Abstract

In this paper the luminescence of the scheelite-based CaGd2(1-x)Eu2x(WO4)4 solid solutions is investigated as a function of the Eu content and temperature. All phosphors show intense red luminescence due to the 5D07F2 transition in Eu3+, along with other transitions from the 5D1 and 5D0 excited states. For high Eu3+ concentrations the intensity ratio of the emission originating from the 5D1 and 5D0 levels has a non-conventional temperature dependence, which could be explained by a phonon-assisted cross-relaxation process. It is demonstrated that this intensity ratio can be used as a measure of temperature with high spatial resolution, allowing the use of these scheelites as thermographic phosphor. The main disadvantage of many thermographic phosphors, a decreasing signal for increasing temperature, is absent.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Qin, Y. Huang, T. Tsuboi, and H. J. Seo, “The red-emitting phosphors of Eu3+ - activated MR2(MoO4)4 (M = Ba, Sr, Ca; R=La3+, Gd3+,Y3+) for light emitting diodes,” Mater. Res. Bull. 47(12), 4498–4502 (2012).
    [CrossRef]
  2. M. M. Haque and D.-K. Kim, “Luminescent properties of Eu3+ activated MLa2(MoO4)4 based (M = Ba, Sr and Ca) novel red-emitting phosphors,” Mater. Lett. 63(9-10), 793–796 (2009).
    [CrossRef]
  3. B. S. Barros, A. C. de Lima, Z. R. da Silva, D. M. A. Melo, and S. Alves., “Synthesis and photoluminescent behavior of Eu3+-doped alkaline-earth tungstates,” J. Phys. Chem. Solids 73(5), 635–640 (2012).
    [CrossRef]
  4. V. Bachmann, C. Ronda, and A. Meijerink, “Temperature Quenching of Yellow Ce3+ Luminescence in YAG:Ce,” Chem. Mater. 21(10), 2077–2084 (2009).
    [CrossRef]
  5. W. B. Im, N. George, J. Kurzman, S. Brinkley, A. Mikhailovsky, J. Hu, B. F. Chmelka, S. P. DenBaars, and R. Seshadri, “Efficient and Color-Tunable Oxyfluoride Solid Solution Phosphors for Solid-State White Lighting,” Adv. Mater. 23(20), 2300–2305 (2011).
    [CrossRef] [PubMed]
  6. Y. Yang, Q. Zhao, W. Feng, and F. Li, “Luminescent Chemodosimeters for Bioimaging,” Chem. Rev. 113(1), 192–270 (2013).
    [CrossRef] [PubMed]
  7. K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, and H. Yamamoto, “Luminescence Properties of a Red Phosphor, CaAlSiN3 : Eu2+, for White Light-Emitting Diodes,” J. Electrochem. Soc. 9, H22–H25 (2006).
  8. X. Zhang, F. Meng, H. Li, and H. J. Seo, “Synthesis and luminescence of Eu3+-activated molybdates with scheelite-type structure,” Phys. Status Solidi 210, 1866–1870 (2013).
  9. P. Benalloul, C. Barthou, and J. Benoit, “SrGa2S4: RE phosphors for full colour electroluminescent displays,” J. Alloy. Comp. 275–277, 709–715 (1998).
    [CrossRef]
  10. C.-H. Kim, I.-E. Kwon, C.-H. Park, Y.-J. Hwang, H.-S. Bae, B.-Y. Yu, C.-H. Pyun, and G.-Y. Hong, “Phosphors for plasma display panels,” J. Alloy. Comp. 311(1), 33–39 (2000).
    [CrossRef]
  11. N. Ishiwada, T. Ueda, and T. Yokomori, “Characteristics of rare earth (RE = Eu, Tb, Tm)-doped Y2O3 phosphors for thermometry,” Luminescence 26(6), 381–389 (2011).
    [CrossRef] [PubMed]
  12. M. D. Chambers, P. A. Rousseve, and D. R. Clarke, “Decay pathway and high-temperature luminescence of Eu3+ in Ca2Gd8Si6O26,” J. Lumin. 129(3), 263–269 (2009).
    [CrossRef]
  13. Y. Cui, H. Xu, Y. Yue, Z. Guo, J. Yu, Z. Chen, J. Gao, Y. Yang, G. Qian, and B. Chen, “A Luminescent Mixed-Lanthanide Metal-Organic Framework Thermometer,” J. Am. Chem. Soc. 134(9), 3979–3982 (2012).
    [CrossRef] [PubMed]
  14. A. E. Albers, E. M. Chan, P. M. McBride, C. M. Ajo-Franklin, B. E. Cohen, and B. A. Helms, “Dual-Emitting Quantum Dot/Quantum Rod-Based Nanothermometers with Enhanced Response and Sensitivity in Live Cells,” J. Am. Chem. Soc. 134(23), 9565–9568 (2012).
    [CrossRef] [PubMed]
  15. B. Lai, L. Feng, J. Wang, and Q. Su, “Optical transition and upconversion luminescence in Er3+ doped and Er3+–Yb3+ co-doped fluorophosphate glasses,” Opt. Mater. 32(9), 1154–1160 (2010).
    [CrossRef]
  16. X. Wang, J. Zheng, Y. Xuan, and X. Yan, “Optical temperature sensing of NaYbF4: Tm3+@SiO2 core-shell micro-particles induced by infrared excitation,” Opt. Express 21(18), 21596–21606 (2013).
    [CrossRef] [PubMed]
  17. J. P. Feist, A. L. Heyes, and S. Seefelt, “Thermographic phosphor thermometry for film cooling studies in gas turbine combustors,” P. I. Mech. Eng. A – J. Pow. 217, 193–200 (2003).
  18. L. C. Bradley, “A Temperature-Sensitive Phosphor Used to Measure Surface Temperatures in Aerodynamics,” Rev. Sci. Instrum. 24(3), 219–220 (1953).
    [CrossRef]
  19. P. Neubert, “Device for indicating the temperature distribution of hot bodies,” US Patent no. 2,071.471 (1937).
  20. M. M. Gentleman, V. Lughi, J. A. Nychka, and D. R. Clarke, “Noncontact Methods for Measuring Thermal Barrier Coating Temperatures,” Int. J. Appl. Ceram. Technol. 3(2), 105–112 (2006).
    [CrossRef]
  21. H. Peng, M. I. J. Stich, J. Yu, L. N. Sun, L. H. Fischer, and O. S. Wolfbeis, “Luminescent Europium(III) Nanoparticles for Sensing and Imaging of Temperature in the Physiological Range,” Adv. Mater. 22(6), 716–719 (2010).
    [CrossRef] [PubMed]
  22. S. M. Borisov, A. S. Vasylevska, C. Krause, and O. S. Wolfbeis, “Composite Luminescent Material for Dual Sensing of Oxygen and Temperature,” Adv. Funct. Mater. 16(12), 1536–1542 (2006).
    [CrossRef]
  23. H. Kusama, O. J. Sovers, and T. Yoshioka, “Line shift method for phosphor temperature - measurements,” Jpn. J. Appl. Phys. 15(12), 2349–2358 (1976).
    [CrossRef]
  24. A. Khalid and K. Kontis, “Thermographic Phosphors for High Temperature Measurements: Principles, Current State of the Art and Recent Applications,” Sensors (Basel Switzerland) 8(9), 5673–5744 (2008).
    [CrossRef]
  25. J. Brübach, C. Pflitsch, A. Dreizler, and B. Atakan, “On surface temperature measurements with thermographic phosphors: A review,” Prog. Energ. Combust. 39(1), 37–60 (2013).
    [CrossRef]
  26. M. G. Nikolic, D. J. Jovanovic, V. Dordevic, Z. Antic, R. M. Krsmanovic, and M. D. Dramicanin, “Thermographic properties of Sm3+- doped GdVO4 phosphor,” Phys. Scr. T 149, 1–4 (2012).
  27. A. L. Heyes and J. P. Feist, “The characterization of Y2O2S:Sm powder as a thermographic phosphor for high temperature applications,” Meas. Sci. Technol. 11(7), 942–947 (2000).
    [CrossRef]
  28. J. P. Feist, A. L. Heyes, and J. R. Nicholls, “Phosphor thermometry in an electron beam physical vapour deposition produced thermal barrier coating doped with dysprosium,” Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 215(6), 333–341 (2001).
    [CrossRef]
  29. V. A. Morozov, A. Bertha, K. W. Meert, S. Van Rompaey, D. Batuk, G. T. Martinez, S. Van Aert, P. F. Smet, M. V. Raskina, D. Poelman, A. M. Abakumov, and J. Hadermann, “Incommensurate Modulation and Luminescence in the CaGd2(1–x)Eu2x(MoO4)4(1–y)(WO4)4y (0 ≤ x ≤ 1, 0 ≤ y ≤ 1) Red Phosphors,” Chem. Mater. 25(21), 4387–4395 (2013).
    [CrossRef]
  30. W. Zhang, J. Long, A. Fan, and J. Li, “Effect of replacement of Ca by Ln (Ln = Y, Gd) on the structural and luminescence properties of CaWO4:Eu3+ red phosphors prepared via co-precipitation,” Mater. Res. Bull. 47(11), 3479–3483 (2012).
    [CrossRef]
  31. G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer - Verlag, 1994).
  32. S. K. Shi, X. R. Liu, J. Gao, and J. Zhou, “Spectroscopic properties and intense red-light emission of (Ca, Eu,M)WO4 (M = Mg, Zn, Li),” Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 69(2), 396–399 (2008).
    [CrossRef]
  33. G. Blasse, “The luminescence of closed-shell transition-metal complexes. New developments,” in Luminescence and Energy Transfer (Springer Berlin Heidelberg, 1980), pp. 1–41.
  34. S. Alahraché, K. Al Saghir, S. Chenu, E. Véron, D. De Sousa Meneses, A. I. Becerro, M. Ocaña, F. Moretti, G. Patton, C. Dujardin, F. Cussó, J.-P. Guin, M. Nivard, J.-C. Sangleboeuf, G. Matzen, and M. Allix, “Perfectly transparent Sr3Al2O6 polycrystalline ceramic elaborated from glass crystallization,” Chem. Mater. 25(20), 4017–4024 (2013).
    [CrossRef]
  35. P. A. Tanner, “Some misconceptions concerning the electronic spectra of tri-positive europium and cerium,” Chem. Soc. Rev. 42(12), 5090–5101 (2013).
    [CrossRef] [PubMed]
  36. G. Blasse, A. Bril, and W. C. Nieuwpoort, “On the Eu3+ fluorescence in mixed metal oxides. Part I - The crystal structure sensitivity of the intensity ratio of electric and magnetic dipole emission,” J. Phys. Chem. Solids 27(10), 1587–1592 (1966).
    [CrossRef]
  37. K. Binnemans, “Lanthanide-based luminescent hybrid materials,” Chem. Rev. 109(9), 4283–4374 (2009).
    [CrossRef] [PubMed]
  38. Y. Su, L. Li, and G. Li, “Synthesis and Optimum Luminescence of CaWO4-Based Red Phosphors with Codoping of Eu3+ and Na+,” Chem. Mater. 20(19), 6060–6067 (2008).
    [CrossRef]
  39. J. Liao, H. You, B. Qiu, H.-R. Wen, R. Hong, W. You, and Z. Xie, “Photoluminescence properties of NaGd(WO4)2:Eu3+ nanocrystalline prepared by hydrothermal method,” Curr. Appl. Phys. 11(3), 503–507 (2011).
    [CrossRef]
  40. H. Wu, Y. Hu, W. Zhang, F. Kang, N. Li, and G. Ju, “Sol–gel synthesis of Eu3+ incorporated CaMoO4: the enhanced luminescence performance,” J. Sol-Gel Sci. Technol. 62(2), 227–233 (2012).
    [CrossRef]
  41. M. G. Nikolić, D. J. Jovanović, and M. D. Dramićanin, “Temperature dependence of emission and lifetime in Eu3+- and Dy3+-doped GdVO4.,” Appl. Opt. 52(8), 1716–1724 (2013).
    [CrossRef] [PubMed]
  42. S. A. Wade, “Temperature measurement using rare earth doped fibre fluorescence,” phD thesis (Victoria University, 1999).
  43. J. A. Capobianco, P. Kabro, F. S. Ermeneux, R. Moncorge, M. Bettinelli, and E. Cavalli, “Optical spectroscopy, fluorescence dynamics and crystal-field analysis of Er3+ in YVO4,” Chem. Phys. 214(2-3), 329–340 (1997).
    [CrossRef]
  44. S. F. León-Luis, J. E. Muñoz-Santiuste, V. Lavín, and U. R. Rodríguez-Mendoza, “Optical pressure and temperature sensor based on the luminescence properties of Nd3+ ion in a gadolinium scandium gallium garnet crystal,” Opt. Express 20(9), 10393–10398 (2012).
    [CrossRef] [PubMed]
  45. E. J. McLaurin, L. R. Bradshaw, and D. R. Gamelin, “Dual-Emitting Nanoscale Temperature Sensors,” Chem. Mater. 25(8), 1283–1292 (2013).
    [CrossRef]
  46. W. Xu, X. Gao, L. Zheng, Z. Zhang, and W. Cao, “Short-wavelength upconversion emissions in Ho3+/Yb3+ codoped glass ceramic and the optical thermometry behavior,” Opt. Express 20(16), 18127–18137 (2012).
    [CrossRef] [PubMed]
  47. M. G. Nikolić, V. Lojpur, Ž. Antić, and M. D. Dramićanin, “Thermographic properties of a Eu3+ -doped (Y0.75Gd0.25)2O3 nanophosphor under UV and x-ray excitation,” Phys. Scr. 87(5), 055703 (2013).
    [CrossRef]
  48. C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4(16), 4799–4829 (2012).
    [CrossRef] [PubMed]
  49. S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
    [CrossRef]
  50. C. Eckert, C. Pflitsch, and B. Atakan, “Sol–gel deposition of multiply doped thermographic phosphor coatings Al2O3:(Cr3+, M3+) (M = Dy, Tm) for wide range surface temperature measurement application,” Prog. Org. Coat. 67(2), 116–119 (2010).
    [CrossRef]
  51. Z. Boruc, M. Kaczkan, B. Fetlinski, S. Turczynski, and M. Malinowski, “Blue emissions in Dy3+ doped Y4Al2O9 crystals for temperature sensing,” Opt. Lett. 37(24), 5214–5216 (2012).
    [CrossRef] [PubMed]
  52. P. Haro-González, I. R. Martín, L. L. Martín, S. F. León-Luis, C. Pérez-Rodríguez, and V. Lavín, “Characterization of Er3+ and Nd3+ doped Strontium Barium Niobate glass ceramic as temperature sensors,” Opt. Mater. 33(5), 742–745 (2011).
    [CrossRef]
  53. D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
    [CrossRef] [PubMed]

2013

Y. Yang, Q. Zhao, W. Feng, and F. Li, “Luminescent Chemodosimeters for Bioimaging,” Chem. Rev. 113(1), 192–270 (2013).
[CrossRef] [PubMed]

X. Zhang, F. Meng, H. Li, and H. J. Seo, “Synthesis and luminescence of Eu3+-activated molybdates with scheelite-type structure,” Phys. Status Solidi 210, 1866–1870 (2013).

