Abstract

Photo-electrodes with tailored three-dimensional nanostructures offer a large enhancement in light harvesting capability for various optoelectronic devices enabled by strong light scattering in the nanostructures as well as improved charge transport. Here we present an array of three-dimensional titanium dioxide (TiO2) nanohelixes fabricated by the oblique angle deposition method as a multifunctional photoanode for CdSe quantum dot sensitized solar cells (QDSSCs). The CdSe QDSSC with a TiO2 nanohelix photoanode shows a 100% higher power conversion efficiency despite less light being absorbed in CdSe QDs when compared with a conventional TiO2 nanoparticle photoanode. We attribute the higher power conversion efficiency to strong light scattering by the TiO2 nanohelixes and much enhanced transport and collection of photo-generated carriers enabled by the unique geometry and near-single crystallinity of the TiO2 nanohelix structure.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353(6346), 737–740 (1991).
    [CrossRef]
  2. N. Tétreault and M. Grätzel, “Novel nanostructures for next generation dye-sensitized solar cells,” Energy Environ. Sci. 5(9), 8506–8516 (2012).
    [CrossRef]
  3. A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, “Dye-sensitized solar cells,” Chem. Rev. 110(11), 6595–6663 (2010).
    [CrossRef] [PubMed]
  4. M. Grätzel, “Solar energy conversion by dye-sensitized photovoltaic cells,” Inorg. Chem. 44(20), 6841–6851 (2005).
    [CrossRef] [PubMed]
  5. F. Pichot, J. Pitts, and B. Gregg, “Low-temperature sintering of TiO2 colloids: Application to flexible dye-sensitized solar cells,” Langmuir 16(13), 5626–5630 (2000).
    [CrossRef]
  6. A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science 271(5251), 933–937 (1996).
    [CrossRef]
  7. W. W. Yu, L. H. Qu, W. Z. Guo, and X. G. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15(14), 2854–2860 (2003).
    [CrossRef]
  8. L. Brus, “Electronic wave functions in semiconductor clusters: Experiment and theory,” J. Phys. Chem. 90(12), 2555–2560 (1986).
    [CrossRef]
  9. Q. Shen, A. Yamada, S. Tamura, and T. Toyoda, “CdSe quantum dot-sensitized solar cell employing TiO2 nanotube working-electrode and Cu2S counter-electrode,” Appl. Phys. Lett. 97(12), 123107 (2010).
    [CrossRef]
  10. A. J. Nozik, “Quantum dot solar cells,” Physica E 14(1–2), 115–120 (2002).
    [CrossRef]
  11. M. C. Hanna and A. J. Nozik, “Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers,” J. Appl. Phys. 100(7), 074510 (2006).
    [CrossRef]
  12. P. V. Kamat, “Quantum dot solar cells. Semiconductor nanocrystals as light harvesters,” J. Phys. Chem. C 112(48), 18737–18753 (2008).
    [CrossRef]
  13. V. González-Pedro, X. Xu, I. Mora-Seró, and J. Bisquert, “Modeling high-efficiency quantum dot sensitized solar cells,” ACS Nano 4(10), 5783–5790 (2010).
    [CrossRef] [PubMed]
  14. J.-W. Lee, D.-Y. Son, T. K. Ahn, H.-W. Shin, I. Y. Kim, S.-J. Hwang, M. J. Ko, S. Sul, H. Han, and N.-G. Park, “Quantum-dot-sensitized solar cell with unprecedentedly high photocurrent,” Sci. Rep. 3, 1050–1057 (2013).
    [CrossRef] [PubMed]
  15. P. K. Santra and P. V. Kamat, “Mn-doped quantum dot sensitized solar cells: A strategy to boost efficiency over 5%,” J. Am. Chem. Soc. 134(5), 2508–2511 (2012).
    [CrossRef] [PubMed]
  16. Q. Zhang and G. Cao, “Nanostructured photoelectrodes for dye-sensitized solar cells,” Nano Today 6(1), 91–109 (2011).
    [CrossRef]
  17. Q. Zhang, D. Myers, J. Lan, S. A. Jenekhe, and G. Cao, “Applications of light scattering in dye-sensitized solar cells,” Phys. Chem. Chem. Phys. 14(43), 14982–14998 (2012).
    [CrossRef] [PubMed]
  18. K. D. Benkstein, N. Kopidakis, J. van de Lagemaat, and A. J. Frank, “Influence of the percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells,” J. Phys. Chem. B 107(31), 7759–7767 (2003).
    [CrossRef]
  19. K. Zhu, T. B. Vinzant, N. R. Neale, and A. J. Frank, “Removing structural disorder from oriented TiO2 nanotube arrays: Reducing the dimensionality of transport and recombination in dye-sensitized solar cells,” Nano Lett. 7(12), 3739–3746 (2007).
    [CrossRef] [PubMed]
  20. S. H. Kang, S. H. Choi, M. S. Kang, J. Y. Kim, H. S. Kim, T. Hyeon, and Y. E. Sung, “Nanorod-based dye-sensitized solar cells with improved charge collection efficiency,” Adv. Mater. 20(1), 54–58 (2008).
    [CrossRef]
  21. J. Nelson, “Continuous-time random-walk model of electron transport in nanocrystalline TiO2 electrodes,” Phys. Rev. B 59(23), 15374–15380 (1999).
    [CrossRef]
  22. J. van de Lagemaat, N.-G. Park, and A. J. Frank, “Influence of electrical potential distribution, charge transport, and recombination on the photopotential and photocurrent conversion efficiency of dye-sensitized nanocrystallne TiO2 solar cells: A study by electrical impedance and optical modulation techniques,” J. Phys. Chem. B 104(9), 2044–2052 (2000).
    [CrossRef]
  23. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4(6), 455–459 (2005).
    [CrossRef] [PubMed]
  24. X. Feng, K. Zhu, A. J. Frank, C. A. Grimes, and T. E. Mallouk, “Rapid charge transport in dye-sensitized solar cells made from vertically aligned single-crystal rutile TiO2 nanowires,” Angew. Chem. 124(11), 2781–2784 (2012).
    [CrossRef]
  25. X. Feng, K. Shankar, O. K. Varghese, M. Paulose, T. J. Latempa, and C. A. Grimes, “Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: Synthesis details and applications,” Nano Lett. 8(11), 3781–3786 (2008).
    [CrossRef] [PubMed]
  26. J. B. Baxter and E. S. Aydil, “Nanowire-based dye-sensitized solar cells,” Appl. Phys. Lett. 86(5), 053114 (2005).
    [CrossRef]
  27. J. Zhou, B. Song, G. Zhao, W. Dong, and G. Han, “TiO2 nanorod arrays sensitized with CdS quantum dots for solar cell applications: Effects of rod geometry on photoelectrochemical performance,” Appl. Phys., A Mater. Sci. Process. 107(2), 321–331 (2012).
    [CrossRef]
  28. B. Liu and E. S. Aydil, “Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells,” J. Am. Chem. Soc. 131(11), 3985–3990 (2009).
    [CrossRef] [PubMed]
  29. E. Galoppini, J. Rochford, H. Chen, G. Saraf, Y. Lu, A. Hagfeldt, and G. Boschloo, “Fast electron transport in metal organic vapor deposition grown dye-sensitized ZnO nanorod solar cells,” J. Phys. Chem. B 110(33), 16159–16161 (2006).
    [CrossRef] [PubMed]
  30. M. Wang, J. Bai, F. Le Formal, S.-J. Moon, L. Cevey-Ha, R. Humphry-Baker, C. Grätzel, S. M. Zakeeruddin, and M. Grätzel, “Solid-state dye-sensitized solar cells using ordered TiO2 nanorods on transparent conductive oxide as photoanodes,” J. Phys. Chem. C 116(5), 3266–3273 (2012).
    [CrossRef]
  31. K. Zhu, N. R. Neale, A. Miedaner, and A. J. Frank, “Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays,” Nano Lett. 7(1), 69–74 (2007).
    [CrossRef] [PubMed]
  32. G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, “Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells,” Nano Lett. 6(2), 215–218 (2006).
    [CrossRef] [PubMed]
  33. areS. Lee, I. J. Park, D. H. Kim, W. M. Seong, D. W. Kim, G. S. Han, J. Y. Kim, H. S. Jung, and K. S. Hong, “Crystallographically preferred oriented TiO2 nanotube arrays for efficient photovoltaic energy conversion,” Energy Environ. Sci. 5(7), 7989–7995 (2012).
    [CrossRef]
  34. A. B. F. Martinson, J. W. Elam, J. T. Hupp, and M. J. Pellin, “ZnO nanotube based dye-sensitized solar cells,” Nano Lett. 7(8), 2183–2187 (2007).
    [CrossRef] [PubMed]
  35. R. Mohammadpour, A. Iraji Zad, A. Hagfeldt, and G. Boschloo, “Comparison of trap-state distribution and carrier transport in nanotubular and nanoparticulate TiO2 electrodes for dye-sensitized solar cells,” ChemPhysChem 11(10), 2140–2145 (2010).
    [CrossRef] [PubMed]
  36. M. Adachi, Y. Murata, J. Takao, J. Jiu, M. Sakamoto, and F. Wang, “Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the “oriented attachment” mechanism,” J. Am. Chem. Soc. 126(45), 14943–14949 (2004).
    [CrossRef] [PubMed]
  37. Y. Q. Wang, Y. M. Sun, and K. Li, “Dye-sensitized solar cells based on oriented ZnO nanowire-covered TiO2 nanoparticle composite film electrodes,” Mater. Lett. 63(12), 1102–1104 (2009).
    [CrossRef]
  38. C. H. Ku and J. J. Wu, “Electron transport properties in ZnO nanowire array/nanoparticle composite dye-sensitized solar cells,” Appl. Phys. Lett. 91(9), 093117 (2007).
    [CrossRef]
  39. S. Yodyingyong, Q. F. Zhang, K. Park, C. S. Dandeneau, X. Y. Zhou, D. Triampo, and G. Z. Cao, “ZnO nanoparticles and nanowire array hybrid photoanodes for dye-sensitized solar cells,” Appl. Phys. Lett. 96(7), 073115 (2010).
    [CrossRef]
  40. W. Peng, M. Yanagida, L. Han, and S. Ahmed, “Controlled fabrication of TiO2 rutile nanorod/anatase nanoparticle composite photoanodes for dye-sensitized solar cell application,” Nanotechnology 22(27), 275709 (2011).
    [CrossRef] [PubMed]
  41. Q. Zheng, H. Kang, J. Yun, J. Lee, J. H. Park, and S. Baik, “Hierarchical construction of self-standing anodized titania nanotube arrays and nanoparticles for efficient and cost-effective front-illuminated dye-sensitized solar cells,” ACS Nano 5(6), 5088–5093 (2011).
    [CrossRef] [PubMed]
  42. J. Nayak, K. Prabakar, J. W. Park, and H. Kim, “Effect of synthesis temperature on structure, optical and photovoltaic properties of TiO2 nanorod thin films,” Electrochim. Acta 65, 44–49 (2012).
    [CrossRef]
  43. J. van de Lagemaat and A. J. Frank, “Nonthermalized electron transport in dye-sensitized nanocrystalline TiO2 films: Transient photocurrent and random-walk modeling studies,” J. Phys. Chem. B 105(45), 11194–11205 (2001).
    [CrossRef]
  44. N.-G. Park, J. van de Lagemaat, and A. J. Frank, “Effect of morphology on electron transport in dye-sensitized nanostructured TiO2 films,” J. Photosci. 10, 199–205 (2003).
  45. Z.-S. Wang, H. Kawauchi, T. Kashima, and H. Arakawa, “Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell,” Coord. Chem. Rev. 248(13–14), 1381–1389 (2004).
    [CrossRef]
  46. P. Sudhagar, J. H. Jung, S. Park, Y. G. Lee, R. Sathyamoorthy, Y. S. Kang, and H. Ahn, “The performance of coupled (CdS:CdSe) quantum dot-sensitized TiO2 nanofibrous solar cells,” Electrochem. Commun. 11(11), 2220–2224 (2009).
    [CrossRef]
  47. M. M. Hawkeye and M. J. Brett, “Glancing angle deposition: Fabrication, properties, and applications of micro-and nanostructured thin films,” J. Vac. Sci. Technol. A 25(5), 1317–1335 (2007).
    [CrossRef]
  48. K. Robbie and M. J. Brett, “Sculptured thin films and glancing angle deposition: Growth mechanics and applications,” J. Vac. Sci. Technol. A 15(3), 1460–1465 (1997).
    [CrossRef]
  49. K. D. Harris, A. Huizinga, and M. J. Brett, “High-speed porous thin film humidity sensors,” Electrochem. Solid State Lett. 5(11), H27–H29 (2002).
    [CrossRef]
  50. G. K. Kiema and M. J. Brett, “Effect of thermal annealing on structural properties and electrochemical performance of carbon films with porous microstructures,” J. Electrochem. Soc. 151(5), E194–E198 (2004).
    [CrossRef]
  51. B. Djurfors, J. N. Broughton, M. J. Brett, and D. G. Ivey, “Microstructural characterization of porous manganese thin films for electrochemical supercapacitor applications,” J. Mater. Sci. 38(24), 4817–4830 (2003).
    [CrossRef]
  52. S. R. Kennedy, M. J. Brett, H. Miguez, O. Toader, and S. John, “Optical properties of a three-dimensioal silicon square spiral photonic crystal,” Cryst. Photonics Nanostruct. 1(1), 37–42 (2003).
    [CrossRef]
  53. A. L. Elias, K. D. Harris, C. W. M. Bastiaansen, D. J. Broer, and M. J. Brett, “Large-area microfabircation of three-dimensional, helical polymer structures,” J. Micromech. Microeng. 15(1), 49–54 (2005).
    [CrossRef]
  54. H. Jin, S. Choi, R. Velu, S. Kim, and H. J. Lee, “Preparation of multilayered CdSe quantum dot sensitizers by electrostatic layer-by-layer assembly and a series of post-treatments toward efficient quantum dot-sensitized mesoporous TiO2 solar cells,” Langmuir 28(12), 5417–5426 (2012).
    [CrossRef] [PubMed]
  55. W. W. Yu, Y. A. Wang, and X. Peng, “Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: Ligand effects on monomers and nanocrystals,” Chem. Mater. 15(22), 4300–4308 (2003).
    [CrossRef]

