Abstract

Dielectric mirrors have recently emerged for solar cells due to the advantages of lower cost, lower temperature processing, higher throughput, and zero plasmonic absorption as compared to conventional metallic counterparts. Nonetheless, in the past, efforts for incorporating dielectric mirrors into photovoltaics were not successful due to limited bandwidth and insufficient light scattering that prevented their wide usage. In this work, it is shown that the key for ultra-broadband dielectric mirrors is aperiodicity, or randomization. In addition, it has been proven that dielectric mirrors can be widely applicable to thin-film and thick wafer-based solar cells to provide for light trapping comparable to conventional metallic back reflectors at their respective optimal geometries. Finally, the near-field angular emission plot of Poynting vectors is conducted, and it further confirms the superior light-scattering property of dielectric mirrors, especially for diffuse medium reflectors, despite the absence of surface plasmon excitation. The preliminary experimental results also confirm the high feasibility of dielectric mirrors for photovoltaics.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Hänni, G. Bugnon, G. Parascandolo, M. Boccard, J. Escarré, M. Despeisse, F. Meillaud, and C. Ballif, “High-efficiency microcrystalline silicon single-junction solar cells,” Prog. Photovolt. Res. Appl. 21, 821–826 (2013).
  2. B. Lipovšek, J. Krč, O. Isabella, M. Zeman, and M. Topič, “Modeling and optimization of white paint back reflectors for thin-film silicon solar cells,” J. Appl. Phys. 108(10), 103115 (2010).
    [CrossRef]
  3. P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15(25), 16986–17000 (2007).
    [CrossRef] [PubMed]
  4. X. Sheng, S. G. Johnson, L. Z. Broderick, J. Michel, and L. C. Kimerling, “Integrated photonic structures for light trapping in thin-film Si solar cells,” Appl. Phys. Lett. 100(11), 111110 (2012).
    [CrossRef]
  5. S. L. Chuang, Physics of Photonic Devices, 2nd ed. (Wiley, 2009).
  6. P. Bhattacharya, Semiconductor Optoelectronic Devices, 2nd ed. (Prentice-Hall, 2006).
  7. J. D. Joannopoulos, S. G. Johnson, R. D. Meade, and J. N. Winn, Photonic Crystal: Molding the Flow of Light, 2 ed. (Princeton University Press, 2008).
  8. Y.-C. Lee, C.-F. Huang, J.-Y. Chang, and M.-L. Wu, “Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor gratings,” Opt. Express 16(11), 7969–7975 (2008).
    [CrossRef] [PubMed]
  9. L. Dal Negro, C. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. Wiersma, “Light transport through the band-edge states of Fibonacci quasicrystals,” Phys. Rev. Lett. 90(5), 055501 (2003).
    [CrossRef] [PubMed]
  10. W. Gellermann, M. Kohmoto, B. Sutherland, and P. C. Taylor, “Localization of light waves in Fibonacci dielectric multilayers,” Phys. Rev. Lett. 72(5), 633–636 (1994).
    [CrossRef] [PubMed]
  11. L. Dal Negro, M. Stolfi, Y. Yi, J. Michel, X. Duan, L. C. Kimerling, J. LeBlanc, and J. Haavisto, “Photon band gap properties and omnidirectional reflectance in Si/SiO 2 Thue–Morse quasicrystals,” Appl. Phys. Lett. 84(25), 5186 (2004).
    [CrossRef]
  12. C. Lin, N. Huang, and M. L. Povinelli, “Effect of aperiodicity on the broadband reflection of silicon nanorod structures for photovoltaics,” Opt. Express 20(1S1), A125–A132 (2012).
    [CrossRef] [PubMed]
  13. C. Lin and M. L. Povinelli, “Optimal design of aperiodic, vertical silicon nanowire structures for photovoltaics,” Opt. Express 19(Suppl 5), A1148–A1154 (2011).
    [CrossRef] [PubMed]
  14. E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: the supercell concept,” Phys. Rev. B 86(4), 041404 (2012).
    [CrossRef]
  15. A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100(18), 181110 (2012).
    [CrossRef]
  16. K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11(12), 1017–1022 (2012).
    [PubMed]
  17. F. Pratesi, M. Burresi, F. Riboli, K. Vynck, and D. S. Wiersma, “Disordered photonic structures for light harvesting in solar cells,” Opt. Express 21(Suppl 3), A460–A468 (2013).
    [CrossRef] [PubMed]
  18. A. Bozzola, M. Liscidini, and L. C. Andreani, “Broadband light trapping with disordered photonic structures in thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 21, 2385 (2013).
    [CrossRef]
  19. E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
    [CrossRef] [PubMed]
  20. M. Burresi, F. Pratesi, K. Vynck, M. Prasciolu, M. Tormen, and D. S. Wiersma, “Two-dimensional disorder for broadband, omnidirectional and polarization-insensitive absorption,” Opt. Express 21(Suppl 2), A268–A275 (2013).
    [CrossRef] [PubMed]
  21. P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
    [CrossRef] [PubMed]
  22. P. Nitz, J. Ferber, R. Stangl, H. R. Wilson, and V. Wittwer, “Simulation of multiply scattering media,” Sol. Energ. Mat. Sol. Cells 54(1-4), 297–307 (1998).
    [CrossRef]
  23. W. E. Vargas, A. Amador, and G. A. Niklasson, “Diffuse reflectance of TiO2 pigmented paints: spectral dependence of the average path length parameter and the forward scattering ratio,” Opt. Commun. 261(1), 71–78 (2006).
    [CrossRef]
  24. W. E. Vargas, P. Greenwood, J. E. Otterstedt, and G. A. Niklasson, “Light scattering in pigmented coatings: experiment and theory,” Sol. Energy 68(6), 553–561 (2000).
    [CrossRef]
  25. J. E. Cotter, “Optical intensity of light in layers of silicon with rear diffuse reflectors,” J. Appl. Phys. 84(1), 618–624 (1998).
    [CrossRef]
  26. S. Preble, M. Lipson, and H. Lipson, “Two-dimensional photonic crystals designed by evolutionary algorithms,” Appl. Phys. Lett. 86, 061111 (2005).
  27. B. Deken, S. Pekarek, and F. Dogan, “Minimization of field enhancement in multilayer capacitors,” Comput. Mater. Sci. 37(3), 401–409 (2006).
    [CrossRef]
  28. J. B. Pollack and H. Lipson, “Automatic design and manufacture of robotic life forms,” Nature 406(6799), 974–978 (2000).
    [CrossRef] [PubMed]
  29. L. Shen, Z. Ye, and S. He, “Design of two-dimensional photonic crystals with large absolute band gaps using a genetic algorithm,” Phys. Rev. B 68, 035109 (2003).
  30. Rsoft, Rsoft CAD User Manual, 8.2 ed. (Rsoft Design Group, 2010).
  31. L. Miao, S. Tanemura, S. Toh, K. Kaneko, and M. Tanemura, “Preparation and characterization of rutile TiO2 nanorods,” J. Mater. Sci. Technol. 20, 59–62 (2004).
  32. O. S. o. America, Handbook of Optics, 2nd ed. (McGraw-Hill Professional, 1994), Vol. 2.
  33. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press Handbook Series, 1985).
  34. J. R. Devore, “Refractive indices of rutile and sphalerite,” J. Opt. Soc. Am. 41(6), 416–419 (1951).
    [CrossRef]
  35. C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
    [CrossRef] [PubMed]
  36. K. Söderström, F.-J. Haug, J. Escarré, O. Cubero, and C. Ballif, “Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett. 96(21), 213508 (2010).
    [CrossRef]
  37. O. Deparis and O. El Daif, “Optimization of slow light one-dimensional Bragg structures for photocurrent enhancement in solar cells,” Opt. Lett. 37(20), 4230–4232 (2012).
    [CrossRef] [PubMed]
  38. A. Lin, Y.-K. Zhong, and S.-M. Fu, “The effect of mode excitations on the absorption enhancement for silicon thin film solar cells,” J. Appl. Phys. 114(23), 233104 (2013).
    [CrossRef]
  39. H.-Y. Lin, Y. Kuo, C.-Y. Liao, C. C. Yang, and Y.-W. Kiang, “Surface plasmon effects in the absorption enhancements of amorphous silicon solar cells with periodical metal nanowall and nanopillar structures,” Opt. Express 20(1S1), A104–A118 (2012).
    [CrossRef] [PubMed]
  40. S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109(7), 073105 (2011).
    [CrossRef]
  41. U. W. Paetzold, E. Moulin, B. E. Pieters, R. Carius, and U. Rau, “Design of nanostructured plasmonic back contacts for thin-film silicon solar cells,” Opt. Express 19(Suppl 6), A1219–A1230 (2011).
    [CrossRef] [PubMed]
  42. U. W. Paetzold, E. Moulin, D. Michaelis, W. Bottler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011).
    [CrossRef]

