Lee, “Control of electronic structure of graphene by various dopants and their effects on a nanogenerator,” J. Am. Chem. Soc. 132(44), 15603–15609 (2010).
[CrossRef] [PubMed]

Choong, V.

Y. Park, V. Choong, Y. Gao, B. R. Hsieh, and C. W. Tang, “Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy,” Appl. Phys. Lett. 68(19), 2699–2701 (1996).
[CrossRef]

Chun, S. H.

K. Joo, S. K. Jerng, Y. S. Kim, B. Kim, S. Moon, D. Moon, G. D. Lee, Y. K. Song, S. H. Chun, and E. Yoon, “Reduction of graphene damages during the fabrication of InGaN/GaN light emitting diodes with graphene electrodes,” Nanotechnology 23(42), 425302 (2012).
[CrossRef] [PubMed]

Chung, J. S.

Chung, K.

K. Chung, C. H. Lee, and G. C. Yi, “Transferable GaN layers grown on ZnO-coated graphene layers for optoelectronic devices,” Science 330(6004), 655–657 (2010).
[CrossRef] [PubMed]

Colombo, L.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[CrossRef] [PubMed]

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[CrossRef] [PubMed]

Cuong, T. V.

N. Han, T. V. Cuong, M. Han, B. D. Ryu, S. Chandramohan, J. B. Park, J. H. Kang, Y. J. Park, K. B. Ko, H. Y. Kim, H. K. Kim, J. H. Ryu, Y. S. Katharria, C. J. Choi, and C. H. Hong, “Improved heat dissipation in gallium nitride light-emitting diodes with embedded graphene oxide pattern,” Nat. Commun. 4, 1452 (2013).
[CrossRef] [PubMed]

T. H. Seo, K. J. Lee, A. H. Park, C. H. Hong, E. K. Suh, S. J. Chae, Y. H. Lee, T. V. Cuong, V. H. Pham, J. S. Chung, E. J. Kim, and S. R. Jeon, “Enhanced light output power of near UV light emitting diodes with graphene / indium tin oxide nanodot nodes for transparent and current spreading electrode,” Opt. Express 19(23), 23111–23117 (2011).
[CrossRef] [PubMed]

Dean, C. R.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[CrossRef] [PubMed]

Delaney, K. T.

K. T. Delaney, P. Rinke, and C. G. Van de Walle, “Auger recombination rates in nitrides from first principles,” Appl. Phys. Lett. 94(19), 191109 (2009).
[CrossRef]

DenBaars, S. P.

D. F. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Semipolar (20‾2‾1) InGaN/GaN light-emitting diodes high-efficiency solid-state lighting,” J. Disp. Technol. 9, 190–198 (2013).
[CrossRef]

Dierolf, V.

Du, C.

Z. Li, J. Kang, Z. Liu, C. Du, X. Lee, X. Li, L. Wang, X. Yi, H. Zhu, and G. Wang, “Enhanced performance of GaN-based light-emitting diodes with graphene/Ag nanowires hybrid films,” AIP Adv. 3(4), 042134 (2013).
[CrossRef]

Eddy, C. R.

B. J. Kim, C. Lee, M. A. Mastro, J. K. Hite, C. R. Eddy, F. Ren, S. J. Pearton, and J. Kim, “Buried graphene electrodes on GaN-based ultra-violet light-emitting diodes,” Appl. Phys. Lett. 101(3), 031108 (2012).
[CrossRef]

B. J. Kim, C. Lee, Y. Jung, K. H. Baik, M. A. Mastro, J. K. Hite, C. R. Eddy, and J. Kim, “Large-area transparent conductive few-layer graphene electrode in GaN-based ultra-violet light-emitting diodes,” Appl. Phys. Lett. 99(14), 143101 (2011).
[CrossRef]

Feezell, D. F.

D. F. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Semipolar (20‾2‾1) InGaN/GaN light-emitting diodes high-efficiency solid-state lighting,” J. Disp. Technol. 9, 190–198 (2013).
[CrossRef]

Ferrari, A. C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[CrossRef] [PubMed]

Gao, Y.

Y. Park, V. Choong, Y. Gao, B. R. Hsieh, and C. W. Tang, “Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy,” Appl. Phys. Lett. 68(19), 2699–2701 (1996).
[CrossRef]

García de Abajo, F. J.

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[CrossRef] [PubMed]

Geim, A. K.

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[CrossRef]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[CrossRef] [PubMed]

Guinea, F.

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[CrossRef]

Guo, X.

X. Guo and E. F. Schubert, “Current crowding and optical saturation effects in GaInN/GaN light-emitting diodes grown on insulating substrates,” Appl. Phys. Lett. 78(21), 3337–3339 (2001).
[CrossRef]

Han, B.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[CrossRef] [PubMed]

Han, D. P.

J. Yun, D. P. Han, J. I. Shim, and D. S. Shin, “Three-dimensional analysis of temperature distributions based on circuit modeling of light-emitting diodes,” IEEE Trans. Electron. Dev. 59(6), 1799–1802 (2012).
[CrossRef]

Han, G. H.

H. J. Shin, W. M. Choi, D. Choi, G. H. Han, S. M. Yoon, H. K. Park, S. W. Kim, Y. W. Jin, S. Y. Lee, J. M. Kim, J. Y. Choi, and Y. H. Lee, “Control of electronic structure of graphene by various dopants and their effects on a nanogenerator,” J. Am. Chem. Soc. 132(44), 15603–15609 (2010).
[CrossRef] [PubMed]

Han, M.

N. Han, T. V. Cuong, M. Han, B. D. Ryu, S. Chandramohan, J. B. Park, J. H. Kang, Y. J. Park, K. B. Ko, H. Y. Kim, H. K. Kim, J. H. Ryu, Y. S. Katharria, C. J. Choi, and C. H. Hong, “Improved heat dissipation in gallium nitride light-emitting diodes with embedded graphene oxide pattern,” Nat. Commun. 4, 1452 (2013).
[CrossRef] [PubMed]

Han, N.

N. Han, T. V. Cuong, M. Han, B. D. Ryu, S. Chandramohan, J. B. Park, J. H. Kang, Y. J. Park, K. B. Ko, H. Y. Kim, H. K. Kim, J. H. Ryu, Y. S. Katharria, C. J. Choi, and C. H. Hong, “Improved heat dissipation in gallium nitride light-emitting diodes with embedded graphene oxide pattern,” Nat. Commun. 4, 1452 (2013).
[CrossRef] [PubMed]

Han, T. H.

T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn, and T. W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
[CrossRef]

Hebard, A. F.

X. Miao, S. Tongay, M. K. Petterson, K. Berke, A. G. Rinzler, B. R. Appleton, and A. F. Hebard, “High efficiency graphene solar cells by chemical doping,” Nano Lett. 12(6), 2745–2750 (2012).
[CrossRef] [PubMed]

Hite, J. K.

B. J. Kim, C. Lee, M. A. Mastro, J. K. Hite, C. R. Eddy, F. Ren, S. J. Pearton, and J. Kim, “Buried graphene electrodes on GaN-based ultra-violet light-emitting diodes,” Appl. Phys. Lett. 101(3), 031108 (2012).
[CrossRef]

B. J. Kim, C. Lee, Y. Jung, K. H. Baik, M. A. Mastro, J. K. Hite, C. R. Eddy, and J. Kim, “Large-area transparent conductive few-layer graphene electrode in GaN-based ultra-violet light-emitting diodes,” Appl. Phys. Lett. 99(14), 143101 (2011).
[CrossRef]

Hone, J.

M. S. Choi, G. H. Lee, Y. J. Yu, D. Y. Lee, S. H. Lee, P. Kim, J. Hone, and W. J. Yoo, “Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices,” Nat. Commun. 4, 1624 (2013).
[CrossRef] [PubMed]

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[CrossRef] [PubMed]

Hong, B. H.

S. K. Lee, H. Y. Jang, S. Jang, E. Choi, B. H. Hong, J. Lee, S. Park, and J. H. Ahn, “All graphene-based thin film transistors on flexible plastic substrates,” Nano Lett. 12(7), 3472–3476 (2012).
[CrossRef] [PubMed]

T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn, and T. W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
[CrossRef]

B. J. Kim, H. Jang, S. K. Lee, B. H. Hong, J. H. Ahn, and J. H. Cho, “High-performance flexible graphene field effect transistors with ion gel gate dielectrics,” Nano Lett. 10(9), 3464–3466 (2010).
[CrossRef] [PubMed]

G. Jo, M. Choe, C. Y. Cho, J. H. Kim, W. Park, S. Lee, W. K. Hong, T. W. Kim, S. J. Park, B. H. Hong, Y. H. Kahng, and T. Lee, “Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes,” Nanotechnology 21(17), 175201 (2010).
[CrossRef] [PubMed]

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[CrossRef] [PubMed]

Hong, C. H.

N. Han, T. V. Cuong, M. Han, B. D. Ryu, S. Chandramohan, J. B. Park, J. H. Kang, Y. J. Park, K. B. Ko, H. Y. Kim, H. K. Kim, J. H. Ryu, Y. S. Katharria, C. J. Choi, and C. H. Hong, “Improved heat dissipation in gallium nitride light-emitting diodes with embedded graphene oxide pattern,” Nat. Commun. 4, 1452 (2013).
[CrossRef] [PubMed]

T. H. Seo, K. J. Lee, A. H. Park, C. H. Hong, E. K. Suh, S. J. Chae, Y. H. Lee, T. V. Cuong, V. H. Pham, J. S. Chung, E. J. Kim, and S. R. Jeon, “Enhanced light output power of near UV light emitting diodes with graphene / indium tin oxide nanodot nodes for transparent and current spreading electrode,” Opt. Express 19(23), 23111–23117 (2011).
[CrossRef] [PubMed]

Hong, W. K.