2013 (1)

J.-W. Lee, D.-Y. Son, T. K. Ahn, H.-W. Shin, I. Y. Kim, S.-J. Hwang, M. J. Ko, S. Sul, H. Han, and N.-G. Park, “Quantum-dot-sensitized solar cell with unprecedentedly high photocurrent,” Sci. Rep. 3, 1050–1057 (2013).
[CrossRef] [PubMed]

2012 (9)

P. K. Santra and P. V. Kamat, “Mn-doped quantum dot sensitized solar cells: A strategy to boost efficiency over 5%,” J. Am. Chem. Soc. 134(5), 2508–2511 (2012).
[CrossRef] [PubMed]

Q. Zhang, D. Myers, J. Lan, S. A. Jenekhe, and G. Cao, “Applications of light scattering in dye-sensitized solar cells,” Phys. Chem. Chem. Phys. 14(43), 14982–14998 (2012).
[CrossRef] [PubMed]

N. Tétreault and M. Grätzel, “Novel nanostructures for next generation dye-sensitized solar cells,” Energy Environ. Sci. 5(9), 8506–8516 (2012).
[CrossRef]

X. Feng, K. Zhu, A. J. Frank, C. A. Grimes, and T. E. Mallouk, “Rapid charge transport in dye-sensitized solar cells made from vertically aligned single-crystal rutile TiO2 nanowires,” Angew. Chem. 124(11), 2781–2784 (2012).
[CrossRef]

J. Zhou, B. Song, G. Zhao, W. Dong, and G. Han, “TiO2 nanorod arrays sensitized with CdS quantum dots for solar cell applications: Effects of rod geometry on photoelectrochemical performance,” Appl. Phys., A Mater. Sci. Process. 107(2), 321–331 (2012).
[CrossRef]

M. Wang, J. Bai, F. Le Formal, S.-J. Moon, L. Cevey-Ha, R. Humphry-Baker, C. Grätzel, S. M. Zakeeruddin, and M. Grätzel, “Solid-state dye-sensitized solar cells using ordered TiO2 nanorods on transparent conductive oxide as photoanodes,” J. Phys. Chem. C 116(5), 3266–3273 (2012).
[CrossRef]

areS. Lee, I. J. Park, D. H. Kim, W. M. Seong, D. W. Kim, G. S. Han, J. Y. Kim, H. S. Jung, and K. S. Hong, “Crystallographically preferred oriented TiO2 nanotube arrays for efficient photovoltaic energy conversion,” Energy Environ. Sci. 5(7), 7989–7995 (2012).
[CrossRef]

J. Nayak, K. Prabakar, J. W. Park, and H. Kim, “Effect of synthesis temperature on structure, optical and photovoltaic properties of TiO2 nanorod thin films,” Electrochim. Acta 65, 44–49 (2012).
[CrossRef]

H. Jin, S. Choi, R. Velu, S. Kim, and H. J. Lee, “Preparation of multilayered CdSe quantum dot sensitizers by electrostatic layer-by-layer assembly and a series of post-treatments toward efficient quantum dot-sensitized mesoporous TiO2 solar cells,” Langmuir 28(12), 5417–5426 (2012).
[CrossRef] [PubMed]

2011 (3)

W. Peng, M. Yanagida, L. Han, and S. Ahmed, “Controlled fabrication of TiO2 rutile nanorod/anatase nanoparticle composite photoanodes for dye-sensitized solar cell application,” Nanotechnology 22(27), 275709 (2011).
[CrossRef] [PubMed]

Q. Zheng, H. Kang, J. Yun, J. Lee, J. H. Park, and S. Baik, “Hierarchical construction of self-standing anodized titania nanotube arrays and nanoparticles for efficient and cost-effective front-illuminated dye-sensitized solar cells,” ACS Nano 5(6), 5088–5093 (2011).
[CrossRef] [PubMed]

Q. Zhang and G. Cao, “Nanostructured photoelectrodes for dye-sensitized solar cells,” Nano Today 6(1), 91–109 (2011).
[CrossRef]

2010 (5)

V. González-Pedro, X. Xu, I. Mora-Seró, and J. Bisquert, “Modeling high-efficiency quantum dot sensitized solar cells,” ACS Nano 4(10), 5783–5790 (2010).
[CrossRef] [PubMed]

A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, “Dye-sensitized solar cells,” Chem. Rev. 110(11), 6595–6663 (2010).
[CrossRef] [PubMed]

Q. Shen, A. Yamada, S. Tamura, and T. Toyoda, “CdSe quantum dot-sensitized solar cell employing TiO2 nanotube working-electrode and Cu2S counter-electrode,” Appl. Phys. Lett. 97(12), 123107 (2010).
[CrossRef]

R. Mohammadpour, A. Iraji Zad, A. Hagfeldt, and G. Boschloo, “Comparison of trap-state distribution and carrier transport in nanotubular and nanoparticulate TiO2 electrodes for dye-sensitized solar cells,” ChemPhysChem 11(10), 2140–2145 (2010).
[CrossRef] [PubMed]

S. Yodyingyong, Q. F. Zhang, K. Park, C. S. Dandeneau, X. Y. Zhou, D. Triampo, and G. Z. Cao, “ZnO nanoparticles and nanowire array hybrid photoanodes for dye-sensitized solar cells,” Appl. Phys. Lett. 96(7), 073115 (2010).
[CrossRef]

2009 (3)

P. Sudhagar, J. H. Jung, S. Park, Y. G. Lee, R. Sathyamoorthy, Y. S. Kang, and H. Ahn, “The performance of coupled (CdS:CdSe) quantum dot-sensitized TiO2 nanofibrous solar cells,” Electrochem. Commun. 11(11), 2220–2224 (2009).
[CrossRef]

Y. Q. Wang, Y. M. Sun, and K. Li, “Dye-sensitized solar cells based on oriented ZnO nanowire-covered TiO2 nanoparticle composite film electrodes,” Mater. Lett. 63(12), 1102–1104 (2009).
[CrossRef]

B. Liu and E. S. Aydil, “Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells,” J. Am. Chem. Soc. 131(11), 3985–3990 (2009).
[CrossRef] [PubMed]

2008 (3)

X. Feng, K. Shankar, O. K. Varghese, M. Paulose, T. J. Latempa, and C. A. Grimes, “Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: Synthesis details and applications,” Nano Lett. 8(11), 3781–3786 (2008).
[CrossRef] [PubMed]

S. H. Kang, S. H. Choi, M. S. Kang, J. Y. Kim, H. S. Kim, T. Hyeon, and Y. E. Sung, “Nanorod-based dye-sensitized solar cells with improved charge collection efficiency,” Adv. Mater. 20(1), 54–58 (2008).
[CrossRef]

P. V. Kamat, “Quantum dot solar cells. Semiconductor nanocrystals as light harvesters,” J. Phys. Chem. C 112(48), 18737–18753 (2008).
[CrossRef]

2007 (5)

K. Zhu, T. B. Vinzant, N. R. Neale, and A. J. Frank, “Removing structural disorder from oriented TiO2 nanotube arrays: Reducing the dimensionality of transport and recombination in dye-sensitized solar cells,” Nano Lett. 7(12), 3739–3746 (2007).
[CrossRef] [PubMed]

C. H. Ku and J. J. Wu, “Electron transport properties in ZnO nanowire array/nanoparticle composite dye-sensitized solar cells,” Appl. Phys. Lett. 91(9), 093117 (2007).
[CrossRef]

A. B. F. Martinson, J. W. Elam, J. T. Hupp, and M. J. Pellin, “ZnO nanotube based dye-sensitized solar cells,” Nano Lett. 7(8), 2183–2187 (2007).
[CrossRef] [PubMed]

K. Zhu, N. R. Neale, A. Miedaner, and A. J. Frank, “Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays,” Nano Lett. 7(1), 69–74 (2007).
[CrossRef] [PubMed]

M. M. Hawkeye and M. J. Brett, “Glancing angle deposition: Fabrication, properties, and applications of micro-and nanostructured thin films,” J. Vac. Sci. Technol. A 25(5), 1317–1335 (2007).
[CrossRef]

2006 (3)

G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, “Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells,” Nano Lett. 6(2), 215–218 (2006).
[CrossRef] [PubMed]

E. Galoppini, J. Rochford, H. Chen, G. Saraf, Y. Lu, A. Hagfeldt, and G. Boschloo, “Fast electron transport in metal organic vapor deposition grown dye-sensitized ZnO nanorod solar cells,” J. Phys. Chem. B 110(33), 16159–16161 (2006).
[CrossRef] [PubMed]

M. C. Hanna and A. J. Nozik, “Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers,” J. Appl. Phys. 100(7), 074510 (2006).
[CrossRef]

2005 (4)

M. Grätzel, “Solar energy conversion by dye-sensitized photovoltaic cells,” Inorg. Chem. 44(20), 6841–6851 (2005).
[CrossRef] [PubMed]

J. B. Baxter and E. S. Aydil, “Nanowire-based dye-sensitized solar cells,” Appl. Phys. Lett. 86(5), 053114 (2005).
[CrossRef]

A. L. Elias, K. D. Harris, C. W. M. Bastiaansen, D. J. Broer, and M. J. Brett, “Large-area microfabircation of three-dimensional, helical polymer structures,” J. Micromech. Microeng. 15(1), 49–54 (2005).
[CrossRef]

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4(6), 455–459 (2005).
[CrossRef] [PubMed]

2004 (3)

Z.-S. Wang, H. Kawauchi, T. Kashima, and H. Arakawa, “Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell,” Coord. Chem. Rev. 248(13–14), 1381–1389 (2004).
[CrossRef]

G. K. Kiema and M. J. Brett, “Effect of thermal annealing on structural properties and electrochemical performance of carbon films with porous microstructures,” J. Electrochem. Soc. 151(5), E194–E198 (2004).
[CrossRef]

M. Adachi, Y. Murata, J. Takao, J. Jiu, M. Sakamoto, and F. Wang, “Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the “oriented attachment” mechanism,” J. Am. Chem. Soc. 126(45), 14943–14949 (2004).
[CrossRef] [PubMed]

2003 (6)

W. W. Yu, L. H. Qu, W. Z. Guo, and X. G. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15(14), 2854–2860 (2003).
[CrossRef]

K. D. Benkstein, N. Kopidakis, J. van de Lagemaat, and A. J. Frank, “Influence of the percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells,” J. Phys. Chem. B 107(31), 7759–7767 (2003).
[CrossRef]

B. Djurfors, J. N. Broughton, M. J. Brett, and D. G. Ivey, “Microstructural characterization of porous manganese thin films for electrochemical supercapacitor applications,” J. Mater. Sci. 38(24), 4817–4830 (2003).
[CrossRef]

S. R. Kennedy, M. J. Brett, H. Miguez, O. Toader, and S. John, “Optical properties of a three-dimensioal silicon square spiral photonic crystal,” Cryst. Photonics Nanostruct. 1(1), 37–42 (2003).
[CrossRef]

W. W. Yu, Y. A. Wang, and X. Peng, “Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: Ligand effects on monomers and nanocrystals,” Chem. Mater. 15(22), 4300–4308 (2003).
[CrossRef]

N.-G. Park, J. van de Lagemaat, and A. J. Frank, “Effect of morphology on electron transport in dye-sensitized nanostructured TiO2 films,” J. Photosci. 10, 199–205 (2003).