2013 (6)

S. Hänni, G. Bugnon, G. Parascandolo, M. Boccard, J. Escarré, M. Despeisse, F. Meillaud, and C. Ballif, “High-efficiency microcrystalline silicon single-junction solar cells,” Prog. Photovolt. Res. Appl. 21, 821–826 (2013).

F. Pratesi, M. Burresi, F. Riboli, K. Vynck, and D. S. Wiersma, “Disordered photonic structures for light harvesting in solar cells,” Opt. Express 21(Suppl 3), A460–A468 (2013).
[CrossRef] [PubMed]

A. Bozzola, M. Liscidini, and L. C. Andreani, “Broadband light trapping with disordered photonic structures in thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 21, 2385 (2013).
[CrossRef]

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[CrossRef] [PubMed]

M. Burresi, F. Pratesi, K. Vynck, M. Prasciolu, M. Tormen, and D. S. Wiersma, “Two-dimensional disorder for broadband, omnidirectional and polarization-insensitive absorption,” Opt. Express 21(Suppl 2), A268–A275 (2013).
[CrossRef] [PubMed]

A. Lin, Y.-K. Zhong, and S.-M. Fu, “The effect of mode excitations on the absorption enhancement for silicon thin film solar cells,” J. Appl. Phys. 114(23), 233104 (2013).
[CrossRef]

2012 (9)

H.-Y. Lin, Y. Kuo, C.-Y. Liao, C. C. Yang, and Y.-W. Kiang, “Surface plasmon effects in the absorption enhancements of amorphous silicon solar cells with periodical metal nanowall and nanopillar structures,” Opt. Express 20(1S1), A104–A118 (2012).
[CrossRef] [PubMed]

O. Deparis and O. El Daif, “Optimization of slow light one-dimensional Bragg structures for photocurrent enhancement in solar cells,” Opt. Lett. 37(20), 4230–4232 (2012).
[CrossRef] [PubMed]

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[CrossRef] [PubMed]

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: the supercell concept,” Phys. Rev. B 86(4), 041404 (2012).
[CrossRef]

A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100(18), 181110 (2012).
[CrossRef]

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11(12), 1017–1022 (2012).
[PubMed]

C. Lin, N. Huang, and M. L. Povinelli, “Effect of aperiodicity on the broadband reflection of silicon nanorod structures for photovoltaics,” Opt. Express 20(1S1), A125–A132 (2012).
[CrossRef] [PubMed]

X. Sheng, S. G. Johnson, L. Z. Broderick, J. Michel, and L. C. Kimerling, “Integrated photonic structures for light trapping in thin-film Si solar cells,” Appl. Phys. Lett. 100(11), 111110 (2012).
[CrossRef]

2011 (4)

C. Lin and M. L. Povinelli, “Optimal design of aperiodic, vertical silicon nanowire structures for photovoltaics,” Opt. Express 19(Suppl 5), A1148–A1154 (2011).
[CrossRef] [PubMed]

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109(7), 073105 (2011).
[CrossRef]

U. W. Paetzold, E. Moulin, B. E. Pieters, R. Carius, and U. Rau, “Design of nanostructured plasmonic back contacts for thin-film silicon solar cells,” Opt. Express 19(Suppl 6), A1219–A1230 (2011).
[CrossRef] [PubMed]

U. W. Paetzold, E. Moulin, D. Michaelis, W. Bottler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011).
[CrossRef]

2010 (2)

K. Söderström, F.-J. Haug, J. Escarré, O. Cubero, and C. Ballif, “Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett. 96(21), 213508 (2010).
[CrossRef]

B. Lipovšek, J. Krč, O. Isabella, M. Zeman, and M. Topič, “Modeling and optimization of white paint back reflectors for thin-film silicon solar cells,” J. Appl. Phys. 108(10), 103115 (2010).
[CrossRef]

2008 (1)

2007 (1)

2006 (2)

W. E. Vargas, A. Amador, and G. A. Niklasson, “Diffuse reflectance of TiO2 pigmented paints: spectral dependence of the average path length parameter and the forward scattering ratio,” Opt. Commun. 261(1), 71–78 (2006).
[CrossRef]

B. Deken, S. Pekarek, and F. Dogan, “Minimization of field enhancement in multilayer capacitors,” Comput. Mater. Sci. 37(3), 401–409 (2006).
[CrossRef]

2005 (1)

S. Preble, M. Lipson, and H. Lipson, “Two-dimensional photonic crystals designed by evolutionary algorithms,” Appl. Phys. Lett. 86, 061111 (2005).