J. Brübach, C. Pflitsch, A. Dreizler, and B. Atakan, “On surface temperature measurements with thermographic phosphors: A review,” Prog. Energ. Combust. 39(1), 37–60 (2013).
[CrossRef]

V. A. Morozov, A. Bertha, K. W. Meert, S. Van Rompaey, D. Batuk, G. T. Martinez, S. Van Aert, P. F. Smet, M. V. Raskina, D. Poelman, A. M. Abakumov, and J. Hadermann, “Incommensurate Modulation and Luminescence in the CaGd2(1–x)Eu2x(MoO4)4(1–y)(WO4)4y (0 ≤ x ≤ 1, 0 ≤ y ≤ 1) Red Phosphors,” Chem. Mater. 25(21), 4387–4395 (2013).
[CrossRef]

S. Alahraché, K. Al Saghir, S. Chenu, E. Véron, D. De Sousa Meneses, A. I. Becerro, M. Ocaña, F. Moretti, G. Patton, C. Dujardin, F. Cussó, J.-P. Guin, M. Nivard, J.-C. Sangleboeuf, G. Matzen, and M. Allix, “Perfectly transparent Sr3Al2O6 polycrystalline ceramic elaborated from glass crystallization,” Chem. Mater. 25(20), 4017–4024 (2013).
[CrossRef]

P. A. Tanner, “Some misconceptions concerning the electronic spectra of tri-positive europium and cerium,” Chem. Soc. Rev. 42(12), 5090–5101 (2013).
[CrossRef] [PubMed]

E. J. McLaurin, L. R. Bradshaw, and D. R. Gamelin, “Dual-Emitting Nanoscale Temperature Sensors,” Chem. Mater. 25(8), 1283–1292 (2013).
[CrossRef]

M. G. Nikolić, V. Lojpur, Ž. Antić, and M. D. Dramićanin, “Thermographic properties of a Eu3+ -doped (Y0.75Gd0.25)2O3 nanophosphor under UV and x-ray excitation,” Phys. Scr. 87(5), 055703 (2013).
[CrossRef]

M. G. Nikolić, D. J. Jovanović, and M. D. Dramićanin, “Temperature dependence of emission and lifetime in Eu3+- and Dy3+-doped GdVO4.,” Appl. Opt. 52(8), 1716–1724 (2013).
[CrossRef] [PubMed]

X. Wang, J. Zheng, Y. Xuan, and X. Yan, “Optical temperature sensing of NaYbF4: Tm3+@SiO2 core-shell micro-particles induced by infrared excitation,” Opt. Express 21(18), 21596–21606 (2013).
[CrossRef] [PubMed]

2012

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4(16), 4799–4829 (2012).
[CrossRef] [PubMed]

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
[CrossRef] [PubMed]

S. F. León-Luis, J. E. Muñoz-Santiuste, V. Lavín, and U. R. Rodríguez-Mendoza, “Optical pressure and temperature sensor based on the luminescence properties of Nd3+ ion in a gadolinium scandium gallium garnet crystal,” Opt. Express 20(9), 10393–10398 (2012).
[CrossRef] [PubMed]

W. Xu, X. Gao, L. Zheng, Z. Zhang, and W. Cao, “Short-wavelength upconversion emissions in Ho3+/Yb3+ codoped glass ceramic and the optical thermometry behavior,” Opt. Express 20(16), 18127–18137 (2012).
[CrossRef] [PubMed]

Z. Boruc, M. Kaczkan, B. Fetlinski, S. Turczynski, and M. Malinowski, “Blue emissions in Dy3+ doped Y4Al2O9 crystals for temperature sensing,” Opt. Lett. 37(24), 5214–5216 (2012).
[CrossRef] [PubMed]

H. Wu, Y. Hu, W. Zhang, F. Kang, N. Li, and G. Ju, “Sol–gel synthesis of Eu3+ incorporated CaMoO4: the enhanced luminescence performance,” J. Sol-Gel Sci. Technol. 62(2), 227–233 (2012).
[CrossRef]

W. Zhang, J. Long, A. Fan, and J. Li, “Effect of replacement of Ca by Ln (Ln = Y, Gd) on the structural and luminescence properties of CaWO4:Eu3+ red phosphors prepared via co-precipitation,” Mater. Res. Bull. 47(11), 3479–3483 (2012).
[CrossRef]

M. G. Nikolic, D. J. Jovanovic, V. Dordevic, Z. Antic, R. M. Krsmanovic, and M. D. Dramicanin, “Thermographic properties of Sm3+- doped GdVO4 phosphor,” Phys. Scr. T 149, 1–4 (2012).

L. Qin, Y. Huang, T. Tsuboi, and H. J. Seo, “The red-emitting phosphors of Eu3+ - activated MR2(MoO4)4 (M = Ba, Sr, Ca; R=La3+, Gd3+,Y3+) for light emitting diodes,” Mater. Res. Bull. 47(12), 4498–4502 (2012).
[CrossRef]

B. S. Barros, A. C. de Lima, Z. R. da Silva, D. M. A. Melo, and S. Alves., “Synthesis and photoluminescent behavior of Eu3+-doped alkaline-earth tungstates,” J. Phys. Chem. Solids 73(5), 635–640 (2012).
[CrossRef]

Y. Cui, H. Xu, Y. Yue, Z. Guo, J. Yu, Z. Chen, J. Gao, Y. Yang, G. Qian, and B. Chen, “A Luminescent Mixed-Lanthanide Metal-Organic Framework Thermometer,” J. Am. Chem. Soc. 134(9), 3979–3982 (2012).
[CrossRef] [PubMed]

A. E. Albers, E. M. Chan, P. M. McBride, C. M. Ajo-Franklin, B. E. Cohen, and B. A. Helms, “Dual-Emitting Quantum Dot/Quantum Rod-Based Nanothermometers with Enhanced Response and Sensitivity in Live Cells,” J. Am. Chem. Soc. 134(23), 9565–9568 (2012).
[CrossRef] [PubMed]

2011

W. B. Im, N. George, J. Kurzman, S. Brinkley, A. Mikhailovsky, J. Hu, B. F. Chmelka, S. P. DenBaars, and R. Seshadri, “Efficient and Color-Tunable Oxyfluoride Solid Solution Phosphors for Solid-State White Lighting,” Adv. Mater. 23(20), 2300–2305 (2011).
[CrossRef] [PubMed]

N. Ishiwada, T. Ueda, and T. Yokomori, “Characteristics of rare earth (RE = Eu, Tb, Tm)-doped Y2O3 phosphors for thermometry,” Luminescence 26(6), 381–389 (2011).
[CrossRef] [PubMed]

J. Liao, H. You, B. Qiu, H.-R. Wen, R. Hong, W. You, and Z. Xie, “Photoluminescence properties of NaGd(WO4)2:Eu3+ nanocrystalline prepared by hydrothermal method,” Curr. Appl. Phys. 11(3), 503–507 (2011).
[CrossRef]

P. Haro-González, I. R. Martín, L. L. Martín, S. F. León-Luis, C. Pérez-Rodríguez, and V. Lavín, “Characterization of Er3+ and Nd3+ doped Strontium Barium Niobate glass ceramic as temperature sensors,” Opt. Mater. 33(5), 742–745 (2011).
[CrossRef]

2010

C. Eckert, C. Pflitsch, and B. Atakan, “Sol–gel deposition of multiply doped thermographic phosphor coatings Al2O3:(Cr3+, M3+) (M = Dy, Tm) for wide range surface temperature measurement application,” Prog. Org. Coat. 67(2), 116–119 (2010).
[CrossRef]

H. Peng, M. I. J. Stich, J. Yu, L. N. Sun, L. H. Fischer, and O. S. Wolfbeis, “Luminescent Europium(III) Nanoparticles for Sensing and Imaging of Temperature in the Physiological Range,” Adv. Mater. 22(6), 716–719 (2010).
[CrossRef] [PubMed]

B. Lai, L. Feng, J. Wang, and Q. Su, “Optical transition and upconversion luminescence in Er3+ doped and Er3+–Yb3+ co-doped fluorophosphate glasses,” Opt. Mater. 32(9), 1154–1160 (2010).
[CrossRef]

2009

M. D. Chambers, P. A. Rousseve, and D. R. Clarke, “Decay pathway and high-temperature luminescence of Eu3+ in Ca2Gd8Si6O26,” J. Lumin. 129(3), 263–269 (2009).
[CrossRef]

V. Bachmann, C. Ronda, and A. Meijerink, “Temperature Quenching of Yellow Ce3+ Luminescence in YAG:Ce,” Chem. Mater. 21(10), 2077–2084 (2009).
[CrossRef]

M. M. Haque and D.-K. Kim, “Luminescent properties of Eu3+ activated MLa2(MoO4)4 based (M = Ba, Sr and Ca) novel red-emitting phosphors,” Mater. Lett. 63(9-10), 793–796 (2009).
[CrossRef]

K. Binnemans, “Lanthanide-based luminescent hybrid materials,” Chem. Rev. 109(9), 4283–4374 (2009).
[CrossRef] [PubMed]

2008

Y. Su, L. Li, and G. Li, “Synthesis and Optimum Luminescence of CaWO4-Based Red Phosphors with Codoping of Eu3+ and Na+,” Chem. Mater. 20(19), 6060–6067 (2008).
[CrossRef]

A. Khalid and K. Kontis, “Thermographic Phosphors for High Temperature Measurements: Principles, Current State of the Art and Recent Applications,” Sensors (Basel Switzerland) 8(9), 5673–5744 (2008).
[CrossRef]

S. K. Shi, X. R. Liu, J. Gao, and J. Zhou, “Spectroscopic properties and intense red-light emission of (Ca, Eu,M)WO4 (M = Mg, Zn, Li),” Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 69(2), 396–399 (2008).
[CrossRef]

2006

M. M. Gentleman, V. Lughi, J. A. Nychka, and D. R. Clarke, “Noncontact Methods for Measuring Thermal Barrier Coating Temperatures,” Int. J. Appl. Ceram. Technol. 3(2), 105–112 (2006).
[CrossRef]

S. M. Borisov, A. S. Vasylevska, C. Krause, and O. S. Wolfbeis, “Composite Luminescent Material for Dual Sensing of Oxygen and Temperature,” Adv. Funct. Mater. 16(12), 1536–1542 (2006).
[CrossRef]

K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, and H. Yamamoto, “Luminescence Properties of a Red Phosphor, CaAlSiN3 : Eu2+, for White Light-Emitting Diodes,” J. Electrochem. Soc. 9, H22–H25 (2006).

2003

J. P. Feist, A. L. Heyes, and S. Seefelt, “Thermographic phosphor thermometry for film cooling studies in gas turbine combustors,” P. I. Mech. Eng. A – J. Pow. 217, 193–200 (2003).

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[CrossRef]

2001

J. P. Feist, A. L. Heyes, and J. R. Nicholls, “Phosphor thermometry in an electron beam physical vapour deposition produced thermal barrier coating doped with dysprosium,” Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 215(6), 333–341 (2001).
[CrossRef]

2000

A. L. Heyes and J. P. Feist, “The characterization of Y2O2S:Sm powder as a thermographic phosphor for high temperature applications,” Meas. Sci. Technol. 11(7), 942–947 (2000).
[CrossRef]

C.-H. Kim, I.-E. Kwon, C.-H. Park, Y.-J. Hwang, H.-S. Bae, B.-Y. Yu, C.-H. Pyun, and G.-Y. Hong, “Phosphors for plasma display panels,” J. Alloy. Comp. 311(1), 33–39 (2000).
[CrossRef]

1998

P. Benalloul, C. Barthou, and J. Benoit, “SrGa2S4: RE phosphors for full colour electroluminescent displays,” J. Alloy. Comp. 275–277, 709–715 (1998).
[CrossRef]

1997

J. A. Capobianco, P. Kabro, F. S. Ermeneux, R. Moncorge, M. Bettinelli, and E. Cavalli, “Optical spectroscopy, fluorescence dynamics and crystal-field analysis of Er3+ in YVO4,” Chem. Phys. 214(2-3), 329–340 (1997).
[CrossRef]

1976

H. Kusama, O. J. Sovers, and T. Yoshioka, “Line shift method for phosphor temperature - measurements,” Jpn. J. Appl. Phys. 15(12), 2349–2358 (1976).
[CrossRef]

1966

G. Blasse, A. Bril, and W. C. Nieuwpoort, “On the Eu3+ fluorescence in mixed metal oxides. Part I - The crystal structure sensitivity of the intensity ratio of electric and magnetic dipole emission,” J. Phys. Chem. Solids 27(10), 1587–1592 (1966).
[CrossRef]

1953

L. C. Bradley, “A Temperature-Sensitive Phosphor Used to Measure Surface Temperatures in Aerodynamics,” Rev. Sci. Instrum. 24(3), 219–220 (1953).
[CrossRef]

Abakumov, A. M.

