Abstract

The hybrid structure of GaAs/GaAsSb quantum well (QW)/InAs quantum dots solar cells (QDSCs) is analyzed using power-dependent and temperature-dependent photoluminescence. We demonstrate that placing the GaAsSb QW beneath the QDs forms type-II characteristics that initiate at 12% Sb composition. Current density-voltage measurements demonstrate a decrease in power efficiency with increasing Sb composition. This could be attributed to increased valence band potential in the GaAsSb QW that subsequently limits hole transportation in the QD region. To reduce the confinement energy barrier, a 2 nm GaAs wall is inserted between GaAsSb QW and InAs QDs, leading to a 23% improvement in power efficiency for QDSCs.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Luque and A. Martí, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997).
    [CrossRef]
  2. G. Jolley, H. Lu, L. Fu, H. Tan, and C. Jagadish, “Electron-hole recombination properties of In0.5Ga0.5As/GaAs quantum dot solar cells and the influence on the open circuit voltage,” Appl. Phys. Lett. 97(12), 123505 (2010).
    [CrossRef]
  3. A. Luque and A. Marti, “On the partial filling of the intermediate band in IB solar cells,” IEEE Trans. Electron. Dev. 57(6), 1201–1207 (2010).
    [CrossRef]
  4. F. K. Tutu, I. R. Sellers, M. G. Peinado, C. E. Pastore, S. M. Willis, A. R. Watt, T. Wang, and H. Y. Liu, “Improved performance of multilayer InAs/GaAs quantum-dot solar cells using a high-growth-temperature GaAs spacer layer,” J. Appl. Phys. 111(4), 046101 (2012).
    [CrossRef]
  5. A. Martí, N. López, E. Antolín, E. Cánovas, A. Luque, C. R. Stanley, C. D. Farmer, and P. Díaz, “Emitter degradation in quantum dot intermediate band solar cells,” Appl. Phys. Lett. 90(23), 233510 (2007).
    [CrossRef]
  6. T. Sugaya, Y. Kamikawa, S. Furue, T. Amano, M. Mori, and S. Niki, “Multi-stacked quantum dot solar cells fabricated by intermittent deposition of InGaAs,” Sol. Energy Mater. Sol. Cells 95(1), 163–166 (2011).
    [CrossRef]
  7. H. Liu, I. Sellers, T. Badcock, D. Mowbray, M. Skolnick, K. Groom, M. Gutierrez, M. Hopkinson, J. Ng, J. David, and R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high growth temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
    [CrossRef]
  8. K. Ban, W. Hong, S. Bremner, S. Dahal, H. McFelea, and C. Honsberg, “Controllability of the subband occupation of InAs quantum dots on a delta-doped GaAsSb barrier,” J. Appl. Phys. 109(1), 014312 (2011).
    [CrossRef]
  9. W. S. Liu, H. M. Wu, Y. A. Liao, J. I. Chyi, W. Y. Chen, and T. M. Hsu, “High optical property vertically aligned InAs quantum dot structures with GaAsSb overgrown layers,” J. Cryst. Growth 323(1), 164–166 (2011).
    [CrossRef]
  10. S. P. Bremner, K.-Y. Ban, N. N. Faleev, C. B. Honsberg, and D. J. Smith, “Impact of stress relaxation in GaAsSb cladding layers on quantum dot creation in InAs/GaAsSb structures grown on GaAs (001),” J. Appl. Phys. 114(10), 103511 (2013).
    [CrossRef]
  11. W. S. Liu, Y. T. Wang, W. Y. Qiu, and C. Fang, “Carrier dynamics of a type-II vertically aligned InAs quantum dot structure with a GaAsSb strain-reducing layer,” Appl. Phys. Express 6(8), 085001 (2013).
    [CrossRef]
  12. S. Tomic, “Effect of Sb induced type II alignment on dynamical processes in InAs-/GaAs/GaAsSb quantum dots: Implication to solar cell design,” Appl. Phys. Lett. 103(7), 072112 (2013).
    [CrossRef]
  13. R. B. Laghumavarapu, B. L. Liang, Z. S. Bittner, T. S. Navruz, S. M. Hubbard, A. Norman, and D. L. Huffaker, “GaSb/InGaAs quantum dot–well hybrid structure active regions in solar cells,” Sol. Energy Mater. Sol. Cells 114, 165–171 (2013).
    [CrossRef]
  14. H. Liu, M. J. Steer, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, P. Navaretti, K. M. Groom, M. Hopkinson, and R. A. Hogg, “Long-wavelength light emission and lasing from InAs/GaAs quantum dots covered by a GaAsSb strain-reducing layer,” Appl. Phys. Lett. 86(14), 143108 (2005).
    [CrossRef]
  15. K. Y. Ban, D. Kuciauskas, S. P. Bremner, and C. B. Honsberg, “Observation of band alignment transition in InAs/GaAsSb quantum dots by photoluminescence,” J. Appl. Phys. 111(10), 104302 (2012).
    [CrossRef]
  16. H. Liu, S. Liew, T. Badcock, D. Mowbray, M. Skolnick, S. Ray, T. Choi, K. Groom, B. Stevens, F. Hasullah, C. Jin, M. Hopkinson, and R. Hogg, “p-doped 1.3 m InAs/GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).
  17. H. Liu, I. Sellers, M. Gutierrez, K. Groom, W. Soong, M. Hopkinson, J. David, R. Beanland, T. Badcock, D. Mowbray, and M. Skolnick, “Influences of the spacer layer growth temperature on multilayer InAs/GaAs quantum dot structures,” J. Appl. Phys. 96(4), 1988–1992 (2004).
    [CrossRef]
  18. F. K. Tutu, J. Wu, P. Lam, M. Tang, N. Miyashita, Y. Okada, J. Wilson, R. Allison, and H. Liu, “Antimony mediated growth of high-density InAs quantum dots for photovoltaic cells,” Appl. Phys. Lett. 103(4), 043901 (2013).
    [CrossRef]
  19. W. H. Chang, Y. A. Liao, W. T. Hsu, M. C. Lee, P. C. Chiu, and J. I. Chyi, “Carrier dynamics of type-II InAs/ GaAs quantum dots covered by a thin GaAsSb layer,” Appl. Phys. Lett. 93(3), 033107 (2008).
    [CrossRef]
  20. S. M. Hubbard, C. D. Cress, C. G. Bailey, R. P. Raffaelle, S. G. Bailey, and D. M. Wilt, “Effect of strain compensation on quantum dot enhanced GaAs solar cells,” Appl. Phys. Lett. 92(12), 123512 (2008).
    [CrossRef]
  21. W. S. Liu, H. M. Wu, F. H. Tsao, T. L. Hsu, and J. I. Chyi, “Improving the characteristics of intermediate-band solar cell devices using a vertically aligned InAs/GaAsSb quantum dot structure,” Sol. Energy Mater. Sol. Cells 105, 237–241 (2012).
    [CrossRef]
  22. S. Willis, J. Dimmock, F. Tutu, H. Liu, M. Peinado, H. Assender, A. Watt, and I. Sellers, “Defect mediated extraction in InAs/GaAs quantum dot solar cells,” Sol. Energy Mater. Sol. Cells 102, 142–147 (2012).
    [CrossRef]