2004 (2)

L. Dal Negro, M. Stolfi, Y. Yi, J. Michel, X. Duan, L. C. Kimerling, J. LeBlanc, and J. Haavisto, “Photon band gap properties and omnidirectional reflectance in Si/SiO 2 Thue–Morse quasicrystals,” Appl. Phys. Lett. 84(25), 5186 (2004).
[CrossRef]

L. Miao, S. Tanemura, S. Toh, K. Kaneko, and M. Tanemura, “Preparation and characterization of rutile TiO2 nanorods,” J. Mater. Sci. Technol. 20, 59–62 (2004).

2003 (2)

L. Shen, Z. Ye, and S. He, “Design of two-dimensional photonic crystals with large absolute band gaps using a genetic algorithm,” Phys. Rev. B 68, 035109 (2003).

L. Dal Negro, C. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. Wiersma, “Light transport through the band-edge states of Fibonacci quasicrystals,” Phys. Rev. Lett. 90(5), 055501 (2003).
[CrossRef] [PubMed]

2000 (2)

W. E. Vargas, P. Greenwood, J. E. Otterstedt, and G. A. Niklasson, “Light scattering in pigmented coatings: experiment and theory,” Sol. Energy 68(6), 553–561 (2000).
[CrossRef]

J. B. Pollack and H. Lipson, “Automatic design and manufacture of robotic life forms,” Nature 406(6799), 974–978 (2000).
[CrossRef] [PubMed]

1998 (2)

J. E. Cotter, “Optical intensity of light in layers of silicon with rear diffuse reflectors,” J. Appl. Phys. 84(1), 618–624 (1998).
[CrossRef]

P. Nitz, J. Ferber, R. Stangl, H. R. Wilson, and V. Wittwer, “Simulation of multiply scattering media,” Sol. Energ. Mat. Sol. Cells 54(1-4), 297–307 (1998).
[CrossRef]

1994 (1)

W. Gellermann, M. Kohmoto, B. Sutherland, and P. C. Taylor, “Localization of light waves in Fibonacci dielectric multilayers,” Phys. Rev. Lett. 72(5), 633–636 (1994).
[CrossRef] [PubMed]

1951 (1)

Alexander, D. T. L.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Amador, A.

W. E. Vargas, A. Amador, and G. A. Niklasson, “Diffuse reflectance of TiO2 pigmented paints: spectral dependence of the average path length parameter and the forward scattering ratio,” Opt. Commun. 261(1), 71–78 (2006).
[CrossRef]

Andreani, L. C.

A. Bozzola, M. Liscidini, and L. C. Andreani, “Broadband light trapping with disordered photonic structures in thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 21, 2385 (2013).
[CrossRef]

Ballif, C.

S. Hänni, G. Bugnon, G. Parascandolo, M. Boccard, J. Escarré, M. Despeisse, F. Meillaud, and C. Ballif, “High-efficiency microcrystalline silicon single-junction solar cells,” Prog. Photovolt. Res. Appl. 21, 821–826 (2013).

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

K. Söderström, F.-J. Haug, J. Escarré, O. Cubero, and C. Ballif, “Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett. 96(21), 213508 (2010).
[CrossRef]

Battaglia, C.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Beck, F. J.

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109(7), 073105 (2011).
[CrossRef]

Bermel, P.

Boccard, M.

S. Hänni, G. Bugnon, G. Parascandolo, M. Boccard, J. Escarré, M. Despeisse, F. Meillaud, and C. Ballif, “High-efficiency microcrystalline silicon single-junction solar cells,” Prog. Photovolt. Res. Appl. 21, 821–826 (2013).

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Bottler, W.

U. W. Paetzold, E. Moulin, D. Michaelis, W. Bottler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011).
[CrossRef]

Bozzola, A.

A. Bozzola, M. Liscidini, and L. C. Andreani, “Broadband light trapping with disordered photonic structures in thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 21, 2385 (2013).
[CrossRef]

Broderick, L. Z.

X. Sheng, S. G. Johnson, L. Z. Broderick, J. Michel, and L. C. Kimerling, “Integrated photonic structures for light trapping in thin-film Si solar cells,” Appl. Phys. Lett. 100(11), 111110 (2012).
[CrossRef]

Bugnon, G.

S. Hänni, G. Bugnon, G. Parascandolo, M. Boccard, J. Escarré, M. Despeisse, F. Meillaud, and C. Ballif, “High-efficiency microcrystalline silicon single-junction solar cells,” Prog. Photovolt. Res. Appl. 21, 821–826 (2013).

Burresi, M.

Cantoni, M.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Carius, R.

U. W. Paetzold, E. Moulin, D. Michaelis, W. Bottler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011).
[CrossRef]

U. W. Paetzold, E. Moulin, B. E. Pieters, R. Carius, and U. Rau, “Design of nanostructured plasmonic back contacts for thin-film silicon solar cells,” Opt. Express 19(Suppl 6), A1219–A1230 (2011).
[CrossRef] [PubMed]

Catchpole, K. R.

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109(7), 073105 (2011).
[CrossRef]

Chang, J.-Y.

Charrière, M.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Chen, Z.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[CrossRef] [PubMed]

Colocci, M.

L. Dal Negro, C. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. Wiersma, “Light transport through the band-edge states of Fibonacci quasicrystals,” Phys. Rev. Lett. 90(5), 055501 (2003).
[CrossRef] [PubMed]

Cotter, J. E.

J. E. Cotter, “Optical intensity of light in layers of silicon with rear diffuse reflectors,” J. Appl. Phys. 84(1), 618–624 (1998).
[CrossRef]

Cubero, O.

K. Söderström, F.-J. Haug, J. Escarré, O. Cubero, and C. Ballif, “Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett. 96(21), 213508 (2010).
[CrossRef]

Cui, Y.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Dal Negro, L.

L. Dal Negro, M. Stolfi, Y. Yi, J. Michel, X. Duan, L. C. Kimerling, J. LeBlanc, and J. Haavisto, “Photon band gap properties and omnidirectional reflectance in Si/SiO 2 Thue–Morse quasicrystals,” Appl. Phys. Lett. 84(25), 5186 (2004).
[CrossRef]

L. Dal Negro, C. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. Wiersma, “Light transport through the band-edge states of Fibonacci quasicrystals,” Phys. Rev. Lett. 90(5), 055501 (2003).
[CrossRef] [PubMed]

Deken, B.