V. A. Morozov, A. Bertha, K. W. Meert, S. Van Rompaey, D. Batuk, G. T. Martinez, S. Van Aert, P. F. Smet, M. V. Raskina, D. Poelman, A. M. Abakumov, and J. Hadermann, “Incommensurate Modulation and Luminescence in the CaGd2(1–x)Eu2x(MoO4)4(1–y)(WO4)4y (0 ≤ x ≤ 1, 0 ≤ y ≤ 1) Red Phosphors,” Chem. Mater. 25(21), 4387–4395 (2013).
[CrossRef]

Ajo-Franklin, C. M.

A. E. Albers, E. M. Chan, P. M. McBride, C. M. Ajo-Franklin, B. E. Cohen, and B. A. Helms, “Dual-Emitting Quantum Dot/Quantum Rod-Based Nanothermometers with Enhanced Response and Sensitivity in Live Cells,” J. Am. Chem. Soc. 134(23), 9565–9568 (2012).
[CrossRef] [PubMed]

Al Saghir, K.

S. Alahraché, K. Al Saghir, S. Chenu, E. Véron, D. De Sousa Meneses, A. I. Becerro, M. Ocaña, F. Moretti, G. Patton, C. Dujardin, F. Cussó, J.-P. Guin, M. Nivard, J.-C. Sangleboeuf, G. Matzen, and M. Allix, “Perfectly transparent Sr3Al2O6 polycrystalline ceramic elaborated from glass crystallization,” Chem. Mater. 25(20), 4017–4024 (2013).
[CrossRef]

Alahraché, S.

S. Alahraché, K. Al Saghir, S. Chenu, E. Véron, D. De Sousa Meneses, A. I. Becerro, M. Ocaña, F. Moretti, G. Patton, C. Dujardin, F. Cussó, J.-P. Guin, M. Nivard, J.-C. Sangleboeuf, G. Matzen, and M. Allix, “Perfectly transparent Sr3Al2O6 polycrystalline ceramic elaborated from glass crystallization,” Chem. Mater. 25(20), 4017–4024 (2013).
[CrossRef]

Albers, A. E.

A. E. Albers, E. M. Chan, P. M. McBride, C. M. Ajo-Franklin, B. E. Cohen, and B. A. Helms, “Dual-Emitting Quantum Dot/Quantum Rod-Based Nanothermometers with Enhanced Response and Sensitivity in Live Cells,” J. Am. Chem. Soc. 134(23), 9565–9568 (2012).
[CrossRef] [PubMed]

Allix, M.

S. Alahraché, K. Al Saghir, S. Chenu, E. Véron, D. De Sousa Meneses, A. I. Becerro, M. Ocaña, F. Moretti, G. Patton, C. Dujardin, F. Cussó, J.-P. Guin, M. Nivard, J.-C. Sangleboeuf, G. Matzen, and M. Allix, “Perfectly transparent Sr3Al2O6 polycrystalline ceramic elaborated from glass crystallization,” Chem. Mater. 25(20), 4017–4024 (2013).
[CrossRef]

Alves, S.

B. S. Barros, A. C. de Lima, Z. R. da Silva, D. M. A. Melo, and S. Alves., “Synthesis and photoluminescent behavior of Eu3+-doped alkaline-earth tungstates,” J. Phys. Chem. Solids 73(5), 635–640 (2012).
[CrossRef]

Amaral, V. S.

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4(16), 4799–4829 (2012).
[CrossRef] [PubMed]

Antic, Z.

M. G. Nikolic, D. J. Jovanovic, V. Dordevic, Z. Antic, R. M. Krsmanovic, and M. D. Dramicanin, “Thermographic properties of Sm3+- doped GdVO4 phosphor,” Phys. Scr. T 149, 1–4 (2012).

Antic, Ž.

M. G. Nikolić, V. Lojpur, Ž. Antić, and M. D. Dramićanin, “Thermographic properties of a Eu3+ -doped (Y0.75Gd0.25)2O3 nanophosphor under UV and x-ray excitation,” Phys. Scr. 87(5), 055703 (2013).
[CrossRef]

Atakan, B.

J. Brübach, C. Pflitsch, A. Dreizler, and B. Atakan, “On surface temperature measurements with thermographic phosphors: A review,” Prog. Energ. Combust. 39(1), 37–60 (2013).
[CrossRef]

C. Eckert, C. Pflitsch, and B. Atakan, “Sol–gel deposition of multiply doped thermographic phosphor coatings Al2O3:(Cr3+, M3+) (M = Dy, Tm) for wide range surface temperature measurement application,” Prog. Org. Coat. 67(2), 116–119 (2010).
[CrossRef]

Bachmann, V.

V. Bachmann, C. Ronda, and A. Meijerink, “Temperature Quenching of Yellow Ce3+ Luminescence in YAG:Ce,” Chem. Mater. 21(10), 2077–2084 (2009).
[CrossRef]

Bae, H.-S.

C.-H. Kim, I.-E. Kwon, C.-H. Park, Y.-J. Hwang, H.-S. Bae, B.-Y. Yu, C.-H. Pyun, and G.-Y. Hong, “Phosphors for plasma display panels,” J. Alloy. Comp. 311(1), 33–39 (2000).
[CrossRef]

Barros, B. S.

B. S. Barros, A. C. de Lima, Z. R. da Silva, D. M. A. Melo, and S. Alves., “Synthesis and photoluminescent behavior of Eu3+-doped alkaline-earth tungstates,” J. Phys. Chem. Solids 73(5), 635–640 (2012).
[CrossRef]

Barthou, C.

P. Benalloul, C. Barthou, and J. Benoit, “SrGa2S4: RE phosphors for full colour electroluminescent displays,” J. Alloy. Comp. 275–277, 709–715 (1998).
[CrossRef]

Batuk, D.

V. A. Morozov, A. Bertha, K. W. Meert, S. Van Rompaey, D. Batuk, G. T. Martinez, S. Van Aert, P. F. Smet, M. V. Raskina, D. Poelman, A. M. Abakumov, and J. Hadermann, “Incommensurate Modulation and Luminescence in the CaGd2(1–x)Eu2x(MoO4)4(1–y)(WO4)4y (0 ≤ x ≤ 1, 0 ≤ y ≤ 1) Red Phosphors,” Chem. Mater. 25(21), 4387–4395 (2013).
[CrossRef]

Baxter, G. W.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[CrossRef]

Becerro, A. I.

S. Alahraché, K. Al Saghir, S. Chenu, E. Véron, D. De Sousa Meneses, A. I. Becerro, M. Ocaña, F. Moretti, G. Patton, C. Dujardin, F. Cussó, J.-P. Guin, M. Nivard, J.-C. Sangleboeuf, G. Matzen, and M. Allix, “Perfectly transparent Sr3Al2O6 polycrystalline ceramic elaborated from glass crystallization,” Chem. Mater. 25(20), 4017–4024 (2013).
[CrossRef]

Benalloul, P.

P. Benalloul, C. Barthou, and J. Benoit, “SrGa2S4: RE phosphors for full colour electroluminescent displays,” J. Alloy. Comp. 275–277, 709–715 (1998).
[CrossRef]

Benoit, J.

P. Benalloul, C. Barthou, and J. Benoit, “SrGa2S4: RE phosphors for full colour electroluminescent displays,” J. Alloy. Comp. 275–277, 709–715 (1998).
[CrossRef]

Bertha, A.

V. A. Morozov, A. Bertha, K. W. Meert, S. Van Rompaey, D. Batuk, G. T. Martinez, S. Van Aert, P. F. Smet, M. V. Raskina, D. Poelman, A. M. Abakumov, and J. Hadermann, “Incommensurate Modulation and Luminescence in the CaGd2(1–x)Eu2x(MoO4)4(1–y)(WO4)4y (0 ≤ x ≤ 1, 0 ≤ y ≤ 1) Red Phosphors,” Chem. Mater. 25(21), 4387–4395 (2013).
[CrossRef]

Bettinelli, M.

J. A. Capobianco, P. Kabro, F. S. Ermeneux, R. Moncorge, M. Bettinelli, and E. Cavalli, “Optical spectroscopy, fluorescence dynamics and crystal-field analysis of Er3+ in YVO4,” Chem. Phys. 214(2-3), 329–340 (1997).
[CrossRef]

Binnemans, K.

K. Binnemans, “Lanthanide-based luminescent hybrid materials,” Chem. Rev. 109(9), 4283–4374 (2009).
[CrossRef] [PubMed]

Blasse, G.

G. Blasse, A. Bril, and W. C. Nieuwpoort, “On the Eu3+ fluorescence in mixed metal oxides. Part I - The crystal structure sensitivity of the intensity ratio of electric and magnetic dipole emission,” J. Phys. Chem. Solids 27(10), 1587–1592 (1966).
[CrossRef]

Borisov, S. M.

S. M. Borisov, A. S. Vasylevska, C. Krause, and O. S. Wolfbeis, “Composite Luminescent Material for Dual Sensing of Oxygen and Temperature,” Adv. Funct. Mater. 16(12), 1536–1542 (2006).
[CrossRef]

Boruc, Z.

Bradley, L. C.

L. C. Bradley, “A Temperature-Sensitive Phosphor Used to Measure Surface Temperatures in Aerodynamics,” Rev. Sci. Instrum. 24(3), 219–220 (1953).
[CrossRef]

Bradshaw, L. R.

E. J. McLaurin, L. R. Bradshaw, and D. R. Gamelin, “Dual-Emitting Nanoscale Temperature Sensors,” Chem. Mater. 25(8), 1283–1292 (2013).
[CrossRef]

Bril, A.

G. Blasse, A. Bril, and W. C. Nieuwpoort, “On the Eu3+ fluorescence in mixed metal oxides. Part I - The crystal structure sensitivity of the intensity ratio of electric and magnetic dipole emission,” J. Phys. Chem. Solids 27(10), 1587–1592 (1966).
[CrossRef]

Brinkley, S.

W. B. Im, N. George, J. Kurzman, S. Brinkley, A. Mikhailovsky, J. Hu, B. F. Chmelka, S. P. DenBaars, and R. Seshadri, “Efficient and Color-Tunable Oxyfluoride Solid Solution Phosphors for Solid-State White Lighting,” Adv. Mater. 23(20), 2300–2305 (2011).
[CrossRef] [PubMed]

Brites, C. D. S.

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4(16), 4799–4829 (2012).
[CrossRef] [PubMed]

Brübach, J.

J. Brübach, C. Pflitsch, A. Dreizler, and B. Atakan, “On surface temperature measurements with thermographic phosphors: A review,” Prog. Energ. Combust. 39(1), 37–60 (2013).
[CrossRef]

Cao, W.

Capobianco, J. A.

J. A. Capobianco, P. Kabro, F. S. Ermeneux, R. Moncorge, M. Bettinelli, and E. Cavalli, “Optical spectroscopy, fluorescence dynamics and crystal-field analysis of Er3+ in YVO4,” Chem. Phys. 214(2-3), 329–340 (1997).
[CrossRef]

Carlos, L. D.

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4(16), 4799–4829 (2012).
[CrossRef] [PubMed]

Cavalli, E.

J. A. Capobianco, P. Kabro, F. S. Ermeneux, R. Moncorge, M. Bettinelli, and E. Cavalli, “Optical spectroscopy, fluorescence dynamics and crystal-field analysis of Er3+ in YVO4,” Chem. Phys. 214(2-3), 329–340 (1997).
[CrossRef]

Chambers, M. D.

M. D. Chambers, P. A. Rousseve, and D. R. Clarke, “Decay pathway and high-temperature luminescence of Eu3+ in Ca2Gd8Si6O26,” J. Lumin. 129(3), 263–269 (2009).
[CrossRef]

Chan, E. M.

A. E. Albers, E. M. Chan, P. M. McBride, C. M. Ajo-Franklin, B. E. Cohen, and B. A. Helms, “Dual-Emitting Quantum Dot/Quantum Rod-Based Nanothermometers with Enhanced Response and Sensitivity in Live Cells,” J. Am. Chem. Soc. 134(23), 9565–9568 (2012).
[CrossRef] [PubMed]

Chen, B.

Y. Cui, H. Xu, Y. Yue, Z. Guo, J. Yu, Z. Chen, J. Gao, Y. Yang, G. Qian, and B. Chen, “A Luminescent Mixed-Lanthanide Metal-Organic Framework Thermometer,” J. Am. Chem. Soc. 134(9), 3979–3982 (2012).
[CrossRef] [PubMed]

Chen, Z.

Y. Cui, H. Xu, Y. Yue, Z. Guo, J. Yu, Z. Chen, J. Gao, Y. Yang, G. Qian, and B. Chen, “A Luminescent Mixed-Lanthanide Metal-Organic Framework Thermometer,” J. Am. Chem. Soc. 134(9), 3979–3982 (2012).
[CrossRef] [PubMed]

Chenu, S.

S. Alahraché, K. Al Saghir, S. Chenu, E. Véron, D. De Sousa Meneses, A. I. Becerro, M. Ocaña, F. Moretti, G. Patton, C. Dujardin, F. Cussó, J.-P. Guin, M. Nivard, J.-C. Sangleboeuf, G. Matzen, and M. Allix, “Perfectly transparent Sr3Al2O6 polycrystalline ceramic elaborated from glass crystallization,” Chem. Mater. 25(20), 4017–4024 (2013).
[CrossRef]

Chmelka, B. F.

W. B. Im, N. George, J. Kurzman, S. Brinkley, A. Mikhailovsky, J. Hu, B. F. Chmelka, S. P. DenBaars, and R. Seshadri, “Efficient and Color-Tunable Oxyfluoride Solid Solution Phosphors for Solid-State White Lighting,” Adv. Mater. 23(20), 2300–2305 (2011).
[CrossRef] [PubMed]

Clarke, D. R.