G. Jo, M. Choe, C. Y. Cho, J. H. Kim, W. Park, S. Lee, W. K. Hong, T. W. Kim, S. J. Park, B. H. Hong, Y. H. Kahng, and T. Lee, “Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes,” Nanotechnology 21(17), 175201 (2010).
[CrossRef] [PubMed]

Hsieh, B. R.

Y. Park, V. Choong, Y. Gao, B. R. Hsieh, and C. W. Tang, “Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy,” Appl. Phys. Lett. 68(19), 2699–2701 (1996).
[CrossRef]

Hwang, E.

S. Kim, D. H. Shin, C. O. Kim, S. S. Kang, J. M. Kim, C. W. Jang, S. S. Joo, J. S. Lee, J. H. Kim, S. H. Choi, and E. Hwang, “Graphene p-n vertical tunneling diodes,” ACS Nano 7(6), 5168–5174 (2013).
[CrossRef] [PubMed]

Jang, C. W.

S. Kim, D. H. Shin, C. O. Kim, S. S. Kang, J. M. Kim, C. W. Jang, S. S. Joo, J. S. Lee, J. H. Kim, S. H. Choi, and E. Hwang, “Graphene p-n vertical tunneling diodes,” ACS Nano 7(6), 5168–5174 (2013).
[CrossRef] [PubMed]

Jang, H.

B. J. Kim, H. Jang, S. K. Lee, B. H. Hong, J. H. Ahn, and J. H. Cho, “High-performance flexible graphene field effect transistors with ion gel gate dielectrics,” Nano Lett. 10(9), 3464–3466 (2010).
[CrossRef] [PubMed]

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[CrossRef] [PubMed]

Jang, H. Y.

S. K. Lee, H. Y. Jang, S. Jang, E. Choi, B. H. Hong, J. Lee, S. Park, and J. H. Ahn, “All graphene-based thin film transistors on flexible plastic substrates,” Nano Lett. 12(7), 3472–3476 (2012).
[CrossRef] [PubMed]

Jang, S.

S. K. Lee, H. Y. Jang, S. Jang, E. Choi, B. H. Hong, J. Lee, S. Park, and J. H. Ahn, “All graphene-based thin film transistors on flexible plastic substrates,” Nano Lett. 12(7), 3472–3476 (2012).
[CrossRef] [PubMed]

Jeon, S. R.

Jeong, H. Y.

J. M. Lee, H. Y. Jeong, K. J. Choi, and W. I. Park, “Metal/graphene sheets as p-type transparent conducting electrodes in GaN light emitting diodes,” Appl. Phys. Lett. 99(4), 041115 (2011).
[CrossRef]

Jerng, S. K.

K. Joo, S. K. Jerng, Y. S. Kim, B. Kim, S. Moon, D. Moon, G. D. Lee, Y. K. Song, S. H. Chun, and E. Yoon, “Reduction of graphene damages during the fabrication of InGaN/GaN light emitting diodes with graphene electrodes,” Nanotechnology 23(42), 425302 (2012).
[CrossRef] [PubMed]

Jiang, D.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[CrossRef] [PubMed]

Jie, S.

X. Kun, X. Chen, D. Jun, Z. Yanxu, G. Weiling, M. Mingming, Z. Lei, and S. Jie, “Graphene transparent electrodes grown by rapid chemical vapor deposition with ultrathin indium tin oxide contact layers for GaN light emitting diodes,” Appl. Phys. Lett. 102(16), 162102 (2013).
[CrossRef]

X. Kun, X. Chen, D. Jun, Z. Yanxu, G. Weiling, M. Mingming, Z. Lei, and S. Jie, “Graphene transparent electrodes grown by rapid chemical vapor deposition with ultrathin indium tin oxide contact layers for GaN light emitting diodes,” Appl. Phys. Lett. 102(16), 162102 (2013).
[CrossRef]

Jin, Y. W.

H. J. Shin, W. M. Choi, D. Choi, G. H. Han, S. M. Yoon, H. K. Park, S. W. Kim, Y. W. Jin, S. Y. Lee, J. M. Kim, J. Y. Choi, and Y. H. Lee, “Control of electronic structure of graphene by various dopants and their effects on a nanogenerator,” J. Am. Chem. Soc. 132(44), 15603–15609 (2010).
[CrossRef] [PubMed]

Jo, G.

G. Jo, M. Choe, C. Y. Cho, J. H. Kim, W. Park, S. Lee, W. K. Hong, T. W. Kim, S. J. Park, B. H. Hong, Y. H. Kahng, and T. Lee, “Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes,” Nanotechnology 21(17), 175201 (2010).
[CrossRef] [PubMed]

Joo, K.

K. Joo, S. K. Jerng, Y. S. Kim, B. Kim, S. Moon, D. Moon, G. D. Lee, Y. K. Song, S. H. Chun, and E. Yoon, “Reduction of graphene damages during the fabrication of InGaN/GaN light emitting diodes with graphene electrodes,” Nanotechnology 23(42), 425302 (2012).
[CrossRef] [PubMed]

Joo, S. S.

S. Kim, D. H. Shin, C. O. Kim, S. S. Kang, J. M. Kim, C. W. Jang, S. S. Joo, J. S. Lee, J. H. Kim, S. H. Choi, and E. Hwang, “Graphene p-n vertical tunneling diodes,” ACS Nano 7(6), 5168–5174 (2013).
[CrossRef] [PubMed]

Jun, D.

X. Kun, X. Chen, D. Jun, Z. Yanxu, G. Weiling, M. Mingming, Z. Lei, and S. Jie, “Graphene transparent electrodes grown by rapid chemical vapor deposition with ultrathin indium tin oxide contact layers for GaN light emitting diodes,” Appl. Phys. Lett. 102(16), 162102 (2013).
[CrossRef]

X. Kun, X. Chen, D. Jun, Z. Yanxu, G. Weiling, M. Mingming, Z. Lei, and S. Jie, “Graphene transparent electrodes grown by rapid chemical vapor deposition with ultrathin indium tin oxide contact layers for GaN light emitting diodes,” Appl. Phys. Lett. 102(16), 162102 (2013).
[CrossRef]

Jung, I.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[CrossRef] [PubMed]

Jung, Y.

B. J. Kim, C. Lee, Y. Jung, K. H. Baik, M. A. Mastro, J. K. Hite, C. R. Eddy, and J. Kim, “Large-area transparent conductive few-layer graphene electrode in GaN-based ultra-violet light-emitting diodes,” Appl. Phys. Lett. 99(14), 143101 (2011).
[CrossRef]

Kahng, Y. H.

G. Jo, M. Choe, C. Y. Cho, J. H. Kim, W. Park, S. Lee, W. K. Hong, T. W. Kim, S. J. Park, B. H. Hong, Y. H. Kahng, and T. Lee, “Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes,” Nanotechnology 21(17), 175201 (2010).
[CrossRef] [PubMed]

Kamat, P. V.

G. Williams, B. Seger, and P. V. Kamat, “TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide,” ACS Nano 2(7), 1487–1491 (2008).
[CrossRef] [PubMed]

Kang, C. M.

J. P. Shim, T. H. Seo, J. H. Min, C. M. Kang, E. K. Suh, and D. S. Lee, “Thin Ni film on graphene current spreading layer for GaN-based blue and ultra-violet light-emitting diodes,” Appl. Phys. Lett. 102(15), 151115 (2013).
[CrossRef]

Kang, J.

Z. Li, J. Kang, Z. Liu, C. Du, X. Lee, X. Li, L. Wang, X. Yi, H. Zhu, and G. Wang, “Enhanced performance of GaN-based light-emitting diodes with graphene/Ag nanowires hybrid films,” AIP Adv. 3(4), 042134 (2013).
[CrossRef]

Kang, J. H.

N. Han, T. V. Cuong, M. Han, B. D. Ryu, S. Chandramohan, J. B. Park, J. H. Kang, Y. J. Park, K. B. Ko, H. Y. Kim, H. K. Kim, J. H. Ryu, Y. S. Katharria, C. J. Choi, and C. H. Hong, “Improved heat dissipation in gallium nitride light-emitting diodes with embedded graphene oxide pattern,” Nat. Commun. 4, 1452 (2013).
[CrossRef] [PubMed]

Kang, S. S.

S. Kim, D. H. Shin, C. O. Kim, S. S. Kang, J. M. Kim, C. W. Jang, S. S. Joo, J. S. Lee, J. H. Kim, S. H. Choi, and E. Hwang, “Graphene p-n vertical tunneling diodes,” ACS Nano 7(6), 5168–5174 (2013).
[CrossRef] [PubMed]

Katharria, Y. S.

N. Han, T. V. Cuong, M. Han, B. D. Ryu, S. Chandramohan, J. B. Park, J. H. Kang, Y. J. Park, K. B. Ko, H. Y. Kim, H. K. Kim, J. H. Ryu, Y. S. Katharria, C. J. Choi, and C. H. Hong, “Improved heat dissipation in gallium nitride light-emitting diodes with embedded graphene oxide pattern,” Nat. Commun. 4, 1452 (2013).
[CrossRef] [PubMed]

Kim, B.

K. Joo, S. K. Jerng, Y. S. Kim, B. Kim, S. Moon, D. Moon, G. D. Lee, Y. K. Song, S. H. Chun, and E. Yoon, “Reduction of graphene damages during the fabrication of InGaN/GaN light emitting diodes with graphene electrodes,” Nanotechnology 23(42), 425302 (2012).
[CrossRef] [PubMed]

Kim, B. J.