2002 (2)

K. D. Harris, A. Huizinga, and M. J. Brett, “High-speed porous thin film humidity sensors,” Electrochem. Solid State Lett. 5(11), H27–H29 (2002).
[CrossRef]

A. J. Nozik, “Quantum dot solar cells,” Physica E 14(1–2), 115–120 (2002).
[CrossRef]

2001 (1)

J. van de Lagemaat and A. J. Frank, “Nonthermalized electron transport in dye-sensitized nanocrystalline TiO2 films: Transient photocurrent and random-walk modeling studies,” J. Phys. Chem. B 105(45), 11194–11205 (2001).
[CrossRef]

2000 (2)

F. Pichot, J. Pitts, and B. Gregg, “Low-temperature sintering of TiO2 colloids: Application to flexible dye-sensitized solar cells,” Langmuir 16(13), 5626–5630 (2000).
[CrossRef]

J. van de Lagemaat, N.-G. Park, and A. J. Frank, “Influence of electrical potential distribution, charge transport, and recombination on the photopotential and photocurrent conversion efficiency of dye-sensitized nanocrystallne TiO2 solar cells: A study by electrical impedance and optical modulation techniques,” J. Phys. Chem. B 104(9), 2044–2052 (2000).
[CrossRef]

1999 (1)

J. Nelson, “Continuous-time random-walk model of electron transport in nanocrystalline TiO2 electrodes,” Phys. Rev. B 59(23), 15374–15380 (1999).
[CrossRef]

1997 (1)

K. Robbie and M. J. Brett, “Sculptured thin films and glancing angle deposition: Growth mechanics and applications,” J. Vac. Sci. Technol. A 15(3), 1460–1465 (1997).
[CrossRef]

1996 (1)

A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science 271(5251), 933–937 (1996).
[CrossRef]

1991 (1)

B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353(6346), 737–740 (1991).
[CrossRef]

1986 (1)

L. Brus, “Electronic wave functions in semiconductor clusters: Experiment and theory,” J. Phys. Chem. 90(12), 2555–2560 (1986).
[CrossRef]

Adachi, M.

M. Adachi, Y. Murata, J. Takao, J. Jiu, M. Sakamoto, and F. Wang, “Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the “oriented attachment” mechanism,” J. Am. Chem. Soc. 126(45), 14943–14949 (2004).
[CrossRef] [PubMed]

Ahmed, S.

W. Peng, M. Yanagida, L. Han, and S. Ahmed, “Controlled fabrication of TiO2 rutile nanorod/anatase nanoparticle composite photoanodes for dye-sensitized solar cell application,” Nanotechnology 22(27), 275709 (2011).
[CrossRef] [PubMed]

Ahn, H.

P. Sudhagar, J. H. Jung, S. Park, Y. G. Lee, R. Sathyamoorthy, Y. S. Kang, and H. Ahn, “The performance of coupled (CdS:CdSe) quantum dot-sensitized TiO2 nanofibrous solar cells,” Electrochem. Commun. 11(11), 2220–2224 (2009).
[CrossRef]

Ahn, T. K.

J.-W. Lee, D.-Y. Son, T. K. Ahn, H.-W. Shin, I. Y. Kim, S.-J. Hwang, M. J. Ko, S. Sul, H. Han, and N.-G. Park, “Quantum-dot-sensitized solar cell with unprecedentedly high photocurrent,” Sci. Rep. 3, 1050–1057 (2013).
[CrossRef] [PubMed]

Alivisatos, A. P.

A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science 271(5251), 933–937 (1996).
[CrossRef]

Arakawa, H.

Z.-S. Wang, H. Kawauchi, T. Kashima, and H. Arakawa, “Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell,” Coord. Chem. Rev. 248(13–14), 1381–1389 (2004).
[CrossRef]

Aydil, E. S.

B. Liu and E. S. Aydil, “Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells,” J. Am. Chem. Soc. 131(11), 3985–3990 (2009).
[CrossRef] [PubMed]

J. B. Baxter and E. S. Aydil, “Nanowire-based dye-sensitized solar cells,” Appl. Phys. Lett. 86(5), 053114 (2005).
[CrossRef]

Bai, J.

M. Wang, J. Bai, F. Le Formal, S.-J. Moon, L. Cevey-Ha, R. Humphry-Baker, C. Grätzel, S. M. Zakeeruddin, and M. Grätzel, “Solid-state dye-sensitized solar cells using ordered TiO2 nanorods on transparent conductive oxide as photoanodes,” J. Phys. Chem. C 116(5), 3266–3273 (2012).
[CrossRef]

Baik, S.

Q. Zheng, H. Kang, J. Yun, J. Lee, J. H. Park, and S. Baik, “Hierarchical construction of self-standing anodized titania nanotube arrays and nanoparticles for efficient and cost-effective front-illuminated dye-sensitized solar cells,” ACS Nano 5(6), 5088–5093 (2011).
[CrossRef] [PubMed]

Bastiaansen, C. W. M.

A. L. Elias, K. D. Harris, C. W. M. Bastiaansen, D. J. Broer, and M. J. Brett, “Large-area microfabircation of three-dimensional, helical polymer structures,” J. Micromech. Microeng. 15(1), 49–54 (2005).
[CrossRef]

Baxter, J. B.

J. B. Baxter and E. S. Aydil, “Nanowire-based dye-sensitized solar cells,” Appl. Phys. Lett. 86(5), 053114 (2005).
[CrossRef]

Benkstein, K. D.

K. D. Benkstein, N. Kopidakis, J. van de Lagemaat, and A. J. Frank, “Influence of the percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells,” J. Phys. Chem. B 107(31), 7759–7767 (2003).
[CrossRef]

Bisquert, J.

V. González-Pedro, X. Xu, I. Mora-Seró, and J. Bisquert, “Modeling high-efficiency quantum dot sensitized solar cells,” ACS Nano 4(10), 5783–5790 (2010).
[CrossRef] [PubMed]

Boschloo, G.

A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, “Dye-sensitized solar cells,” Chem. Rev. 110(11), 6595–6663 (2010).
[CrossRef] [PubMed]

R. Mohammadpour, A. Iraji Zad, A. Hagfeldt, and G. Boschloo, “Comparison of trap-state distribution and carrier transport in nanotubular and nanoparticulate TiO2 electrodes for dye-sensitized solar cells,” ChemPhysChem 11(10), 2140–2145 (2010).
[CrossRef] [PubMed]

E. Galoppini, J. Rochford, H. Chen, G. Saraf, Y. Lu, A. Hagfeldt, and G. Boschloo, “Fast electron transport in metal organic vapor deposition grown dye-sensitized ZnO nanorod solar cells,” J. Phys. Chem. B 110(33), 16159–16161 (2006).
[CrossRef] [PubMed]

Brett, M. J.

M. M. Hawkeye and M. J. Brett, “Glancing angle deposition: Fabrication, properties, and applications of micro-and nanostructured thin films,” J. Vac. Sci. Technol. A 25(5), 1317–1335 (2007).
[CrossRef]

A. L. Elias, K. D. Harris, C. W. M. Bastiaansen, D. J. Broer, and M. J. Brett, “Large-area microfabircation of three-dimensional, helical polymer structures,” J. Micromech. Microeng. 15(1), 49–54 (2005).
[CrossRef]

G. K. Kiema and M. J. Brett, “Effect of thermal annealing on structural properties and electrochemical performance of carbon films with porous microstructures,” J. Electrochem. Soc. 151(5), E194–E198 (2004).
[CrossRef]

S. R. Kennedy, M. J. Brett, H. Miguez, O. Toader, and S. John, “Optical properties of a three-dimensioal silicon square spiral photonic crystal,” Cryst. Photonics Nanostruct. 1(1), 37–42 (2003).
[CrossRef]

B. Djurfors, J. N. Broughton, M. J. Brett, and D. G. Ivey, “Microstructural characterization of porous manganese thin films for electrochemical supercapacitor applications,” J. Mater. Sci. 38(24), 4817–4830 (2003).
[CrossRef]

K. D. Harris, A. Huizinga, and M. J. Brett, “High-speed porous thin film humidity sensors,” Electrochem. Solid State Lett. 5(11), H27–H29 (2002).
[CrossRef]

K. Robbie and M. J. Brett, “Sculptured thin films and glancing angle deposition: Growth mechanics and applications,” J. Vac. Sci. Technol. A 15(3), 1460–1465 (1997).
[CrossRef]

Broer, D. J.

A. L. Elias, K. D. Harris, C. W. M. Bastiaansen, D. J. Broer, and M. J. Brett, “Large-area microfabircation of three-dimensional, helical polymer structures,” J. Micromech. Microeng. 15(1), 49–54 (2005).
[CrossRef]

Broughton, J. N.

B. Djurfors, J. N. Broughton, M. J. Brett, and D. G. Ivey, “Microstructural characterization of porous manganese thin films for electrochemical supercapacitor applications,” J. Mater. Sci. 38(24), 4817–4830 (2003).
[CrossRef]

Brus, L.

L. Brus, “Electronic wave functions in semiconductor clusters: Experiment and theory,” J. Phys. Chem. 90(12), 2555–2560 (1986).
[CrossRef]

Cao, G.

Q. Zhang, D. Myers, J. Lan, S. A. Jenekhe, and G. Cao, “Applications of light scattering in dye-sensitized solar cells,” Phys. Chem. Chem. Phys. 14(43), 14982–14998 (2012).
[CrossRef] [PubMed]

Q. Zhang and G. Cao, “Nanostructured photoelectrodes for dye-sensitized solar cells,” Nano Today 6(1), 91–109 (2011).
[CrossRef]

Cao, G. Z.

S. Yodyingyong, Q. F. Zhang, K. Park, C. S. Dandeneau, X. Y. Zhou, D. Triampo, and G. Z. Cao, “ZnO nanoparticles and nanowire array hybrid photoanodes for dye-sensitized solar cells,” Appl. Phys. Lett. 96(7), 073115 (2010).
[CrossRef]

Cevey-Ha, L.

M. Wang, J. Bai, F. Le Formal, S.-J. Moon, L. Cevey-Ha, R. Humphry-Baker, C. Grätzel, S. M. Zakeeruddin, and M. Grätzel, “Solid-state dye-sensitized solar cells using ordered TiO2 nanorods on transparent conductive oxide as photoanodes,” J. Phys. Chem. C 116(5), 3266–3273 (2012).
[CrossRef]

Chen, H.

E. Galoppini, J. Rochford, H. Chen, G. Saraf, Y. Lu, A. Hagfeldt, and G. Boschloo, “Fast electron transport in metal organic vapor deposition grown dye-sensitized ZnO nanorod solar cells,” J. Phys. Chem. B 110(33), 16159–16161 (2006).
[CrossRef] [PubMed]

Choi, S.

H. Jin, S. Choi, R. Velu, S. Kim, and H. J. Lee, “Preparation of multilayered CdSe quantum dot sensitizers by electrostatic layer-by-layer assembly and a series of post-treatments toward efficient quantum dot-sensitized mesoporous TiO2 solar cells,” Langmuir 28(12), 5417–5426 (2012).
[CrossRef] [PubMed]

Choi, S. H.

S. H. Kang, S. H. Choi, M. S. Kang, J. Y. Kim, H. S. Kim, T. Hyeon, and Y. E. Sung, “Nanorod-based dye-sensitized solar cells with improved charge collection efficiency,” Adv. Mater. 20(1), 54–58 (2008).
[CrossRef]

Dandeneau, C. S.

S. Yodyingyong, Q. F. Zhang, K. Park, C. S. Dandeneau, X. Y. Zhou, D. Triampo, and G. Z. Cao, “ZnO nanoparticles and nanowire array hybrid photoanodes for dye-sensitized solar cells,” Appl. Phys. Lett. 96(7), 073115 (2010).
[CrossRef]

Djurfors, B.

B. Djurfors, J. N. Broughton, M. J. Brett, and D. G. Ivey, “Microstructural characterization of porous manganese thin films for electrochemical supercapacitor applications,” J. Mater. Sci. 38(24), 4817–4830 (2003).
[CrossRef]

Dong, W.

J. Zhou, B. Song, G. Zhao, W. Dong, and G. Han, “TiO2 nanorod arrays sensitized with CdS quantum dots for solar cell applications: Effects of rod geometry on photoelectrochemical performance,” Appl. Phys., A Mater. Sci. Process. 107(2), 321–331 (2012).
[CrossRef]

Elam, J. W.

A. B. F. Martinson, J. W. Elam, J. T. Hupp, and M. J. Pellin, “ZnO nanotube based dye-sensitized solar cells,” Nano Lett. 7(8), 2183–2187 (2007).
[CrossRef] [PubMed]

Elias, A. L.

A. L. Elias, K. D. Harris, C. W. M. Bastiaansen, D. J. Broer, and M. J. Brett, “Large-area microfabircation of three-dimensional, helical polymer structures,” J. Micromech. Microeng. 15(1), 49–54 (2005).
[CrossRef]

Feng, X.

X. Feng, K. Zhu, A. J. Frank, C. A. Grimes, and T. E. Mallouk, “Rapid charge transport in dye-sensitized solar cells made from vertically aligned single-crystal rutile TiO2 nanowires,” Angew. Chem. 124(11), 2781–2784 (2012).
[CrossRef]

X. Feng, K. Shankar, O. K. Varghese, M. Paulose, T. J. Latempa, and C. A. Grimes, “Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: Synthesis details and applications,” Nano Lett. 8(11), 3781–3786 (2008).
[CrossRef] [PubMed]

Frank, A. J.

X. Feng, K. Zhu, A. J. Frank, C. A. Grimes, and T. E. Mallouk, “Rapid charge transport in dye-sensitized solar cells made from vertically aligned single-crystal rutile TiO2 nanowires,” Angew. Chem. 124(11), 2781–2784 (2012).
[CrossRef]

K. Zhu, N. R. Neale, A. Miedaner, and A. J. Frank, “Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays,” Nano Lett. 7(1), 69–74 (2007).
[CrossRef] [PubMed]

K. Zhu, T. B. Vinzant, N. R. Neale, and A. J. Frank, “Removing structural disorder from oriented TiO2 nanotube arrays: Reducing the dimensionality of transport and recombination in dye-sensitized solar cells,” Nano Lett. 7(12), 3739–3746 (2007).
[CrossRef] [PubMed]

N.-G. Park, J. van de Lagemaat, and A. J. Frank, “Effect of morphology on electron transport in dye-sensitized nanostructured TiO2 films,” J. Photosci. 10, 199–205 (2003).