2013

S. P. Bremner, K.-Y. Ban, N. N. Faleev, C. B. Honsberg, and D. J. Smith, “Impact of stress relaxation in GaAsSb cladding layers on quantum dot creation in InAs/GaAsSb structures grown on GaAs (001),” J. Appl. Phys. 114(10), 103511 (2013).
[CrossRef]

W. S. Liu, Y. T. Wang, W. Y. Qiu, and C. Fang, “Carrier dynamics of a type-II vertically aligned InAs quantum dot structure with a GaAsSb strain-reducing layer,” Appl. Phys. Express 6(8), 085001 (2013).
[CrossRef]

S. Tomic, “Effect of Sb induced type II alignment on dynamical processes in InAs-/GaAs/GaAsSb quantum dots: Implication to solar cell design,” Appl. Phys. Lett. 103(7), 072112 (2013).
[CrossRef]

R. B. Laghumavarapu, B. L. Liang, Z. S. Bittner, T. S. Navruz, S. M. Hubbard, A. Norman, and D. L. Huffaker, “GaSb/InGaAs quantum dot–well hybrid structure active regions in solar cells,” Sol. Energy Mater. Sol. Cells 114, 165–171 (2013).
[CrossRef]

F. K. Tutu, J. Wu, P. Lam, M. Tang, N. Miyashita, Y. Okada, J. Wilson, R. Allison, and H. Liu, “Antimony mediated growth of high-density InAs quantum dots for photovoltaic cells,” Appl. Phys. Lett. 103(4), 043901 (2013).
[CrossRef]

2012

K. Y. Ban, D. Kuciauskas, S. P. Bremner, and C. B. Honsberg, “Observation of band alignment transition in InAs/GaAsSb quantum dots by photoluminescence,” J. Appl. Phys. 111(10), 104302 (2012).
[CrossRef]

F. K. Tutu, I. R. Sellers, M. G. Peinado, C. E. Pastore, S. M. Willis, A. R. Watt, T. Wang, and H. Y. Liu, “Improved performance of multilayer InAs/GaAs quantum-dot solar cells using a high-growth-temperature GaAs spacer layer,” J. Appl. Phys. 111(4), 046101 (2012).
[CrossRef]

W. S. Liu, H. M. Wu, F. H. Tsao, T. L. Hsu, and J. I. Chyi, “Improving the characteristics of intermediate-band solar cell devices using a vertically aligned InAs/GaAsSb quantum dot structure,” Sol. Energy Mater. Sol. Cells 105, 237–241 (2012).
[CrossRef]

S. Willis, J. Dimmock, F. Tutu, H. Liu, M. Peinado, H. Assender, A. Watt, and I. Sellers, “Defect mediated extraction in InAs/GaAs quantum dot solar cells,” Sol. Energy Mater. Sol. Cells 102, 142–147 (2012).
[CrossRef]

2011

T. Sugaya, Y. Kamikawa, S. Furue, T. Amano, M. Mori, and S. Niki, “Multi-stacked quantum dot solar cells fabricated by intermittent deposition of InGaAs,” Sol. Energy Mater. Sol. Cells 95(1), 163–166 (2011).
[CrossRef]

K. Ban, W. Hong, S. Bremner, S. Dahal, H. McFelea, and C. Honsberg, “Controllability of the subband occupation of InAs quantum dots on a delta-doped GaAsSb barrier,” J. Appl. Phys. 109(1), 014312 (2011).
[CrossRef]

W. S. Liu, H. M. Wu, Y. A. Liao, J. I. Chyi, W. Y. Chen, and T. M. Hsu, “High optical property vertically aligned InAs quantum dot structures with GaAsSb overgrown layers,” J. Cryst. Growth 323(1), 164–166 (2011).
[CrossRef]

2010

G. Jolley, H. Lu, L. Fu, H. Tan, and C. Jagadish, “Electron-hole recombination properties of In0.5Ga0.5As/GaAs quantum dot solar cells and the influence on the open circuit voltage,” Appl. Phys. Lett. 97(12), 123505 (2010).
[CrossRef]

A. Luque and A. Marti, “On the partial filling of the intermediate band in IB solar cells,” IEEE Trans. Electron. Dev. 57(6), 1201–1207 (2010).
[CrossRef]

2008

W. H. Chang, Y. A. Liao, W. T. Hsu, M. C. Lee, P. C. Chiu, and J. I. Chyi, “Carrier dynamics of type-II InAs/ GaAs quantum dots covered by a thin GaAsSb layer,” Appl. Phys. Lett. 93(3), 033107 (2008).
[CrossRef]

S. M. Hubbard, C. D. Cress, C. G. Bailey, R. P. Raffaelle, S. G. Bailey, and D. M. Wilt, “Effect of strain compensation on quantum dot enhanced GaAs solar cells,” Appl. Phys. Lett. 92(12), 123512 (2008).
[CrossRef]

2007

A. Martí, N. López, E. Antolín, E. Cánovas, A. Luque, C. R. Stanley, C. D. Farmer, and P. Díaz, “Emitter degradation in quantum dot intermediate band solar cells,” Appl. Phys. Lett. 90(23), 233510 (2007).
[CrossRef]

2006

H. Liu, S. Liew, T. Badcock, D. Mowbray, M. Skolnick, S. Ray, T. Choi, K. Groom, B. Stevens, F. Hasullah, C. Jin, M. Hopkinson, and R. Hogg, “p-doped 1.3 m InAs/GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).

2005

H. Liu, M. J. Steer, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, P. Navaretti, K. M. Groom, M. Hopkinson, and R. A. Hogg, “Long-wavelength light emission and lasing from InAs/GaAs quantum dots covered by a GaAsSb strain-reducing layer,” Appl. Phys. Lett. 86(14), 143108 (2005).
[CrossRef]

2004

H. Liu, I. Sellers, M. Gutierrez, K. Groom, W. Soong, M. Hopkinson, J. David, R. Beanland, T. Badcock, D. Mowbray, and M. Skolnick, “Influences of the spacer layer growth temperature on multilayer InAs/GaAs quantum dot structures,” J. Appl. Phys. 96(4), 1988–1992 (2004).
[CrossRef]

H. Liu, I. Sellers, T. Badcock, D. Mowbray, M. Skolnick, K. Groom, M. Gutierrez, M. Hopkinson, J. Ng, J. David, and R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high growth temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[CrossRef]

1997

A. Luque and A. Martí, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997).
[CrossRef]

Allison, R.