B. J. Kim, C. Lee, M. A. Mastro, J. K. Hite, C. R. Eddy, F. Ren, S. J. Pearton, and J. Kim, “Buried graphene electrodes on GaN-based ultra-violet light-emitting diodes,” Appl. Phys. Lett. 101(3), 031108 (2012).
[CrossRef]

B. J. Kim, C. Lee, Y. Jung, K. H. Baik, M. A. Mastro, J. K. Hite, C. R. Eddy, and J. Kim, “Large-area transparent conductive few-layer graphene electrode in GaN-based ultra-violet light-emitting diodes,” Appl. Phys. Lett. 99(14), 143101 (2011).
[CrossRef]

B. J. Kim, H. Jang, S. K. Lee, B. H. Hong, J. H. Ahn, and J. H. Cho, “High-performance flexible graphene field effect transistors with ion gel gate dielectrics,” Nano Lett. 10(9), 3464–3466 (2010).
[CrossRef] [PubMed]

Kim, C. O.

S. Kim, D. H. Shin, C. O. Kim, S. S. Kang, J. M. Kim, C. W. Jang, S. S. Joo, J. S. Lee, J. H. Kim, S. H. Choi, and E. Hwang, “Graphene p-n vertical tunneling diodes,” ACS Nano 7(6), 5168–5174 (2013).
[CrossRef] [PubMed]

Kim, D.

J. P. Shim, D. Kim, M. Choe, T. Lee, S. J. Park, and D. S. Lee, “A self-assembled Ag nanoparticle agglomeration process on graphene for enhanced light output in GaN-based LEDs,” Nanotechnology 23(25), 255201 (2012).
[CrossRef] [PubMed]

Kim, E. J.

Kim, H. K.

N. Han, T. V. Cuong, M. Han, B. D. Ryu, S. Chandramohan, J. B. Park, J. H. Kang, Y. J. Park, K. B. Ko, H. Y. Kim, H. K. Kim, J. H. Ryu, Y. S. Katharria, C. J. Choi, and C. H. Hong, “Improved heat dissipation in gallium nitride light-emitting diodes with embedded graphene oxide pattern,” Nat. Commun. 4, 1452 (2013).
[CrossRef] [PubMed]

Kim, H. Y.

N. Han, T. V. Cuong, M. Han, B. D. Ryu, S. Chandramohan, J. B. Park, J. H. Kang, Y. J. Park, K. B. Ko, H. Y. Kim, H. K. Kim, J. H. Ryu, Y. S. Katharria, C. J. Choi, and C. H. Hong, “Improved heat dissipation in gallium nitride light-emitting diodes with embedded graphene oxide pattern,” Nat. Commun. 4, 1452 (2013).
[CrossRef] [PubMed]

Kim, J.

B. J. Kim, C. Lee, M. A. Mastro, J. K. Hite, C. R. Eddy, F. Ren, S. J. Pearton, and J. Kim, “Buried graphene electrodes on GaN-based ultra-violet light-emitting diodes,” Appl. Phys. Lett. 101(3), 031108 (2012).
[CrossRef]

B. J. Kim, C. Lee, Y. Jung, K. H. Baik, M. A. Mastro, J. K. Hite, C. R. Eddy, and J. Kim, “Large-area transparent conductive few-layer graphene electrode in GaN-based ultra-violet light-emitting diodes,” Appl. Phys. Lett. 99(14), 143101 (2011).
[CrossRef]

Kim, J. H.

S. Kim, D. H. Shin, C. O. Kim, S. S. Kang, J. M. Kim, C. W. Jang, S. S. Joo, J. S. Lee, J. H. Kim, S. H. Choi, and E. Hwang, “Graphene p-n vertical tunneling diodes,” ACS Nano 7(6), 5168–5174 (2013).
[CrossRef] [PubMed]

G. Jo, M. Choe, C. Y. Cho, J. H. Kim, W. Park, S. Lee, W. K. Hong, T. W. Kim, S. J. Park, B. H. Hong, Y. H. Kahng, and T. Lee, “Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes,” Nanotechnology 21(17), 175201 (2010).
[CrossRef] [PubMed]

Kim, J. M.

S. Kim, D. H. Shin, C. O. Kim, S. S. Kang, J. M. Kim, C. W. Jang, S. S. Joo, J. S. Lee, J. H. Kim, S. H. Choi, and E. Hwang, “Graphene p-n vertical tunneling diodes,” ACS Nano 7(6), 5168–5174 (2013).
[CrossRef] [PubMed]

H. J. Shin, W. M. Choi, D. Choi, G. H. Han, S. M. Yoon, H. K. Park, S. W. Kim, Y. W. Jin, S. Y. Lee, J. M. Kim, J. Y. Choi, and Y. H. Lee, “Control of electronic structure of graphene by various dopants and their effects on a nanogenerator,” J. Am. Chem. Soc. 132(44), 15603–15609 (2010).
[CrossRef] [PubMed]

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[CrossRef] [PubMed]

Kim, K. S.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[CrossRef] [PubMed]

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[CrossRef] [PubMed]

Kim, P.

M. S. Choi, G. H. Lee, Y. J. Yu, D. Y. Lee, S. H. Lee, P. Kim, J. Hone, and W. J. Yoo, “Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices,” Nat. Commun. 4, 1624 (2013).
[CrossRef] [PubMed]

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[CrossRef] [PubMed]

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[CrossRef] [PubMed]

Kim, S.

S. Kim, D. H. Shin, C. O. Kim, S. S. Kang, J. M. Kim, C. W. Jang, S. S. Joo, J. S. Lee, J. H. Kim, S. H. Choi, and E. Hwang, “Graphene p-n vertical tunneling diodes,” ACS Nano 7(6), 5168–5174 (2013).
[CrossRef] [PubMed]

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[CrossRef] [PubMed]

Kim, S. H.

D. H. Youn, Y. J. Yu, H. Choi, S. H. Kim, S. Y. Choi, and C. G. Choi, “Graphene transparent electrode for enhanced optical power and thermal stability in GaN light-emitting diodes,” Nanotechnology 24(7), 075202 (2013).
[CrossRef] [PubMed]

Kim, S. W.

H. J. Shin, W. M. Choi, D. Choi, G. H. Han, S. M. Yoon, H. K. Park, S. W. Kim, Y. W. Jin, S. Y. Lee, J. M. Kim, J. Y. Choi, and Y. H. Lee, “Control of electronic structure of graphene by various dopants and their effects on a nanogenerator,” J. Am. Chem. Soc. 132(44), 15603–15609 (2010).
[CrossRef] [PubMed]

Kim, T. W.

G. Jo, M. Choe, C. Y. Cho, J. H. Kim, W. Park, S. Lee, W. K. Hong, T. W. Kim, S. J. Park, B. H. Hong, Y. H. Kahng, and T. Lee, “Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes,” Nanotechnology 21(17), 175201 (2010).
[CrossRef] [PubMed]

Kim, Y. S.

K. Joo, S. K. Jerng, Y. S. Kim, B. Kim, S. Moon, D. Moon, G. D. Lee, Y. K. Song, S. H. Chun, and E. Yoon, “Reduction of graphene damages during the fabrication of InGaN/GaN light emitting diodes with graphene electrodes,” Nanotechnology 23(42), 425302 (2012).
[CrossRef] [PubMed]

Ko, K. B.

N. Han, T. V. Cuong, M. Han, B. D. Ryu, S. Chandramohan, J. B. Park, J. H. Kang, Y. J. Park, K. B. Ko, H. Y. Kim, H. K. Kim, J. H. Ryu, Y. S. Katharria, C. J. Choi, and C. H. Hong, “Improved heat dissipation in gallium nitride light-emitting diodes with embedded graphene oxide pattern,” Nat. Commun. 4, 1452 (2013).
[CrossRef] [PubMed]

Koppens, F. H. L.

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[CrossRef] [PubMed]

Kun, X.

X. Kun, X. Chen, D. Jun, Z. Yanxu, G. Weiling, M. Mingming, Z. Lei, and S. Jie, “Graphene transparent electrodes grown by rapid chemical vapor deposition with ultrathin indium tin oxide contact layers for GaN light emitting diodes,” Appl. Phys. Lett. 102(16), 162102 (2013).
[CrossRef]

X. Kun, X. Chen, D. Jun, Z. Yanxu, G. Weiling, M. Mingming, Z. Lei, and S. Jie, “Graphene transparent electrodes grown by rapid chemical vapor deposition with ultrathin indium tin oxide contact layers for GaN light emitting diodes,” Appl. Phys. Lett. 102(16), 162102 (2013).
[CrossRef]

Lazzeri, M.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[CrossRef] [PubMed]

Lee, C.

B. J. Kim, C. Lee, M. A. Mastro, J. K. Hite, C. R. Eddy, F. Ren, S. J. Pearton, and J. Kim, “Buried graphene electrodes on GaN-based ultra-violet light-emitting diodes,” Appl. Phys. Lett. 101(3), 031108 (2012).
[CrossRef]

B. J. Kim, C. Lee, Y. Jung, K. H. Baik, M. A. Mastro, J. K. Hite, C. R. Eddy, and J. Kim, “Large-area transparent conductive few-layer graphene electrode in GaN-based ultra-violet light-emitting diodes,” Appl. Phys. Lett. 99(14), 143101 (2011).
[CrossRef]

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[CrossRef] [PubMed]

Lee, C. H.

K. Chung, C. H. Lee, and G. C. Yi, “Transferable GaN layers grown on ZnO-coated graphene layers for optoelectronic devices,” Science 330(6004), 655–657 (2010).
[CrossRef] [PubMed]

Lee, D. S.