K. D. Benkstein, N. Kopidakis, J. van de Lagemaat, and A. J. Frank, “Influence of the percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells,” J. Phys. Chem. B 107(31), 7759–7767 (2003).
[CrossRef]

J. van de Lagemaat and A. J. Frank, “Nonthermalized electron transport in dye-sensitized nanocrystalline TiO2 films: Transient photocurrent and random-walk modeling studies,” J. Phys. Chem. B 105(45), 11194–11205 (2001).
[CrossRef]

J. van de Lagemaat, N.-G. Park, and A. J. Frank, “Influence of electrical potential distribution, charge transport, and recombination on the photopotential and photocurrent conversion efficiency of dye-sensitized nanocrystallne TiO2 solar cells: A study by electrical impedance and optical modulation techniques,” J. Phys. Chem. B 104(9), 2044–2052 (2000).
[CrossRef]

Galoppini, E.

E. Galoppini, J. Rochford, H. Chen, G. Saraf, Y. Lu, A. Hagfeldt, and G. Boschloo, “Fast electron transport in metal organic vapor deposition grown dye-sensitized ZnO nanorod solar cells,” J. Phys. Chem. B 110(33), 16159–16161 (2006).
[CrossRef] [PubMed]

González-Pedro, V.

V. González-Pedro, X. Xu, I. Mora-Seró, and J. Bisquert, “Modeling high-efficiency quantum dot sensitized solar cells,” ACS Nano 4(10), 5783–5790 (2010).
[CrossRef] [PubMed]

Grätzel, C.

M. Wang, J. Bai, F. Le Formal, S.-J. Moon, L. Cevey-Ha, R. Humphry-Baker, C. Grätzel, S. M. Zakeeruddin, and M. Grätzel, “Solid-state dye-sensitized solar cells using ordered TiO2 nanorods on transparent conductive oxide as photoanodes,” J. Phys. Chem. C 116(5), 3266–3273 (2012).
[CrossRef]

Grätzel, M.

M. Wang, J. Bai, F. Le Formal, S.-J. Moon, L. Cevey-Ha, R. Humphry-Baker, C. Grätzel, S. M. Zakeeruddin, and M. Grätzel, “Solid-state dye-sensitized solar cells using ordered TiO2 nanorods on transparent conductive oxide as photoanodes,” J. Phys. Chem. C 116(5), 3266–3273 (2012).
[CrossRef]

N. Tétreault and M. Grätzel, “Novel nanostructures for next generation dye-sensitized solar cells,” Energy Environ. Sci. 5(9), 8506–8516 (2012).
[CrossRef]

M. Grätzel, “Solar energy conversion by dye-sensitized photovoltaic cells,” Inorg. Chem. 44(20), 6841–6851 (2005).
[CrossRef] [PubMed]

B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353(6346), 737–740 (1991).
[CrossRef]

Greene, L. E.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4(6), 455–459 (2005).
[CrossRef] [PubMed]

Gregg, B.

F. Pichot, J. Pitts, and B. Gregg, “Low-temperature sintering of TiO2 colloids: Application to flexible dye-sensitized solar cells,” Langmuir 16(13), 5626–5630 (2000).
[CrossRef]

Grimes, C. A.

X. Feng, K. Zhu, A. J. Frank, C. A. Grimes, and T. E. Mallouk, “Rapid charge transport in dye-sensitized solar cells made from vertically aligned single-crystal rutile TiO2 nanowires,” Angew. Chem. 124(11), 2781–2784 (2012).
[CrossRef]

X. Feng, K. Shankar, O. K. Varghese, M. Paulose, T. J. Latempa, and C. A. Grimes, “Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: Synthesis details and applications,” Nano Lett. 8(11), 3781–3786 (2008).
[CrossRef] [PubMed]

G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, “Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells,” Nano Lett. 6(2), 215–218 (2006).
[CrossRef] [PubMed]

Guo, W. Z.

W. W. Yu, L. H. Qu, W. Z. Guo, and X. G. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15(14), 2854–2860 (2003).
[CrossRef]

Hagfeldt, A.

A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, “Dye-sensitized solar cells,” Chem. Rev. 110(11), 6595–6663 (2010).
[CrossRef] [PubMed]

R. Mohammadpour, A. Iraji Zad, A. Hagfeldt, and G. Boschloo, “Comparison of trap-state distribution and carrier transport in nanotubular and nanoparticulate TiO2 electrodes for dye-sensitized solar cells,” ChemPhysChem 11(10), 2140–2145 (2010).
[CrossRef] [PubMed]

E. Galoppini, J. Rochford, H. Chen, G. Saraf, Y. Lu, A. Hagfeldt, and G. Boschloo, “Fast electron transport in metal organic vapor deposition grown dye-sensitized ZnO nanorod solar cells,” J. Phys. Chem. B 110(33), 16159–16161 (2006).
[CrossRef] [PubMed]

Han, G.

J. Zhou, B. Song, G. Zhao, W. Dong, and G. Han, “TiO2 nanorod arrays sensitized with CdS quantum dots for solar cell applications: Effects of rod geometry on photoelectrochemical performance,” Appl. Phys., A Mater. Sci. Process. 107(2), 321–331 (2012).
[CrossRef]

Han, G. S.

areS. Lee, I. J. Park, D. H. Kim, W. M. Seong, D. W. Kim, G. S. Han, J. Y. Kim, H. S. Jung, and K. S. Hong, “Crystallographically preferred oriented TiO2 nanotube arrays for efficient photovoltaic energy conversion,” Energy Environ. Sci. 5(7), 7989–7995 (2012).
[CrossRef]

Han, H.

J.-W. Lee, D.-Y. Son, T. K. Ahn, H.-W. Shin, I. Y. Kim, S.-J. Hwang, M. J. Ko, S. Sul, H. Han, and N.-G. Park, “Quantum-dot-sensitized solar cell with unprecedentedly high photocurrent,” Sci. Rep. 3, 1050–1057 (2013).
[CrossRef] [PubMed]

Han, L.

W. Peng, M. Yanagida, L. Han, and S. Ahmed, “Controlled fabrication of TiO2 rutile nanorod/anatase nanoparticle composite photoanodes for dye-sensitized solar cell application,” Nanotechnology 22(27), 275709 (2011).
[CrossRef] [PubMed]

Hanna, M. C.

M. C. Hanna and A. J. Nozik, “Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers,” J. Appl. Phys. 100(7), 074510 (2006).
[CrossRef]

Harris, K. D.

A. L. Elias, K. D. Harris, C. W. M. Bastiaansen, D. J. Broer, and M. J. Brett, “Large-area microfabircation of three-dimensional, helical polymer structures,” J. Micromech. Microeng. 15(1), 49–54 (2005).
[CrossRef]

K. D. Harris, A. Huizinga, and M. J. Brett, “High-speed porous thin film humidity sensors,” Electrochem. Solid State Lett. 5(11), H27–H29 (2002).
[CrossRef]

Hawkeye, M. M.

M. M. Hawkeye and M. J. Brett, “Glancing angle deposition: Fabrication, properties, and applications of micro-and nanostructured thin films,” J. Vac. Sci. Technol. A 25(5), 1317–1335 (2007).
[CrossRef]

Hong, K. S.

areS. Lee, I. J. Park, D. H. Kim, W. M. Seong, D. W. Kim, G. S. Han, J. Y. Kim, H. S. Jung, and K. S. Hong, “Crystallographically preferred oriented TiO2 nanotube arrays for efficient photovoltaic energy conversion,” Energy Environ. Sci. 5(7), 7989–7995 (2012).
[CrossRef]

Huizinga, A.

K. D. Harris, A. Huizinga, and M. J. Brett, “High-speed porous thin film humidity sensors,” Electrochem. Solid State Lett. 5(11), H27–H29 (2002).
[CrossRef]

Humphry-Baker, R.

M. Wang, J. Bai, F. Le Formal, S.-J. Moon, L. Cevey-Ha, R. Humphry-Baker, C. Grätzel, S. M. Zakeeruddin, and M. Grätzel, “Solid-state dye-sensitized solar cells using ordered TiO2 nanorods on transparent conductive oxide as photoanodes,” J. Phys. Chem. C 116(5), 3266–3273 (2012).
[CrossRef]

Hupp, J. T.

A. B. F. Martinson, J. W. Elam, J. T. Hupp, and M. J. Pellin, “ZnO nanotube based dye-sensitized solar cells,” Nano Lett. 7(8), 2183–2187 (2007).
[CrossRef] [PubMed]

Hwang, S.-J.

J.-W. Lee, D.-Y. Son, T. K. Ahn, H.-W. Shin, I. Y. Kim, S.-J. Hwang, M. J. Ko, S. Sul, H. Han, and N.-G. Park, “Quantum-dot-sensitized solar cell with unprecedentedly high photocurrent,” Sci. Rep. 3, 1050–1057 (2013).
[CrossRef] [PubMed]

Hyeon, T.

S. H. Kang, S. H. Choi, M. S. Kang, J. Y. Kim, H. S. Kim, T. Hyeon, and Y. E. Sung, “Nanorod-based dye-sensitized solar cells with improved charge collection efficiency,” Adv. Mater. 20(1), 54–58 (2008).
[CrossRef]

Iraji Zad, A.

R. Mohammadpour, A. Iraji Zad, A. Hagfeldt, and G. Boschloo, “Comparison of trap-state distribution and carrier transport in nanotubular and nanoparticulate TiO2 electrodes for dye-sensitized solar cells,” ChemPhysChem 11(10), 2140–2145 (2010).
[CrossRef] [PubMed]

Ivey, D. G.

B. Djurfors, J. N. Broughton, M. J. Brett, and D. G. Ivey, “Microstructural characterization of porous manganese thin films for electrochemical supercapacitor applications,” J. Mater. Sci. 38(24), 4817–4830 (2003).
[CrossRef]

Jenekhe, S. A.

Q. Zhang, D. Myers, J. Lan, S. A. Jenekhe, and G. Cao, “Applications of light scattering in dye-sensitized solar cells,” Phys. Chem. Chem. Phys. 14(43), 14982–14998 (2012).
[CrossRef] [PubMed]

Jin, H.

H. Jin, S. Choi, R. Velu, S. Kim, and H. J. Lee, “Preparation of multilayered CdSe quantum dot sensitizers by electrostatic layer-by-layer assembly and a series of post-treatments toward efficient quantum dot-sensitized mesoporous TiO2 solar cells,” Langmuir 28(12), 5417–5426 (2012).
[CrossRef] [PubMed]

Jiu, J.

M. Adachi, Y. Murata, J. Takao, J. Jiu, M. Sakamoto, and F. Wang, “Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the “oriented attachment” mechanism,” J. Am. Chem. Soc. 126(45), 14943–14949 (2004).
[CrossRef] [PubMed]

John, S.

S. R. Kennedy, M. J. Brett, H. Miguez, O. Toader, and S. John, “Optical properties of a three-dimensioal silicon square spiral photonic crystal,” Cryst. Photonics Nanostruct. 1(1), 37–42 (2003).
[CrossRef]

Johnson, J. C.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4(6), 455–459 (2005).
[CrossRef] [PubMed]

Jung, H. S.

areS. Lee, I. J. Park, D. H. Kim, W. M. Seong, D. W. Kim, G. S. Han, J. Y. Kim, H. S. Jung, and K. S. Hong, “Crystallographically preferred oriented TiO2 nanotube arrays for efficient photovoltaic energy conversion,” Energy Environ. Sci. 5(7), 7989–7995 (2012).
[CrossRef]

Jung, J. H.

P. Sudhagar, J. H. Jung, S. Park, Y. G. Lee, R. Sathyamoorthy, Y. S. Kang, and H. Ahn, “The performance of coupled (CdS:CdSe) quantum dot-sensitized TiO2 nanofibrous solar cells,” Electrochem. Commun. 11(11), 2220–2224 (2009).
[CrossRef]

Kamat, P. V.

P. K. Santra and P. V. Kamat, “Mn-doped quantum dot sensitized solar cells: A strategy to boost efficiency over 5%,” J. Am. Chem. Soc. 134(5), 2508–2511 (2012).
[CrossRef] [PubMed]

P. V. Kamat, “Quantum dot solar cells. Semiconductor nanocrystals as light harvesters,” J. Phys. Chem. C 112(48), 18737–18753 (2008).
[CrossRef]

Kang, H.

Q. Zheng, H. Kang, J. Yun, J. Lee, J. H. Park, and S. Baik, “Hierarchical construction of self-standing anodized titania nanotube arrays and nanoparticles for efficient and cost-effective front-illuminated dye-sensitized solar cells,” ACS Nano 5(6), 5088–5093 (2011).
[CrossRef] [PubMed]

Kang, M. S.

S. H. Kang, S. H. Choi, M. S. Kang, J. Y. Kim, H. S. Kim, T. Hyeon, and Y. E. Sung, “Nanorod-based dye-sensitized solar cells with improved charge collection efficiency,” Adv. Mater. 20(1), 54–58 (2008).
[CrossRef]

Kang, S. H.