M. D. Chambers, P. A. Rousseve, and D. R. Clarke, “Decay pathway and high-temperature luminescence of Eu3+ in Ca2Gd8Si6O26,” J. Lumin. 129(3), 263–269 (2009).
[CrossRef]

M. M. Gentleman, V. Lughi, J. A. Nychka, and D. R. Clarke, “Noncontact Methods for Measuring Thermal Barrier Coating Temperatures,” Int. J. Appl. Ceram. Technol. 3(2), 105–112 (2006).
[CrossRef]

Cohen, B. E.

A. E. Albers, E. M. Chan, P. M. McBride, C. M. Ajo-Franklin, B. E. Cohen, and B. A. Helms, “Dual-Emitting Quantum Dot/Quantum Rod-Based Nanothermometers with Enhanced Response and Sensitivity in Live Cells,” J. Am. Chem. Soc. 134(23), 9565–9568 (2012).
[CrossRef] [PubMed]

Collins, S. F.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[CrossRef]

Cui, Y.

Y. Cui, H. Xu, Y. Yue, Z. Guo, J. Yu, Z. Chen, J. Gao, Y. Yang, G. Qian, and B. Chen, “A Luminescent Mixed-Lanthanide Metal-Organic Framework Thermometer,” J. Am. Chem. Soc. 134(9), 3979–3982 (2012).
[CrossRef] [PubMed]

Cussó, F.

S. Alahraché, K. Al Saghir, S. Chenu, E. Véron, D. De Sousa Meneses, A. I. Becerro, M. Ocaña, F. Moretti, G. Patton, C. Dujardin, F. Cussó, J.-P. Guin, M. Nivard, J.-C. Sangleboeuf, G. Matzen, and M. Allix, “Perfectly transparent Sr3Al2O6 polycrystalline ceramic elaborated from glass crystallization,” Chem. Mater. 25(20), 4017–4024 (2013).
[CrossRef]

da Silva, Z. R.

B. S. Barros, A. C. de Lima, Z. R. da Silva, D. M. A. Melo, and S. Alves., “Synthesis and photoluminescent behavior of Eu3+-doped alkaline-earth tungstates,” J. Phys. Chem. Solids 73(5), 635–640 (2012).
[CrossRef]

de Lima, A. C.

B. S. Barros, A. C. de Lima, Z. R. da Silva, D. M. A. Melo, and S. Alves., “Synthesis and photoluminescent behavior of Eu3+-doped alkaline-earth tungstates,” J. Phys. Chem. Solids 73(5), 635–640 (2012).
[CrossRef]

De Sousa Meneses, D.

S. Alahraché, K. Al Saghir, S. Chenu, E. Véron, D. De Sousa Meneses, A. I. Becerro, M. Ocaña, F. Moretti, G. Patton, C. Dujardin, F. Cussó, J.-P. Guin, M. Nivard, J.-C. Sangleboeuf, G. Matzen, and M. Allix, “Perfectly transparent Sr3Al2O6 polycrystalline ceramic elaborated from glass crystallization,” Chem. Mater. 25(20), 4017–4024 (2013).
[CrossRef]

DenBaars, S. P.

W. B. Im, N. George, J. Kurzman, S. Brinkley, A. Mikhailovsky, J. Hu, B. F. Chmelka, S. P. DenBaars, and R. Seshadri, “Efficient and Color-Tunable Oxyfluoride Solid Solution Phosphors for Solid-State White Lighting,” Adv. Mater. 23(20), 2300–2305 (2011).
[CrossRef] [PubMed]

Dordevic, V.

M. G. Nikolic, D. J. Jovanovic, V. Dordevic, Z. Antic, R. M. Krsmanovic, and M. D. Dramicanin, “Thermographic properties of Sm3+- doped GdVO4 phosphor,” Phys. Scr. T 149, 1–4 (2012).

Dramicanin, M. D.

M. G. Nikolić, V. Lojpur, Ž. Antić, and M. D. Dramićanin, “Thermographic properties of a Eu3+ -doped (Y0.75Gd0.25)2O3 nanophosphor under UV and x-ray excitation,” Phys. Scr. 87(5), 055703 (2013).
[CrossRef]

M. G. Nikolić, D. J. Jovanović, and M. D. Dramićanin, “Temperature dependence of emission and lifetime in Eu3+- and Dy3+-doped GdVO4.,” Appl. Opt. 52(8), 1716–1724 (2013).
[CrossRef] [PubMed]

M. G. Nikolic, D. J. Jovanovic, V. Dordevic, Z. Antic, R. M. Krsmanovic, and M. D. Dramicanin, “Thermographic properties of Sm3+- doped GdVO4 phosphor,” Phys. Scr. T 149, 1–4 (2012).

Dreizler, A.

J. Brübach, C. Pflitsch, A. Dreizler, and B. Atakan, “On surface temperature measurements with thermographic phosphors: A review,” Prog. Energ. Combust. 39(1), 37–60 (2013).
[CrossRef]

Dujardin, C.

S. Alahraché, K. Al Saghir, S. Chenu, E. Véron, D. De Sousa Meneses, A. I. Becerro, M. Ocaña, F. Moretti, G. Patton, C. Dujardin, F. Cussó, J.-P. Guin, M. Nivard, J.-C. Sangleboeuf, G. Matzen, and M. Allix, “Perfectly transparent Sr3Al2O6 polycrystalline ceramic elaborated from glass crystallization,” Chem. Mater. 25(20), 4017–4024 (2013).
[CrossRef]

Eckert, C.

C. Eckert, C. Pflitsch, and B. Atakan, “Sol–gel deposition of multiply doped thermographic phosphor coatings Al2O3:(Cr3+, M3+) (M = Dy, Tm) for wide range surface temperature measurement application,” Prog. Org. Coat. 67(2), 116–119 (2010).
[CrossRef]

Ermeneux, F. S.

J. A. Capobianco, P. Kabro, F. S. Ermeneux, R. Moncorge, M. Bettinelli, and E. Cavalli, “Optical spectroscopy, fluorescence dynamics and crystal-field analysis of Er3+ in YVO4,” Chem. Phys. 214(2-3), 329–340 (1997).
[CrossRef]

Fan, A.

W. Zhang, J. Long, A. Fan, and J. Li, “Effect of replacement of Ca by Ln (Ln = Y, Gd) on the structural and luminescence properties of CaWO4:Eu3+ red phosphors prepared via co-precipitation,” Mater. Res. Bull. 47(11), 3479–3483 (2012).
[CrossRef]

Feist, J. P.

J. P. Feist, A. L. Heyes, and S. Seefelt, “Thermographic phosphor thermometry for film cooling studies in gas turbine combustors,” P. I. Mech. Eng. A – J. Pow. 217, 193–200 (2003).

J. P. Feist, A. L. Heyes, and J. R. Nicholls, “Phosphor thermometry in an electron beam physical vapour deposition produced thermal barrier coating doped with dysprosium,” Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 215(6), 333–341 (2001).
[CrossRef]

A. L. Heyes and J. P. Feist, “The characterization of Y2O2S:Sm powder as a thermographic phosphor for high temperature applications,” Meas. Sci. Technol. 11(7), 942–947 (2000).
[CrossRef]

Feng, L.

B. Lai, L. Feng, J. Wang, and Q. Su, “Optical transition and upconversion luminescence in Er3+ doped and Er3+–Yb3+ co-doped fluorophosphate glasses,” Opt. Mater. 32(9), 1154–1160 (2010).
[CrossRef]

Feng, W.

Y. Yang, Q. Zhao, W. Feng, and F. Li, “Luminescent Chemodosimeters for Bioimaging,” Chem. Rev. 113(1), 192–270 (2013).
[CrossRef] [PubMed]

Fetlinski, B.

Fischer, L. H.

H. Peng, M. I. J. Stich, J. Yu, L. N. Sun, L. H. Fischer, and O. S. Wolfbeis, “Luminescent Europium(III) Nanoparticles for Sensing and Imaging of Temperature in the Physiological Range,” Adv. Mater. 22(6), 716–719 (2010).
[CrossRef] [PubMed]

Gamelin, D. R.

E. J. McLaurin, L. R. Bradshaw, and D. R. Gamelin, “Dual-Emitting Nanoscale Temperature Sensors,” Chem. Mater. 25(8), 1283–1292 (2013).
[CrossRef]

Gao, J.

Y. Cui, H. Xu, Y. Yue, Z. Guo, J. Yu, Z. Chen, J. Gao, Y. Yang, G. Qian, and B. Chen, “A Luminescent Mixed-Lanthanide Metal-Organic Framework Thermometer,” J. Am. Chem. Soc. 134(9), 3979–3982 (2012).
[CrossRef] [PubMed]

S. K. Shi, X. R. Liu, J. Gao, and J. Zhou, “Spectroscopic properties and intense red-light emission of (Ca, Eu,M)WO4 (M = Mg, Zn, Li),” Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 69(2), 396–399 (2008).
[CrossRef]

Gao, X.

Gentleman, M. M.

M. M. Gentleman, V. Lughi, J. A. Nychka, and D. R. Clarke, “Noncontact Methods for Measuring Thermal Barrier Coating Temperatures,” Int. J. Appl. Ceram. Technol. 3(2), 105–112 (2006).
[CrossRef]

George, N.

W. B. Im, N. George, J. Kurzman, S. Brinkley, A. Mikhailovsky, J. Hu, B. F. Chmelka, S. P. DenBaars, and R. Seshadri, “Efficient and Color-Tunable Oxyfluoride Solid Solution Phosphors for Solid-State White Lighting,” Adv. Mater. 23(20), 2300–2305 (2011).
[CrossRef] [PubMed]

Guin, J.-P.

S. Alahraché, K. Al Saghir, S. Chenu, E. Véron, D. De Sousa Meneses, A. I. Becerro, M. Ocaña, F. Moretti, G. Patton, C. Dujardin, F. Cussó, J.-P. Guin, M. Nivard, J.-C. Sangleboeuf, G. Matzen, and M. Allix, “Perfectly transparent Sr3Al2O6 polycrystalline ceramic elaborated from glass crystallization,” Chem. Mater. 25(20), 4017–4024 (2013).
[CrossRef]

Guo, Z.

Y. Cui, H. Xu, Y. Yue, Z. Guo, J. Yu, Z. Chen, J. Gao, Y. Yang, G. Qian, and B. Chen, “A Luminescent Mixed-Lanthanide Metal-Organic Framework Thermometer,” J. Am. Chem. Soc. 134(9), 3979–3982 (2012).
[CrossRef] [PubMed]

Hadermann, J.

V. A. Morozov, A. Bertha, K. W. Meert, S. Van Rompaey, D. Batuk, G. T. Martinez, S. Van Aert, P. F. Smet, M. V. Raskina, D. Poelman, A. M. Abakumov, and J. Hadermann, “Incommensurate Modulation and Luminescence in the CaGd2(1–x)Eu2x(MoO4)4(1–y)(WO4)4y (0 ≤ x ≤ 1, 0 ≤ y ≤ 1) Red Phosphors,” Chem. Mater. 25(21), 4387–4395 (2013).
[CrossRef]

Haque, M. M.

M. M. Haque and D.-K. Kim, “Luminescent properties of Eu3+ activated MLa2(MoO4)4 based (M = Ba, Sr and Ca) novel red-emitting phosphors,” Mater. Lett. 63(9-10), 793–796 (2009).
[CrossRef]

Haro-González, P.

P. Haro-González, I. R. Martín, L. L. Martín, S. F. León-Luis, C. Pérez-Rodríguez, and V. Lavín, “Characterization of Er3+ and Nd3+ doped Strontium Barium Niobate glass ceramic as temperature sensors,” Opt. Mater. 33(5), 742–745 (2011).
[CrossRef]

Helms, B. A.

A. E. Albers, E. M. Chan, P. M. McBride, C. M. Ajo-Franklin, B. E. Cohen, and B. A. Helms, “Dual-Emitting Quantum Dot/Quantum Rod-Based Nanothermometers with Enhanced Response and Sensitivity in Live Cells,” J. Am. Chem. Soc. 134(23), 9565–9568 (2012).
[CrossRef] [PubMed]

Heyes, A. L.

J. P. Feist, A. L. Heyes, and S. Seefelt, “Thermographic phosphor thermometry for film cooling studies in gas turbine combustors,” P. I. Mech. Eng. A – J. Pow. 217, 193–200 (2003).

J. P. Feist, A. L. Heyes, and J. R. Nicholls, “Phosphor thermometry in an electron beam physical vapour deposition produced thermal barrier coating doped with dysprosium,” Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 215(6), 333–341 (2001).
[CrossRef]

A. L. Heyes and J. P. Feist, “The characterization of Y2O2S:Sm powder as a thermographic phosphor for high temperature applications,” Meas. Sci. Technol. 11(7), 942–947 (2000).
[CrossRef]

Hirosaki, N.

K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, and H. Yamamoto, “Luminescence Properties of a Red Phosphor, CaAlSiN3 : Eu2+, for White Light-Emitting Diodes,” J. Electrochem. Soc. 9, H22–H25 (2006).

Hong, G.-Y.

C.-H. Kim, I.-E. Kwon, C.-H. Park, Y.-J. Hwang, H.-S. Bae, B.-Y. Yu, C.-H. Pyun, and G.-Y. Hong, “Phosphors for plasma display panels,” J. Alloy. Comp. 311(1), 33–39 (2000).
[CrossRef]

Hong, R.

J. Liao, H. You, B. Qiu, H.-R. Wen, R. Hong, W. You, and Z. Xie, “Photoluminescence properties of NaGd(WO4)2:Eu3+ nanocrystalline prepared by hydrothermal method,” Curr. Appl. Phys. 11(3), 503–507 (2011).
[CrossRef]

Hu, J.

W. B. Im, N. George, J. Kurzman, S. Brinkley, A. Mikhailovsky, J. Hu, B. F. Chmelka, S. P. DenBaars, and R. Seshadri, “Efficient and Color-Tunable Oxyfluoride Solid Solution Phosphors for Solid-State White Lighting,” Adv. Mater. 23(20), 2300–2305 (2011).
[CrossRef] [PubMed]

Hu, Y.