J. P. Shim, T. H. Seo, J. H. Min, C. M. Kang, E. K. Suh, and D. S. Lee, “Thin Ni film on graphene current spreading layer for GaN-based blue and ultra-violet light-emitting diodes,” Appl. Phys. Lett. 102(15), 151115 (2013).
[CrossRef]

J. P. Shim, D. Kim, M. Choe, T. Lee, S. J. Park, and D. S. Lee, “A self-assembled Ag nanoparticle agglomeration process on graphene for enhanced light output in GaN-based LEDs,” Nanotechnology 23(25), 255201 (2012).
[CrossRef] [PubMed]

Lee, D. Y.

M. S. Choi, G. H. Lee, Y. J. Yu, D. Y. Lee, S. H. Lee, P. Kim, J. Hone, and W. J. Yoo, “Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices,” Nat. Commun. 4, 1624 (2013).
[CrossRef] [PubMed]

Lee, G. D.

K. Joo, S. K. Jerng, Y. S. Kim, B. Kim, S. Moon, D. Moon, G. D. Lee, Y. K. Song, S. H. Chun, and E. Yoon, “Reduction of graphene damages during the fabrication of InGaN/GaN light emitting diodes with graphene electrodes,” Nanotechnology 23(42), 425302 (2012).
[CrossRef] [PubMed]

Lee, G. H.

M. S. Choi, G. H. Lee, Y. J. Yu, D. Y. Lee, S. H. Lee, P. Kim, J. Hone, and W. J. Yoo, “Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices,” Nat. Commun. 4, 1624 (2013).
[CrossRef] [PubMed]

Lee, J.

S. K. Lee, H. Y. Jang, S. Jang, E. Choi, B. H. Hong, J. Lee, S. Park, and J. H. Ahn, “All graphene-based thin film transistors on flexible plastic substrates,” Nano Lett. 12(7), 3472–3476 (2012).
[CrossRef] [PubMed]

Lee, J. M.

J. M. Lee, H. Y. Jeong, K. J. Choi, and W. I. Park, “Metal/graphene sheets as p-type transparent conducting electrodes in GaN light emitting diodes,” Appl. Phys. Lett. 99(4), 041115 (2011).
[CrossRef]

Lee, J. S.

S. Kim, D. H. Shin, C. O. Kim, S. S. Kang, J. M. Kim, C. W. Jang, S. S. Joo, J. S. Lee, J. H. Kim, S. H. Choi, and E. Hwang, “Graphene p-n vertical tunneling diodes,” ACS Nano 7(6), 5168–5174 (2013).
[CrossRef] [PubMed]

Lee, K. J.

Lee, S.

G. Jo, M. Choe, C. Y. Cho, J. H. Kim, W. Park, S. Lee, W. K. Hong, T. W. Kim, S. J. Park, B. H. Hong, Y. H. Kahng, and T. Lee, “Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes,” Nanotechnology 21(17), 175201 (2010).
[CrossRef] [PubMed]

Lee, S. H.

M. S. Choi, G. H. Lee, Y. J. Yu, D. Y. Lee, S. H. Lee, P. Kim, J. Hone, and W. J. Yoo, “Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices,” Nat. Commun. 4, 1624 (2013).
[CrossRef] [PubMed]

Lee, S. K.

S. K. Lee, H. Y. Jang, S. Jang, E. Choi, B. H. Hong, J. Lee, S. Park, and J. H. Ahn, “All graphene-based thin film transistors on flexible plastic substrates,” Nano Lett. 12(7), 3472–3476 (2012).
[CrossRef] [PubMed]

B. J. Kim, H. Jang, S. K. Lee, B. H. Hong, J. H. Ahn, and J. H. Cho, “High-performance flexible graphene field effect transistors with ion gel gate dielectrics,” Nano Lett. 10(9), 3464–3466 (2010).
[CrossRef] [PubMed]

Lee, S. Y.

H. J. Shin, W. M. Choi, D. Choi, G. H. Han, S. M. Yoon, H. K. Park, S. W. Kim, Y. W. Jin, S. Y. Lee, J. M. Kim, J. Y. Choi, and Y. H. Lee, “Control of electronic structure of graphene by various dopants and their effects on a nanogenerator,” J. Am. Chem. Soc. 132(44), 15603–15609 (2010).
[CrossRef] [PubMed]

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[CrossRef] [PubMed]

Lee, T.

J. P. Shim, D. Kim, M. Choe, T. Lee, S. J. Park, and D. S. Lee, “A self-assembled Ag nanoparticle agglomeration process on graphene for enhanced light output in GaN-based LEDs,” Nanotechnology 23(25), 255201 (2012).
[CrossRef] [PubMed]

G. Jo, M. Choe, C. Y. Cho, J. H. Kim, W. Park, S. Lee, W. K. Hong, T. W. Kim, S. J. Park, B. H. Hong, Y. H. Kahng, and T. Lee, “Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes,” Nanotechnology 21(17), 175201 (2010).
[CrossRef] [PubMed]

Lee, T. W.

T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn, and T. W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
[CrossRef]

Lee, X.

Z. Li, J. Kang, Z. Liu, C. Du, X. Lee, X. Li, L. Wang, X. Yi, H. Zhu, and G. Wang, “Enhanced performance of GaN-based light-emitting diodes with graphene/Ag nanowires hybrid films,” AIP Adv. 3(4), 042134 (2013).
[CrossRef]

Lee, Y.

T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn, and T. W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
[CrossRef]

Lee, Y. H.

T. H. Seo, K. J. Lee, A. H. Park, C. H. Hong, E. K. Suh, S. J. Chae, Y. H. Lee, T. V. Cuong, V. H. Pham, J. S. Chung, E. J. Kim, and S. R. Jeon, “Enhanced light output power of near UV light emitting diodes with graphene / indium tin oxide nanodot nodes for transparent and current spreading electrode,” Opt. Express 19(23), 23111–23117 (2011).
[CrossRef] [PubMed]

H. J. Shin, W. M. Choi, D. Choi, G. H. Han, S. M. Yoon, H. K. Park, S. W. Kim, Y. W. Jin, S. Y. Lee, J. M. Kim, J. Y. Choi, and Y. H. Lee, “Control of electronic structure of graphene by various dopants and their effects on a nanogenerator,” J. Am. Chem. Soc. 132(44), 15603–15609 (2010).
[CrossRef] [PubMed]

Lei, Z.

X. Kun, X. Chen, D. Jun, Z. Yanxu, G. Weiling, M. Mingming, Z. Lei, and S. Jie, “Graphene transparent electrodes grown by rapid chemical vapor deposition with ultrathin indium tin oxide contact layers for GaN light emitting diodes,” Appl. Phys. Lett. 102(16), 162102 (2013).
[CrossRef]

X. Kun, X. Chen, D. Jun, Z. Yanxu, G. Weiling, M. Mingming, Z. Lei, and S. Jie, “Graphene transparent electrodes grown by rapid chemical vapor deposition with ultrathin indium tin oxide contact layers for GaN light emitting diodes,” Appl. Phys. Lett. 102(16), 162102 (2013).
[CrossRef]

Li, X.

Z. Li, J. Kang, Z. Liu, C. Du, X. Lee, X. Li, L. Wang, X. Yi, H. Zhu, and G. Wang, “Enhanced performance of GaN-based light-emitting diodes with graphene/Ag nanowires hybrid films,” AIP Adv. 3(4), 042134 (2013).
[CrossRef]

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[CrossRef] [PubMed]

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[CrossRef] [PubMed]

Li, X. H.

C. K. Tan, J. Zhang, X. H. Li, G. Liu, B. O. Tayo, and N. Tansu, “First principle electronic properties of dilute-as GaNAs alloy for visible light emitters,” J. Disp. Technol. 9(4), 272–279 (2013).
[CrossRef]

Li, Z.

Z. Li, J. Kang, Z. Liu, C. Du, X. Lee, X. Li, L. Wang, X. Yi, H. Zhu, and G. Wang, “Enhanced performance of GaN-based light-emitting diodes with graphene/Ag nanowires hybrid films,” AIP Adv. 3(4), 042134 (2013).
[CrossRef]

Liu, G.

C. K. Tan, J. Zhang, X. H. Li, G. Liu, B. O. Tayo, and N. Tansu, “First principle electronic properties of dilute-as GaNAs alloy for visible light emitters,” J. Disp. Technol. 9(4), 272–279 (2013).
[CrossRef]

G. Liu, J. Zhang, C. K. Tan, and N. Tansu, “Efficiency-droop suppression by using large-bandgap AlGaInN thin barrier layers in InGaN quantum-well light-emitting diodes,” IEEE Photonics J. 5(2), 2201011 (2013).
[CrossRef]

H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express 19(S4), A991–A1007 (2011).
[CrossRef] [PubMed]

Liu, Z.

Z. Li, J. Kang, Z. Liu, C. Du, X. Lee, X. Li, L. Wang, X. Yi, H. Zhu, and G. Wang, “Enhanced performance of GaN-based light-emitting diodes with graphene/Ag nanowires hybrid films,” AIP Adv. 3(4), 042134 (2013).
[CrossRef]

Loh, K. P.

Y. Wang, S. W. Tong, X. F. Xu, B. Özyilmaz, and K. P. Loh, “Interface engineering of layer-by-layer stacked graphene anodes for high-performance organic solar cells,” Adv. Mater. 23(13), 1514–1518 (2011).
[CrossRef] [PubMed]

Malyutenko, V. K.

V. K. Malyutenko, S. S. Bolgov, and A. D. Podoltsev, “Current crowding effect on the ideality factor and efficiency droop in blue lateral InGaN/GaN light emitting diodes,” Appl. Phys. Lett. 97(25), 251110 (2010).
[CrossRef]

Mastro, M. A.