S. H. Kang, S. H. Choi, M. S. Kang, J. Y. Kim, H. S. Kim, T. Hyeon, and Y. E. Sung, “Nanorod-based dye-sensitized solar cells with improved charge collection efficiency,” Adv. Mater. 20(1), 54–58 (2008).
[CrossRef]

Kang, Y. S.

P. Sudhagar, J. H. Jung, S. Park, Y. G. Lee, R. Sathyamoorthy, Y. S. Kang, and H. Ahn, “The performance of coupled (CdS:CdSe) quantum dot-sensitized TiO2 nanofibrous solar cells,” Electrochem. Commun. 11(11), 2220–2224 (2009).
[CrossRef]

Kashima, T.

Z.-S. Wang, H. Kawauchi, T. Kashima, and H. Arakawa, “Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell,” Coord. Chem. Rev. 248(13–14), 1381–1389 (2004).
[CrossRef]

Kawauchi, H.

Z.-S. Wang, H. Kawauchi, T. Kashima, and H. Arakawa, “Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell,” Coord. Chem. Rev. 248(13–14), 1381–1389 (2004).
[CrossRef]

Kennedy, S. R.

S. R. Kennedy, M. J. Brett, H. Miguez, O. Toader, and S. John, “Optical properties of a three-dimensioal silicon square spiral photonic crystal,” Cryst. Photonics Nanostruct. 1(1), 37–42 (2003).
[CrossRef]

Kiema, G. K.

G. K. Kiema and M. J. Brett, “Effect of thermal annealing on structural properties and electrochemical performance of carbon films with porous microstructures,” J. Electrochem. Soc. 151(5), E194–E198 (2004).
[CrossRef]

Kim, D. H.

areS. Lee, I. J. Park, D. H. Kim, W. M. Seong, D. W. Kim, G. S. Han, J. Y. Kim, H. S. Jung, and K. S. Hong, “Crystallographically preferred oriented TiO2 nanotube arrays for efficient photovoltaic energy conversion,” Energy Environ. Sci. 5(7), 7989–7995 (2012).
[CrossRef]

Kim, D. W.

areS. Lee, I. J. Park, D. H. Kim, W. M. Seong, D. W. Kim, G. S. Han, J. Y. Kim, H. S. Jung, and K. S. Hong, “Crystallographically preferred oriented TiO2 nanotube arrays for efficient photovoltaic energy conversion,” Energy Environ. Sci. 5(7), 7989–7995 (2012).
[CrossRef]

Kim, H.

J. Nayak, K. Prabakar, J. W. Park, and H. Kim, “Effect of synthesis temperature on structure, optical and photovoltaic properties of TiO2 nanorod thin films,” Electrochim. Acta 65, 44–49 (2012).
[CrossRef]

Kim, H. S.

S. H. Kang, S. H. Choi, M. S. Kang, J. Y. Kim, H. S. Kim, T. Hyeon, and Y. E. Sung, “Nanorod-based dye-sensitized solar cells with improved charge collection efficiency,” Adv. Mater. 20(1), 54–58 (2008).
[CrossRef]

Kim, I. Y.

J.-W. Lee, D.-Y. Son, T. K. Ahn, H.-W. Shin, I. Y. Kim, S.-J. Hwang, M. J. Ko, S. Sul, H. Han, and N.-G. Park, “Quantum-dot-sensitized solar cell with unprecedentedly high photocurrent,” Sci. Rep. 3, 1050–1057 (2013).
[CrossRef] [PubMed]

Kim, J. Y.

areS. Lee, I. J. Park, D. H. Kim, W. M. Seong, D. W. Kim, G. S. Han, J. Y. Kim, H. S. Jung, and K. S. Hong, “Crystallographically preferred oriented TiO2 nanotube arrays for efficient photovoltaic energy conversion,” Energy Environ. Sci. 5(7), 7989–7995 (2012).
[CrossRef]

S. H. Kang, S. H. Choi, M. S. Kang, J. Y. Kim, H. S. Kim, T. Hyeon, and Y. E. Sung, “Nanorod-based dye-sensitized solar cells with improved charge collection efficiency,” Adv. Mater. 20(1), 54–58 (2008).
[CrossRef]

Kim, S.

H. Jin, S. Choi, R. Velu, S. Kim, and H. J. Lee, “Preparation of multilayered CdSe quantum dot sensitizers by electrostatic layer-by-layer assembly and a series of post-treatments toward efficient quantum dot-sensitized mesoporous TiO2 solar cells,” Langmuir 28(12), 5417–5426 (2012).
[CrossRef] [PubMed]

Kloo, L.

A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, “Dye-sensitized solar cells,” Chem. Rev. 110(11), 6595–6663 (2010).
[CrossRef] [PubMed]

Ko, M. J.

J.-W. Lee, D.-Y. Son, T. K. Ahn, H.-W. Shin, I. Y. Kim, S.-J. Hwang, M. J. Ko, S. Sul, H. Han, and N.-G. Park, “Quantum-dot-sensitized solar cell with unprecedentedly high photocurrent,” Sci. Rep. 3, 1050–1057 (2013).
[CrossRef] [PubMed]

Kopidakis, N.

K. D. Benkstein, N. Kopidakis, J. van de Lagemaat, and A. J. Frank, “Influence of the percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells,” J. Phys. Chem. B 107(31), 7759–7767 (2003).
[CrossRef]

Ku, C. H.

C. H. Ku and J. J. Wu, “Electron transport properties in ZnO nanowire array/nanoparticle composite dye-sensitized solar cells,” Appl. Phys. Lett. 91(9), 093117 (2007).
[CrossRef]

Lan, J.

Q. Zhang, D. Myers, J. Lan, S. A. Jenekhe, and G. Cao, “Applications of light scattering in dye-sensitized solar cells,” Phys. Chem. Chem. Phys. 14(43), 14982–14998 (2012).
[CrossRef] [PubMed]

Latempa, T. J.

X. Feng, K. Shankar, O. K. Varghese, M. Paulose, T. J. Latempa, and C. A. Grimes, “Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: Synthesis details and applications,” Nano Lett. 8(11), 3781–3786 (2008).
[CrossRef] [PubMed]

Law, M.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4(6), 455–459 (2005).
[CrossRef] [PubMed]

Le Formal, F.

M. Wang, J. Bai, F. Le Formal, S.-J. Moon, L. Cevey-Ha, R. Humphry-Baker, C. Grätzel, S. M. Zakeeruddin, and M. Grätzel, “Solid-state dye-sensitized solar cells using ordered TiO2 nanorods on transparent conductive oxide as photoanodes,” J. Phys. Chem. C 116(5), 3266–3273 (2012).
[CrossRef]

Lee, H. J.

H. Jin, S. Choi, R. Velu, S. Kim, and H. J. Lee, “Preparation of multilayered CdSe quantum dot sensitizers by electrostatic layer-by-layer assembly and a series of post-treatments toward efficient quantum dot-sensitized mesoporous TiO2 solar cells,” Langmuir 28(12), 5417–5426 (2012).
[CrossRef] [PubMed]

Lee, J.

Q. Zheng, H. Kang, J. Yun, J. Lee, J. H. Park, and S. Baik, “Hierarchical construction of self-standing anodized titania nanotube arrays and nanoparticles for efficient and cost-effective front-illuminated dye-sensitized solar cells,” ACS Nano 5(6), 5088–5093 (2011).
[CrossRef] [PubMed]

Lee, J.-W.

J.-W. Lee, D.-Y. Son, T. K. Ahn, H.-W. Shin, I. Y. Kim, S.-J. Hwang, M. J. Ko, S. Sul, H. Han, and N.-G. Park, “Quantum-dot-sensitized solar cell with unprecedentedly high photocurrent,” Sci. Rep. 3, 1050–1057 (2013).
[CrossRef] [PubMed]

Lee, S.

areS. Lee, I. J. Park, D. H. Kim, W. M. Seong, D. W. Kim, G. S. Han, J. Y. Kim, H. S. Jung, and K. S. Hong, “Crystallographically preferred oriented TiO2 nanotube arrays for efficient photovoltaic energy conversion,” Energy Environ. Sci. 5(7), 7989–7995 (2012).
[CrossRef]

Lee, Y. G.

P. Sudhagar, J. H. Jung, S. Park, Y. G. Lee, R. Sathyamoorthy, Y. S. Kang, and H. Ahn, “The performance of coupled (CdS:CdSe) quantum dot-sensitized TiO2 nanofibrous solar cells,” Electrochem. Commun. 11(11), 2220–2224 (2009).
[CrossRef]

Li, K.

Y. Q. Wang, Y. M. Sun, and K. Li, “Dye-sensitized solar cells based on oriented ZnO nanowire-covered TiO2 nanoparticle composite film electrodes,” Mater. Lett. 63(12), 1102–1104 (2009).
[CrossRef]

Liu, B.

B. Liu and E. S. Aydil, “Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells,” J. Am. Chem. Soc. 131(11), 3985–3990 (2009).
[CrossRef] [PubMed]

Lu, Y.

E. Galoppini, J. Rochford, H. Chen, G. Saraf, Y. Lu, A. Hagfeldt, and G. Boschloo, “Fast electron transport in metal organic vapor deposition grown dye-sensitized ZnO nanorod solar cells,” J. Phys. Chem. B 110(33), 16159–16161 (2006).
[CrossRef] [PubMed]

Mallouk, T. E.

X. Feng, K. Zhu, A. J. Frank, C. A. Grimes, and T. E. Mallouk, “Rapid charge transport in dye-sensitized solar cells made from vertically aligned single-crystal rutile TiO2 nanowires,” Angew. Chem. 124(11), 2781–2784 (2012).
[CrossRef]

Martinson, A. B. F.

A. B. F. Martinson, J. W. Elam, J. T. Hupp, and M. J. Pellin, “ZnO nanotube based dye-sensitized solar cells,” Nano Lett. 7(8), 2183–2187 (2007).
[CrossRef] [PubMed]

Miedaner, A.

K. Zhu, N. R. Neale, A. Miedaner, and A. J. Frank, “Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays,” Nano Lett. 7(1), 69–74 (2007).
[CrossRef] [PubMed]

Miguez, H.

S. R. Kennedy, M. J. Brett, H. Miguez, O. Toader, and S. John, “Optical properties of a three-dimensioal silicon square spiral photonic crystal,” Cryst. Photonics Nanostruct. 1(1), 37–42 (2003).
[CrossRef]

Mohammadpour, R.

R. Mohammadpour, A. Iraji Zad, A. Hagfeldt, and G. Boschloo, “Comparison of trap-state distribution and carrier transport in nanotubular and nanoparticulate TiO2 electrodes for dye-sensitized solar cells,” ChemPhysChem 11(10), 2140–2145 (2010).
[CrossRef] [PubMed]

Moon, S.-J.

M. Wang, J. Bai, F. Le Formal, S.-J. Moon, L. Cevey-Ha, R. Humphry-Baker, C. Grätzel, S. M. Zakeeruddin, and M. Grätzel, “Solid-state dye-sensitized solar cells using ordered TiO2 nanorods on transparent conductive oxide as photoanodes,” J. Phys. Chem. C 116(5), 3266–3273 (2012).
[CrossRef]

Mor, G. K.

G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, “Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells,” Nano Lett. 6(2), 215–218 (2006).
[CrossRef] [PubMed]

Mora-Seró, I.

V. González-Pedro, X. Xu, I. Mora-Seró, and J. Bisquert, “Modeling high-efficiency quantum dot sensitized solar cells,” ACS Nano 4(10), 5783–5790 (2010).
[CrossRef] [PubMed]

Murata, Y.

M. Adachi, Y. Murata, J. Takao, J. Jiu, M. Sakamoto, and F. Wang, “Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the “oriented attachment” mechanism,” J. Am. Chem. Soc. 126(45), 14943–14949 (2004).
[CrossRef] [PubMed]

Myers, D.

Q. Zhang, D. Myers, J. Lan, S. A. Jenekhe, and G. Cao, “Applications of light scattering in dye-sensitized solar cells,” Phys. Chem. Chem. Phys. 14(43), 14982–14998 (2012).
[CrossRef] [PubMed]

Nayak, J.

J. Nayak, K. Prabakar, J. W. Park, and H. Kim, “Effect of synthesis temperature on structure, optical and photovoltaic properties of TiO2 nanorod thin films,” Electrochim. Acta 65, 44–49 (2012).
[CrossRef]

Neale, N. R.

K. Zhu, N. R. Neale, A. Miedaner, and A. J. Frank, “Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays,” Nano Lett. 7(1), 69–74 (2007).
[CrossRef] [PubMed]

K. Zhu, T. B. Vinzant, N. R. Neale, and A. J. Frank, “Removing structural disorder from oriented TiO2 nanotube arrays: Reducing the dimensionality of transport and recombination in dye-sensitized solar cells,” Nano Lett. 7(12), 3739–3746 (2007).
[CrossRef] [PubMed]

Nelson, J.

J. Nelson, “Continuous-time random-walk model of electron transport in nanocrystalline TiO2 electrodes,” Phys. Rev. B 59(23), 15374–15380 (1999).
[CrossRef]

Nozik, A. J.

M. C. Hanna and A. J. Nozik, “Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers,” J. Appl. Phys. 100(7), 074510 (2006).
[CrossRef]

A. J. Nozik, “Quantum dot solar cells,” Physica E 14(1–2), 115–120 (2002).
[CrossRef]

O’Regan, B.