B. Deken, S. Pekarek, and F. Dogan, “Minimization of field enhancement in multilayer capacitors,” Comput. Mater. Sci. 37(3), 401–409 (2006).
[CrossRef]

Deparis, O.

Depauw, V.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[CrossRef] [PubMed]

Despeisse, M.

S. Hänni, G. Bugnon, G. Parascandolo, M. Boccard, J. Escarré, M. Despeisse, F. Meillaud, and C. Ballif, “High-efficiency microcrystalline silicon single-junction solar cells,” Prog. Photovolt. Res. Appl. 21, 821–826 (2013).

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Devore, J. R.

Dogan, F.

B. Deken, S. Pekarek, and F. Dogan, “Minimization of field enhancement in multilayer capacitors,” Comput. Mater. Sci. 37(3), 401–409 (2006).
[CrossRef]

Duan, X.

L. Dal Negro, M. Stolfi, Y. Yi, J. Michel, X. Duan, L. C. Kimerling, J. LeBlanc, and J. Haavisto, “Photon band gap properties and omnidirectional reflectance in Si/SiO 2 Thue–Morse quasicrystals,” Appl. Phys. Lett. 84(25), 5186 (2004).
[CrossRef]

El Daif, O.

Escarré, J.

S. Hänni, G. Bugnon, G. Parascandolo, M. Boccard, J. Escarré, M. Despeisse, F. Meillaud, and C. Ballif, “High-efficiency microcrystalline silicon single-junction solar cells,” Prog. Photovolt. Res. Appl. 21, 821–826 (2013).

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

K. Söderström, F.-J. Haug, J. Escarré, O. Cubero, and C. Ballif, “Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett. 96(21), 213508 (2010).
[CrossRef]

Favuzzi, P. A.

A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100(18), 181110 (2012).
[CrossRef]

Ferber, J.

P. Nitz, J. Ferber, R. Stangl, H. R. Wilson, and V. Wittwer, “Simulation of multiply scattering media,” Sol. Energ. Mat. Sol. Cells 54(1-4), 297–307 (1998).
[CrossRef]

Fu, S.-M.

A. Lin, Y.-K. Zhong, and S.-M. Fu, “The effect of mode excitations on the absorption enhancement for silicon thin film solar cells,” J. Appl. Phys. 114(23), 233104 (2013).
[CrossRef]

Gaburro, Z.

L. Dal Negro, C. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. Wiersma, “Light transport through the band-edge states of Fibonacci quasicrystals,” Phys. Rev. Lett. 90(5), 055501 (2003).
[CrossRef] [PubMed]

Gellermann, W.

W. Gellermann, M. Kohmoto, B. Sutherland, and P. C. Taylor, “Localization of light waves in Fibonacci dielectric multilayers,” Phys. Rev. Lett. 72(5), 633–636 (1994).
[CrossRef] [PubMed]

Green, M. A.

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109(7), 073105 (2011).
[CrossRef]

Greenwood, P.

W. E. Vargas, P. Greenwood, J. E. Otterstedt, and G. A. Niklasson, “Light scattering in pigmented coatings: experiment and theory,” Sol. Energy 68(6), 553–561 (2000).
[CrossRef]

Haavisto, J.

L. Dal Negro, M. Stolfi, Y. Yi, J. Michel, X. Duan, L. C. Kimerling, J. LeBlanc, and J. Haavisto, “Photon band gap properties and omnidirectional reflectance in Si/SiO 2 Thue–Morse quasicrystals,” Appl. Phys. Lett. 84(25), 5186 (2004).
[CrossRef]

Hagemann, V.

U. W. Paetzold, E. Moulin, D. Michaelis, W. Bottler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011).
[CrossRef]

Hänni, S.

S. Hänni, G. Bugnon, G. Parascandolo, M. Boccard, J. Escarré, M. Despeisse, F. Meillaud, and C. Ballif, “High-efficiency microcrystalline silicon single-junction solar cells,” Prog. Photovolt. Res. Appl. 21, 821–826 (2013).

Haug, F.-J.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

K. Söderström, F.-J. Haug, J. Escarré, O. Cubero, and C. Ballif, “Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett. 96(21), 213508 (2010).
[CrossRef]

He, S.

L. Shen, Z. Ye, and S. He, “Design of two-dimensional photonic crystals with large absolute band gaps using a genetic algorithm,” Phys. Rev. B 68, 035109 (2003).

Hsu, C.-M.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Huang, C.-F.

Huang, N.

Isabella, O.

B. Lipovšek, J. Krč, O. Isabella, M. Zeman, and M. Topič, “Modeling and optimization of white paint back reflectors for thin-film silicon solar cells,” J. Appl. Phys. 108(10), 103115 (2010).
[CrossRef]

Joannopoulos, J. D.

Johnson, P.

L. Dal Negro, C. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. Wiersma, “Light transport through the band-edge states of Fibonacci quasicrystals,” Phys. Rev. Lett. 90(5), 055501 (2003).
[CrossRef] [PubMed]

Johnson, S. G.

X. Sheng, S. G. Johnson, L. Z. Broderick, J. Michel, and L. C. Kimerling, “Integrated photonic structures for light trapping in thin-film Si solar cells,” Appl. Phys. Lett. 100(11), 111110 (2012).
[CrossRef]

Kaneko, K.

L. Miao, S. Tanemura, S. Toh, K. Kaneko, and M. Tanemura, “Preparation and characterization of rutile TiO2 nanorods,” J. Mater. Sci. Technol. 20, 59–62 (2004).

Kawakami, Y.

A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100(18), 181110 (2012).
[CrossRef]

Kiang, Y.-W.

Kimerling, L. C.

X. Sheng, S. G. Johnson, L. Z. Broderick, J. Michel, and L. C. Kimerling, “Integrated photonic structures for light trapping in thin-film Si solar cells,” Appl. Phys. Lett. 100(11), 111110 (2012).
[CrossRef]

P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15(25), 16986–17000 (2007).
[CrossRef] [PubMed]

L. Dal Negro, M. Stolfi, Y. Yi, J. Michel, X. Duan, L. C. Kimerling, J. LeBlanc, and J. Haavisto, “Photon band gap properties and omnidirectional reflectance in Si/SiO 2 Thue–Morse quasicrystals,” Appl. Phys. Lett. 84(25), 5186 (2004).
[CrossRef]

Kohmoto, M.