B. J. Kim, C. Lee, M. A. Mastro, J. K. Hite, C. R. Eddy, F. Ren, S. J. Pearton, and J. Kim, “Buried graphene electrodes on GaN-based ultra-violet light-emitting diodes,” Appl. Phys. Lett. 101(3), 031108 (2012).
[CrossRef]

B. J. Kim, C. Lee, Y. Jung, K. H. Baik, M. A. Mastro, J. K. Hite, C. R. Eddy, and J. Kim, “Large-area transparent conductive few-layer graphene electrode in GaN-based ultra-violet light-emitting diodes,” Appl. Phys. Lett. 99(14), 143101 (2011).
[CrossRef]

Mauri, F.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[CrossRef] [PubMed]

Meric, I.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[CrossRef] [PubMed]

Meyer, J. C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[CrossRef] [PubMed]

Miao, X.

X. Miao, S. Tongay, M. K. Petterson, K. Berke, A. G. Rinzler, B. R. Appleton, and A. F. Hebard, “High efficiency graphene solar cells by chemical doping,” Nano Lett. 12(6), 2745–2750 (2012).
[CrossRef] [PubMed]

Min, J. H.

J. P. Shim, T. H. Seo, J. H. Min, C. M. Kang, E. K. Suh, and D. S. Lee, “Thin Ni film on graphene current spreading layer for GaN-based blue and ultra-violet light-emitting diodes,” Appl. Phys. Lett. 102(15), 151115 (2013).
[CrossRef]

Mingming, M.

X. Kun, X. Chen, D. Jun, Z. Yanxu, G. Weiling, M. Mingming, Z. Lei, and S. Jie, “Graphene transparent electrodes grown by rapid chemical vapor deposition with ultrathin indium tin oxide contact layers for GaN light emitting diodes,” Appl. Phys. Lett. 102(16), 162102 (2013).
[CrossRef]

X. Kun, X. Chen, D. Jun, Z. Yanxu, G. Weiling, M. Mingming, Z. Lei, and S. Jie, “Graphene transparent electrodes grown by rapid chemical vapor deposition with ultrathin indium tin oxide contact layers for GaN light emitting diodes,” Appl. Phys. Lett. 102(16), 162102 (2013).
[CrossRef]

Moon, D.

K. Joo, S. K. Jerng, Y. S. Kim, B. Kim, S. Moon, D. Moon, G. D. Lee, Y. K. Song, S. H. Chun, and E. Yoon, “Reduction of graphene damages during the fabrication of InGaN/GaN light emitting diodes with graphene electrodes,” Nanotechnology 23(42), 425302 (2012).
[CrossRef] [PubMed]

Moon, S.

K. Joo, S. K. Jerng, Y. S. Kim, B. Kim, S. Moon, D. Moon, G. D. Lee, Y. K. Song, S. H. Chun, and E. Yoon, “Reduction of graphene damages during the fabrication of InGaN/GaN light emitting diodes with graphene electrodes,” Nanotechnology 23(42), 425302 (2012).
[CrossRef] [PubMed]

Müllen, K.

X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8(1), 323–327 (2008).
[CrossRef] [PubMed]

Nah, J.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[CrossRef] [PubMed]

Nakamura, S.

D. F. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Semipolar (20‾2‾1) InGaN/GaN light-emitting diodes high-efficiency solid-state lighting,” J. Disp. Technol. 9, 190–198 (2013).
[CrossRef]

Ni, Z.

Z. Ni, Y. Wang, T. Yu, and Z. Shen, “Raman spectroscopy and imaging of graphene,” Nano Res. 1(4), 273–291 (2008).
[CrossRef]

Novoselov, K. S.

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[CrossRef]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[CrossRef] [PubMed]

Özyilmaz, B.

Y. Wang, S. W. Tong, X. F. Xu, B. Özyilmaz, and K. P. Loh, “Interface engineering of layer-by-layer stacked graphene anodes for high-performance organic solar cells,” Adv. Mater. 23(13), 1514–1518 (2011).
[CrossRef] [PubMed]

Park, A. H.

Park, H. K.

H. J. Shin, W. M. Choi, D. Choi, G. H. Han, S. M. Yoon, H. K. Park, S. W. Kim, Y. W. Jin, S. Y. Lee, J. M. Kim, J. Y. Choi, and Y. H. Lee, “Control of electronic structure of graphene by various dopants and their effects on a nanogenerator,” J. Am. Chem. Soc. 132(44), 15603–15609 (2010).
[CrossRef] [PubMed]

Park, J. B.

N. Han, T. V. Cuong, M. Han, B. D. Ryu, S. Chandramohan, J. B. Park, J. H. Kang, Y. J. Park, K. B. Ko, H. Y. Kim, H. K. Kim, J. H. Ryu, Y. S. Katharria, C. J. Choi, and C. H. Hong, “Improved heat dissipation in gallium nitride light-emitting diodes with embedded graphene oxide pattern,” Nat. Commun. 4, 1452 (2013).
[CrossRef] [PubMed]

Park, S.

S. K. Lee, H. Y. Jang, S. Jang, E. Choi, B. H. Hong, J. Lee, S. Park, and J. H. Ahn, “All graphene-based thin film transistors on flexible plastic substrates,” Nano Lett. 12(7), 3472–3476 (2012).
[CrossRef] [PubMed]

Park, S. J.

J. P. Shim, D. Kim, M. Choe, T. Lee, S. J. Park, and D. S. Lee, “A self-assembled Ag nanoparticle agglomeration process on graphene for enhanced light output in GaN-based LEDs,” Nanotechnology 23(25), 255201 (2012).
[CrossRef] [PubMed]

G. Jo, M. Choe, C. Y. Cho, J. H. Kim, W. Park, S. Lee, W. K. Hong, T. W. Kim, S. J. Park, B. H. Hong, Y. H. Kahng, and T. Lee, “Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes,” Nanotechnology 21(17), 175201 (2010).
[CrossRef] [PubMed]

Park, W.

G. Jo, M. Choe, C. Y. Cho, J. H. Kim, W. Park, S. Lee, W. K. Hong, T. W. Kim, S. J. Park, B. H. Hong, Y. H. Kahng, and T. Lee, “Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes,” Nanotechnology 21(17), 175201 (2010).
[CrossRef] [PubMed]

Park, W. I.

J. M. Lee, H. Y. Jeong, K. J. Choi, and W. I. Park, “Metal/graphene sheets as p-type transparent conducting electrodes in GaN light emitting diodes,” Appl. Phys. Lett. 99(4), 041115 (2011).
[CrossRef]

Park, Y.

Y. Park, V. Choong, Y. Gao, B. R. Hsieh, and C. W. Tang, “Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy,” Appl. Phys. Lett. 68(19), 2699–2701 (1996).
[CrossRef]

Park, Y. J.

N. Han, T. V. Cuong, M. Han, B. D. Ryu, S. Chandramohan, J. B. Park, J. H. Kang, Y. J. Park, K. B. Ko, H. Y. Kim, H. K. Kim, J. H. Ryu, Y. S. Katharria, C. J. Choi, and C. H. Hong, “Improved heat dissipation in gallium nitride light-emitting diodes with embedded graphene oxide pattern,” Nat. Commun. 4, 1452 (2013).
[CrossRef] [PubMed]

Pearton, S. J.

B. J. Kim, C. Lee, M. A. Mastro, J. K. Hite, C. R. Eddy, F. Ren, S. J. Pearton, and J. Kim, “Buried graphene electrodes on GaN-based ultra-violet light-emitting diodes,” Appl. Phys. Lett. 101(3), 031108 (2012).
[CrossRef]

Peres, N. M. R.

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[CrossRef]

Petterson, M. K.

X. Miao, S. Tongay, M. K. Petterson, K. Berke, A. G. Rinzler, B. R. Appleton, and A. F. Hebard, “High efficiency graphene solar cells by chemical doping,” Nano Lett. 12(6), 2745–2750 (2012).
[CrossRef] [PubMed]

Pham, V. H.

Piner, R.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[CrossRef] [PubMed]

Piner, R. D.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[CrossRef] [PubMed]

Piscanec, S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[CrossRef] [PubMed]

Podoltsev, A. D.

V. K. Malyutenko, S. S. Bolgov, and A. D. Podoltsev, “Current crowding effect on the ideality factor and efficiency droop in blue lateral InGaN/GaN light emitting diodes,” Appl. Phys. Lett. 97(25), 251110 (2010).
[CrossRef]

Poplawsky, J. D.

Ren, F.

B. J. Kim, C. Lee, M. A. Mastro, J. K. Hite, C. R. Eddy, F. Ren, S. J. Pearton, and J. Kim, “Buried graphene electrodes on GaN-based ultra-violet light-emitting diodes,” Appl. Phys. Lett. 101(3), 031108 (2012).
[CrossRef]

Rinke, P.

K. T. Delaney, P. Rinke, and C. G. Van de Walle, “Auger recombination rates in nitrides from first principles,” Appl. Phys. Lett. 94(19), 191109 (2009).
[CrossRef]

Rinzler, A. G.

X. Miao, S. Tongay, M. K. Petterson, K. Berke, A. G. Rinzler, B. R. Appleton, and A. F. Hebard, “High efficiency graphene solar cells by chemical doping,” Nano Lett. 12(6), 2745–2750 (2012).
[CrossRef] [PubMed]

Roth, S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[CrossRef] [PubMed]

Ruoff, R. S.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[CrossRef] [PubMed]

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[CrossRef] [PubMed]

Ryu, B. D.