B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353(6346), 737–740 (1991).
[CrossRef]

Park, I. J.

areS. Lee, I. J. Park, D. H. Kim, W. M. Seong, D. W. Kim, G. S. Han, J. Y. Kim, H. S. Jung, and K. S. Hong, “Crystallographically preferred oriented TiO2 nanotube arrays for efficient photovoltaic energy conversion,” Energy Environ. Sci. 5(7), 7989–7995 (2012).
[CrossRef]

Park, J. H.

Q. Zheng, H. Kang, J. Yun, J. Lee, J. H. Park, and S. Baik, “Hierarchical construction of self-standing anodized titania nanotube arrays and nanoparticles for efficient and cost-effective front-illuminated dye-sensitized solar cells,” ACS Nano 5(6), 5088–5093 (2011).
[CrossRef] [PubMed]

Park, J. W.

J. Nayak, K. Prabakar, J. W. Park, and H. Kim, “Effect of synthesis temperature on structure, optical and photovoltaic properties of TiO2 nanorod thin films,” Electrochim. Acta 65, 44–49 (2012).
[CrossRef]

Park, K.

S. Yodyingyong, Q. F. Zhang, K. Park, C. S. Dandeneau, X. Y. Zhou, D. Triampo, and G. Z. Cao, “ZnO nanoparticles and nanowire array hybrid photoanodes for dye-sensitized solar cells,” Appl. Phys. Lett. 96(7), 073115 (2010).
[CrossRef]

Park, N.-G.

J.-W. Lee, D.-Y. Son, T. K. Ahn, H.-W. Shin, I. Y. Kim, S.-J. Hwang, M. J. Ko, S. Sul, H. Han, and N.-G. Park, “Quantum-dot-sensitized solar cell with unprecedentedly high photocurrent,” Sci. Rep. 3, 1050–1057 (2013).
[CrossRef] [PubMed]

N.-G. Park, J. van de Lagemaat, and A. J. Frank, “Effect of morphology on electron transport in dye-sensitized nanostructured TiO2 films,” J. Photosci. 10, 199–205 (2003).

J. van de Lagemaat, N.-G. Park, and A. J. Frank, “Influence of electrical potential distribution, charge transport, and recombination on the photopotential and photocurrent conversion efficiency of dye-sensitized nanocrystallne TiO2 solar cells: A study by electrical impedance and optical modulation techniques,” J. Phys. Chem. B 104(9), 2044–2052 (2000).
[CrossRef]

Park, S.

P. Sudhagar, J. H. Jung, S. Park, Y. G. Lee, R. Sathyamoorthy, Y. S. Kang, and H. Ahn, “The performance of coupled (CdS:CdSe) quantum dot-sensitized TiO2 nanofibrous solar cells,” Electrochem. Commun. 11(11), 2220–2224 (2009).
[CrossRef]

Paulose, M.

X. Feng, K. Shankar, O. K. Varghese, M. Paulose, T. J. Latempa, and C. A. Grimes, “Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: Synthesis details and applications,” Nano Lett. 8(11), 3781–3786 (2008).
[CrossRef] [PubMed]

G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, “Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells,” Nano Lett. 6(2), 215–218 (2006).
[CrossRef] [PubMed]

Pellin, M. J.

A. B. F. Martinson, J. W. Elam, J. T. Hupp, and M. J. Pellin, “ZnO nanotube based dye-sensitized solar cells,” Nano Lett. 7(8), 2183–2187 (2007).
[CrossRef] [PubMed]

Peng, W.

W. Peng, M. Yanagida, L. Han, and S. Ahmed, “Controlled fabrication of TiO2 rutile nanorod/anatase nanoparticle composite photoanodes for dye-sensitized solar cell application,” Nanotechnology 22(27), 275709 (2011).
[CrossRef] [PubMed]

Peng, X.

W. W. Yu, Y. A. Wang, and X. Peng, “Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: Ligand effects on monomers and nanocrystals,” Chem. Mater. 15(22), 4300–4308 (2003).
[CrossRef]

Peng, X. G.

W. W. Yu, L. H. Qu, W. Z. Guo, and X. G. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15(14), 2854–2860 (2003).
[CrossRef]

Pettersson, H.

A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, “Dye-sensitized solar cells,” Chem. Rev. 110(11), 6595–6663 (2010).
[CrossRef] [PubMed]

Pichot, F.

F. Pichot, J. Pitts, and B. Gregg, “Low-temperature sintering of TiO2 colloids: Application to flexible dye-sensitized solar cells,” Langmuir 16(13), 5626–5630 (2000).
[CrossRef]

Pitts, J.

F. Pichot, J. Pitts, and B. Gregg, “Low-temperature sintering of TiO2 colloids: Application to flexible dye-sensitized solar cells,” Langmuir 16(13), 5626–5630 (2000).
[CrossRef]

Prabakar, K.

J. Nayak, K. Prabakar, J. W. Park, and H. Kim, “Effect of synthesis temperature on structure, optical and photovoltaic properties of TiO2 nanorod thin films,” Electrochim. Acta 65, 44–49 (2012).
[CrossRef]

Qu, L. H.

W. W. Yu, L. H. Qu, W. Z. Guo, and X. G. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15(14), 2854–2860 (2003).
[CrossRef]

Robbie, K.

K. Robbie and M. J. Brett, “Sculptured thin films and glancing angle deposition: Growth mechanics and applications,” J. Vac. Sci. Technol. A 15(3), 1460–1465 (1997).
[CrossRef]

Rochford, J.

E. Galoppini, J. Rochford, H. Chen, G. Saraf, Y. Lu, A. Hagfeldt, and G. Boschloo, “Fast electron transport in metal organic vapor deposition grown dye-sensitized ZnO nanorod solar cells,” J. Phys. Chem. B 110(33), 16159–16161 (2006).
[CrossRef] [PubMed]

Sakamoto, M.

M. Adachi, Y. Murata, J. Takao, J. Jiu, M. Sakamoto, and F. Wang, “Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the “oriented attachment” mechanism,” J. Am. Chem. Soc. 126(45), 14943–14949 (2004).
[CrossRef] [PubMed]

Santra, P. K.

P. K. Santra and P. V. Kamat, “Mn-doped quantum dot sensitized solar cells: A strategy to boost efficiency over 5%,” J. Am. Chem. Soc. 134(5), 2508–2511 (2012).
[CrossRef] [PubMed]

Saraf, G.

E. Galoppini, J. Rochford, H. Chen, G. Saraf, Y. Lu, A. Hagfeldt, and G. Boschloo, “Fast electron transport in metal organic vapor deposition grown dye-sensitized ZnO nanorod solar cells,” J. Phys. Chem. B 110(33), 16159–16161 (2006).
[CrossRef] [PubMed]

Sathyamoorthy, R.

P. Sudhagar, J. H. Jung, S. Park, Y. G. Lee, R. Sathyamoorthy, Y. S. Kang, and H. Ahn, “The performance of coupled (CdS:CdSe) quantum dot-sensitized TiO2 nanofibrous solar cells,” Electrochem. Commun. 11(11), 2220–2224 (2009).
[CrossRef]

Saykally, R.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4(6), 455–459 (2005).
[CrossRef] [PubMed]

Seong, W. M.

areS. Lee, I. J. Park, D. H. Kim, W. M. Seong, D. W. Kim, G. S. Han, J. Y. Kim, H. S. Jung, and K. S. Hong, “Crystallographically preferred oriented TiO2 nanotube arrays for efficient photovoltaic energy conversion,” Energy Environ. Sci. 5(7), 7989–7995 (2012).
[CrossRef]

Shankar, K.

X. Feng, K. Shankar, O. K. Varghese, M. Paulose, T. J. Latempa, and C. A. Grimes, “Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: Synthesis details and applications,” Nano Lett. 8(11), 3781–3786 (2008).
[CrossRef] [PubMed]

G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, “Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells,” Nano Lett. 6(2), 215–218 (2006).
[CrossRef] [PubMed]

Shen, Q.

Q. Shen, A. Yamada, S. Tamura, and T. Toyoda, “CdSe quantum dot-sensitized solar cell employing TiO2 nanotube working-electrode and Cu2S counter-electrode,” Appl. Phys. Lett. 97(12), 123107 (2010).
[CrossRef]

Shin, H.-W.

J.-W. Lee, D.-Y. Son, T. K. Ahn, H.-W. Shin, I. Y. Kim, S.-J. Hwang, M. J. Ko, S. Sul, H. Han, and N.-G. Park, “Quantum-dot-sensitized solar cell with unprecedentedly high photocurrent,” Sci. Rep. 3, 1050–1057 (2013).
[CrossRef] [PubMed]

Son, D.-Y.

J.-W. Lee, D.-Y. Son, T. K. Ahn, H.-W. Shin, I. Y. Kim, S.-J. Hwang, M. J. Ko, S. Sul, H. Han, and N.-G. Park, “Quantum-dot-sensitized solar cell with unprecedentedly high photocurrent,” Sci. Rep. 3, 1050–1057 (2013).
[CrossRef] [PubMed]

Song, B.

J. Zhou, B. Song, G. Zhao, W. Dong, and G. Han, “TiO2 nanorod arrays sensitized with CdS quantum dots for solar cell applications: Effects of rod geometry on photoelectrochemical performance,” Appl. Phys., A Mater. Sci. Process. 107(2), 321–331 (2012).
[CrossRef]

Sudhagar, P.

P. Sudhagar, J. H. Jung, S. Park, Y. G. Lee, R. Sathyamoorthy, Y. S. Kang, and H. Ahn, “The performance of coupled (CdS:CdSe) quantum dot-sensitized TiO2 nanofibrous solar cells,” Electrochem. Commun. 11(11), 2220–2224 (2009).
[CrossRef]

Sul, S.

J.-W. Lee, D.-Y. Son, T. K. Ahn, H.-W. Shin, I. Y. Kim, S.-J. Hwang, M. J. Ko, S. Sul, H. Han, and N.-G. Park, “Quantum-dot-sensitized solar cell with unprecedentedly high photocurrent,” Sci. Rep. 3, 1050–1057 (2013).
[CrossRef] [PubMed]

Sun, L.

A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, “Dye-sensitized solar cells,” Chem. Rev. 110(11), 6595–6663 (2010).
[CrossRef] [PubMed]

Sun, Y. M.

Y. Q. Wang, Y. M. Sun, and K. Li, “Dye-sensitized solar cells based on oriented ZnO nanowire-covered TiO2 nanoparticle composite film electrodes,” Mater. Lett. 63(12), 1102–1104 (2009).
[CrossRef]

Sung, Y. E.

S. H. Kang, S. H. Choi, M. S. Kang, J. Y. Kim, H. S. Kim, T. Hyeon, and Y. E. Sung, “Nanorod-based dye-sensitized solar cells with improved charge collection efficiency,” Adv. Mater. 20(1), 54–58 (2008).
[CrossRef]

Takao, J.

M. Adachi, Y. Murata, J. Takao, J. Jiu, M. Sakamoto, and F. Wang, “Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the “oriented attachment” mechanism,” J. Am. Chem. Soc. 126(45), 14943–14949 (2004).
[CrossRef] [PubMed]

Tamura, S.

Q. Shen, A. Yamada, S. Tamura, and T. Toyoda, “CdSe quantum dot-sensitized solar cell employing TiO2 nanotube working-electrode and Cu2S counter-electrode,” Appl. Phys. Lett. 97(12), 123107 (2010).
[CrossRef]

Tétreault, N.

N. Tétreault and M. Grätzel, “Novel nanostructures for next generation dye-sensitized solar cells,” Energy Environ. Sci. 5(9), 8506–8516 (2012).
[CrossRef]

Toader, O.

S. R. Kennedy, M. J. Brett, H. Miguez, O. Toader, and S. John, “Optical properties of a three-dimensioal silicon square spiral photonic crystal,” Cryst. Photonics Nanostruct. 1(1), 37–42 (2003).
[CrossRef]

Toyoda, T.

Q. Shen, A. Yamada, S. Tamura, and T. Toyoda, “CdSe quantum dot-sensitized solar cell employing TiO2 nanotube working-electrode and Cu2S counter-electrode,” Appl. Phys. Lett. 97(12), 123107 (2010).
[CrossRef]

Triampo, D.

S. Yodyingyong, Q. F. Zhang, K. Park, C. S. Dandeneau, X. Y. Zhou, D. Triampo, and G. Z. Cao, “ZnO nanoparticles and nanowire array hybrid photoanodes for dye-sensitized solar cells,” Appl. Phys. Lett. 96(7), 073115 (2010).
[CrossRef]

van de Lagemaat, J.

N.-G. Park, J. van de Lagemaat, and A. J. Frank, “Effect of morphology on electron transport in dye-sensitized nanostructured TiO2 films,” J. Photosci. 10, 199–205 (2003).

K. D. Benkstein, N. Kopidakis, J. van de Lagemaat, and A. J. Frank, “Influence of the percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells,” J. Phys. Chem. B 107(31), 7759–7767 (2003).
[CrossRef]

J. van de Lagemaat and A. J. Frank, “Nonthermalized electron transport in dye-sensitized nanocrystalline TiO2 films: Transient photocurrent and random-walk modeling studies,” J. Phys. Chem. B 105(45), 11194–11205 (2001).
[CrossRef]

J. van de Lagemaat, N.-G. Park, and A. J. Frank, “Influence of electrical potential distribution, charge transport, and recombination on the photopotential and photocurrent conversion efficiency of dye-sensitized nanocrystallne TiO2 solar cells: A study by electrical impedance and optical modulation techniques,” J. Phys. Chem. B 104(9), 2044–2052 (2000).
[CrossRef]

Varghese, O. K.