F. K. Tutu, J. Wu, P. Lam, M. Tang, N. Miyashita, Y. Okada, J. Wilson, R. Allison, and H. Liu, “Antimony mediated growth of high-density InAs quantum dots for photovoltaic cells,” Appl. Phys. Lett. 103(4), 043901 (2013).
[CrossRef]

Amano, T.

T. Sugaya, Y. Kamikawa, S. Furue, T. Amano, M. Mori, and S. Niki, “Multi-stacked quantum dot solar cells fabricated by intermittent deposition of InGaAs,” Sol. Energy Mater. Sol. Cells 95(1), 163–166 (2011).
[CrossRef]

Antolín, E.

A. Martí, N. López, E. Antolín, E. Cánovas, A. Luque, C. R. Stanley, C. D. Farmer, and P. Díaz, “Emitter degradation in quantum dot intermediate band solar cells,” Appl. Phys. Lett. 90(23), 233510 (2007).
[CrossRef]

Assender, H.

S. Willis, J. Dimmock, F. Tutu, H. Liu, M. Peinado, H. Assender, A. Watt, and I. Sellers, “Defect mediated extraction in InAs/GaAs quantum dot solar cells,” Sol. Energy Mater. Sol. Cells 102, 142–147 (2012).
[CrossRef]

Badcock, T.

H. Liu, S. Liew, T. Badcock, D. Mowbray, M. Skolnick, S. Ray, T. Choi, K. Groom, B. Stevens, F. Hasullah, C. Jin, M. Hopkinson, and R. Hogg, “p-doped 1.3 m InAs/GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).

H. Liu, I. Sellers, T. Badcock, D. Mowbray, M. Skolnick, K. Groom, M. Gutierrez, M. Hopkinson, J. Ng, J. David, and R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high growth temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[CrossRef]

H. Liu, I. Sellers, M. Gutierrez, K. Groom, W. Soong, M. Hopkinson, J. David, R. Beanland, T. Badcock, D. Mowbray, and M. Skolnick, “Influences of the spacer layer growth temperature on multilayer InAs/GaAs quantum dot structures,” J. Appl. Phys. 96(4), 1988–1992 (2004).
[CrossRef]

Badcock, T. J.

H. Liu, M. J. Steer, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, P. Navaretti, K. M. Groom, M. Hopkinson, and R. A. Hogg, “Long-wavelength light emission and lasing from InAs/GaAs quantum dots covered by a GaAsSb strain-reducing layer,” Appl. Phys. Lett. 86(14), 143108 (2005).
[CrossRef]

Bailey, C. G.

S. M. Hubbard, C. D. Cress, C. G. Bailey, R. P. Raffaelle, S. G. Bailey, and D. M. Wilt, “Effect of strain compensation on quantum dot enhanced GaAs solar cells,” Appl. Phys. Lett. 92(12), 123512 (2008).
[CrossRef]

Bailey, S. G.

S. M. Hubbard, C. D. Cress, C. G. Bailey, R. P. Raffaelle, S. G. Bailey, and D. M. Wilt, “Effect of strain compensation on quantum dot enhanced GaAs solar cells,” Appl. Phys. Lett. 92(12), 123512 (2008).
[CrossRef]

Ban, K.

K. Ban, W. Hong, S. Bremner, S. Dahal, H. McFelea, and C. Honsberg, “Controllability of the subband occupation of InAs quantum dots on a delta-doped GaAsSb barrier,” J. Appl. Phys. 109(1), 014312 (2011).
[CrossRef]

Ban, K. Y.

K. Y. Ban, D. Kuciauskas, S. P. Bremner, and C. B. Honsberg, “Observation of band alignment transition in InAs/GaAsSb quantum dots by photoluminescence,” J. Appl. Phys. 111(10), 104302 (2012).
[CrossRef]

Ban, K.-Y.

S. P. Bremner, K.-Y. Ban, N. N. Faleev, C. B. Honsberg, and D. J. Smith, “Impact of stress relaxation in GaAsSb cladding layers on quantum dot creation in InAs/GaAsSb structures grown on GaAs (001),” J. Appl. Phys. 114(10), 103511 (2013).
[CrossRef]

Beanland, R.

H. Liu, I. Sellers, T. Badcock, D. Mowbray, M. Skolnick, K. Groom, M. Gutierrez, M. Hopkinson, J. Ng, J. David, and R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high growth temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[CrossRef]

H. Liu, I. Sellers, M. Gutierrez, K. Groom, W. Soong, M. Hopkinson, J. David, R. Beanland, T. Badcock, D. Mowbray, and M. Skolnick, “Influences of the spacer layer growth temperature on multilayer InAs/GaAs quantum dot structures,” J. Appl. Phys. 96(4), 1988–1992 (2004).
[CrossRef]

Bittner, Z. S.

R. B. Laghumavarapu, B. L. Liang, Z. S. Bittner, T. S. Navruz, S. M. Hubbard, A. Norman, and D. L. Huffaker, “GaSb/InGaAs quantum dot–well hybrid structure active regions in solar cells,” Sol. Energy Mater. Sol. Cells 114, 165–171 (2013).
[CrossRef]

Bremner, S.

K. Ban, W. Hong, S. Bremner, S. Dahal, H. McFelea, and C. Honsberg, “Controllability of the subband occupation of InAs quantum dots on a delta-doped GaAsSb barrier,” J. Appl. Phys. 109(1), 014312 (2011).
[CrossRef]

Bremner, S. P.

S. P. Bremner, K.-Y. Ban, N. N. Faleev, C. B. Honsberg, and D. J. Smith, “Impact of stress relaxation in GaAsSb cladding layers on quantum dot creation in InAs/GaAsSb structures grown on GaAs (001),” J. Appl. Phys. 114(10), 103511 (2013).
[CrossRef]

K. Y. Ban, D. Kuciauskas, S. P. Bremner, and C. B. Honsberg, “Observation of band alignment transition in InAs/GaAsSb quantum dots by photoluminescence,” J. Appl. Phys. 111(10), 104302 (2012).
[CrossRef]

Cánovas, E.

A. Martí, N. López, E. Antolín, E. Cánovas, A. Luque, C. R. Stanley, C. D. Farmer, and P. Díaz, “Emitter degradation in quantum dot intermediate band solar cells,” Appl. Phys. Lett. 90(23), 233510 (2007).
[CrossRef]

Chang, W. H.

W. H. Chang, Y. A. Liao, W. T. Hsu, M. C. Lee, P. C. Chiu, and J. I. Chyi, “Carrier dynamics of type-II InAs/ GaAs quantum dots covered by a thin GaAsSb layer,” Appl. Phys. Lett. 93(3), 033107 (2008).
[CrossRef]

Chen, W. Y.

W. S. Liu, H. M. Wu, Y. A. Liao, J. I. Chyi, W. Y. Chen, and T. M. Hsu, “High optical property vertically aligned InAs quantum dot structures with GaAsSb overgrown layers,” J. Cryst. Growth 323(1), 164–166 (2011).
[CrossRef]

Chiu, P. C.