N. Han, T. V. Cuong, M. Han, B. D. Ryu, S. Chandramohan, J. B. Park, J. H. Kang, Y. J. Park, K. B. Ko, H. Y. Kim, H. K. Kim, J. H. Ryu, Y. S. Katharria, C. J. Choi, and C. H. Hong, “Improved heat dissipation in gallium nitride light-emitting diodes with embedded graphene oxide pattern,” Nat. Commun. 4, 1452 (2013).
[CrossRef] [PubMed]

Ryu, J. H.

N. Han, T. V. Cuong, M. Han, B. D. Ryu, S. Chandramohan, J. B. Park, J. H. Kang, Y. J. Park, K. B. Ko, H. Y. Kim, H. K. Kim, J. H. Ryu, Y. S. Katharria, C. J. Choi, and C. H. Hong, “Improved heat dissipation in gallium nitride light-emitting diodes with embedded graphene oxide pattern,” Nat. Commun. 4, 1452 (2013).
[CrossRef] [PubMed]

Scardaci, V.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[CrossRef] [PubMed]

Schubert, E. F.

X. Guo and E. F. Schubert, “Current crowding and optical saturation effects in GaInN/GaN light-emitting diodes grown on insulating substrates,” Appl. Phys. Lett. 78(21), 3337–3339 (2001).
[CrossRef]

Seger, B.

G. Williams, B. Seger, and P. V. Kamat, “TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide,” ACS Nano 2(7), 1487–1491 (2008).
[CrossRef] [PubMed]

Seo, T. H.

Shen, Z.

Z. Ni, Y. Wang, T. Yu, and Z. Shen, “Raman spectroscopy and imaging of graphene,” Nano Res. 1(4), 273–291 (2008).
[CrossRef]

Shepard, K. L.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[CrossRef] [PubMed]

Shim, J. I.

J. Yun, J. I. Shim, and D. S. Shin, “Current, voltage and temperature distribution modeling of light-emitting diodes based on electrical and thermal circuit analysis,” Semicond. Sci. Technol. 28(8), 085001 (2013).
[CrossRef]

J. Yun, D. P. Han, J. I. Shim, and D. S. Shin, “Three-dimensional analysis of temperature distributions based on circuit modeling of light-emitting diodes,” IEEE Trans. Electron. Dev. 59(6), 1799–1802 (2012).
[CrossRef]

Shim, J. P.

J. P. Shim, T. H. Seo, J. H. Min, C. M. Kang, E. K. Suh, and D. S. Lee, “Thin Ni film on graphene current spreading layer for GaN-based blue and ultra-violet light-emitting diodes,” Appl. Phys. Lett. 102(15), 151115 (2013).
[CrossRef]

J. P. Shim, D. Kim, M. Choe, T. Lee, S. J. Park, and D. S. Lee, “A self-assembled Ag nanoparticle agglomeration process on graphene for enhanced light output in GaN-based LEDs,” Nanotechnology 23(25), 255201 (2012).
[CrossRef] [PubMed]

Shin, D. H.

S. Kim, D. H. Shin, C. O. Kim, S. S. Kang, J. M. Kim, C. W. Jang, S. S. Joo, J. S. Lee, J. H. Kim, S. H. Choi, and E. Hwang, “Graphene p-n vertical tunneling diodes,” ACS Nano 7(6), 5168–5174 (2013).
[CrossRef] [PubMed]

Shin, D. S.

J. Yun, J. I. Shim, and D. S. Shin, “Current, voltage and temperature distribution modeling of light-emitting diodes based on electrical and thermal circuit analysis,” Semicond. Sci. Technol. 28(8), 085001 (2013).
[CrossRef]

J. Yun, D. P. Han, J. I. Shim, and D. S. Shin, “Three-dimensional analysis of temperature distributions based on circuit modeling of light-emitting diodes,” IEEE Trans. Electron. Dev. 59(6), 1799–1802 (2012).
[CrossRef]

Shin, H. J.

H. J. Shin, W. M. Choi, D. Choi, G. H. Han, S. M. Yoon, H. K. Park, S. W. Kim, Y. W. Jin, S. Y. Lee, J. M. Kim, J. Y. Choi, and Y. H. Lee, “Control of electronic structure of graphene by various dopants and their effects on a nanogenerator,” J. Am. Chem. Soc. 132(44), 15603–15609 (2010).
[CrossRef] [PubMed]

Song, Y. K.

K. Joo, S. K. Jerng, Y. S. Kim, B. Kim, S. Moon, D. Moon, G. D. Lee, Y. K. Song, S. H. Chun, and E. Yoon, “Reduction of graphene damages during the fabrication of InGaN/GaN light emitting diodes with graphene electrodes,” Nanotechnology 23(42), 425302 (2012).
[CrossRef] [PubMed]

Sorgenfrei, S.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[CrossRef] [PubMed]

Speck, J. S.

D. F. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Semipolar (20‾2‾1) InGaN/GaN light-emitting diodes high-efficiency solid-state lighting,” J. Disp. Technol. 9, 190–198 (2013).
[CrossRef]

Suh, E. K.

Tan, C. K.

G. Liu, J. Zhang, C. K. Tan, and N. Tansu, “Efficiency-droop suppression by using large-bandgap AlGaInN thin barrier layers in InGaN quantum-well light-emitting diodes,” IEEE Photonics J. 5(2), 2201011 (2013).
[CrossRef]

C. K. Tan, J. Zhang, X. H. Li, G. Liu, B. O. Tayo, and N. Tansu, “First principle electronic properties of dilute-as GaNAs alloy for visible light emitters,” J. Disp. Technol. 9(4), 272–279 (2013).
[CrossRef]

Tang, C. W.

Y. Park, V. Choong, Y. Gao, B. R. Hsieh, and C. W. Tang, “Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy,” Appl. Phys. Lett. 68(19), 2699–2701 (1996).
[CrossRef]

Taniguchi, T.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[CrossRef] [PubMed]

Tansu, N.

C. K. Tan, J. Zhang, X. H. Li, G. Liu, B. O. Tayo, and N. Tansu, “First principle electronic properties of dilute-as GaNAs alloy for visible light emitters,” J. Disp. Technol. 9(4), 272–279 (2013).
[CrossRef]

G. Liu, J. Zhang, C. K. Tan, and N. Tansu, “Efficiency-droop suppression by using large-bandgap AlGaInN thin barrier layers in InGaN quantum-well light-emitting diodes,” IEEE Photonics J. 5(2), 2201011 (2013).
[CrossRef]

H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express 19(S4), A991–A1007 (2011).
[CrossRef] [PubMed]

Tayo, B. O.

C. K. Tan, J. Zhang, X. H. Li, G. Liu, B. O. Tayo, and N. Tansu, “First principle electronic properties of dilute-as GaNAs alloy for visible light emitters,” J. Disp. Technol. 9(4), 272–279 (2013).
[CrossRef]

Thongrattanasiri, S.

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[CrossRef] [PubMed]

Tong, S. W.

Y. Wang, S. W. Tong, X. F. Xu, B. Özyilmaz, and K. P. Loh, “Interface engineering of layer-by-layer stacked graphene anodes for high-performance organic solar cells,” Adv. Mater. 23(13), 1514–1518 (2011).
[CrossRef] [PubMed]

Tongay, S.

X. Miao, S. Tongay, M. K. Petterson, K. Berke, A. G. Rinzler, B. R. Appleton, and A. F. Hebard, “High efficiency graphene solar cells by chemical doping,” Nano Lett. 12(6), 2745–2750 (2012).
[CrossRef] [PubMed]

Tutuc, E.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[CrossRef] [PubMed]

Van de Walle, C. G.

K. T. Delaney, P. Rinke, and C. G. Van de Walle, “Auger recombination rates in nitrides from first principles,” Appl. Phys. Lett. 94(19), 191109 (2009).
[CrossRef]

Velamakanni, A.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[CrossRef] [PubMed]

Wang, G.

Z. Li, J. Kang, Z. Liu, C. Du, X. Lee, X. Li, L. Wang, X. Yi, H. Zhu, and G. Wang, “Enhanced performance of GaN-based light-emitting diodes with graphene/Ag nanowires hybrid films,” AIP Adv. 3(4), 042134 (2013).
[CrossRef]

Wang, L.

Z. Li, J. Kang, Z. Liu, C. Du, X. Lee, X. Li, L. Wang, X. Yi, H. Zhu, and G. Wang, “Enhanced performance of GaN-based light-emitting diodes with graphene/Ag nanowires hybrid films,” AIP Adv. 3(4), 042134 (2013).
[CrossRef]

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[CrossRef] [PubMed]

Wang, X.

X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8(1), 323–327 (2008).
[CrossRef] [PubMed]

Wang, Y.

Y. Wang, S. W. Tong, X. F. Xu, B. Özyilmaz, and K. P. Loh, “Interface engineering of layer-by-layer stacked graphene anodes for high-performance organic solar cells,” Adv. Mater. 23(13), 1514–1518 (2011).
[CrossRef] [PubMed]

Z. Ni, Y. Wang, T. Yu, and Z. Shen, “Raman spectroscopy and imaging of graphene,” Nano Res. 1(4), 273–291 (2008).
[CrossRef]

Watanabe, K.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[CrossRef] [PubMed]

Weiling, G.

X. Kun, X. Chen, D. Jun, Z. Yanxu, G. Weiling, M. Mingming, Z. Lei, and S. Jie, “Graphene transparent electrodes grown by rapid chemical vapor deposition with ultrathin indium tin oxide contact layers for GaN light emitting diodes,” Appl. Phys. Lett. 102(16), 162102 (2013).
[CrossRef]

X. Kun, X. Chen, D. Jun, Z. Yanxu, G. Weiling, M. Mingming, Z. Lei, and S. Jie, “Graphene transparent electrodes grown by rapid chemical vapor deposition with ultrathin indium tin oxide contact layers for GaN light emitting diodes,” Appl. Phys. Lett. 102(16), 162102 (2013).
[CrossRef]

Williams, G.