W. Gellermann, M. Kohmoto, B. Sutherland, and P. C. Taylor, “Localization of light waves in Fibonacci dielectric multilayers,” Phys. Rev. Lett. 72(5), 633–636 (1994).
[CrossRef] [PubMed]

Krauss, T. F.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[CrossRef] [PubMed]

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: the supercell concept,” Phys. Rev. B 86(4), 041404 (2012).
[CrossRef]

Krc, J.

B. Lipovšek, J. Krč, O. Isabella, M. Zeman, and M. Topič, “Modeling and optimization of white paint back reflectors for thin-film silicon solar cells,” J. Appl. Phys. 108(10), 103115 (2010).
[CrossRef]

Kuo, Y.

Lagendijk, A.

L. Dal Negro, C. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. Wiersma, “Light transport through the band-edge states of Fibonacci quasicrystals,” Phys. Rev. Lett. 90(5), 055501 (2003).
[CrossRef] [PubMed]

LeBlanc, J.

L. Dal Negro, M. Stolfi, Y. Yi, J. Michel, X. Duan, L. C. Kimerling, J. LeBlanc, and J. Haavisto, “Photon band gap properties and omnidirectional reflectance in Si/SiO 2 Thue–Morse quasicrystals,” Appl. Phys. Lett. 84(25), 5186 (2004).
[CrossRef]

Lee, Y.-C.

Li, J.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[CrossRef] [PubMed]

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: the supercell concept,” Phys. Rev. B 86(4), 041404 (2012).
[CrossRef]

Liao, C.-Y.

Lin, A.

A. Lin, Y.-K. Zhong, and S.-M. Fu, “The effect of mode excitations on the absorption enhancement for silicon thin film solar cells,” J. Appl. Phys. 114(23), 233104 (2013).
[CrossRef]

Lin, C.

Lin, H.-Y.

Lipovšek, B.

B. Lipovšek, J. Krč, O. Isabella, M. Zeman, and M. Topič, “Modeling and optimization of white paint back reflectors for thin-film silicon solar cells,” J. Appl. Phys. 108(10), 103115 (2010).
[CrossRef]

Lipson, H.

S. Preble, M. Lipson, and H. Lipson, “Two-dimensional photonic crystals designed by evolutionary algorithms,” Appl. Phys. Lett. 86, 061111 (2005).

J. B. Pollack and H. Lipson, “Automatic design and manufacture of robotic life forms,” Nature 406(6799), 974–978 (2000).
[CrossRef] [PubMed]

Lipson, M.

S. Preble, M. Lipson, and H. Lipson, “Two-dimensional photonic crystals designed by evolutionary algorithms,” Appl. Phys. Lett. 86, 061111 (2005).

Liscidini, M.

A. Bozzola, M. Liscidini, and L. C. Andreani, “Broadband light trapping with disordered photonic structures in thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 21, 2385 (2013).
[CrossRef]

Liu, Y.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[CrossRef] [PubMed]

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: the supercell concept,” Phys. Rev. B 86(4), 041404 (2012).
[CrossRef]

Luo, C.

Martins, E. R.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[CrossRef] [PubMed]

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: the supercell concept,” Phys. Rev. B 86(4), 041404 (2012).
[CrossRef]

Meier, M.

U. W. Paetzold, E. Moulin, D. Michaelis, W. Bottler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011).
[CrossRef]

Meillaud, F.

S. Hänni, G. Bugnon, G. Parascandolo, M. Boccard, J. Escarré, M. Despeisse, F. Meillaud, and C. Ballif, “High-efficiency microcrystalline silicon single-junction solar cells,” Prog. Photovolt. Res. Appl. 21, 821–826 (2013).

Miao, L.

L. Miao, S. Tanemura, S. Toh, K. Kaneko, and M. Tanemura, “Preparation and characterization of rutile TiO2 nanorods,” J. Mater. Sci. Technol. 20, 59–62 (2004).

Michaelis, D.

U. W. Paetzold, E. Moulin, D. Michaelis, W. Bottler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011).
[CrossRef]

Michel, J.

X. Sheng, S. G. Johnson, L. Z. Broderick, J. Michel, and L. C. Kimerling, “Integrated photonic structures for light trapping in thin-film Si solar cells,” Appl. Phys. Lett. 100(11), 111110 (2012).
[CrossRef]

L. Dal Negro, M. Stolfi, Y. Yi, J. Michel, X. Duan, L. C. Kimerling, J. LeBlanc, and J. Haavisto, “Photon band gap properties and omnidirectional reflectance in Si/SiO 2 Thue–Morse quasicrystals,” Appl. Phys. Lett. 84(25), 5186 (2004).
[CrossRef]

Moulin, E.

U. W. Paetzold, E. Moulin, B. E. Pieters, R. Carius, and U. Rau, “Design of nanostructured plasmonic back contacts for thin-film silicon solar cells,” Opt. Express 19(Suppl 6), A1219–A1230 (2011).
[CrossRef] [PubMed]

U. W. Paetzold, E. Moulin, D. Michaelis, W. Bottler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011).
[CrossRef]

Niklasson, G. A.

W. E. Vargas, A. Amador, and G. A. Niklasson, “Diffuse reflectance of TiO2 pigmented paints: spectral dependence of the average path length parameter and the forward scattering ratio,” Opt. Commun. 261(1), 71–78 (2006).
[CrossRef]

W. E. Vargas, P. Greenwood, J. E. Otterstedt, and G. A. Niklasson, “Light scattering in pigmented coatings: experiment and theory,” Sol. Energy 68(6), 553–561 (2000).
[CrossRef]

Nitz, P.

P. Nitz, J. Ferber, R. Stangl, H. R. Wilson, and V. Wittwer, “Simulation of multiply scattering media,” Sol. Energ. Mat. Sol. Cells 54(1-4), 297–307 (1998).
[CrossRef]

Noda, S.

A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100(18), 181110 (2012).
[CrossRef]

Oskooi, A.

A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100(18), 181110 (2012).
[CrossRef]

Oton, C.

L. Dal Negro, C. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. Wiersma, “Light transport through the band-edge states of Fibonacci quasicrystals,” Phys. Rev. Lett. 90(5), 055501 (2003).
[CrossRef] [PubMed]

Otterstedt, J. E.

W. E. Vargas, P. Greenwood, J. E. Otterstedt, and G. A. Niklasson, “Light scattering in pigmented coatings: experiment and theory,” Sol. Energy 68(6), 553–561 (2000).
[CrossRef]

Ouyang, Z.

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109(7), 073105 (2011).
[CrossRef]

Paetzold, U. W.