X. Feng, K. Shankar, O. K. Varghese, M. Paulose, T. J. Latempa, and C. A. Grimes, “Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: Synthesis details and applications,” Nano Lett. 8(11), 3781–3786 (2008).
[CrossRef] [PubMed]

G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, “Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells,” Nano Lett. 6(2), 215–218 (2006).
[CrossRef] [PubMed]

Velu, R.

H. Jin, S. Choi, R. Velu, S. Kim, and H. J. Lee, “Preparation of multilayered CdSe quantum dot sensitizers by electrostatic layer-by-layer assembly and a series of post-treatments toward efficient quantum dot-sensitized mesoporous TiO2 solar cells,” Langmuir 28(12), 5417–5426 (2012).
[CrossRef] [PubMed]

Vinzant, T. B.

K. Zhu, T. B. Vinzant, N. R. Neale, and A. J. Frank, “Removing structural disorder from oriented TiO2 nanotube arrays: Reducing the dimensionality of transport and recombination in dye-sensitized solar cells,” Nano Lett. 7(12), 3739–3746 (2007).
[CrossRef] [PubMed]

Wang, F.

M. Adachi, Y. Murata, J. Takao, J. Jiu, M. Sakamoto, and F. Wang, “Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the “oriented attachment” mechanism,” J. Am. Chem. Soc. 126(45), 14943–14949 (2004).
[CrossRef] [PubMed]

Wang, M.

M. Wang, J. Bai, F. Le Formal, S.-J. Moon, L. Cevey-Ha, R. Humphry-Baker, C. Grätzel, S. M. Zakeeruddin, and M. Grätzel, “Solid-state dye-sensitized solar cells using ordered TiO2 nanorods on transparent conductive oxide as photoanodes,” J. Phys. Chem. C 116(5), 3266–3273 (2012).
[CrossRef]

Wang, Y. A.

W. W. Yu, Y. A. Wang, and X. Peng, “Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: Ligand effects on monomers and nanocrystals,” Chem. Mater. 15(22), 4300–4308 (2003).
[CrossRef]

Wang, Y. Q.

Y. Q. Wang, Y. M. Sun, and K. Li, “Dye-sensitized solar cells based on oriented ZnO nanowire-covered TiO2 nanoparticle composite film electrodes,” Mater. Lett. 63(12), 1102–1104 (2009).
[CrossRef]

Wang, Z.-S.

Z.-S. Wang, H. Kawauchi, T. Kashima, and H. Arakawa, “Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell,” Coord. Chem. Rev. 248(13–14), 1381–1389 (2004).
[CrossRef]

Wu, J. J.

C. H. Ku and J. J. Wu, “Electron transport properties in ZnO nanowire array/nanoparticle composite dye-sensitized solar cells,” Appl. Phys. Lett. 91(9), 093117 (2007).
[CrossRef]

Xu, X.

V. González-Pedro, X. Xu, I. Mora-Seró, and J. Bisquert, “Modeling high-efficiency quantum dot sensitized solar cells,” ACS Nano 4(10), 5783–5790 (2010).
[CrossRef] [PubMed]

Yamada, A.

Q. Shen, A. Yamada, S. Tamura, and T. Toyoda, “CdSe quantum dot-sensitized solar cell employing TiO2 nanotube working-electrode and Cu2S counter-electrode,” Appl. Phys. Lett. 97(12), 123107 (2010).
[CrossRef]

Yanagida, M.

W. Peng, M. Yanagida, L. Han, and S. Ahmed, “Controlled fabrication of TiO2 rutile nanorod/anatase nanoparticle composite photoanodes for dye-sensitized solar cell application,” Nanotechnology 22(27), 275709 (2011).
[CrossRef] [PubMed]

Yang, P.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4(6), 455–459 (2005).
[CrossRef] [PubMed]

Yodyingyong, S.

S. Yodyingyong, Q. F. Zhang, K. Park, C. S. Dandeneau, X. Y. Zhou, D. Triampo, and G. Z. Cao, “ZnO nanoparticles and nanowire array hybrid photoanodes for dye-sensitized solar cells,” Appl. Phys. Lett. 96(7), 073115 (2010).
[CrossRef]

Yu, W. W.

W. W. Yu, Y. A. Wang, and X. Peng, “Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: Ligand effects on monomers and nanocrystals,” Chem. Mater. 15(22), 4300–4308 (2003).
[CrossRef]

W. W. Yu, L. H. Qu, W. Z. Guo, and X. G. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15(14), 2854–2860 (2003).
[CrossRef]

Yun, J.

Q. Zheng, H. Kang, J. Yun, J. Lee, J. H. Park, and S. Baik, “Hierarchical construction of self-standing anodized titania nanotube arrays and nanoparticles for efficient and cost-effective front-illuminated dye-sensitized solar cells,” ACS Nano 5(6), 5088–5093 (2011).
[CrossRef] [PubMed]

Zakeeruddin, S. M.

M. Wang, J. Bai, F. Le Formal, S.-J. Moon, L. Cevey-Ha, R. Humphry-Baker, C. Grätzel, S. M. Zakeeruddin, and M. Grätzel, “Solid-state dye-sensitized solar cells using ordered TiO2 nanorods on transparent conductive oxide as photoanodes,” J. Phys. Chem. C 116(5), 3266–3273 (2012).
[CrossRef]

Zhang, Q.

Q. Zhang, D. Myers, J. Lan, S. A. Jenekhe, and G. Cao, “Applications of light scattering in dye-sensitized solar cells,” Phys. Chem. Chem. Phys. 14(43), 14982–14998 (2012).
[CrossRef] [PubMed]

Q. Zhang and G. Cao, “Nanostructured photoelectrodes for dye-sensitized solar cells,” Nano Today 6(1), 91–109 (2011).
[CrossRef]

Zhang, Q. F.

S. Yodyingyong, Q. F. Zhang, K. Park, C. S. Dandeneau, X. Y. Zhou, D. Triampo, and G. Z. Cao, “ZnO nanoparticles and nanowire array hybrid photoanodes for dye-sensitized solar cells,” Appl. Phys. Lett. 96(7), 073115 (2010).
[CrossRef]

Zhao, G.

J. Zhou, B. Song, G. Zhao, W. Dong, and G. Han, “TiO2 nanorod arrays sensitized with CdS quantum dots for solar cell applications: Effects of rod geometry on photoelectrochemical performance,” Appl. Phys., A Mater. Sci. Process. 107(2), 321–331 (2012).
[CrossRef]

Zheng, Q.

Q. Zheng, H. Kang, J. Yun, J. Lee, J. H. Park, and S. Baik, “Hierarchical construction of self-standing anodized titania nanotube arrays and nanoparticles for efficient and cost-effective front-illuminated dye-sensitized solar cells,” ACS Nano 5(6), 5088–5093 (2011).
[CrossRef] [PubMed]

Zhou, J.

J. Zhou, B. Song, G. Zhao, W. Dong, and G. Han, “TiO2 nanorod arrays sensitized with CdS quantum dots for solar cell applications: Effects of rod geometry on photoelectrochemical performance,” Appl. Phys., A Mater. Sci. Process. 107(2), 321–331 (2012).
[CrossRef]

Zhou, X. Y.

S. Yodyingyong, Q. F. Zhang, K. Park, C. S. Dandeneau, X. Y. Zhou, D. Triampo, and G. Z. Cao, “ZnO nanoparticles and nanowire array hybrid photoanodes for dye-sensitized solar cells,” Appl. Phys. Lett. 96(7), 073115 (2010).
[CrossRef]

Zhu, K.

X. Feng, K. Zhu, A. J. Frank, C. A. Grimes, and T. E. Mallouk, “Rapid charge transport in dye-sensitized solar cells made from vertically aligned single-crystal rutile TiO2 nanowires,” Angew. Chem. 124(11), 2781–2784 (2012).
[CrossRef]

K. Zhu, N. R. Neale, A. Miedaner, and A. J. Frank, “Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays,” Nano Lett. 7(1), 69–74 (2007).
[CrossRef] [PubMed]

K. Zhu, T. B. Vinzant, N. R. Neale, and A. J. Frank, “Removing structural disorder from oriented TiO2 nanotube arrays: Reducing the dimensionality of transport and recombination in dye-sensitized solar cells,” Nano Lett. 7(12), 3739–3746 (2007).
[CrossRef] [PubMed]

ACS Nano (2)

V. González-Pedro, X. Xu, I. Mora-Seró, and J. Bisquert, “Modeling high-efficiency quantum dot sensitized solar cells,” ACS Nano 4(10), 5783–5790 (2010).
[CrossRef] [PubMed]

Q. Zheng, H. Kang, J. Yun, J. Lee, J. H. Park, and S. Baik, “Hierarchical construction of self-standing anodized titania nanotube arrays and nanoparticles for efficient and cost-effective front-illuminated dye-sensitized solar cells,” ACS Nano 5(6), 5088–5093 (2011).
[CrossRef] [PubMed]

Adv. Mater. (1)

S. H. Kang, S. H. Choi, M. S. Kang, J. Y. Kim, H. S. Kim, T. Hyeon, and Y. E. Sung, “Nanorod-based dye-sensitized solar cells with improved charge collection efficiency,” Adv. Mater. 20(1), 54–58 (2008).
[CrossRef]

Angew. Chem. (1)

X. Feng, K. Zhu, A. J. Frank, C. A. Grimes, and T. E. Mallouk, “Rapid charge transport in dye-sensitized solar cells made from vertically aligned single-crystal rutile TiO2 nanowires,” Angew. Chem. 124(11), 2781–2784 (2012).
[CrossRef]

Appl. Phys. Lett. (4)

J. B. Baxter and E. S. Aydil, “Nanowire-based dye-sensitized solar cells,” Appl. Phys. Lett. 86(5), 053114 (2005).
[CrossRef]

Q. Shen, A. Yamada, S. Tamura, and T. Toyoda, “CdSe quantum dot-sensitized solar cell employing TiO2 nanotube working-electrode and Cu2S counter-electrode,” Appl. Phys. Lett. 97(12), 123107 (2010).
[CrossRef]

C. H. Ku and J. J. Wu, “Electron transport properties in ZnO nanowire array/nanoparticle composite dye-sensitized solar cells,” Appl. Phys. Lett. 91(9), 093117 (2007).
[CrossRef]

S. Yodyingyong, Q. F. Zhang, K. Park, C. S. Dandeneau, X. Y. Zhou, D. Triampo, and G. Z. Cao, “ZnO nanoparticles and nanowire array hybrid photoanodes for dye-sensitized solar cells,” Appl. Phys. Lett. 96(7), 073115 (2010).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

J. Zhou, B. Song, G. Zhao, W. Dong, and G. Han, “TiO2 nanorod arrays sensitized with CdS quantum dots for solar cell applications: Effects of rod geometry on photoelectrochemical performance,” Appl. Phys., A Mater. Sci. Process. 107(2), 321–331 (2012).
[CrossRef]

Chem. Mater. (2)

W. W. Yu, L. H. Qu, W. Z. Guo, and X. G. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15(14), 2854–2860 (2003).
[CrossRef]

W. W. Yu, Y. A. Wang, and X. Peng, “Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: Ligand effects on monomers and nanocrystals,” Chem. Mater. 15(22), 4300–4308 (2003).
[CrossRef]

Chem. Rev. (1)

A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, “Dye-sensitized solar cells,” Chem. Rev. 110(11), 6595–6663 (2010).
[CrossRef] [PubMed]

ChemPhysChem (1)

R. Mohammadpour, A. Iraji Zad, A. Hagfeldt, and G. Boschloo, “Comparison of trap-state distribution and carrier transport in nanotubular and nanoparticulate TiO2 electrodes for dye-sensitized solar cells,” ChemPhysChem 11(10), 2140–2145 (2010).
[CrossRef] [PubMed]

Coord. Chem. Rev. (1)

Z.-S. Wang, H. Kawauchi, T. Kashima, and H. Arakawa, “Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell,” Coord. Chem. Rev. 248(13–14), 1381–1389 (2004).
[CrossRef]

Cryst. Photonics Nanostruct. (1)

S. R. Kennedy, M. J. Brett, H. Miguez, O. Toader, and S. John, “Optical properties of a three-dimensioal silicon square spiral photonic crystal,” Cryst. Photonics Nanostruct. 1(1), 37–42 (2003).
[CrossRef]

Electrochem. Commun. (1)

P. Sudhagar, J. H. Jung, S. Park, Y. G. Lee, R. Sathyamoorthy, Y. S. Kang, and H. Ahn, “The performance of coupled (CdS:CdSe) quantum dot-sensitized TiO2 nanofibrous solar cells,” Electrochem. Commun. 11(11), 2220–2224 (2009).
[CrossRef]

Electrochem. Solid State Lett. (1)

K. D. Harris, A. Huizinga, and M. J. Brett, “High-speed porous thin film humidity sensors,” Electrochem. Solid State Lett. 5(11), H27–H29 (2002).
[CrossRef]