W. H. Chang, Y. A. Liao, W. T. Hsu, M. C. Lee, P. C. Chiu, and J. I. Chyi, “Carrier dynamics of type-II InAs/ GaAs quantum dots covered by a thin GaAsSb layer,” Appl. Phys. Lett. 93(3), 033107 (2008).
[CrossRef]

Choi, T.

H. Liu, S. Liew, T. Badcock, D. Mowbray, M. Skolnick, S. Ray, T. Choi, K. Groom, B. Stevens, F. Hasullah, C. Jin, M. Hopkinson, and R. Hogg, “p-doped 1.3 m InAs/GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).

Chyi, J. I.

W. S. Liu, H. M. Wu, F. H. Tsao, T. L. Hsu, and J. I. Chyi, “Improving the characteristics of intermediate-band solar cell devices using a vertically aligned InAs/GaAsSb quantum dot structure,” Sol. Energy Mater. Sol. Cells 105, 237–241 (2012).
[CrossRef]

W. S. Liu, H. M. Wu, Y. A. Liao, J. I. Chyi, W. Y. Chen, and T. M. Hsu, “High optical property vertically aligned InAs quantum dot structures with GaAsSb overgrown layers,” J. Cryst. Growth 323(1), 164–166 (2011).
[CrossRef]

W. H. Chang, Y. A. Liao, W. T. Hsu, M. C. Lee, P. C. Chiu, and J. I. Chyi, “Carrier dynamics of type-II InAs/ GaAs quantum dots covered by a thin GaAsSb layer,” Appl. Phys. Lett. 93(3), 033107 (2008).
[CrossRef]

Cress, C. D.

S. M. Hubbard, C. D. Cress, C. G. Bailey, R. P. Raffaelle, S. G. Bailey, and D. M. Wilt, “Effect of strain compensation on quantum dot enhanced GaAs solar cells,” Appl. Phys. Lett. 92(12), 123512 (2008).
[CrossRef]

Dahal, S.

K. Ban, W. Hong, S. Bremner, S. Dahal, H. McFelea, and C. Honsberg, “Controllability of the subband occupation of InAs quantum dots on a delta-doped GaAsSb barrier,” J. Appl. Phys. 109(1), 014312 (2011).
[CrossRef]

David, J.

H. Liu, I. Sellers, M. Gutierrez, K. Groom, W. Soong, M. Hopkinson, J. David, R. Beanland, T. Badcock, D. Mowbray, and M. Skolnick, “Influences of the spacer layer growth temperature on multilayer InAs/GaAs quantum dot structures,” J. Appl. Phys. 96(4), 1988–1992 (2004).
[CrossRef]

H. Liu, I. Sellers, T. Badcock, D. Mowbray, M. Skolnick, K. Groom, M. Gutierrez, M. Hopkinson, J. Ng, J. David, and R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high growth temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[CrossRef]

Díaz, P.

A. Martí, N. López, E. Antolín, E. Cánovas, A. Luque, C. R. Stanley, C. D. Farmer, and P. Díaz, “Emitter degradation in quantum dot intermediate band solar cells,” Appl. Phys. Lett. 90(23), 233510 (2007).
[CrossRef]

Dimmock, J.

S. Willis, J. Dimmock, F. Tutu, H. Liu, M. Peinado, H. Assender, A. Watt, and I. Sellers, “Defect mediated extraction in InAs/GaAs quantum dot solar cells,” Sol. Energy Mater. Sol. Cells 102, 142–147 (2012).
[CrossRef]

Faleev, N. N.

S. P. Bremner, K.-Y. Ban, N. N. Faleev, C. B. Honsberg, and D. J. Smith, “Impact of stress relaxation in GaAsSb cladding layers on quantum dot creation in InAs/GaAsSb structures grown on GaAs (001),” J. Appl. Phys. 114(10), 103511 (2013).
[CrossRef]

Fang, C.

W. S. Liu, Y. T. Wang, W. Y. Qiu, and C. Fang, “Carrier dynamics of a type-II vertically aligned InAs quantum dot structure with a GaAsSb strain-reducing layer,” Appl. Phys. Express 6(8), 085001 (2013).
[CrossRef]

Farmer, C. D.

A. Martí, N. López, E. Antolín, E. Cánovas, A. Luque, C. R. Stanley, C. D. Farmer, and P. Díaz, “Emitter degradation in quantum dot intermediate band solar cells,” Appl. Phys. Lett. 90(23), 233510 (2007).
[CrossRef]

Fu, L.

G. Jolley, H. Lu, L. Fu, H. Tan, and C. Jagadish, “Electron-hole recombination properties of In0.5Ga0.5As/GaAs quantum dot solar cells and the influence on the open circuit voltage,” Appl. Phys. Lett. 97(12), 123505 (2010).
[CrossRef]

Furue, S.

T. Sugaya, Y. Kamikawa, S. Furue, T. Amano, M. Mori, and S. Niki, “Multi-stacked quantum dot solar cells fabricated by intermittent deposition of InGaAs,” Sol. Energy Mater. Sol. Cells 95(1), 163–166 (2011).
[CrossRef]

Groom, K.

H. Liu, S. Liew, T. Badcock, D. Mowbray, M. Skolnick, S. Ray, T. Choi, K. Groom, B. Stevens, F. Hasullah, C. Jin, M. Hopkinson, and R. Hogg, “p-doped 1.3 m InAs/GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).

H. Liu, I. Sellers, T. Badcock, D. Mowbray, M. Skolnick, K. Groom, M. Gutierrez, M. Hopkinson, J. Ng, J. David, and R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high growth temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[CrossRef]

H. Liu, I. Sellers, M. Gutierrez, K. Groom, W. Soong, M. Hopkinson, J. David, R. Beanland, T. Badcock, D. Mowbray, and M. Skolnick, “Influences of the spacer layer growth temperature on multilayer InAs/GaAs quantum dot structures,” J. Appl. Phys. 96(4), 1988–1992 (2004).
[CrossRef]

Groom, K. M.

H. Liu, M. J. Steer, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, P. Navaretti, K. M. Groom, M. Hopkinson, and R. A. Hogg, “Long-wavelength light emission and lasing from InAs/GaAs quantum dots covered by a GaAsSb strain-reducing layer,” Appl. Phys. Lett. 86(14), 143108 (2005).
[CrossRef]

Gutierrez, M.

H. Liu, I. Sellers, T. Badcock, D. Mowbray, M. Skolnick, K. Groom, M. Gutierrez, M. Hopkinson, J. Ng, J. David, and R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high growth temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[CrossRef]

H. Liu, I. Sellers, M. Gutierrez, K. Groom, W. Soong, M. Hopkinson, J. David, R. Beanland, T. Badcock, D. Mowbray, and M. Skolnick, “Influences of the spacer layer growth temperature on multilayer InAs/GaAs quantum dot structures,” J. Appl. Phys. 96(4), 1988–1992 (2004).
[CrossRef]

Hasullah, F.