H. Wu, Y. Hu, W. Zhang, F. Kang, N. Li, and G. Ju, “Sol–gel synthesis of Eu3+ incorporated CaMoO4: the enhanced luminescence performance,” J. Sol-Gel Sci. Technol. 62(2), 227–233 (2012).
[CrossRef]

Huang, Y.

L. Qin, Y. Huang, T. Tsuboi, and H. J. Seo, “The red-emitting phosphors of Eu3+ - activated MR2(MoO4)4 (M = Ba, Sr, Ca; R=La3+, Gd3+,Y3+) for light emitting diodes,” Mater. Res. Bull. 47(12), 4498–4502 (2012).
[CrossRef]

Hwang, Y.-J.

C.-H. Kim, I.-E. Kwon, C.-H. Park, Y.-J. Hwang, H.-S. Bae, B.-Y. Yu, C.-H. Pyun, and G.-Y. Hong, “Phosphors for plasma display panels,” J. Alloy. Comp. 311(1), 33–39 (2000).
[CrossRef]

Im, W. B.

W. B. Im, N. George, J. Kurzman, S. Brinkley, A. Mikhailovsky, J. Hu, B. F. Chmelka, S. P. DenBaars, and R. Seshadri, “Efficient and Color-Tunable Oxyfluoride Solid Solution Phosphors for Solid-State White Lighting,” Adv. Mater. 23(20), 2300–2305 (2011).
[CrossRef] [PubMed]

Ishiwada, N.

N. Ishiwada, T. Ueda, and T. Yokomori, “Characteristics of rare earth (RE = Eu, Tb, Tm)-doped Y2O3 phosphors for thermometry,” Luminescence 26(6), 381–389 (2011).
[CrossRef] [PubMed]

Jaque, D.

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
[CrossRef] [PubMed]

Jovanovic, D. J.

M. G. Nikolić, D. J. Jovanović, and M. D. Dramićanin, “Temperature dependence of emission and lifetime in Eu3+- and Dy3+-doped GdVO4.,” Appl. Opt. 52(8), 1716–1724 (2013).
[CrossRef] [PubMed]

M. G. Nikolic, D. J. Jovanovic, V. Dordevic, Z. Antic, R. M. Krsmanovic, and M. D. Dramicanin, “Thermographic properties of Sm3+- doped GdVO4 phosphor,” Phys. Scr. T 149, 1–4 (2012).

Ju, G.

H. Wu, Y. Hu, W. Zhang, F. Kang, N. Li, and G. Ju, “Sol–gel synthesis of Eu3+ incorporated CaMoO4: the enhanced luminescence performance,” J. Sol-Gel Sci. Technol. 62(2), 227–233 (2012).
[CrossRef]

Kabro, P.

J. A. Capobianco, P. Kabro, F. S. Ermeneux, R. Moncorge, M. Bettinelli, and E. Cavalli, “Optical spectroscopy, fluorescence dynamics and crystal-field analysis of Er3+ in YVO4,” Chem. Phys. 214(2-3), 329–340 (1997).
[CrossRef]

Kaczkan, M.

Kang, F.

H. Wu, Y. Hu, W. Zhang, F. Kang, N. Li, and G. Ju, “Sol–gel synthesis of Eu3+ incorporated CaMoO4: the enhanced luminescence performance,” J. Sol-Gel Sci. Technol. 62(2), 227–233 (2012).
[CrossRef]

Khalid, A.

A. Khalid and K. Kontis, “Thermographic Phosphors for High Temperature Measurements: Principles, Current State of the Art and Recent Applications,” Sensors (Basel Switzerland) 8(9), 5673–5744 (2008).
[CrossRef]

Kim, C.-H.

C.-H. Kim, I.-E. Kwon, C.-H. Park, Y.-J. Hwang, H.-S. Bae, B.-Y. Yu, C.-H. Pyun, and G.-Y. Hong, “Phosphors for plasma display panels,” J. Alloy. Comp. 311(1), 33–39 (2000).
[CrossRef]

Kim, D.-K.

M. M. Haque and D.-K. Kim, “Luminescent properties of Eu3+ activated MLa2(MoO4)4 based (M = Ba, Sr and Ca) novel red-emitting phosphors,” Mater. Lett. 63(9-10), 793–796 (2009).
[CrossRef]

Kontis, K.

A. Khalid and K. Kontis, “Thermographic Phosphors for High Temperature Measurements: Principles, Current State of the Art and Recent Applications,” Sensors (Basel Switzerland) 8(9), 5673–5744 (2008).
[CrossRef]

Krause, C.

S. M. Borisov, A. S. Vasylevska, C. Krause, and O. S. Wolfbeis, “Composite Luminescent Material for Dual Sensing of Oxygen and Temperature,” Adv. Funct. Mater. 16(12), 1536–1542 (2006).
[CrossRef]

Krsmanovic, R. M.

M. G. Nikolic, D. J. Jovanovic, V. Dordevic, Z. Antic, R. M. Krsmanovic, and M. D. Dramicanin, “Thermographic properties of Sm3+- doped GdVO4 phosphor,” Phys. Scr. T 149, 1–4 (2012).

Kurzman, J.

W. B. Im, N. George, J. Kurzman, S. Brinkley, A. Mikhailovsky, J. Hu, B. F. Chmelka, S. P. DenBaars, and R. Seshadri, “Efficient and Color-Tunable Oxyfluoride Solid Solution Phosphors for Solid-State White Lighting,” Adv. Mater. 23(20), 2300–2305 (2011).
[CrossRef] [PubMed]

Kusama, H.

H. Kusama, O. J. Sovers, and T. Yoshioka, “Line shift method for phosphor temperature - measurements,” Jpn. J. Appl. Phys. 15(12), 2349–2358 (1976).
[CrossRef]

Kwon, I.-E.

C.-H. Kim, I.-E. Kwon, C.-H. Park, Y.-J. Hwang, H.-S. Bae, B.-Y. Yu, C.-H. Pyun, and G.-Y. Hong, “Phosphors for plasma display panels,” J. Alloy. Comp. 311(1), 33–39 (2000).
[CrossRef]

Lai, B.

B. Lai, L. Feng, J. Wang, and Q. Su, “Optical transition and upconversion luminescence in Er3+ doped and Er3+–Yb3+ co-doped fluorophosphate glasses,” Opt. Mater. 32(9), 1154–1160 (2010).
[CrossRef]

Lavín, V.

S. F. León-Luis, J. E. Muñoz-Santiuste, V. Lavín, and U. R. Rodríguez-Mendoza, “Optical pressure and temperature sensor based on the luminescence properties of Nd3+ ion in a gadolinium scandium gallium garnet crystal,” Opt. Express 20(9), 10393–10398 (2012).
[CrossRef] [PubMed]

P. Haro-González, I. R. Martín, L. L. Martín, S. F. León-Luis, C. Pérez-Rodríguez, and V. Lavín, “Characterization of Er3+ and Nd3+ doped Strontium Barium Niobate glass ceramic as temperature sensors,” Opt. Mater. 33(5), 742–745 (2011).
[CrossRef]

León-Luis, S. F.

S. F. León-Luis, J. E. Muñoz-Santiuste, V. Lavín, and U. R. Rodríguez-Mendoza, “Optical pressure and temperature sensor based on the luminescence properties of Nd3+ ion in a gadolinium scandium gallium garnet crystal,” Opt. Express 20(9), 10393–10398 (2012).
[CrossRef] [PubMed]

P. Haro-González, I. R. Martín, L. L. Martín, S. F. León-Luis, C. Pérez-Rodríguez, and V. Lavín, “Characterization of Er3+ and Nd3+ doped Strontium Barium Niobate glass ceramic as temperature sensors,” Opt. Mater. 33(5), 742–745 (2011).
[CrossRef]

Li, F.

Y. Yang, Q. Zhao, W. Feng, and F. Li, “Luminescent Chemodosimeters for Bioimaging,” Chem. Rev. 113(1), 192–270 (2013).
[CrossRef] [PubMed]

Li, G.

Y. Su, L. Li, and G. Li, “Synthesis and Optimum Luminescence of CaWO4-Based Red Phosphors with Codoping of Eu3+ and Na+,” Chem. Mater. 20(19), 6060–6067 (2008).
[CrossRef]

Li, H.

X. Zhang, F. Meng, H. Li, and H. J. Seo, “Synthesis and luminescence of Eu3+-activated molybdates with scheelite-type structure,” Phys. Status Solidi 210, 1866–1870 (2013).

Li, J.

W. Zhang, J. Long, A. Fan, and J. Li, “Effect of replacement of Ca by Ln (Ln = Y, Gd) on the structural and luminescence properties of CaWO4:Eu3+ red phosphors prepared via co-precipitation,” Mater. Res. Bull. 47(11), 3479–3483 (2012).
[CrossRef]

Li, L.

Y. Su, L. Li, and G. Li, “Synthesis and Optimum Luminescence of CaWO4-Based Red Phosphors with Codoping of Eu3+ and Na+,” Chem. Mater. 20(19), 6060–6067 (2008).
[CrossRef]

Li, N.

H. Wu, Y. Hu, W. Zhang, F. Kang, N. Li, and G. Ju, “Sol–gel synthesis of Eu3+ incorporated CaMoO4: the enhanced luminescence performance,” J. Sol-Gel Sci. Technol. 62(2), 227–233 (2012).
[CrossRef]

Liao, J.

J. Liao, H. You, B. Qiu, H.-R. Wen, R. Hong, W. You, and Z. Xie, “Photoluminescence properties of NaGd(WO4)2:Eu3+ nanocrystalline prepared by hydrothermal method,” Curr. Appl. Phys. 11(3), 503–507 (2011).
[CrossRef]

Lima, P. P.

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4(16), 4799–4829 (2012).
[CrossRef] [PubMed]

Liu, X. R.

S. K. Shi, X. R. Liu, J. Gao, and J. Zhou, “Spectroscopic properties and intense red-light emission of (Ca, Eu,M)WO4 (M = Mg, Zn, Li),” Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 69(2), 396–399 (2008).
[CrossRef]

Lojpur, V.

M. G. Nikolić, V. Lojpur, Ž. Antić, and M. D. Dramićanin, “Thermographic properties of a Eu3+ -doped (Y0.75Gd0.25)2O3 nanophosphor under UV and x-ray excitation,” Phys. Scr. 87(5), 055703 (2013).
[CrossRef]

Long, J.

W. Zhang, J. Long, A. Fan, and J. Li, “Effect of replacement of Ca by Ln (Ln = Y, Gd) on the structural and luminescence properties of CaWO4:Eu3+ red phosphors prepared via co-precipitation,” Mater. Res. Bull. 47(11), 3479–3483 (2012).
[CrossRef]

Lughi, V.

M. M. Gentleman, V. Lughi, J. A. Nychka, and D. R. Clarke, “Noncontact Methods for Measuring Thermal Barrier Coating Temperatures,” Int. J. Appl. Ceram. Technol. 3(2), 105–112 (2006).
[CrossRef]

Malinowski, M.

Martín, I. R.

P. Haro-González, I. R. Martín, L. L. Martín, S. F. León-Luis, C. Pérez-Rodríguez, and V. Lavín, “Characterization of Er3+ and Nd3+ doped Strontium Barium Niobate glass ceramic as temperature sensors,” Opt. Mater. 33(5), 742–745 (2011).
[CrossRef]

Martín, L. L.

P. Haro-González, I. R. Martín, L. L. Martín, S. F. León-Luis, C. Pérez-Rodríguez, and V. Lavín, “Characterization of Er3+ and Nd3+ doped Strontium Barium Niobate glass ceramic as temperature sensors,” Opt. Mater. 33(5), 742–745 (2011).
[CrossRef]

Martinez, G. T.

V. A. Morozov, A. Bertha, K. W. Meert, S. Van Rompaey, D. Batuk, G. T. Martinez, S. Van Aert, P. F. Smet, M. V. Raskina, D. Poelman, A. M. Abakumov, and J. Hadermann, “Incommensurate Modulation and Luminescence in the CaGd2(1–x)Eu2x(MoO4)4(1–y)(WO4)4y (0 ≤ x ≤ 1, 0 ≤ y ≤ 1) Red Phosphors,” Chem. Mater. 25(21), 4387–4395 (2013).
[CrossRef]

Matzen, G.

S. Alahraché, K. Al Saghir, S. Chenu, E. Véron, D. De Sousa Meneses, A. I. Becerro, M. Ocaña, F. Moretti, G. Patton, C. Dujardin, F. Cussó, J.-P. Guin, M. Nivard, J.-C. Sangleboeuf, G. Matzen, and M. Allix, “Perfectly transparent Sr3Al2O6 polycrystalline ceramic elaborated from glass crystallization,” Chem. Mater. 25(20), 4017–4024 (2013).
[CrossRef]

McBride, P. M.

A. E. Albers, E. M. Chan, P. M. McBride, C. M. Ajo-Franklin, B. E. Cohen, and B. A. Helms, “Dual-Emitting Quantum Dot/Quantum Rod-Based Nanothermometers with Enhanced Response and Sensitivity in Live Cells,” J. Am. Chem. Soc. 134(23), 9565–9568 (2012).
[CrossRef] [PubMed]

McLaurin, E. J.

E. J. McLaurin, L. R. Bradshaw, and D. R. Gamelin, “Dual-Emitting Nanoscale Temperature Sensors,” Chem. Mater. 25(8), 1283–1292 (2013).
[CrossRef]

Meert, K. W.

V. A. Morozov, A. Bertha, K. W. Meert, S. Van Rompaey, D. Batuk, G. T. Martinez, S. Van Aert, P. F. Smet, M. V. Raskina, D. Poelman, A. M. Abakumov, and J. Hadermann, “Incommensurate Modulation and Luminescence in the CaGd2(1–x)Eu2x(MoO4)4(1–y)(WO4)4y (0 ≤ x ≤ 1, 0 ≤ y ≤ 1) Red Phosphors,” Chem. Mater. 25(21), 4387–4395 (2013).
[CrossRef]

Meijerink, A.