G. Williams, B. Seger, and P. V. Kamat, “TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide,” ACS Nano 2(7), 1487–1491 (2008).
[CrossRef] [PubMed]

Woo, S. H.

T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn, and T. W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
[CrossRef]

Xu, X. F.

Y. Wang, S. W. Tong, X. F. Xu, B. Özyilmaz, and K. P. Loh, “Interface engineering of layer-by-layer stacked graphene anodes for high-performance organic solar cells,” Adv. Mater. 23(13), 1514–1518 (2011).
[CrossRef] [PubMed]

Yang, D.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[CrossRef] [PubMed]

Yanxu, Z.

X. Kun, X. Chen, D. Jun, Z. Yanxu, G. Weiling, M. Mingming, Z. Lei, and S. Jie, “Graphene transparent electrodes grown by rapid chemical vapor deposition with ultrathin indium tin oxide contact layers for GaN light emitting diodes,” Appl. Phys. Lett. 102(16), 162102 (2013).
[CrossRef]

X. Kun, X. Chen, D. Jun, Z. Yanxu, G. Weiling, M. Mingming, Z. Lei, and S. Jie, “Graphene transparent electrodes grown by rapid chemical vapor deposition with ultrathin indium tin oxide contact layers for GaN light emitting diodes,” Appl. Phys. Lett. 102(16), 162102 (2013).
[CrossRef]

Yi, G. C.

K. Chung, C. H. Lee, and G. C. Yi, “Transferable GaN layers grown on ZnO-coated graphene layers for optoelectronic devices,” Science 330(6004), 655–657 (2010).
[CrossRef] [PubMed]

Yi, X.

Z. Li, J. Kang, Z. Liu, C. Du, X. Lee, X. Li, L. Wang, X. Yi, H. Zhu, and G. Wang, “Enhanced performance of GaN-based light-emitting diodes with graphene/Ag nanowires hybrid films,” AIP Adv. 3(4), 042134 (2013).
[CrossRef]

Yoo, W. J.

M. S. Choi, G. H. Lee, Y. J. Yu, D. Y. Lee, S. H. Lee, P. Kim, J. Hone, and W. J. Yoo, “Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices,” Nat. Commun. 4, 1624 (2013).
[CrossRef] [PubMed]

Yoon, E.

K. Joo, S. K. Jerng, Y. S. Kim, B. Kim, S. Moon, D. Moon, G. D. Lee, Y. K. Song, S. H. Chun, and E. Yoon, “Reduction of graphene damages during the fabrication of InGaN/GaN light emitting diodes with graphene electrodes,” Nanotechnology 23(42), 425302 (2012).
[CrossRef] [PubMed]

Yoon, S. M.

H. J. Shin, W. M. Choi, D. Choi, G. H. Han, S. M. Yoon, H. K. Park, S. W. Kim, Y. W. Jin, S. Y. Lee, J. M. Kim, J. Y. Choi, and Y. H. Lee, “Control of electronic structure of graphene by various dopants and their effects on a nanogenerator,” J. Am. Chem. Soc. 132(44), 15603–15609 (2010).
[CrossRef] [PubMed]

Youn, D. H.

D. H. Youn, Y. J. Yu, H. Choi, S. H. Kim, S. Y. Choi, and C. G. Choi, “Graphene transparent electrode for enhanced optical power and thermal stability in GaN light-emitting diodes,” Nanotechnology 24(7), 075202 (2013).
[CrossRef] [PubMed]

Young, A. F.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[CrossRef] [PubMed]

Yu, T.

Z. Ni, Y. Wang, T. Yu, and Z. Shen, “Raman spectroscopy and imaging of graphene,” Nano Res. 1(4), 273–291 (2008).
[CrossRef]

Yu, Y. J.

D. H. Youn, Y. J. Yu, H. Choi, S. H. Kim, S. Y. Choi, and C. G. Choi, “Graphene transparent electrode for enhanced optical power and thermal stability in GaN light-emitting diodes,” Nanotechnology 24(7), 075202 (2013).
[CrossRef] [PubMed]

M. S. Choi, G. H. Lee, Y. J. Yu, D. Y. Lee, S. H. Lee, P. Kim, J. Hone, and W. J. Yoo, “Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices,” Nat. Commun. 4, 1624 (2013).
[CrossRef] [PubMed]

Yun, J.

J. Yun, J. I. Shim, and D. S. Shin, “Current, voltage and temperature distribution modeling of light-emitting diodes based on electrical and thermal circuit analysis,” Semicond. Sci. Technol. 28(8), 085001 (2013).
[CrossRef]

J. Yun, D. P. Han, J. I. Shim, and D. S. Shin, “Three-dimensional analysis of temperature distributions based on circuit modeling of light-emitting diodes,” IEEE Trans. Electron. Dev. 59(6), 1799–1802 (2012).
[CrossRef]

Zhang, J.

G. Liu, J. Zhang, C. K. Tan, and N. Tansu, “Efficiency-droop suppression by using large-bandgap AlGaInN thin barrier layers in InGaN quantum-well light-emitting diodes,” IEEE Photonics J. 5(2), 2201011 (2013).
[CrossRef]

C. K. Tan, J. Zhang, X. H. Li, G. Liu, B. O. Tayo, and N. Tansu, “First principle electronic properties of dilute-as GaNAs alloy for visible light emitters,” J. Disp. Technol. 9(4), 272–279 (2013).
[CrossRef]

H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express 19(S4), A991–A1007 (2011).
[CrossRef] [PubMed]

Zhao, H.

Zhao, Y.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[CrossRef] [PubMed]

Zhi, L.

X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8(1), 323–327 (2008).
[CrossRef] [PubMed]

Zhu, H.

Z. Li, J. Kang, Z. Liu, C. Du, X. Lee, X. Li, L. Wang, X. Yi, H. Zhu, and G. Wang, “Enhanced performance of GaN-based light-emitting diodes with graphene/Ag nanowires hybrid films,” AIP Adv. 3(4), 042134 (2013).
[CrossRef]

Zhu, Y.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[CrossRef] [PubMed]

ACS Nano (2)

G. Williams, B. Seger, and P. V. Kamat, “TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide,” ACS Nano 2(7), 1487–1491 (2008).
[CrossRef] [PubMed]

S. Kim, D. H. Shin, C. O. Kim, S. S. Kang, J. M. Kim, C. W. Jang, S. S. Joo, J. S. Lee, J. H. Kim, S. H. Choi, and E. Hwang, “Graphene p-n vertical tunneling diodes,” ACS Nano 7(6), 5168–5174 (2013).
[CrossRef] [PubMed]

Adv. Mater. (1)

Y. Wang, S. W. Tong, X. F. Xu, B. Özyilmaz, and K. P. Loh, “Interface engineering of layer-by-layer stacked graphene anodes for high-performance organic solar cells,” Adv. Mater. 23(13), 1514–1518 (2011).
[CrossRef] [PubMed]

AIP Adv. (1)

Z. Li, J. Kang, Z. Liu, C. Du, X. Lee, X. Li, L. Wang, X. Yi, H. Zhu, and G. Wang, “Enhanced performance of GaN-based light-emitting diodes with graphene/Ag nanowires hybrid films,” AIP Adv. 3(4), 042134 (2013).
[CrossRef]

Appl. Phys. Lett. (10)

X. Kun, X. Chen, D. Jun, Z. Yanxu, G. Weiling, M. Mingming, Z. Lei, and S. Jie, “Graphene transparent electrodes grown by rapid chemical vapor deposition with ultrathin indium tin oxide contact layers for GaN light emitting diodes,” Appl. Phys. Lett. 102(16), 162102 (2013).
[CrossRef]

J. P. Shim, T. H. Seo, J. H. Min, C. M. Kang, E. K. Suh, and D. S. Lee, “Thin Ni film on graphene current spreading layer for GaN-based blue and ultra-violet light-emitting diodes,” Appl. Phys. Lett. 102(15), 151115 (2013).
[CrossRef]

B. J. Kim, C. Lee, Y. Jung, K. H. Baik, M. A. Mastro, J. K. Hite, C. R. Eddy, and J. Kim, “Large-area transparent conductive few-layer graphene electrode in GaN-based ultra-violet light-emitting diodes,” Appl. Phys. Lett. 99(14), 143101 (2011).
[CrossRef]

B. J. Kim, C. Lee, M. A. Mastro, J. K. Hite, C. R. Eddy, F. Ren, S. J. Pearton, and J. Kim, “Buried graphene electrodes on GaN-based ultra-violet light-emitting diodes,” Appl. Phys. Lett. 101(3), 031108 (2012).
[CrossRef]

J. M. Lee, H. Y. Jeong, K. J. Choi, and W. I. Park, “Metal/graphene sheets as p-type transparent conducting electrodes in GaN light emitting diodes,” Appl. Phys. Lett. 99(4), 041115 (2011).
[CrossRef]

X. Guo and E. F. Schubert, “Current crowding and optical saturation effects in GaInN/GaN light-emitting diodes grown on insulating substrates,” Appl. Phys. Lett. 78(21), 3337–3339 (2001).
[CrossRef]

K. T. Delaney, P. Rinke, and C. G. Van de Walle, “Auger recombination rates in nitrides from first principles,” Appl. Phys. Lett. 94(19), 191109 (2009).
[CrossRef]