H. Liu, S. Liew, T. Badcock, D. Mowbray, M. Skolnick, S. Ray, T. Choi, K. Groom, B. Stevens, F. Hasullah, C. Jin, M. Hopkinson, and R. Hogg, “p-doped 1.3 m InAs/GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).

Hogg, R.

H. Liu, S. Liew, T. Badcock, D. Mowbray, M. Skolnick, S. Ray, T. Choi, K. Groom, B. Stevens, F. Hasullah, C. Jin, M. Hopkinson, and R. Hogg, “p-doped 1.3 m InAs/GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).

Hogg, R. A.

H. Liu, M. J. Steer, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, P. Navaretti, K. M. Groom, M. Hopkinson, and R. A. Hogg, “Long-wavelength light emission and lasing from InAs/GaAs quantum dots covered by a GaAsSb strain-reducing layer,” Appl. Phys. Lett. 86(14), 143108 (2005).
[CrossRef]

Hong, W.

K. Ban, W. Hong, S. Bremner, S. Dahal, H. McFelea, and C. Honsberg, “Controllability of the subband occupation of InAs quantum dots on a delta-doped GaAsSb barrier,” J. Appl. Phys. 109(1), 014312 (2011).
[CrossRef]

Honsberg, C.

K. Ban, W. Hong, S. Bremner, S. Dahal, H. McFelea, and C. Honsberg, “Controllability of the subband occupation of InAs quantum dots on a delta-doped GaAsSb barrier,” J. Appl. Phys. 109(1), 014312 (2011).
[CrossRef]

Honsberg, C. B.

S. P. Bremner, K.-Y. Ban, N. N. Faleev, C. B. Honsberg, and D. J. Smith, “Impact of stress relaxation in GaAsSb cladding layers on quantum dot creation in InAs/GaAsSb structures grown on GaAs (001),” J. Appl. Phys. 114(10), 103511 (2013).
[CrossRef]

K. Y. Ban, D. Kuciauskas, S. P. Bremner, and C. B. Honsberg, “Observation of band alignment transition in InAs/GaAsSb quantum dots by photoluminescence,” J. Appl. Phys. 111(10), 104302 (2012).
[CrossRef]

Hopkinson, M.

H. Liu, S. Liew, T. Badcock, D. Mowbray, M. Skolnick, S. Ray, T. Choi, K. Groom, B. Stevens, F. Hasullah, C. Jin, M. Hopkinson, and R. Hogg, “p-doped 1.3 m InAs/GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).

H. Liu, M. J. Steer, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, P. Navaretti, K. M. Groom, M. Hopkinson, and R. A. Hogg, “Long-wavelength light emission and lasing from InAs/GaAs quantum dots covered by a GaAsSb strain-reducing layer,” Appl. Phys. Lett. 86(14), 143108 (2005).
[CrossRef]

H. Liu, I. Sellers, T. Badcock, D. Mowbray, M. Skolnick, K. Groom, M. Gutierrez, M. Hopkinson, J. Ng, J. David, and R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high growth temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[CrossRef]

H. Liu, I. Sellers, M. Gutierrez, K. Groom, W. Soong, M. Hopkinson, J. David, R. Beanland, T. Badcock, D. Mowbray, and M. Skolnick, “Influences of the spacer layer growth temperature on multilayer InAs/GaAs quantum dot structures,” J. Appl. Phys. 96(4), 1988–1992 (2004).
[CrossRef]

Hsu, T. L.

W. S. Liu, H. M. Wu, F. H. Tsao, T. L. Hsu, and J. I. Chyi, “Improving the characteristics of intermediate-band solar cell devices using a vertically aligned InAs/GaAsSb quantum dot structure,” Sol. Energy Mater. Sol. Cells 105, 237–241 (2012).
[CrossRef]

Hsu, T. M.

W. S. Liu, H. M. Wu, Y. A. Liao, J. I. Chyi, W. Y. Chen, and T. M. Hsu, “High optical property vertically aligned InAs quantum dot structures with GaAsSb overgrown layers,” J. Cryst. Growth 323(1), 164–166 (2011).
[CrossRef]

Hsu, W. T.

W. H. Chang, Y. A. Liao, W. T. Hsu, M. C. Lee, P. C. Chiu, and J. I. Chyi, “Carrier dynamics of type-II InAs/ GaAs quantum dots covered by a thin GaAsSb layer,” Appl. Phys. Lett. 93(3), 033107 (2008).
[CrossRef]

Hubbard, S. M.

R. B. Laghumavarapu, B. L. Liang, Z. S. Bittner, T. S. Navruz, S. M. Hubbard, A. Norman, and D. L. Huffaker, “GaSb/InGaAs quantum dot–well hybrid structure active regions in solar cells,” Sol. Energy Mater. Sol. Cells 114, 165–171 (2013).
[CrossRef]

S. M. Hubbard, C. D. Cress, C. G. Bailey, R. P. Raffaelle, S. G. Bailey, and D. M. Wilt, “Effect of strain compensation on quantum dot enhanced GaAs solar cells,” Appl. Phys. Lett. 92(12), 123512 (2008).
[CrossRef]

Huffaker, D. L.

R. B. Laghumavarapu, B. L. Liang, Z. S. Bittner, T. S. Navruz, S. M. Hubbard, A. Norman, and D. L. Huffaker, “GaSb/InGaAs quantum dot–well hybrid structure active regions in solar cells,” Sol. Energy Mater. Sol. Cells 114, 165–171 (2013).
[CrossRef]

Jagadish, C.

G. Jolley, H. Lu, L. Fu, H. Tan, and C. Jagadish, “Electron-hole recombination properties of In0.5Ga0.5As/GaAs quantum dot solar cells and the influence on the open circuit voltage,” Appl. Phys. Lett. 97(12), 123505 (2010).
[CrossRef]

Jin, C.

H. Liu, S. Liew, T. Badcock, D. Mowbray, M. Skolnick, S. Ray, T. Choi, K. Groom, B. Stevens, F. Hasullah, C. Jin, M. Hopkinson, and R. Hogg, “p-doped 1.3 m InAs/GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).

Jolley, G.

G. Jolley, H. Lu, L. Fu, H. Tan, and C. Jagadish, “Electron-hole recombination properties of In0.5Ga0.5As/GaAs quantum dot solar cells and the influence on the open circuit voltage,” Appl. Phys. Lett. 97(12), 123505 (2010).
[CrossRef]

Kamikawa, Y.

T. Sugaya, Y. Kamikawa, S. Furue, T. Amano, M. Mori, and S. Niki, “Multi-stacked quantum dot solar cells fabricated by intermittent deposition of InGaAs,” Sol. Energy Mater. Sol. Cells 95(1), 163–166 (2011).
[CrossRef]

Kuciauskas, D.