V. Bachmann, C. Ronda, and A. Meijerink, “Temperature Quenching of Yellow Ce3+ Luminescence in YAG:Ce,” Chem. Mater. 21(10), 2077–2084 (2009).
[CrossRef]

Melo, D. M. A.

B. S. Barros, A. C. de Lima, Z. R. da Silva, D. M. A. Melo, and S. Alves., “Synthesis and photoluminescent behavior of Eu3+-doped alkaline-earth tungstates,” J. Phys. Chem. Solids 73(5), 635–640 (2012).
[CrossRef]

Meng, F.

X. Zhang, F. Meng, H. Li, and H. J. Seo, “Synthesis and luminescence of Eu3+-activated molybdates with scheelite-type structure,” Phys. Status Solidi 210, 1866–1870 (2013).

Mikhailovsky, A.

W. B. Im, N. George, J. Kurzman, S. Brinkley, A. Mikhailovsky, J. Hu, B. F. Chmelka, S. P. DenBaars, and R. Seshadri, “Efficient and Color-Tunable Oxyfluoride Solid Solution Phosphors for Solid-State White Lighting,” Adv. Mater. 23(20), 2300–2305 (2011).
[CrossRef] [PubMed]

Millán, A.

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4(16), 4799–4829 (2012).
[CrossRef] [PubMed]

Moncorge, R.

J. A. Capobianco, P. Kabro, F. S. Ermeneux, R. Moncorge, M. Bettinelli, and E. Cavalli, “Optical spectroscopy, fluorescence dynamics and crystal-field analysis of Er3+ in YVO4,” Chem. Phys. 214(2-3), 329–340 (1997).
[CrossRef]

Moretti, F.

S. Alahraché, K. Al Saghir, S. Chenu, E. Véron, D. De Sousa Meneses, A. I. Becerro, M. Ocaña, F. Moretti, G. Patton, C. Dujardin, F. Cussó, J.-P. Guin, M. Nivard, J.-C. Sangleboeuf, G. Matzen, and M. Allix, “Perfectly transparent Sr3Al2O6 polycrystalline ceramic elaborated from glass crystallization,” Chem. Mater. 25(20), 4017–4024 (2013).
[CrossRef]

Morozov, V. A.

V. A. Morozov, A. Bertha, K. W. Meert, S. Van Rompaey, D. Batuk, G. T. Martinez, S. Van Aert, P. F. Smet, M. V. Raskina, D. Poelman, A. M. Abakumov, and J. Hadermann, “Incommensurate Modulation and Luminescence in the CaGd2(1–x)Eu2x(MoO4)4(1–y)(WO4)4y (0 ≤ x ≤ 1, 0 ≤ y ≤ 1) Red Phosphors,” Chem. Mater. 25(21), 4387–4395 (2013).
[CrossRef]

Muñoz-Santiuste, J. E.

Naito, A.

K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, and H. Yamamoto, “Luminescence Properties of a Red Phosphor, CaAlSiN3 : Eu2+, for White Light-Emitting Diodes,” J. Electrochem. Soc. 9, H22–H25 (2006).

Nakajima, T.

K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, and H. Yamamoto, “Luminescence Properties of a Red Phosphor, CaAlSiN3 : Eu2+, for White Light-Emitting Diodes,” J. Electrochem. Soc. 9, H22–H25 (2006).

Nicholls, J. R.

J. P. Feist, A. L. Heyes, and J. R. Nicholls, “Phosphor thermometry in an electron beam physical vapour deposition produced thermal barrier coating doped with dysprosium,” Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 215(6), 333–341 (2001).
[CrossRef]

Nieuwpoort, W. C.

G. Blasse, A. Bril, and W. C. Nieuwpoort, “On the Eu3+ fluorescence in mixed metal oxides. Part I - The crystal structure sensitivity of the intensity ratio of electric and magnetic dipole emission,” J. Phys. Chem. Solids 27(10), 1587–1592 (1966).
[CrossRef]

Nikolic, M. G.

M. G. Nikolić, V. Lojpur, Ž. Antić, and M. D. Dramićanin, “Thermographic properties of a Eu3+ -doped (Y0.75Gd0.25)2O3 nanophosphor under UV and x-ray excitation,” Phys. Scr. 87(5), 055703 (2013).
[CrossRef]

M. G. Nikolić, D. J. Jovanović, and M. D. Dramićanin, “Temperature dependence of emission and lifetime in Eu3+- and Dy3+-doped GdVO4.,” Appl. Opt. 52(8), 1716–1724 (2013).
[CrossRef] [PubMed]

M. G. Nikolic, D. J. Jovanovic, V. Dordevic, Z. Antic, R. M. Krsmanovic, and M. D. Dramicanin, “Thermographic properties of Sm3+- doped GdVO4 phosphor,” Phys. Scr. T 149, 1–4 (2012).

Nivard, M.

S. Alahraché, K. Al Saghir, S. Chenu, E. Véron, D. De Sousa Meneses, A. I. Becerro, M. Ocaña, F. Moretti, G. Patton, C. Dujardin, F. Cussó, J.-P. Guin, M. Nivard, J.-C. Sangleboeuf, G. Matzen, and M. Allix, “Perfectly transparent Sr3Al2O6 polycrystalline ceramic elaborated from glass crystallization,” Chem. Mater. 25(20), 4017–4024 (2013).
[CrossRef]

Nychka, J. A.

M. M. Gentleman, V. Lughi, J. A. Nychka, and D. R. Clarke, “Noncontact Methods for Measuring Thermal Barrier Coating Temperatures,” Int. J. Appl. Ceram. Technol. 3(2), 105–112 (2006).
[CrossRef]

Ocaña, M.

S. Alahraché, K. Al Saghir, S. Chenu, E. Véron, D. De Sousa Meneses, A. I. Becerro, M. Ocaña, F. Moretti, G. Patton, C. Dujardin, F. Cussó, J.-P. Guin, M. Nivard, J.-C. Sangleboeuf, G. Matzen, and M. Allix, “Perfectly transparent Sr3Al2O6 polycrystalline ceramic elaborated from glass crystallization,” Chem. Mater. 25(20), 4017–4024 (2013).
[CrossRef]

Palacio, F.

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4(16), 4799–4829 (2012).
[CrossRef] [PubMed]

Park, C.-H.

C.-H. Kim, I.-E. Kwon, C.-H. Park, Y.-J. Hwang, H.-S. Bae, B.-Y. Yu, C.-H. Pyun, and G.-Y. Hong, “Phosphors for plasma display panels,” J. Alloy. Comp. 311(1), 33–39 (2000).
[CrossRef]

Patton, G.

S. Alahraché, K. Al Saghir, S. Chenu, E. Véron, D. De Sousa Meneses, A. I. Becerro, M. Ocaña, F. Moretti, G. Patton, C. Dujardin, F. Cussó, J.-P. Guin, M. Nivard, J.-C. Sangleboeuf, G. Matzen, and M. Allix, “Perfectly transparent Sr3Al2O6 polycrystalline ceramic elaborated from glass crystallization,” Chem. Mater. 25(20), 4017–4024 (2013).
[CrossRef]

Peng, H.

H. Peng, M. I. J. Stich, J. Yu, L. N. Sun, L. H. Fischer, and O. S. Wolfbeis, “Luminescent Europium(III) Nanoparticles for Sensing and Imaging of Temperature in the Physiological Range,” Adv. Mater. 22(6), 716–719 (2010).
[CrossRef] [PubMed]

Pérez-Rodríguez, C.

P. Haro-González, I. R. Martín, L. L. Martín, S. F. León-Luis, C. Pérez-Rodríguez, and V. Lavín, “Characterization of Er3+ and Nd3+ doped Strontium Barium Niobate glass ceramic as temperature sensors,” Opt. Mater. 33(5), 742–745 (2011).
[CrossRef]

Pflitsch, C.

J. Brübach, C. Pflitsch, A. Dreizler, and B. Atakan, “On surface temperature measurements with thermographic phosphors: A review,” Prog. Energ. Combust. 39(1), 37–60 (2013).
[CrossRef]

C. Eckert, C. Pflitsch, and B. Atakan, “Sol–gel deposition of multiply doped thermographic phosphor coatings Al2O3:(Cr3+, M3+) (M = Dy, Tm) for wide range surface temperature measurement application,” Prog. Org. Coat. 67(2), 116–119 (2010).
[CrossRef]

Poelman, D.

V. A. Morozov, A. Bertha, K. W. Meert, S. Van Rompaey, D. Batuk, G. T. Martinez, S. Van Aert, P. F. Smet, M. V. Raskina, D. Poelman, A. M. Abakumov, and J. Hadermann, “Incommensurate Modulation and Luminescence in the CaGd2(1–x)Eu2x(MoO4)4(1–y)(WO4)4y (0 ≤ x ≤ 1, 0 ≤ y ≤ 1) Red Phosphors,” Chem. Mater. 25(21), 4387–4395 (2013).
[CrossRef]

Pyun, C.-H.

C.-H. Kim, I.-E. Kwon, C.-H. Park, Y.-J. Hwang, H.-S. Bae, B.-Y. Yu, C.-H. Pyun, and G.-Y. Hong, “Phosphors for plasma display panels,” J. Alloy. Comp. 311(1), 33–39 (2000).
[CrossRef]

Qian, G.

Y. Cui, H. Xu, Y. Yue, Z. Guo, J. Yu, Z. Chen, J. Gao, Y. Yang, G. Qian, and B. Chen, “A Luminescent Mixed-Lanthanide Metal-Organic Framework Thermometer,” J. Am. Chem. Soc. 134(9), 3979–3982 (2012).
[CrossRef] [PubMed]

Qin, L.

L. Qin, Y. Huang, T. Tsuboi, and H. J. Seo, “The red-emitting phosphors of Eu3+ - activated MR2(MoO4)4 (M = Ba, Sr, Ca; R=La3+, Gd3+,Y3+) for light emitting diodes,” Mater. Res. Bull. 47(12), 4498–4502 (2012).
[CrossRef]

Qiu, B.

J. Liao, H. You, B. Qiu, H.-R. Wen, R. Hong, W. You, and Z. Xie, “Photoluminescence properties of NaGd(WO4)2:Eu3+ nanocrystalline prepared by hydrothermal method,” Curr. Appl. Phys. 11(3), 503–507 (2011).
[CrossRef]

Raskina, M. V.

V. A. Morozov, A. Bertha, K. W. Meert, S. Van Rompaey, D. Batuk, G. T. Martinez, S. Van Aert, P. F. Smet, M. V. Raskina, D. Poelman, A. M. Abakumov, and J. Hadermann, “Incommensurate Modulation and Luminescence in the CaGd2(1–x)Eu2x(MoO4)4(1–y)(WO4)4y (0 ≤ x ≤ 1, 0 ≤ y ≤ 1) Red Phosphors,” Chem. Mater. 25(21), 4387–4395 (2013).
[CrossRef]

Rodríguez-Mendoza, U. R.

Ronda, C.

V. Bachmann, C. Ronda, and A. Meijerink, “Temperature Quenching of Yellow Ce3+ Luminescence in YAG:Ce,” Chem. Mater. 21(10), 2077–2084 (2009).
[CrossRef]

Rousseve, P. A.

M. D. Chambers, P. A. Rousseve, and D. R. Clarke, “Decay pathway and high-temperature luminescence of Eu3+ in Ca2Gd8Si6O26,” J. Lumin. 129(3), 263–269 (2009).
[CrossRef]

Sangleboeuf, J.-C.

S. Alahraché, K. Al Saghir, S. Chenu, E. Véron, D. De Sousa Meneses, A. I. Becerro, M. Ocaña, F. Moretti, G. Patton, C. Dujardin, F. Cussó, J.-P. Guin, M. Nivard, J.-C. Sangleboeuf, G. Matzen, and M. Allix, “Perfectly transparent Sr3Al2O6 polycrystalline ceramic elaborated from glass crystallization,” Chem. Mater. 25(20), 4017–4024 (2013).
[CrossRef]

Seefelt, S.

J. P. Feist, A. L. Heyes, and S. Seefelt, “Thermographic phosphor thermometry for film cooling studies in gas turbine combustors,” P. I. Mech. Eng. A – J. Pow. 217, 193–200 (2003).

Seo, H. J.

X. Zhang, F. Meng, H. Li, and H. J. Seo, “Synthesis and luminescence of Eu3+-activated molybdates with scheelite-type structure,” Phys. Status Solidi 210, 1866–1870 (2013).

L. Qin, Y. Huang, T. Tsuboi, and H. J. Seo, “The red-emitting phosphors of Eu3+ - activated MR2(MoO4)4 (M = Ba, Sr, Ca; R=La3+, Gd3+,Y3+) for light emitting diodes,” Mater. Res. Bull. 47(12), 4498–4502 (2012).
[CrossRef]

Seshadri, R.

W. B. Im, N. George, J. Kurzman, S. Brinkley, A. Mikhailovsky, J. Hu, B. F. Chmelka, S. P. DenBaars, and R. Seshadri, “Efficient and Color-Tunable Oxyfluoride Solid Solution Phosphors for Solid-State White Lighting,” Adv. Mater. 23(20), 2300–2305 (2011).
[CrossRef] [PubMed]

Shi, S. K.

S. K. Shi, X. R. Liu, J. Gao, and J. Zhou, “Spectroscopic properties and intense red-light emission of (Ca, Eu,M)WO4 (M = Mg, Zn, Li),” Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 69(2), 396–399 (2008).
[CrossRef]

Silva, N. J. O.

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4(16), 4799–4829 (2012).
[CrossRef] [PubMed]

Smet, P. F.

V. A. Morozov, A. Bertha, K. W. Meert, S. Van Rompaey, D. Batuk, G. T. Martinez, S. Van Aert, P. F. Smet, M. V. Raskina, D. Poelman, A. M. Abakumov, and J. Hadermann, “Incommensurate Modulation and Luminescence in the CaGd2(1–x)Eu2x(MoO4)4(1–y)(WO4)4y (0 ≤ x ≤ 1, 0 ≤ y ≤ 1) Red Phosphors,” Chem. Mater. 25(21), 4387–4395 (2013).
[CrossRef]

Sovers, O. J.