U. W. Paetzold, E. Moulin, B. E. Pieters, R. Carius, and U. Rau, “Design of nanostructured plasmonic back contacts for thin-film silicon solar cells,” Opt. Express 19(Suppl 6), A1219–A1230 (2011).
[CrossRef] [PubMed]

U. W. Paetzold, E. Moulin, D. Michaelis, W. Bottler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011).
[CrossRef]

Parascandolo, G.

S. Hänni, G. Bugnon, G. Parascandolo, M. Boccard, J. Escarré, M. Despeisse, F. Meillaud, and C. Ballif, “High-efficiency microcrystalline silicon single-junction solar cells,” Prog. Photovolt. Res. Appl. 21, 821–826 (2013).

Pavesi, L.

L. Dal Negro, C. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. Wiersma, “Light transport through the band-edge states of Fibonacci quasicrystals,” Phys. Rev. Lett. 90(5), 055501 (2003).
[CrossRef] [PubMed]

Pekarek, S.

B. Deken, S. Pekarek, and F. Dogan, “Minimization of field enhancement in multilayer capacitors,” Comput. Mater. Sci. 37(3), 401–409 (2006).
[CrossRef]

Pieters, B. E.

Pillai, S.

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109(7), 073105 (2011).
[CrossRef]

Pollack, J. B.

J. B. Pollack and H. Lipson, “Automatic design and manufacture of robotic life forms,” Nature 406(6799), 974–978 (2000).
[CrossRef] [PubMed]

Polman, A.

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[CrossRef] [PubMed]

Povinelli, M. L.

Prasciolu, M.

Pratesi, F.

Preble, S.

S. Preble, M. Lipson, and H. Lipson, “Two-dimensional photonic crystals designed by evolutionary algorithms,” Appl. Phys. Lett. 86, 061111 (2005).

Rau, U.

U. W. Paetzold, E. Moulin, D. Michaelis, W. Bottler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011).
[CrossRef]

U. W. Paetzold, E. Moulin, B. E. Pieters, R. Carius, and U. Rau, “Design of nanostructured plasmonic back contacts for thin-film silicon solar cells,” Opt. Express 19(Suppl 6), A1219–A1230 (2011).
[CrossRef] [PubMed]

Riboli, F.

F. Pratesi, M. Burresi, F. Riboli, K. Vynck, and D. S. Wiersma, “Disordered photonic structures for light harvesting in solar cells,” Opt. Express 21(Suppl 3), A460–A468 (2013).
[CrossRef] [PubMed]

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11(12), 1017–1022 (2012).
[PubMed]

Righini, R.

L. Dal Negro, C. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. Wiersma, “Light transport through the band-edge states of Fibonacci quasicrystals,” Phys. Rev. Lett. 90(5), 055501 (2003).
[CrossRef] [PubMed]

Shen, L.

L. Shen, Z. Ye, and S. He, “Design of two-dimensional photonic crystals with large absolute band gaps using a genetic algorithm,” Phys. Rev. B 68, 035109 (2003).

Sheng, X.

X. Sheng, S. G. Johnson, L. Z. Broderick, J. Michel, and L. C. Kimerling, “Integrated photonic structures for light trapping in thin-film Si solar cells,” Appl. Phys. Lett. 100(11), 111110 (2012).
[CrossRef]

Shigeta, H.

A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100(18), 181110 (2012).
[CrossRef]

Söderström, K.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

K. Söderström, F.-J. Haug, J. Escarré, O. Cubero, and C. Ballif, “Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett. 96(21), 213508 (2010).
[CrossRef]

Spinelli, P.

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[CrossRef] [PubMed]

Stangl, R.

P. Nitz, J. Ferber, R. Stangl, H. R. Wilson, and V. Wittwer, “Simulation of multiply scattering media,” Sol. Energ. Mat. Sol. Cells 54(1-4), 297–307 (1998).
[CrossRef]

Stolfi, M.

L. Dal Negro, M. Stolfi, Y. Yi, J. Michel, X. Duan, L. C. Kimerling, J. LeBlanc, and J. Haavisto, “Photon band gap properties and omnidirectional reflectance in Si/SiO 2 Thue–Morse quasicrystals,” Appl. Phys. Lett. 84(25), 5186 (2004).
[CrossRef]

Sutherland, B.

W. Gellermann, M. Kohmoto, B. Sutherland, and P. C. Taylor, “Localization of light waves in Fibonacci dielectric multilayers,” Phys. Rev. Lett. 72(5), 633–636 (1994).
[CrossRef] [PubMed]

Tanaka, Y.

A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100(18), 181110 (2012).
[CrossRef]

Tanemura, M.

L. Miao, S. Tanemura, S. Toh, K. Kaneko, and M. Tanemura, “Preparation and characterization of rutile TiO2 nanorods,” J. Mater. Sci. Technol. 20, 59–62 (2004).

Tanemura, S.

L. Miao, S. Tanemura, S. Toh, K. Kaneko, and M. Tanemura, “Preparation and characterization of rutile TiO2 nanorods,” J. Mater. Sci. Technol. 20, 59–62 (2004).

Taylor, P. C.

W. Gellermann, M. Kohmoto, B. Sutherland, and P. C. Taylor, “Localization of light waves in Fibonacci dielectric multilayers,” Phys. Rev. Lett. 72(5), 633–636 (1994).
[CrossRef] [PubMed]

Toh, S.

L. Miao, S. Tanemura, S. Toh, K. Kaneko, and M. Tanemura, “Preparation and characterization of rutile TiO2 nanorods,” J. Mater. Sci. Technol. 20, 59–62 (2004).

Topic, M.

B. Lipovšek, J. Krč, O. Isabella, M. Zeman, and M. Topič, “Modeling and optimization of white paint back reflectors for thin-film silicon solar cells,” J. Appl. Phys. 108(10), 103115 (2010).
[CrossRef]

Tormen, M.

Vargas, W. E.

W. E. Vargas, A. Amador, and G. A. Niklasson, “Diffuse reflectance of TiO2 pigmented paints: spectral dependence of the average path length parameter and the forward scattering ratio,” Opt. Commun. 261(1), 71–78 (2006).
[CrossRef]

W. E. Vargas, P. Greenwood, J. E. Otterstedt, and G. A. Niklasson, “Light scattering in pigmented coatings: experiment and theory,” Sol. Energy 68(6), 553–561 (2000).
[CrossRef]

Verschuuren, M. A.

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[CrossRef] [PubMed]

Vynck, K.

Wächter, C.

U. W. Paetzold, E. Moulin, D. Michaelis, W. Bottler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011).
[CrossRef]

Wiersma, D.