V. K. Malyutenko, S. S. Bolgov, and A. D. Podoltsev, “Current crowding effect on the ideality factor and efficiency droop in blue lateral InGaN/GaN light emitting diodes,” Appl. Phys. Lett. 97(25), 251110 (2010).
[CrossRef]

Y. Park, V. Choong, Y. Gao, B. R. Hsieh, and C. W. Tang, “Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy,” Appl. Phys. Lett. 68(19), 2699–2701 (1996).
[CrossRef]

X. Kun, X. Chen, D. Jun, Z. Yanxu, G. Weiling, M. Mingming, Z. Lei, and S. Jie, “Graphene transparent electrodes grown by rapid chemical vapor deposition with ultrathin indium tin oxide contact layers for GaN light emitting diodes,” Appl. Phys. Lett. 102(16), 162102 (2013).
[CrossRef]

IEEE Photonics J. (1)

G. Liu, J. Zhang, C. K. Tan, and N. Tansu, “Efficiency-droop suppression by using large-bandgap AlGaInN thin barrier layers in InGaN quantum-well light-emitting diodes,” IEEE Photonics J. 5(2), 2201011 (2013).
[CrossRef]

IEEE Trans. Electron. Dev. (1)

J. Yun, D. P. Han, J. I. Shim, and D. S. Shin, “Three-dimensional analysis of temperature distributions based on circuit modeling of light-emitting diodes,” IEEE Trans. Electron. Dev. 59(6), 1799–1802 (2012).
[CrossRef]

J. Am. Chem. Soc. (1)

H. J. Shin, W. M. Choi, D. Choi, G. H. Han, S. M. Yoon, H. K. Park, S. W. Kim, Y. W. Jin, S. Y. Lee, J. M. Kim, J. Y. Choi, and Y. H. Lee, “Control of electronic structure of graphene by various dopants and their effects on a nanogenerator,” J. Am. Chem. Soc. 132(44), 15603–15609 (2010).
[CrossRef] [PubMed]

J. Disp. Technol. (2)

C. K. Tan, J. Zhang, X. H. Li, G. Liu, B. O. Tayo, and N. Tansu, “First principle electronic properties of dilute-as GaNAs alloy for visible light emitters,” J. Disp. Technol. 9(4), 272–279 (2013).
[CrossRef]

D. F. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Semipolar (20‾2‾1) InGaN/GaN light-emitting diodes high-efficiency solid-state lighting,” J. Disp. Technol. 9, 190–198 (2013).
[CrossRef]

Nano Lett. (5)

S. K. Lee, H. Y. Jang, S. Jang, E. Choi, B. H. Hong, J. Lee, S. Park, and J. H. Ahn, “All graphene-based thin film transistors on flexible plastic substrates,” Nano Lett. 12(7), 3472–3476 (2012).
[CrossRef] [PubMed]

B. J. Kim, H. Jang, S. K. Lee, B. H. Hong, J. H. Ahn, and J. H. Cho, “High-performance flexible graphene field effect transistors with ion gel gate dielectrics,” Nano Lett. 10(9), 3464–3466 (2010).
[CrossRef] [PubMed]

X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8(1), 323–327 (2008).
[CrossRef] [PubMed]

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[CrossRef] [PubMed]

X. Miao, S. Tongay, M. K. Petterson, K. Berke, A. G. Rinzler, B. R. Appleton, and A. F. Hebard, “High efficiency graphene solar cells by chemical doping,” Nano Lett. 12(6), 2745–2750 (2012).
[CrossRef] [PubMed]

Nano Res. (1)

Z. Ni, Y. Wang, T. Yu, and Z. Shen, “Raman spectroscopy and imaging of graphene,” Nano Res. 1(4), 273–291 (2008).
[CrossRef]

Nanotechnology (4)

K. Joo, S. K. Jerng, Y. S. Kim, B. Kim, S. Moon, D. Moon, G. D. Lee, Y. K. Song, S. H. Chun, and E. Yoon, “Reduction of graphene damages during the fabrication of InGaN/GaN light emitting diodes with graphene electrodes,” Nanotechnology 23(42), 425302 (2012).
[CrossRef] [PubMed]

D. H. Youn, Y. J. Yu, H. Choi, S. H. Kim, S. Y. Choi, and C. G. Choi, “Graphene transparent electrode for enhanced optical power and thermal stability in GaN light-emitting diodes,” Nanotechnology 24(7), 075202 (2013).
[CrossRef] [PubMed]

G. Jo, M. Choe, C. Y. Cho, J. H. Kim, W. Park, S. Lee, W. K. Hong, T. W. Kim, S. J. Park, B. H. Hong, Y. H. Kahng, and T. Lee, “Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes,” Nanotechnology 21(17), 175201 (2010).
[CrossRef] [PubMed]

J. P. Shim, D. Kim, M. Choe, T. Lee, S. J. Park, and D. S. Lee, “A self-assembled Ag nanoparticle agglomeration process on graphene for enhanced light output in GaN-based LEDs,” Nanotechnology 23(25), 255201 (2012).
[CrossRef] [PubMed]

Nat. Commun. (2)

M. S. Choi, G. H. Lee, Y. J. Yu, D. Y. Lee, S. H. Lee, P. Kim, J. Hone, and W. J. Yoo, “Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices,” Nat. Commun. 4, 1624 (2013).
[CrossRef] [PubMed]

N. Han, T. V. Cuong, M. Han, B. D. Ryu, S. Chandramohan, J. B. Park, J. H. Kang, Y. J. Park, K. B. Ko, H. Y. Kim, H. K. Kim, J. H. Ryu, Y. S. Katharria, C. J. Choi, and C. H. Hong, “Improved heat dissipation in gallium nitride light-emitting diodes with embedded graphene oxide pattern,” Nat. Commun. 4, 1452 (2013).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[CrossRef] [PubMed]

Nat. Photonics (1)

T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn, and T. W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
[CrossRef]

Nature (1)

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[CrossRef] [PubMed]

Opt. Express (2)

Phys. Rev. Lett. (2)

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[CrossRef] [PubMed]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[CrossRef]

Science (2)

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[CrossRef] [PubMed]

K. Chung, C. H. Lee, and G. C. Yi, “Transferable GaN layers grown on ZnO-coated graphene layers for optoelectronic devices,” Science 330(6004), 655–657 (2010).
[CrossRef] [PubMed]

Semicond. Sci. Technol. (1)

J. Yun, J. I. Shim, and D. S. Shin, “Current, voltage and temperature distribution modeling of light-emitting diodes based on electrical and thermal circuit analysis,” Semicond. Sci. Technol. 28(8), 085001 (2013).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Fabrication process of the three types of LEDs with different current spreading layers (CSLs). Based on a mesa structure, the LEDs were manufactured with a graphene current spreading layer (‘GR’), 150-nm thick ITO CSL (‘ITO’), and ITO on graphene interlayer (‘ITO on GR’).

Fig. 2
Fig. 2

Results of Raman spectroscopy. ‘1’ through ‘6’ show the Raman spectra with respect to sapphire, graphene transferred onto sapphire, GaN-based LED, graphene transferred on GaN-based LED, ‘ITO’ on GaN-based LED, and graphene interlayer between ITO and GaN-based LED, respectively. G and 2D peaks from graphene can be clearly observed in all graphene-containing samples.

Fig. 3
Fig. 3

(a) Transmittance values of ‘GR’, ‘ITO’, and ‘ITO on GR’. (b) Sheet resistance of each material obtained by Hall measurements. (c) Work functions of ‘GR’ and ‘ITO’ measured by ultraviolet photoelectron spectroscopy [38]. (d) Current-voltage characteristics of ‘GR’, ‘ITO’, and ‘ITO on GR’.

Fig. 4
Fig. 4

(a) Light output power versus input current for ‘GR’, ‘ITO’, and ‘ITO on GR’ LEDs indicated by solid, dashed, and dotted black lines, respectively. Light output power versus input power for ‘ITO’ and ‘ITO on GR’ LEDs are also shown as dashed and dotted red lines, respectively. ‘ITO on GR’ showed a higher light output power than that of ‘ITO’. (b) Electroluminescence spectra of ‘ITO’ and ‘ITO on GR’ LEDs at 100 mA; the spectra were taken at 10 mA for the ‘GR’ LED because of a malfunction of the LED at low current injection.

Fig. 5
Fig. 5

(a) The electroluminescence (EL) image of the ‘GR’. (b) An optical micro scope image of a probe-tip used in EL measurement. (c) An optical microscope image of the p-type metal pad region of the malfunctioning LED after removing the metal layers. Red-colored mesh represents the point of Raman mapping. Folding layers and a void are clearly observed. (d) and (e) show the results of Raman mapping using the intensity of G (1594 cm−1) and 2D (2700 cm−1), respectively.

Fig. 6
Fig. 6

(a), (b), and (c) show the band diagram of the CSLs and the p-type GaN: (a) ITO/p-type GaN, (b) graphene/p-type GaN, (c) ITO/graphene/p-type GaN. (d) and (e) show a schematic of the current flow from the p-type metal pad to the active layer through ‘ITO’ or ‘ITO on GR’ CSLs, respectively.

Fig. 7
Fig. 7

(a) and (b) are optical microscope images of luminescence for ‘ITO’ and ‘ITO on GR’ LEDs at 100 mA. (c) Luminous intensity between the p-type and n-type metal pads, marked by black and red arrows in (a) and (b). Distance at x-axis signifies the length from the p-type metal pad to n-type metal pad. (d) and (e) are simulation results for current injection into the active layer through the ‘ITO’ or ‘ITO on GR’ CSLs.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

L s = ( ρ c + ρ p t p ) t n ρ n
B= E g ( ϕ m χ s )

Metrics