K. Y. Ban, D. Kuciauskas, S. P. Bremner, and C. B. Honsberg, “Observation of band alignment transition in InAs/GaAsSb quantum dots by photoluminescence,” J. Appl. Phys. 111(10), 104302 (2012).
[CrossRef]

Laghumavarapu, R. B.

R. B. Laghumavarapu, B. L. Liang, Z. S. Bittner, T. S. Navruz, S. M. Hubbard, A. Norman, and D. L. Huffaker, “GaSb/InGaAs quantum dot–well hybrid structure active regions in solar cells,” Sol. Energy Mater. Sol. Cells 114, 165–171 (2013).
[CrossRef]

Lam, P.

F. K. Tutu, J. Wu, P. Lam, M. Tang, N. Miyashita, Y. Okada, J. Wilson, R. Allison, and H. Liu, “Antimony mediated growth of high-density InAs quantum dots for photovoltaic cells,” Appl. Phys. Lett. 103(4), 043901 (2013).
[CrossRef]

Lee, M. C.

W. H. Chang, Y. A. Liao, W. T. Hsu, M. C. Lee, P. C. Chiu, and J. I. Chyi, “Carrier dynamics of type-II InAs/ GaAs quantum dots covered by a thin GaAsSb layer,” Appl. Phys. Lett. 93(3), 033107 (2008).
[CrossRef]

Liang, B. L.

R. B. Laghumavarapu, B. L. Liang, Z. S. Bittner, T. S. Navruz, S. M. Hubbard, A. Norman, and D. L. Huffaker, “GaSb/InGaAs quantum dot–well hybrid structure active regions in solar cells,” Sol. Energy Mater. Sol. Cells 114, 165–171 (2013).
[CrossRef]

Liao, Y. A.

W. S. Liu, H. M. Wu, Y. A. Liao, J. I. Chyi, W. Y. Chen, and T. M. Hsu, “High optical property vertically aligned InAs quantum dot structures with GaAsSb overgrown layers,” J. Cryst. Growth 323(1), 164–166 (2011).
[CrossRef]

W. H. Chang, Y. A. Liao, W. T. Hsu, M. C. Lee, P. C. Chiu, and J. I. Chyi, “Carrier dynamics of type-II InAs/ GaAs quantum dots covered by a thin GaAsSb layer,” Appl. Phys. Lett. 93(3), 033107 (2008).
[CrossRef]

Liew, S.

H. Liu, S. Liew, T. Badcock, D. Mowbray, M. Skolnick, S. Ray, T. Choi, K. Groom, B. Stevens, F. Hasullah, C. Jin, M. Hopkinson, and R. Hogg, “p-doped 1.3 m InAs/GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).

Liu, H.

F. K. Tutu, J. Wu, P. Lam, M. Tang, N. Miyashita, Y. Okada, J. Wilson, R. Allison, and H. Liu, “Antimony mediated growth of high-density InAs quantum dots for photovoltaic cells,” Appl. Phys. Lett. 103(4), 043901 (2013).
[CrossRef]

S. Willis, J. Dimmock, F. Tutu, H. Liu, M. Peinado, H. Assender, A. Watt, and I. Sellers, “Defect mediated extraction in InAs/GaAs quantum dot solar cells,” Sol. Energy Mater. Sol. Cells 102, 142–147 (2012).
[CrossRef]

H. Liu, S. Liew, T. Badcock, D. Mowbray, M. Skolnick, S. Ray, T. Choi, K. Groom, B. Stevens, F. Hasullah, C. Jin, M. Hopkinson, and R. Hogg, “p-doped 1.3 m InAs/GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).

H. Liu, M. J. Steer, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, P. Navaretti, K. M. Groom, M. Hopkinson, and R. A. Hogg, “Long-wavelength light emission and lasing from InAs/GaAs quantum dots covered by a GaAsSb strain-reducing layer,” Appl. Phys. Lett. 86(14), 143108 (2005).
[CrossRef]

H. Liu, I. Sellers, T. Badcock, D. Mowbray, M. Skolnick, K. Groom, M. Gutierrez, M. Hopkinson, J. Ng, J. David, and R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high growth temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[CrossRef]

H. Liu, I. Sellers, M. Gutierrez, K. Groom, W. Soong, M. Hopkinson, J. David, R. Beanland, T. Badcock, D. Mowbray, and M. Skolnick, “Influences of the spacer layer growth temperature on multilayer InAs/GaAs quantum dot structures,” J. Appl. Phys. 96(4), 1988–1992 (2004).
[CrossRef]

Liu, H. Y.

F. K. Tutu, I. R. Sellers, M. G. Peinado, C. E. Pastore, S. M. Willis, A. R. Watt, T. Wang, and H. Y. Liu, “Improved performance of multilayer InAs/GaAs quantum-dot solar cells using a high-growth-temperature GaAs spacer layer,” J. Appl. Phys. 111(4), 046101 (2012).
[CrossRef]

Liu, W. S.

W. S. Liu, Y. T. Wang, W. Y. Qiu, and C. Fang, “Carrier dynamics of a type-II vertically aligned InAs quantum dot structure with a GaAsSb strain-reducing layer,” Appl. Phys. Express 6(8), 085001 (2013).
[CrossRef]

W. S. Liu, H. M. Wu, F. H. Tsao, T. L. Hsu, and J. I. Chyi, “Improving the characteristics of intermediate-band solar cell devices using a vertically aligned InAs/GaAsSb quantum dot structure,” Sol. Energy Mater. Sol. Cells 105, 237–241 (2012).
[CrossRef]

W. S. Liu, H. M. Wu, Y. A. Liao, J. I. Chyi, W. Y. Chen, and T. M. Hsu, “High optical property vertically aligned InAs quantum dot structures with GaAsSb overgrown layers,” J. Cryst. Growth 323(1), 164–166 (2011).
[CrossRef]

López, N.

A. Martí, N. López, E. Antolín, E. Cánovas, A. Luque, C. R. Stanley, C. D. Farmer, and P. Díaz, “Emitter degradation in quantum dot intermediate band solar cells,” Appl. Phys. Lett. 90(23), 233510 (2007).
[CrossRef]

Lu, H.

G. Jolley, H. Lu, L. Fu, H. Tan, and C. Jagadish, “Electron-hole recombination properties of In0.5Ga0.5As/GaAs quantum dot solar cells and the influence on the open circuit voltage,” Appl. Phys. Lett. 97(12), 123505 (2010).
[CrossRef]

Luque, A.

A. Luque and A. Marti, “On the partial filling of the intermediate band in IB solar cells,” IEEE Trans. Electron. Dev. 57(6), 1201–1207 (2010).
[CrossRef]

A. Martí, N. López, E. Antolín, E. Cánovas, A. Luque, C. R. Stanley, C. D. Farmer, and P. Díaz, “Emitter degradation in quantum dot intermediate band solar cells,” Appl. Phys. Lett. 90(23), 233510 (2007).
[CrossRef]

A. Luque and A. Martí, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997).
[CrossRef]

Marti, A.