Electrochim. Acta (1)

J. Nayak, K. Prabakar, J. W. Park, and H. Kim, “Effect of synthesis temperature on structure, optical and photovoltaic properties of TiO2 nanorod thin films,” Electrochim. Acta 65, 44–49 (2012).
[CrossRef]

Energy Environ. Sci. (2)

areS. Lee, I. J. Park, D. H. Kim, W. M. Seong, D. W. Kim, G. S. Han, J. Y. Kim, H. S. Jung, and K. S. Hong, “Crystallographically preferred oriented TiO2 nanotube arrays for efficient photovoltaic energy conversion,” Energy Environ. Sci. 5(7), 7989–7995 (2012).
[CrossRef]

N. Tétreault and M. Grätzel, “Novel nanostructures for next generation dye-sensitized solar cells,” Energy Environ. Sci. 5(9), 8506–8516 (2012).
[CrossRef]

Inorg. Chem. (1)

M. Grätzel, “Solar energy conversion by dye-sensitized photovoltaic cells,” Inorg. Chem. 44(20), 6841–6851 (2005).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (3)

P. K. Santra and P. V. Kamat, “Mn-doped quantum dot sensitized solar cells: A strategy to boost efficiency over 5%,” J. Am. Chem. Soc. 134(5), 2508–2511 (2012).
[CrossRef] [PubMed]

M. Adachi, Y. Murata, J. Takao, J. Jiu, M. Sakamoto, and F. Wang, “Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the “oriented attachment” mechanism,” J. Am. Chem. Soc. 126(45), 14943–14949 (2004).
[CrossRef] [PubMed]

B. Liu and E. S. Aydil, “Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells,” J. Am. Chem. Soc. 131(11), 3985–3990 (2009).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

M. C. Hanna and A. J. Nozik, “Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers,” J. Appl. Phys. 100(7), 074510 (2006).
[CrossRef]

J. Electrochem. Soc. (1)

G. K. Kiema and M. J. Brett, “Effect of thermal annealing on structural properties and electrochemical performance of carbon films with porous microstructures,” J. Electrochem. Soc. 151(5), E194–E198 (2004).
[CrossRef]

J. Mater. Sci. (1)

B. Djurfors, J. N. Broughton, M. J. Brett, and D. G. Ivey, “Microstructural characterization of porous manganese thin films for electrochemical supercapacitor applications,” J. Mater. Sci. 38(24), 4817–4830 (2003).
[CrossRef]

J. Micromech. Microeng. (1)

A. L. Elias, K. D. Harris, C. W. M. Bastiaansen, D. J. Broer, and M. J. Brett, “Large-area microfabircation of three-dimensional, helical polymer structures,” J. Micromech. Microeng. 15(1), 49–54 (2005).
[CrossRef]

J. Photosci. (1)

N.-G. Park, J. van de Lagemaat, and A. J. Frank, “Effect of morphology on electron transport in dye-sensitized nanostructured TiO2 films,” J. Photosci. 10, 199–205 (2003).

J. Phys. Chem. (1)

L. Brus, “Electronic wave functions in semiconductor clusters: Experiment and theory,” J. Phys. Chem. 90(12), 2555–2560 (1986).
[CrossRef]

J. Phys. Chem. B (4)

E. Galoppini, J. Rochford, H. Chen, G. Saraf, Y. Lu, A. Hagfeldt, and G. Boschloo, “Fast electron transport in metal organic vapor deposition grown dye-sensitized ZnO nanorod solar cells,” J. Phys. Chem. B 110(33), 16159–16161 (2006).
[CrossRef] [PubMed]

J. van de Lagemaat, N.-G. Park, and A. J. Frank, “Influence of electrical potential distribution, charge transport, and recombination on the photopotential and photocurrent conversion efficiency of dye-sensitized nanocrystallne TiO2 solar cells: A study by electrical impedance and optical modulation techniques,” J. Phys. Chem. B 104(9), 2044–2052 (2000).
[CrossRef]

K. D. Benkstein, N. Kopidakis, J. van de Lagemaat, and A. J. Frank, “Influence of the percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells,” J. Phys. Chem. B 107(31), 7759–7767 (2003).
[CrossRef]

J. van de Lagemaat and A. J. Frank, “Nonthermalized electron transport in dye-sensitized nanocrystalline TiO2 films: Transient photocurrent and random-walk modeling studies,” J. Phys. Chem. B 105(45), 11194–11205 (2001).
[CrossRef]

J. Phys. Chem. C (2)

M. Wang, J. Bai, F. Le Formal, S.-J. Moon, L. Cevey-Ha, R. Humphry-Baker, C. Grätzel, S. M. Zakeeruddin, and M. Grätzel, “Solid-state dye-sensitized solar cells using ordered TiO2 nanorods on transparent conductive oxide as photoanodes,” J. Phys. Chem. C 116(5), 3266–3273 (2012).
[CrossRef]

P. V. Kamat, “Quantum dot solar cells. Semiconductor nanocrystals as light harvesters,” J. Phys. Chem. C 112(48), 18737–18753 (2008).
[CrossRef]

J. Vac. Sci. Technol. A (2)

M. M. Hawkeye and M. J. Brett, “Glancing angle deposition: Fabrication, properties, and applications of micro-and nanostructured thin films,” J. Vac. Sci. Technol. A 25(5), 1317–1335 (2007).
[CrossRef]

K. Robbie and M. J. Brett, “Sculptured thin films and glancing angle deposition: Growth mechanics and applications,” J. Vac. Sci. Technol. A 15(3), 1460–1465 (1997).
[CrossRef]

Langmuir (2)

H. Jin, S. Choi, R. Velu, S. Kim, and H. J. Lee, “Preparation of multilayered CdSe quantum dot sensitizers by electrostatic layer-by-layer assembly and a series of post-treatments toward efficient quantum dot-sensitized mesoporous TiO2 solar cells,” Langmuir 28(12), 5417–5426 (2012).
[CrossRef] [PubMed]

F. Pichot, J. Pitts, and B. Gregg, “Low-temperature sintering of TiO2 colloids: Application to flexible dye-sensitized solar cells,” Langmuir 16(13), 5626–5630 (2000).
[CrossRef]

Mater. Lett. (1)

Y. Q. Wang, Y. M. Sun, and K. Li, “Dye-sensitized solar cells based on oriented ZnO nanowire-covered TiO2 nanoparticle composite film electrodes,” Mater. Lett. 63(12), 1102–1104 (2009).
[CrossRef]

Nano Lett. (5)

A. B. F. Martinson, J. W. Elam, J. T. Hupp, and M. J. Pellin, “ZnO nanotube based dye-sensitized solar cells,” Nano Lett. 7(8), 2183–2187 (2007).
[CrossRef] [PubMed]

K. Zhu, N. R. Neale, A. Miedaner, and A. J. Frank, “Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays,” Nano Lett. 7(1), 69–74 (2007).
[CrossRef] [PubMed]

G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, “Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells,” Nano Lett. 6(2), 215–218 (2006).
[CrossRef] [PubMed]

K. Zhu, T. B. Vinzant, N. R. Neale, and A. J. Frank, “Removing structural disorder from oriented TiO2 nanotube arrays: Reducing the dimensionality of transport and recombination in dye-sensitized solar cells,” Nano Lett. 7(12), 3739–3746 (2007).
[CrossRef] [PubMed]

X. Feng, K. Shankar, O. K. Varghese, M. Paulose, T. J. Latempa, and C. A. Grimes, “Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: Synthesis details and applications,” Nano Lett. 8(11), 3781–3786 (2008).
[CrossRef] [PubMed]

Nano Today (1)

Q. Zhang and G. Cao, “Nanostructured photoelectrodes for dye-sensitized solar cells,” Nano Today 6(1), 91–109 (2011).
[CrossRef]

Nanotechnology (1)

W. Peng, M. Yanagida, L. Han, and S. Ahmed, “Controlled fabrication of TiO2 rutile nanorod/anatase nanoparticle composite photoanodes for dye-sensitized solar cell application,” Nanotechnology 22(27), 275709 (2011).
[CrossRef] [PubMed]

Nat. Mater. (1)

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4(6), 455–459 (2005).
[CrossRef] [PubMed]

Nature (1)

B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353(6346), 737–740 (1991).
[CrossRef]

Phys. Chem. Chem. Phys. (1)

Q. Zhang, D. Myers, J. Lan, S. A. Jenekhe, and G. Cao, “Applications of light scattering in dye-sensitized solar cells,” Phys. Chem. Chem. Phys. 14(43), 14982–14998 (2012).
[CrossRef] [PubMed]

Phys. Rev. B (1)

J. Nelson, “Continuous-time random-walk model of electron transport in nanocrystalline TiO2 electrodes,” Phys. Rev. B 59(23), 15374–15380 (1999).
[CrossRef]

Physica E (1)

A. J. Nozik, “Quantum dot solar cells,” Physica E 14(1–2), 115–120 (2002).
[CrossRef]

Sci. Rep. (1)

J.-W. Lee, D.-Y. Son, T. K. Ahn, H.-W. Shin, I. Y. Kim, S.-J. Hwang, M. J. Ko, S. Sul, H. Han, and N.-G. Park, “Quantum-dot-sensitized solar cell with unprecedentedly high photocurrent,” Sci. Rep. 3, 1050–1057 (2013).
[CrossRef] [PubMed]

Science (1)

A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science 271(5251), 933–937 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Schematic diagram of a QD-sensitized solar cell based on TiO2 nanohelix array. SEM images of the (b) cross-sectional and (inset) top view of the fabricated TiO2 nanohelixes array on a FTO-coated glass substrate showing a very porous structure facilitating the penetration of QDs and electrolyte into the pores.

Fig. 2
Fig. 2

X-ray diffraction patterns of an as-deposited (blue trace) and an annealed (red trace) TiO2 nanohelix array on a FTO glass substrate.

Fig. 3
Fig. 3

(a) Bright-field TEM image of a bundle of TiO2 nanohelixes. (b) Selected diffraction pattern taken from a region in (a). (c)-(e) Dark-field TEM images formed by selecting the diffraction spots indicated in (b): (c) {101}; (d) {116}; and (e) {101} reflections of TiO2 anatase phase. Scale bars in TEM images: 200 nm. (f) HRTEM image and electron diffraction pattern (inset) taken from one of the grains in an annealed TiO2 nanohelix. Note that (002) plane appears due to double diffraction.

Fig. 4
Fig. 4

(a) Low magnification STEM HAADF image of a TiO2 nanohelix loaded with CdSe QDs (bright spots). Different average atomic numbers of CdSe and TiO2 cause different HAADF intensities. The presence of CdSe QDs on TiO2 was further confirmed by an EDS measurement as shown in the inset. (b) HRTEM image of the CdSe QDs that are loaded on a TiO2 nanohelix. The measured lattice spacings of TiO2 (0.34 nm) and CdSe (0.35 nm) are indicated.

Fig. 5
Fig. 5

Absorbance of CdSe QDs loaded on a TiO2 nanohelix array layer (red) and TiO2 nanoparticle layer (blue) on FTO/glass substrates.

Fig. 6
Fig. 6

The geometry (right) and the simulated electric field distribution (left) at the surface of (a) stacked TiO2 nanoparticles (10nm radius, 30nm period), (b) a TiO2 nanorod (75nm radius, 200nm period), (c) a TiO2 nanotube (70nm inner, 75nm outer radius, 200nm period), and (d) a TiO2 nanohelix (125nm helix radius, 75nm wire radius, 600nm period) on the FTO substrates when x-polarized electromagnetic wave is incident. The periodic boundary condition is imposed along in-plane direction of the FTO in each simulation. Identical scale bar (shown on left side) for the electric field strength is applied to (b), (c) and (d).

Fig. 7
Fig. 7

(a) Measured total and specular transmittances of a bare FTO/glass substrate, the 5 μm-thick TiO2 nanoparticle layer, and 5 μm-thick TiO2 nanohelix array layer on a FTO/glass substrate as a function of the wavelength of the incident light. Inset: Schematic diagram of specular and diffuse optical transmission when monochromatic light is normally incident at the bottom of the FTO/glass substrate. (b) Diffuse transmittances of bare FTO coated glass (black solid line), nanoparticle layer film (red dotted line) and nanohelix array film (blue dotted-dashed line) on the FTO coated glass obtained by measuring the total transmittance and specular transmittance as function of wavelength from 400 to 800nm. Photographs of each sample (see inset) clearly show the difference in the amount of light scattering. The spectrum filled in yellow indicates the absorbance of the synthesized CdSe QD solution (right axis). The peak near at 560nm is attributed to absorption by CdSe QDs.

Fig. 8
Fig. 8

(a) J-V characteristics of QDSSCs based on a TiO2 nanoparticle photoanode and a TiO2 nanohelix photoanode both having 5μm thickness under the condition of simulated AM 1.5 solar radiation with 100mW/cm2 intensity. (b) Measured electron transport times (left axis) of nanoparticle and nanohelix array based QDSSCs by intensity modulated photocurrent spectroscopy (IMPS) as a function of incident light intensity using a 530nm laser. Diffusion coefficients (Dn, right axis) are calculated from the electron transport times and thickness of each photoanode.

Tables (1)

Tables Icon

Table 1 Comparison of Photovoltaic Parameters of QDSSCs Calculated from the J-V Curves in Fig. 8.

Metrics