H. Kusama, O. J. Sovers, and T. Yoshioka, “Line shift method for phosphor temperature - measurements,” Jpn. J. Appl. Phys. 15(12), 2349–2358 (1976).
[CrossRef]

Stich, M. I. J.

H. Peng, M. I. J. Stich, J. Yu, L. N. Sun, L. H. Fischer, and O. S. Wolfbeis, “Luminescent Europium(III) Nanoparticles for Sensing and Imaging of Temperature in the Physiological Range,” Adv. Mater. 22(6), 716–719 (2010).
[CrossRef] [PubMed]

Su, Q.

B. Lai, L. Feng, J. Wang, and Q. Su, “Optical transition and upconversion luminescence in Er3+ doped and Er3+–Yb3+ co-doped fluorophosphate glasses,” Opt. Mater. 32(9), 1154–1160 (2010).
[CrossRef]

Su, Y.

Y. Su, L. Li, and G. Li, “Synthesis and Optimum Luminescence of CaWO4-Based Red Phosphors with Codoping of Eu3+ and Na+,” Chem. Mater. 20(19), 6060–6067 (2008).
[CrossRef]

Sun, L. N.

H. Peng, M. I. J. Stich, J. Yu, L. N. Sun, L. H. Fischer, and O. S. Wolfbeis, “Luminescent Europium(III) Nanoparticles for Sensing and Imaging of Temperature in the Physiological Range,” Adv. Mater. 22(6), 716–719 (2010).
[CrossRef] [PubMed]

Tanner, P. A.

P. A. Tanner, “Some misconceptions concerning the electronic spectra of tri-positive europium and cerium,” Chem. Soc. Rev. 42(12), 5090–5101 (2013).
[CrossRef] [PubMed]

Tsuboi, T.

L. Qin, Y. Huang, T. Tsuboi, and H. J. Seo, “The red-emitting phosphors of Eu3+ - activated MR2(MoO4)4 (M = Ba, Sr, Ca; R=La3+, Gd3+,Y3+) for light emitting diodes,” Mater. Res. Bull. 47(12), 4498–4502 (2012).
[CrossRef]

Turczynski, S.

Ueda, T.

N. Ishiwada, T. Ueda, and T. Yokomori, “Characteristics of rare earth (RE = Eu, Tb, Tm)-doped Y2O3 phosphors for thermometry,” Luminescence 26(6), 381–389 (2011).
[CrossRef] [PubMed]

Uheda, K.

K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, and H. Yamamoto, “Luminescence Properties of a Red Phosphor, CaAlSiN3 : Eu2+, for White Light-Emitting Diodes,” J. Electrochem. Soc. 9, H22–H25 (2006).

Van Aert, S.

V. A. Morozov, A. Bertha, K. W. Meert, S. Van Rompaey, D. Batuk, G. T. Martinez, S. Van Aert, P. F. Smet, M. V. Raskina, D. Poelman, A. M. Abakumov, and J. Hadermann, “Incommensurate Modulation and Luminescence in the CaGd2(1–x)Eu2x(MoO4)4(1–y)(WO4)4y (0 ≤ x ≤ 1, 0 ≤ y ≤ 1) Red Phosphors,” Chem. Mater. 25(21), 4387–4395 (2013).
[CrossRef]

Van Rompaey, S.

V. A. Morozov, A. Bertha, K. W. Meert, S. Van Rompaey, D. Batuk, G. T. Martinez, S. Van Aert, P. F. Smet, M. V. Raskina, D. Poelman, A. M. Abakumov, and J. Hadermann, “Incommensurate Modulation and Luminescence in the CaGd2(1–x)Eu2x(MoO4)4(1–y)(WO4)4y (0 ≤ x ≤ 1, 0 ≤ y ≤ 1) Red Phosphors,” Chem. Mater. 25(21), 4387–4395 (2013).
[CrossRef]

Vasylevska, A. S.

S. M. Borisov, A. S. Vasylevska, C. Krause, and O. S. Wolfbeis, “Composite Luminescent Material for Dual Sensing of Oxygen and Temperature,” Adv. Funct. Mater. 16(12), 1536–1542 (2006).
[CrossRef]

Véron, E.

S. Alahraché, K. Al Saghir, S. Chenu, E. Véron, D. De Sousa Meneses, A. I. Becerro, M. Ocaña, F. Moretti, G. Patton, C. Dujardin, F. Cussó, J.-P. Guin, M. Nivard, J.-C. Sangleboeuf, G. Matzen, and M. Allix, “Perfectly transparent Sr3Al2O6 polycrystalline ceramic elaborated from glass crystallization,” Chem. Mater. 25(20), 4017–4024 (2013).
[CrossRef]

Vetrone, F.

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
[CrossRef] [PubMed]

Wade, S. A.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[CrossRef]

Wang, J.

B. Lai, L. Feng, J. Wang, and Q. Su, “Optical transition and upconversion luminescence in Er3+ doped and Er3+–Yb3+ co-doped fluorophosphate glasses,” Opt. Mater. 32(9), 1154–1160 (2010).
[CrossRef]

Wang, X.

Wen, H.-R.

J. Liao, H. You, B. Qiu, H.-R. Wen, R. Hong, W. You, and Z. Xie, “Photoluminescence properties of NaGd(WO4)2:Eu3+ nanocrystalline prepared by hydrothermal method,” Curr. Appl. Phys. 11(3), 503–507 (2011).
[CrossRef]

Wolfbeis, O. S.

H. Peng, M. I. J. Stich, J. Yu, L. N. Sun, L. H. Fischer, and O. S. Wolfbeis, “Luminescent Europium(III) Nanoparticles for Sensing and Imaging of Temperature in the Physiological Range,” Adv. Mater. 22(6), 716–719 (2010).
[CrossRef] [PubMed]

S. M. Borisov, A. S. Vasylevska, C. Krause, and O. S. Wolfbeis, “Composite Luminescent Material for Dual Sensing of Oxygen and Temperature,” Adv. Funct. Mater. 16(12), 1536–1542 (2006).
[CrossRef]

Wu, H.

H. Wu, Y. Hu, W. Zhang, F. Kang, N. Li, and G. Ju, “Sol–gel synthesis of Eu3+ incorporated CaMoO4: the enhanced luminescence performance,” J. Sol-Gel Sci. Technol. 62(2), 227–233 (2012).
[CrossRef]

Xie, Z.

J. Liao, H. You, B. Qiu, H.-R. Wen, R. Hong, W. You, and Z. Xie, “Photoluminescence properties of NaGd(WO4)2:Eu3+ nanocrystalline prepared by hydrothermal method,” Curr. Appl. Phys. 11(3), 503–507 (2011).
[CrossRef]

Xu, H.

Y. Cui, H. Xu, Y. Yue, Z. Guo, J. Yu, Z. Chen, J. Gao, Y. Yang, G. Qian, and B. Chen, “A Luminescent Mixed-Lanthanide Metal-Organic Framework Thermometer,” J. Am. Chem. Soc. 134(9), 3979–3982 (2012).
[CrossRef] [PubMed]

Xu, W.

Xuan, Y.

Yamamoto, H.

K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, and H. Yamamoto, “Luminescence Properties of a Red Phosphor, CaAlSiN3 : Eu2+, for White Light-Emitting Diodes,” J. Electrochem. Soc. 9, H22–H25 (2006).

Yamamoto, Y.

K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, and H. Yamamoto, “Luminescence Properties of a Red Phosphor, CaAlSiN3 : Eu2+, for White Light-Emitting Diodes,” J. Electrochem. Soc. 9, H22–H25 (2006).

Yan, X.

Yang, Y.

Y. Yang, Q. Zhao, W. Feng, and F. Li, “Luminescent Chemodosimeters for Bioimaging,” Chem. Rev. 113(1), 192–270 (2013).
[CrossRef] [PubMed]

Y. Cui, H. Xu, Y. Yue, Z. Guo, J. Yu, Z. Chen, J. Gao, Y. Yang, G. Qian, and B. Chen, “A Luminescent Mixed-Lanthanide Metal-Organic Framework Thermometer,” J. Am. Chem. Soc. 134(9), 3979–3982 (2012).
[CrossRef] [PubMed]

Yokomori, T.

N. Ishiwada, T. Ueda, and T. Yokomori, “Characteristics of rare earth (RE = Eu, Tb, Tm)-doped Y2O3 phosphors for thermometry,” Luminescence 26(6), 381–389 (2011).
[CrossRef] [PubMed]

Yoshioka, T.

H. Kusama, O. J. Sovers, and T. Yoshioka, “Line shift method for phosphor temperature - measurements,” Jpn. J. Appl. Phys. 15(12), 2349–2358 (1976).
[CrossRef]

You, H.

J. Liao, H. You, B. Qiu, H.-R. Wen, R. Hong, W. You, and Z. Xie, “Photoluminescence properties of NaGd(WO4)2:Eu3+ nanocrystalline prepared by hydrothermal method,” Curr. Appl. Phys. 11(3), 503–507 (2011).
[CrossRef]

You, W.

J. Liao, H. You, B. Qiu, H.-R. Wen, R. Hong, W. You, and Z. Xie, “Photoluminescence properties of NaGd(WO4)2:Eu3+ nanocrystalline prepared by hydrothermal method,” Curr. Appl. Phys. 11(3), 503–507 (2011).
[CrossRef]

Yu, B.-Y.

C.-H. Kim, I.-E. Kwon, C.-H. Park, Y.-J. Hwang, H.-S. Bae, B.-Y. Yu, C.-H. Pyun, and G.-Y. Hong, “Phosphors for plasma display panels,” J. Alloy. Comp. 311(1), 33–39 (2000).
[CrossRef]

Yu, J.

Y. Cui, H. Xu, Y. Yue, Z. Guo, J. Yu, Z. Chen, J. Gao, Y. Yang, G. Qian, and B. Chen, “A Luminescent Mixed-Lanthanide Metal-Organic Framework Thermometer,” J. Am. Chem. Soc. 134(9), 3979–3982 (2012).
[CrossRef] [PubMed]

H. Peng, M. I. J. Stich, J. Yu, L. N. Sun, L. H. Fischer, and O. S. Wolfbeis, “Luminescent Europium(III) Nanoparticles for Sensing and Imaging of Temperature in the Physiological Range,” Adv. Mater. 22(6), 716–719 (2010).
[CrossRef] [PubMed]

Yue, Y.

Y. Cui, H. Xu, Y. Yue, Z. Guo, J. Yu, Z. Chen, J. Gao, Y. Yang, G. Qian, and B. Chen, “A Luminescent Mixed-Lanthanide Metal-Organic Framework Thermometer,” J. Am. Chem. Soc. 134(9), 3979–3982 (2012).
[CrossRef] [PubMed]

Zhang, W.

W. Zhang, J. Long, A. Fan, and J. Li, “Effect of replacement of Ca by Ln (Ln = Y, Gd) on the structural and luminescence properties of CaWO4:Eu3+ red phosphors prepared via co-precipitation,” Mater. Res. Bull. 47(11), 3479–3483 (2012).
[CrossRef]

H. Wu, Y. Hu, W. Zhang, F. Kang, N. Li, and G. Ju, “Sol–gel synthesis of Eu3+ incorporated CaMoO4: the enhanced luminescence performance,” J. Sol-Gel Sci. Technol. 62(2), 227–233 (2012).
[CrossRef]

Zhang, X.

X. Zhang, F. Meng, H. Li, and H. J. Seo, “Synthesis and luminescence of Eu3+-activated molybdates with scheelite-type structure,” Phys. Status Solidi 210, 1866–1870 (2013).

Zhang, Z.

Zhao, Q.

Y. Yang, Q. Zhao, W. Feng, and F. Li, “Luminescent Chemodosimeters for Bioimaging,” Chem. Rev. 113(1), 192–270 (2013).
[CrossRef] [PubMed]

Zheng, J.

Zheng, L.

Zhou, J.

S. K. Shi, X. R. Liu, J. Gao, and J. Zhou, “Spectroscopic properties and intense red-light emission of (Ca, Eu,M)WO4 (M = Mg, Zn, Li),” Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 69(2), 396–399 (2008).
[CrossRef]

Adv. Funct. Mater.

S. M. Borisov, A. S. Vasylevska, C. Krause, and O. S. Wolfbeis, “Composite Luminescent Material for Dual Sensing of Oxygen and Temperature,” Adv. Funct. Mater. 16(12), 1536–1542 (2006).
[CrossRef]

Adv. Mater.

H. Peng, M. I. J. Stich, J. Yu, L. N. Sun, L. H. Fischer, and O. S. Wolfbeis, “Luminescent Europium(III) Nanoparticles for Sensing and Imaging of Temperature in the Physiological Range,” Adv. Mater. 22(6), 716–719 (2010).
[CrossRef] [PubMed]

W. B. Im, N. George, J. Kurzman, S. Brinkley, A. Mikhailovsky, J. Hu, B. F. Chmelka, S. P. DenBaars, and R. Seshadri, “Efficient and Color-Tunable Oxyfluoride Solid Solution Phosphors for Solid-State White Lighting,” Adv. Mater. 23(20), 2300–2305 (2011).
[CrossRef] [PubMed]

Appl. Opt.

Chem. Mater.