A. Luque and A. Marti, “On the partial filling of the intermediate band in IB solar cells,” IEEE Trans. Electron. Dev. 57(6), 1201–1207 (2010).
[CrossRef]

Martí, A.

A. Martí, N. López, E. Antolín, E. Cánovas, A. Luque, C. R. Stanley, C. D. Farmer, and P. Díaz, “Emitter degradation in quantum dot intermediate band solar cells,” Appl. Phys. Lett. 90(23), 233510 (2007).
[CrossRef]

A. Luque and A. Martí, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997).
[CrossRef]

McFelea, H.

K. Ban, W. Hong, S. Bremner, S. Dahal, H. McFelea, and C. Honsberg, “Controllability of the subband occupation of InAs quantum dots on a delta-doped GaAsSb barrier,” J. Appl. Phys. 109(1), 014312 (2011).
[CrossRef]

Miyashita, N.

F. K. Tutu, J. Wu, P. Lam, M. Tang, N. Miyashita, Y. Okada, J. Wilson, R. Allison, and H. Liu, “Antimony mediated growth of high-density InAs quantum dots for photovoltaic cells,” Appl. Phys. Lett. 103(4), 043901 (2013).
[CrossRef]

Mori, M.

T. Sugaya, Y. Kamikawa, S. Furue, T. Amano, M. Mori, and S. Niki, “Multi-stacked quantum dot solar cells fabricated by intermittent deposition of InGaAs,” Sol. Energy Mater. Sol. Cells 95(1), 163–166 (2011).
[CrossRef]

Mowbray, D.

H. Liu, S. Liew, T. Badcock, D. Mowbray, M. Skolnick, S. Ray, T. Choi, K. Groom, B. Stevens, F. Hasullah, C. Jin, M. Hopkinson, and R. Hogg, “p-doped 1.3 m InAs/GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).

H. Liu, I. Sellers, M. Gutierrez, K. Groom, W. Soong, M. Hopkinson, J. David, R. Beanland, T. Badcock, D. Mowbray, and M. Skolnick, “Influences of the spacer layer growth temperature on multilayer InAs/GaAs quantum dot structures,” J. Appl. Phys. 96(4), 1988–1992 (2004).
[CrossRef]

H. Liu, I. Sellers, T. Badcock, D. Mowbray, M. Skolnick, K. Groom, M. Gutierrez, M. Hopkinson, J. Ng, J. David, and R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high growth temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[CrossRef]

Mowbray, D. J.

H. Liu, M. J. Steer, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, P. Navaretti, K. M. Groom, M. Hopkinson, and R. A. Hogg, “Long-wavelength light emission and lasing from InAs/GaAs quantum dots covered by a GaAsSb strain-reducing layer,” Appl. Phys. Lett. 86(14), 143108 (2005).
[CrossRef]

Navaretti, P.

H. Liu, M. J. Steer, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, P. Navaretti, K. M. Groom, M. Hopkinson, and R. A. Hogg, “Long-wavelength light emission and lasing from InAs/GaAs quantum dots covered by a GaAsSb strain-reducing layer,” Appl. Phys. Lett. 86(14), 143108 (2005).
[CrossRef]

Navruz, T. S.

R. B. Laghumavarapu, B. L. Liang, Z. S. Bittner, T. S. Navruz, S. M. Hubbard, A. Norman, and D. L. Huffaker, “GaSb/InGaAs quantum dot–well hybrid structure active regions in solar cells,” Sol. Energy Mater. Sol. Cells 114, 165–171 (2013).
[CrossRef]

Ng, J.

H. Liu, I. Sellers, T. Badcock, D. Mowbray, M. Skolnick, K. Groom, M. Gutierrez, M. Hopkinson, J. Ng, J. David, and R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high growth temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[CrossRef]

Niki, S.

T. Sugaya, Y. Kamikawa, S. Furue, T. Amano, M. Mori, and S. Niki, “Multi-stacked quantum dot solar cells fabricated by intermittent deposition of InGaAs,” Sol. Energy Mater. Sol. Cells 95(1), 163–166 (2011).
[CrossRef]

Norman, A.

R. B. Laghumavarapu, B. L. Liang, Z. S. Bittner, T. S. Navruz, S. M. Hubbard, A. Norman, and D. L. Huffaker, “GaSb/InGaAs quantum dot–well hybrid structure active regions in solar cells,” Sol. Energy Mater. Sol. Cells 114, 165–171 (2013).
[CrossRef]

Okada, Y.

F. K. Tutu, J. Wu, P. Lam, M. Tang, N. Miyashita, Y. Okada, J. Wilson, R. Allison, and H. Liu, “Antimony mediated growth of high-density InAs quantum dots for photovoltaic cells,” Appl. Phys. Lett. 103(4), 043901 (2013).
[CrossRef]

Pastore, C. E.

F. K. Tutu, I. R. Sellers, M. G. Peinado, C. E. Pastore, S. M. Willis, A. R. Watt, T. Wang, and H. Y. Liu, “Improved performance of multilayer InAs/GaAs quantum-dot solar cells using a high-growth-temperature GaAs spacer layer,” J. Appl. Phys. 111(4), 046101 (2012).
[CrossRef]

Peinado, M.

S. Willis, J. Dimmock, F. Tutu, H. Liu, M. Peinado, H. Assender, A. Watt, and I. Sellers, “Defect mediated extraction in InAs/GaAs quantum dot solar cells,” Sol. Energy Mater. Sol. Cells 102, 142–147 (2012).
[CrossRef]

Peinado, M. G.

F. K. Tutu, I. R. Sellers, M. G. Peinado, C. E. Pastore, S. M. Willis, A. R. Watt, T. Wang, and H. Y. Liu, “Improved performance of multilayer InAs/GaAs quantum-dot solar cells using a high-growth-temperature GaAs spacer layer,” J. Appl. Phys. 111(4), 046101 (2012).
[CrossRef]

Qiu, W. Y.

W. S. Liu, Y. T. Wang, W. Y. Qiu, and C. Fang, “Carrier dynamics of a type-II vertically aligned InAs quantum dot structure with a GaAsSb strain-reducing layer,” Appl. Phys. Express 6(8), 085001 (2013).
[CrossRef]

Raffaelle, R. P.

S. M. Hubbard, C. D. Cress, C. G. Bailey, R. P. Raffaelle, S. G. Bailey, and D. M. Wilt, “Effect of strain compensation on quantum dot enhanced GaAs solar cells,” Appl. Phys. Lett. 92(12), 123512 (2008).
[CrossRef]

Ray, S.