L. Dal Negro, C. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. Wiersma, “Light transport through the band-edge states of Fibonacci quasicrystals,” Phys. Rev. Lett. 90(5), 055501 (2003).
[CrossRef] [PubMed]

Wiersma, D. S.

Wilson, H. R.

P. Nitz, J. Ferber, R. Stangl, H. R. Wilson, and V. Wittwer, “Simulation of multiply scattering media,” Sol. Energ. Mat. Sol. Cells 54(1-4), 297–307 (1998).
[CrossRef]

Wittwer, V.

P. Nitz, J. Ferber, R. Stangl, H. R. Wilson, and V. Wittwer, “Simulation of multiply scattering media,” Sol. Energ. Mat. Sol. Cells 54(1-4), 297–307 (1998).
[CrossRef]

Wu, M.-L.

Yang, C. C.

Ye, Z.

L. Shen, Z. Ye, and S. He, “Design of two-dimensional photonic crystals with large absolute band gaps using a genetic algorithm,” Phys. Rev. B 68, 035109 (2003).

Yi, Y.

L. Dal Negro, M. Stolfi, Y. Yi, J. Michel, X. Duan, L. C. Kimerling, J. LeBlanc, and J. Haavisto, “Photon band gap properties and omnidirectional reflectance in Si/SiO 2 Thue–Morse quasicrystals,” Appl. Phys. Lett. 84(25), 5186 (2004).
[CrossRef]

Zeman, M.

B. Lipovšek, J. Krč, O. Isabella, M. Zeman, and M. Topič, “Modeling and optimization of white paint back reflectors for thin-film silicon solar cells,” J. Appl. Phys. 108(10), 103115 (2010).
[CrossRef]

Zeng, L.

Zhong, Y.-K.

A. Lin, Y.-K. Zhong, and S.-M. Fu, “The effect of mode excitations on the absorption enhancement for silicon thin film solar cells,” J. Appl. Phys. 114(23), 233104 (2013).
[CrossRef]

Zhou, J.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[CrossRef] [PubMed]

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: the supercell concept,” Phys. Rev. B 86(4), 041404 (2012).
[CrossRef]

ACS Nano (1)

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Appl. Phys. Lett. (6)

K. Söderström, F.-J. Haug, J. Escarré, O. Cubero, and C. Ballif, “Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett. 96(21), 213508 (2010).
[CrossRef]

S. Preble, M. Lipson, and H. Lipson, “Two-dimensional photonic crystals designed by evolutionary algorithms,” Appl. Phys. Lett. 86, 061111 (2005).

U. W. Paetzold, E. Moulin, D. Michaelis, W. Bottler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011).
[CrossRef]

X. Sheng, S. G. Johnson, L. Z. Broderick, J. Michel, and L. C. Kimerling, “Integrated photonic structures for light trapping in thin-film Si solar cells,” Appl. Phys. Lett. 100(11), 111110 (2012).
[CrossRef]

L. Dal Negro, M. Stolfi, Y. Yi, J. Michel, X. Duan, L. C. Kimerling, J. LeBlanc, and J. Haavisto, “Photon band gap properties and omnidirectional reflectance in Si/SiO 2 Thue–Morse quasicrystals,” Appl. Phys. Lett. 84(25), 5186 (2004).
[CrossRef]

A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100(18), 181110 (2012).
[CrossRef]

Comput. Mater. Sci. (1)

B. Deken, S. Pekarek, and F. Dogan, “Minimization of field enhancement in multilayer capacitors,” Comput. Mater. Sci. 37(3), 401–409 (2006).
[CrossRef]

J. Appl. Phys. (4)

A. Lin, Y.-K. Zhong, and S.-M. Fu, “The effect of mode excitations on the absorption enhancement for silicon thin film solar cells,” J. Appl. Phys. 114(23), 233104 (2013).
[CrossRef]

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109(7), 073105 (2011).
[CrossRef]

B. Lipovšek, J. Krč, O. Isabella, M. Zeman, and M. Topič, “Modeling and optimization of white paint back reflectors for thin-film silicon solar cells,” J. Appl. Phys. 108(10), 103115 (2010).
[CrossRef]

J. E. Cotter, “Optical intensity of light in layers of silicon with rear diffuse reflectors,” J. Appl. Phys. 84(1), 618–624 (1998).
[CrossRef]

J. Mater. Sci. Technol. (1)

L. Miao, S. Tanemura, S. Toh, K. Kaneko, and M. Tanemura, “Preparation and characterization of rutile TiO2 nanorods,” J. Mater. Sci. Technol. 20, 59–62 (2004).

J. Opt. Soc. Am. (1)

Nat. Commun. (2)

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[CrossRef] [PubMed]

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[CrossRef] [PubMed]

Nat. Mater. (1)

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11(12), 1017–1022 (2012).
[PubMed]

Nature (1)

J. B. Pollack and H. Lipson, “Automatic design and manufacture of robotic life forms,” Nature 406(6799), 974–978 (2000).
[CrossRef] [PubMed]

Opt. Commun. (1)

W. E. Vargas, A. Amador, and G. A. Niklasson, “Diffuse reflectance of TiO2 pigmented paints: spectral dependence of the average path length parameter and the forward scattering ratio,” Opt. Commun. 261(1), 71–78 (2006).
[CrossRef]

Opt. Express (8)

P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15(25), 16986–17000 (2007).
[CrossRef] [PubMed]

Y.-C. Lee, C.-F. Huang, J.-Y. Chang, and M.-L. Wu, “Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor gratings,” Opt. Express 16(11), 7969–7975 (2008).
[CrossRef] [PubMed]

C. Lin and M. L. Povinelli, “Optimal design of aperiodic, vertical silicon nanowire structures for photovoltaics,” Opt. Express 19(Suppl 5), A1148–A1154 (2011).
[CrossRef] [PubMed]

U. W. Paetzold, E. Moulin, B. E. Pieters, R. Carius, and U. Rau, “Design of nanostructured plasmonic back contacts for thin-film silicon solar cells,” Opt. Express 19(Suppl 6), A1219–A1230 (2011).
[CrossRef] [PubMed]

H.-Y. Lin, Y. Kuo, C.-Y. Liao, C. C. Yang, and Y.-W. Kiang, “Surface plasmon effects in the absorption enhancements of amorphous silicon solar cells with periodical metal nanowall and nanopillar structures,” Opt. Express 20(1S1), A104–A118 (2012).
[CrossRef] [PubMed]

C. Lin, N. Huang, and M. L. Povinelli, “Effect of aperiodicity on the broadband reflection of silicon nanorod structures for photovoltaics,” Opt. Express 20(1S1), A125–A132 (2012).
[CrossRef] [PubMed]

M. Burresi, F. Pratesi, K. Vynck, M. Prasciolu, M. Tormen, and D. S. Wiersma, “Two-dimensional disorder for broadband, omnidirectional and polarization-insensitive absorption,” Opt. Express 21(Suppl 2), A268–A275 (2013).
[CrossRef] [PubMed]

F. Pratesi, M. Burresi, F. Riboli, K. Vynck, and D. S. Wiersma, “Disordered photonic structures for light harvesting in solar cells,” Opt. Express 21(Suppl 3), A460–A468 (2013).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. B (2)

L. Shen, Z. Ye, and S. He, “Design of two-dimensional photonic crystals with large absolute band gaps using a genetic algorithm,” Phys. Rev. B 68, 035109 (2003).