E. J. McLaurin, L. R. Bradshaw, and D. R. Gamelin, “Dual-Emitting Nanoscale Temperature Sensors,” Chem. Mater. 25(8), 1283–1292 (2013).
[CrossRef]

V. Bachmann, C. Ronda, and A. Meijerink, “Temperature Quenching of Yellow Ce3+ Luminescence in YAG:Ce,” Chem. Mater. 21(10), 2077–2084 (2009).
[CrossRef]

V. A. Morozov, A. Bertha, K. W. Meert, S. Van Rompaey, D. Batuk, G. T. Martinez, S. Van Aert, P. F. Smet, M. V. Raskina, D. Poelman, A. M. Abakumov, and J. Hadermann, “Incommensurate Modulation and Luminescence in the CaGd2(1–x)Eu2x(MoO4)4(1–y)(WO4)4y (0 ≤ x ≤ 1, 0 ≤ y ≤ 1) Red Phosphors,” Chem. Mater. 25(21), 4387–4395 (2013).
[CrossRef]

S. Alahraché, K. Al Saghir, S. Chenu, E. Véron, D. De Sousa Meneses, A. I. Becerro, M. Ocaña, F. Moretti, G. Patton, C. Dujardin, F. Cussó, J.-P. Guin, M. Nivard, J.-C. Sangleboeuf, G. Matzen, and M. Allix, “Perfectly transparent Sr3Al2O6 polycrystalline ceramic elaborated from glass crystallization,” Chem. Mater. 25(20), 4017–4024 (2013).
[CrossRef]

Y. Su, L. Li, and G. Li, “Synthesis and Optimum Luminescence of CaWO4-Based Red Phosphors with Codoping of Eu3+ and Na+,” Chem. Mater. 20(19), 6060–6067 (2008).
[CrossRef]

Chem. Phys.

J. A. Capobianco, P. Kabro, F. S. Ermeneux, R. Moncorge, M. Bettinelli, and E. Cavalli, “Optical spectroscopy, fluorescence dynamics and crystal-field analysis of Er3+ in YVO4,” Chem. Phys. 214(2-3), 329–340 (1997).
[CrossRef]

Chem. Rev.

K. Binnemans, “Lanthanide-based luminescent hybrid materials,” Chem. Rev. 109(9), 4283–4374 (2009).
[CrossRef] [PubMed]

Y. Yang, Q. Zhao, W. Feng, and F. Li, “Luminescent Chemodosimeters for Bioimaging,” Chem. Rev. 113(1), 192–270 (2013).
[CrossRef] [PubMed]

Chem. Soc. Rev.

P. A. Tanner, “Some misconceptions concerning the electronic spectra of tri-positive europium and cerium,” Chem. Soc. Rev. 42(12), 5090–5101 (2013).
[CrossRef] [PubMed]

Curr. Appl. Phys.

J. Liao, H. You, B. Qiu, H.-R. Wen, R. Hong, W. You, and Z. Xie, “Photoluminescence properties of NaGd(WO4)2:Eu3+ nanocrystalline prepared by hydrothermal method,” Curr. Appl. Phys. 11(3), 503–507 (2011).
[CrossRef]

Int. J. Appl. Ceram. Technol.

M. M. Gentleman, V. Lughi, J. A. Nychka, and D. R. Clarke, “Noncontact Methods for Measuring Thermal Barrier Coating Temperatures,” Int. J. Appl. Ceram. Technol. 3(2), 105–112 (2006).
[CrossRef]

J. Alloy. Comp.

P. Benalloul, C. Barthou, and J. Benoit, “SrGa2S4: RE phosphors for full colour electroluminescent displays,” J. Alloy. Comp. 275–277, 709–715 (1998).
[CrossRef]

C.-H. Kim, I.-E. Kwon, C.-H. Park, Y.-J. Hwang, H.-S. Bae, B.-Y. Yu, C.-H. Pyun, and G.-Y. Hong, “Phosphors for plasma display panels,” J. Alloy. Comp. 311(1), 33–39 (2000).
[CrossRef]

J. Am. Chem. Soc.

Y. Cui, H. Xu, Y. Yue, Z. Guo, J. Yu, Z. Chen, J. Gao, Y. Yang, G. Qian, and B. Chen, “A Luminescent Mixed-Lanthanide Metal-Organic Framework Thermometer,” J. Am. Chem. Soc. 134(9), 3979–3982 (2012).
[CrossRef] [PubMed]

A. E. Albers, E. M. Chan, P. M. McBride, C. M. Ajo-Franklin, B. E. Cohen, and B. A. Helms, “Dual-Emitting Quantum Dot/Quantum Rod-Based Nanothermometers with Enhanced Response and Sensitivity in Live Cells,” J. Am. Chem. Soc. 134(23), 9565–9568 (2012).
[CrossRef] [PubMed]

J. Appl. Phys.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[CrossRef]

J. Electrochem. Soc.

K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, and H. Yamamoto, “Luminescence Properties of a Red Phosphor, CaAlSiN3 : Eu2+, for White Light-Emitting Diodes,” J. Electrochem. Soc. 9, H22–H25 (2006).

J. Lumin.

M. D. Chambers, P. A. Rousseve, and D. R. Clarke, “Decay pathway and high-temperature luminescence of Eu3+ in Ca2Gd8Si6O26,” J. Lumin. 129(3), 263–269 (2009).
[CrossRef]

J. Phys. Chem. Solids

B. S. Barros, A. C. de Lima, Z. R. da Silva, D. M. A. Melo, and S. Alves., “Synthesis and photoluminescent behavior of Eu3+-doped alkaline-earth tungstates,” J. Phys. Chem. Solids 73(5), 635–640 (2012).
[CrossRef]

G. Blasse, A. Bril, and W. C. Nieuwpoort, “On the Eu3+ fluorescence in mixed metal oxides. Part I - The crystal structure sensitivity of the intensity ratio of electric and magnetic dipole emission,” J. Phys. Chem. Solids 27(10), 1587–1592 (1966).
[CrossRef]

J. Sol-Gel Sci. Technol.

H. Wu, Y. Hu, W. Zhang, F. Kang, N. Li, and G. Ju, “Sol–gel synthesis of Eu3+ incorporated CaMoO4: the enhanced luminescence performance,” J. Sol-Gel Sci. Technol. 62(2), 227–233 (2012).
[CrossRef]

Jpn. J. Appl. Phys.

H. Kusama, O. J. Sovers, and T. Yoshioka, “Line shift method for phosphor temperature - measurements,” Jpn. J. Appl. Phys. 15(12), 2349–2358 (1976).
[CrossRef]

Luminescence

N. Ishiwada, T. Ueda, and T. Yokomori, “Characteristics of rare earth (RE = Eu, Tb, Tm)-doped Y2O3 phosphors for thermometry,” Luminescence 26(6), 381–389 (2011).
[CrossRef] [PubMed]

Mater. Lett.

M. M. Haque and D.-K. Kim, “Luminescent properties of Eu3+ activated MLa2(MoO4)4 based (M = Ba, Sr and Ca) novel red-emitting phosphors,” Mater. Lett. 63(9-10), 793–796 (2009).
[CrossRef]

Mater. Res. Bull.

L. Qin, Y. Huang, T. Tsuboi, and H. J. Seo, “The red-emitting phosphors of Eu3+ - activated MR2(MoO4)4 (M = Ba, Sr, Ca; R=La3+, Gd3+,Y3+) for light emitting diodes,” Mater. Res. Bull. 47(12), 4498–4502 (2012).
[CrossRef]

W. Zhang, J. Long, A. Fan, and J. Li, “Effect of replacement of Ca by Ln (Ln = Y, Gd) on the structural and luminescence properties of CaWO4:Eu3+ red phosphors prepared via co-precipitation,” Mater. Res. Bull. 47(11), 3479–3483 (2012).
[CrossRef]

Meas. Sci. Technol.

A. L. Heyes and J. P. Feist, “The characterization of Y2O2S:Sm powder as a thermographic phosphor for high temperature applications,” Meas. Sci. Technol. 11(7), 942–947 (2000).
[CrossRef]

Nanoscale

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4(16), 4799–4829 (2012).
[CrossRef] [PubMed]

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Opt. Mater.

P. Haro-González, I. R. Martín, L. L. Martín, S. F. León-Luis, C. Pérez-Rodríguez, and V. Lavín, “Characterization of Er3+ and Nd3+ doped Strontium Barium Niobate glass ceramic as temperature sensors,” Opt. Mater. 33(5), 742–745 (2011).
[CrossRef]

B. Lai, L. Feng, J. Wang, and Q. Su, “Optical transition and upconversion luminescence in Er3+ doped and Er3+–Yb3+ co-doped fluorophosphate glasses,” Opt. Mater. 32(9), 1154–1160 (2010).
[CrossRef]

P. I. Mech. Eng. A – J. Pow.

J. P. Feist, A. L. Heyes, and S. Seefelt, “Thermographic phosphor thermometry for film cooling studies in gas turbine combustors,” P. I. Mech. Eng. A – J. Pow. 217, 193–200 (2003).

Phys. Scr.

M. G. Nikolić, V. Lojpur, Ž. Antić, and M. D. Dramićanin, “Thermographic properties of a Eu3+ -doped (Y0.75Gd0.25)2O3 nanophosphor under UV and x-ray excitation,” Phys. Scr. 87(5), 055703 (2013).
[CrossRef]

Phys. Scr. T

M. G. Nikolic, D. J. Jovanovic, V. Dordevic, Z. Antic, R. M. Krsmanovic, and M. D. Dramicanin, “Thermographic properties of Sm3+- doped GdVO4 phosphor,” Phys. Scr. T 149, 1–4 (2012).

Phys. Status Solidi

X. Zhang, F. Meng, H. Li, and H. J. Seo, “Synthesis and luminescence of Eu3+-activated molybdates with scheelite-type structure,” Phys. Status Solidi 210, 1866–1870 (2013).

Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng.

J. P. Feist, A. L. Heyes, and J. R. Nicholls, “Phosphor thermometry in an electron beam physical vapour deposition produced thermal barrier coating doped with dysprosium,” Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 215(6), 333–341 (2001).
[CrossRef]

Prog. Energ. Combust.

J. Brübach, C. Pflitsch, A. Dreizler, and B. Atakan, “On surface temperature measurements with thermographic phosphors: A review,” Prog. Energ. Combust. 39(1), 37–60 (2013).
[CrossRef]

Prog. Org. Coat.

C. Eckert, C. Pflitsch, and B. Atakan, “Sol–gel deposition of multiply doped thermographic phosphor coatings Al2O3:(Cr3+, M3+) (M = Dy, Tm) for wide range surface temperature measurement application,” Prog. Org. Coat. 67(2), 116–119 (2010).
[CrossRef]

Rev. Sci. Instrum.

L. C. Bradley, “A Temperature-Sensitive Phosphor Used to Measure Surface Temperatures in Aerodynamics,” Rev. Sci. Instrum. 24(3), 219–220 (1953).
[CrossRef]

Sensors (Basel Switzerland)

A. Khalid and K. Kontis, “Thermographic Phosphors for High Temperature Measurements: Principles, Current State of the Art and Recent Applications,” Sensors (Basel Switzerland) 8(9), 5673–5744 (2008).
[CrossRef]

Spectroc. Acta Pt. A-Molec. Biomolec. Spectr.

S. K. Shi, X. R. Liu, J. Gao, and J. Zhou, “Spectroscopic properties and intense red-light emission of (Ca, Eu,M)WO4 (M = Mg, Zn, Li),” Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 69(2), 396–399 (2008).
[CrossRef]

Other

G. Blasse, “The luminescence of closed-shell transition-metal complexes. New developments,” in Luminescence and Energy Transfer (Springer Berlin Heidelberg, 1980), pp. 1–41.

S. A. Wade, “Temperature measurement using rare earth doped fibre fluorescence,” phD thesis (Victoria University, 1999).

G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer - Verlag, 1994).

P. Neubert, “Device for indicating the temperature distribution of hot bodies,” US Patent no. 2,071.471 (1937).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

a) Excitation spectrum of CaGd1.8Eu0.2(WO4)4 upon monitoring the emission at 612 nm. The excitation peak at 313 nm related to Gd is indicated by (*). b) Emission spectrum of CaGd1.8Eu0.2(WO4)4 upon excitation at 395 nm. The electronic transitions for the main excitation and emission peaks are indicated.

Fig. 2
Fig. 2

Concentration dependence of the 5D0 - 7F2 emission intensity in CaGd2(1-x)Eu2x(WO4)4.

Fig. 3
Fig. 3

Decay of the 5D0 emission of CaGd2(1-x)Eu2x(WO4)4 for x = 0.1,0.5 and 1 at 75K (a) and 475K (b).

Fig. 4
Fig. 4

Temperature dependence of the emission output (λexc = 465 nm) of the low concentration (CaGd1.8Eu0.2(WO4)4) (a) and the high concentration (CaEu2(WO4)4) (b) samples. The inset shows the emission spectrum at two different temperatures. The intensities are obtained by integrating over the wavelength ranges 535 to 545 nm (5D1-7F1) and 585 to 600 nm (5D0-7F1).

Fig. 5
Fig. 5

Decay of the 5D1 emission (λexc = 385 nm) at 75 K and 475 K for CaEu2(WO4)4. The fast decay component remains constant and equals 1.8µs. The slow decay component equals the decay constant of the 5D0 emission at the respective temperatures.

Fig. 6
Fig. 6

Eu3+ energy level scheme illustrating the phonon-assisted cross-relaxation process.

Fig. 7
Fig. 7

a) Ratio (R) of the integrated intensities of the 5D1 to 5D0 emission for CaEu2(WO4)4 and the corresponding Arrhenius plot (inset). b) Calculated relative sensitivity Srel as a function of temperature.

Fig. 8
Fig. 8

Patterned resistive heater with cross-sections for the vertical and horizontal profile indicated by the black lines (left). Temperature plot of the patterned resistive heater, imaged with the use of the thermographic phosphor (middle) and with an infrared camera (right).

Fig. 9
Fig. 9

Horizontal (a) and vertical (b) temperature profiles extracted from the temperature plots in Fig. 8.

Tables (1)

Tables Icon

Table 1 Decay constant and fraction of the variable decay time component of the 5D0 emission of CaGd2(1-x)Eu2x(WO4)4

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

( D 5 0 ) i o n 2 + ( F 7 2 ) i o n 1 + p h o n o n s ( 885 c m 1 ) ( D 5 1 ) i o n 2 + ( F 7 0 ) i o n 1
R= I 1 I 0 =B.exp( ΔE kT )
S rel = 1 R dR dT = ΔE k T 2

Metrics