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: the supercell concept,” Phys. Rev. B 86(4), 041404 (2012).
[CrossRef]

Phys. Rev. Lett. (2)

L. Dal Negro, C. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. Wiersma, “Light transport through the band-edge states of Fibonacci quasicrystals,” Phys. Rev. Lett. 90(5), 055501 (2003).
[CrossRef] [PubMed]

W. Gellermann, M. Kohmoto, B. Sutherland, and P. C. Taylor, “Localization of light waves in Fibonacci dielectric multilayers,” Phys. Rev. Lett. 72(5), 633–636 (1994).
[CrossRef] [PubMed]

Prog. Photovolt. Res. Appl. (2)

S. Hänni, G. Bugnon, G. Parascandolo, M. Boccard, J. Escarré, M. Despeisse, F. Meillaud, and C. Ballif, “High-efficiency microcrystalline silicon single-junction solar cells,” Prog. Photovolt. Res. Appl. 21, 821–826 (2013).

A. Bozzola, M. Liscidini, and L. C. Andreani, “Broadband light trapping with disordered photonic structures in thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 21, 2385 (2013).
[CrossRef]

Sol. Energ. Mat. Sol. Cells (1)

P. Nitz, J. Ferber, R. Stangl, H. R. Wilson, and V. Wittwer, “Simulation of multiply scattering media,” Sol. Energ. Mat. Sol. Cells 54(1-4), 297–307 (1998).
[CrossRef]

Sol. Energy (1)

W. E. Vargas, P. Greenwood, J. E. Otterstedt, and G. A. Niklasson, “Light scattering in pigmented coatings: experiment and theory,” Sol. Energy 68(6), 553–561 (2000).
[CrossRef]

Other (6)

S. L. Chuang, Physics of Photonic Devices, 2nd ed. (Wiley, 2009).

P. Bhattacharya, Semiconductor Optoelectronic Devices, 2nd ed. (Prentice-Hall, 2006).

J. D. Joannopoulos, S. G. Johnson, R. D. Meade, and J. N. Winn, Photonic Crystal: Molding the Flow of Light, 2 ed. (Princeton University Press, 2008).

Rsoft, Rsoft CAD User Manual, 8.2 ed. (Rsoft Design Group, 2010).

O. S. o. America, Handbook of Optics, 2nd ed. (McGraw-Hill Professional, 1994), Vol. 2.

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press Handbook Series, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Illustration of the solar cell stack in this study and the front surface structure. The Mie resonator-based design [21], or equivalent photonic-crystal circular grating arranged in a square lattice, is selected to be the solar cell front surface nanostructure.

Fig. 2
Fig. 2

Illustration of the solar cell structure with an A-DBR. Layer thickness of an A-DBR can be optimized individually. Randomly determined layer thickness is also possible, and it can still lead to high reflectance.

Fig. 3
Fig. 3

(Left) Spectral absorbance of the solar cell with an A-DBR, N=10 for A-DBR. (Right) reflectance for regular periodic DBR and A-DBR, N=100 for A-DBR.

Fig. 4
Fig. 4

Illustration of the solar cell structure with white paint diffuse medium reflector. The TiO2 scatterers are cylindrical in shape to enhance the reflectance.

Fig. 5
Fig. 5

(Left) Spectral absorbance of the solar cell with a white paint diffuse medium reflector. (Right) Reflectance for the white paint diffuse medium reflector.

Fig. 6
Fig. 6

Different configurations of metallic back reflectors for solar cells. (a) Planar metallic mirror with grating on the dielectric spacer. (b) Bare metallic mirror with grating. (c) Grated metallic mirror wrapped by a dielectric spacer. (d) Bare planar metallic mirror.

Fig. 7
Fig. 7

Illustration of the solar cell structure with a metallic mirror. The selection of the metal back reflector configuration here is the best trade-off between plasmonic light scattering and metal absorption.

Fig. 8
Fig. 8

(Left) Spectral absorbance of the solar cell with a metallic mirror. (Right) Reflectance and metallic absorbance for the metallic mirror.

Fig. 9
Fig. 9

Long-wavelength angular emission plot at λ=1 μm for metallic mirrors. (a) Planar metallic mirror with grating on the dielectric spacer. (b) Metallic grating mirror wrapped by a dielectric spacer. (c) Bare metallic mirror with grating. Larger θscatt, or equivalently smaller θavg, indicates stronger light scattering.

Fig. 10
Fig. 10

Long-wavelength angular emission plot λ=1 μm for dielectric mirrors. (a) White paint diffuse medium reflector. (b) A-DBR. Larger θscatt, or equivalently smaller θavg, indicates stronger light scattering.

Fig. 11
Fig. 11

(a) J-V with and without an aluminum back reflector. (b) J-V with and without a white paint back reflector. In these measurements, the light comes from the indium tin oxide (ITO) side.

Tables (2)

Tables Icon

Table 1 Comparison of AM 1.5 Weighted Integrated Absorbance AInt

Tables Icon

Table 2 Comparison of Long-wavelength Scattering Angles for Different Dielectric and Metallic Mirrors at λ = 1μm*

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

A(λ)= 1 2 V ω ε 0 ε (λ) | E ( r ) | 2 dv 1 2 S Re{ E ( r )× H * ( r ) }d s ,
A Int = λ hc Ω(λ)A(λ)dλ λ hc Ω(λ)dλ ,
P poynting, avg = P poynting, avg, x + P poynting, avg, y = 1 2 Re{ E y ( r ) H z * ( r )} 1 2 Re{ E x ( r ) H z * ( r )}.
E (x,y,z)= n m a n, m exp(j k z z)exp(j k n x) exp(j k m y) = n m a n, m exp(j k z z)exp(j 2πn Λ n x) exp(j 2πm Λ m y), k z = k 0 2 ( 2πn Λ n ) 2 ( 2πm Λ m ) 2 ,

Metrics