H. Liu, S. Liew, T. Badcock, D. Mowbray, M. Skolnick, S. Ray, T. Choi, K. Groom, B. Stevens, F. Hasullah, C. Jin, M. Hopkinson, and R. Hogg, “p-doped 1.3 m InAs/GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).

Sellers, I.

S. Willis, J. Dimmock, F. Tutu, H. Liu, M. Peinado, H. Assender, A. Watt, and I. Sellers, “Defect mediated extraction in InAs/GaAs quantum dot solar cells,” Sol. Energy Mater. Sol. Cells 102, 142–147 (2012).
[CrossRef]

H. Liu, I. Sellers, T. Badcock, D. Mowbray, M. Skolnick, K. Groom, M. Gutierrez, M. Hopkinson, J. Ng, J. David, and R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high growth temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[CrossRef]

H. Liu, I. Sellers, M. Gutierrez, K. Groom, W. Soong, M. Hopkinson, J. David, R. Beanland, T. Badcock, D. Mowbray, and M. Skolnick, “Influences of the spacer layer growth temperature on multilayer InAs/GaAs quantum dot structures,” J. Appl. Phys. 96(4), 1988–1992 (2004).
[CrossRef]

Sellers, I. R.

F. K. Tutu, I. R. Sellers, M. G. Peinado, C. E. Pastore, S. M. Willis, A. R. Watt, T. Wang, and H. Y. Liu, “Improved performance of multilayer InAs/GaAs quantum-dot solar cells using a high-growth-temperature GaAs spacer layer,” J. Appl. Phys. 111(4), 046101 (2012).
[CrossRef]

Skolnick, M.

H. Liu, S. Liew, T. Badcock, D. Mowbray, M. Skolnick, S. Ray, T. Choi, K. Groom, B. Stevens, F. Hasullah, C. Jin, M. Hopkinson, and R. Hogg, “p-doped 1.3 m InAs/GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).

H. Liu, I. Sellers, M. Gutierrez, K. Groom, W. Soong, M. Hopkinson, J. David, R. Beanland, T. Badcock, D. Mowbray, and M. Skolnick, “Influences of the spacer layer growth temperature on multilayer InAs/GaAs quantum dot structures,” J. Appl. Phys. 96(4), 1988–1992 (2004).
[CrossRef]

H. Liu, I. Sellers, T. Badcock, D. Mowbray, M. Skolnick, K. Groom, M. Gutierrez, M. Hopkinson, J. Ng, J. David, and R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high growth temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[CrossRef]

Skolnick, M. S.

H. Liu, M. J. Steer, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, P. Navaretti, K. M. Groom, M. Hopkinson, and R. A. Hogg, “Long-wavelength light emission and lasing from InAs/GaAs quantum dots covered by a GaAsSb strain-reducing layer,” Appl. Phys. Lett. 86(14), 143108 (2005).
[CrossRef]

Smith, D. J.

S. P. Bremner, K.-Y. Ban, N. N. Faleev, C. B. Honsberg, and D. J. Smith, “Impact of stress relaxation in GaAsSb cladding layers on quantum dot creation in InAs/GaAsSb structures grown on GaAs (001),” J. Appl. Phys. 114(10), 103511 (2013).
[CrossRef]

Soong, W.

H. Liu, I. Sellers, M. Gutierrez, K. Groom, W. Soong, M. Hopkinson, J. David, R. Beanland, T. Badcock, D. Mowbray, and M. Skolnick, “Influences of the spacer layer growth temperature on multilayer InAs/GaAs quantum dot structures,” J. Appl. Phys. 96(4), 1988–1992 (2004).
[CrossRef]

Stanley, C. R.

A. Martí, N. López, E. Antolín, E. Cánovas, A. Luque, C. R. Stanley, C. D. Farmer, and P. Díaz, “Emitter degradation in quantum dot intermediate band solar cells,” Appl. Phys. Lett. 90(23), 233510 (2007).
[CrossRef]

Steer, M. J.

H. Liu, M. J. Steer, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, P. Navaretti, K. M. Groom, M. Hopkinson, and R. A. Hogg, “Long-wavelength light emission and lasing from InAs/GaAs quantum dots covered by a GaAsSb strain-reducing layer,” Appl. Phys. Lett. 86(14), 143108 (2005).
[CrossRef]

Stevens, B.

H. Liu, S. Liew, T. Badcock, D. Mowbray, M. Skolnick, S. Ray, T. Choi, K. Groom, B. Stevens, F. Hasullah, C. Jin, M. Hopkinson, and R. Hogg, “p-doped 1.3 m InAs/GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).

Sugaya, T.

T. Sugaya, Y. Kamikawa, S. Furue, T. Amano, M. Mori, and S. Niki, “Multi-stacked quantum dot solar cells fabricated by intermittent deposition of InGaAs,” Sol. Energy Mater. Sol. Cells 95(1), 163–166 (2011).
[CrossRef]

Tan, H.

G. Jolley, H. Lu, L. Fu, H. Tan, and C. Jagadish, “Electron-hole recombination properties of In0.5Ga0.5As/GaAs quantum dot solar cells and the influence on the open circuit voltage,” Appl. Phys. Lett. 97(12), 123505 (2010).
[CrossRef]

Tang, M.

F. K. Tutu, J. Wu, P. Lam, M. Tang, N. Miyashita, Y. Okada, J. Wilson, R. Allison, and H. Liu, “Antimony mediated growth of high-density InAs quantum dots for photovoltaic cells,” Appl. Phys. Lett. 103(4), 043901 (2013).
[CrossRef]

Tomic, S.

S. Tomic, “Effect of Sb induced type II alignment on dynamical processes in InAs-/GaAs/GaAsSb quantum dots: Implication to solar cell design,” Appl. Phys. Lett. 103(7), 072112 (2013).
[CrossRef]

Tsao, F. H.

W. S. Liu, H. M. Wu, F. H. Tsao, T. L. Hsu, and J. I. Chyi, “Improving the characteristics of intermediate-band solar cell devices using a vertically aligned InAs/GaAsSb quantum dot structure,” Sol. Energy Mater. Sol. Cells 105, 237–241 (2012).
[CrossRef]

Tutu, F.

S. Willis, J. Dimmock, F. Tutu, H. Liu, M. Peinado, H. Assender, A. Watt, and I. Sellers, “Defect mediated extraction in InAs/GaAs quantum dot solar cells,” Sol. Energy Mater. Sol. Cells 102, 142–147 (2012).
[CrossRef]

Tutu, F. K.

F. K. Tutu, J. Wu, P. Lam, M. Tang, N. Miyashita, Y. Okada, J. Wilson, R. Allison, and H. Liu, “Antimony mediated growth of high-density InAs quantum dots for photovoltaic cells,” Appl. Phys. Lett. 103(4), 043901 (2013).
[CrossRef]

F. K. Tutu, I. R. Sellers, M. G. Peinado, C. E. Pastore, S. M. Willis, A. R. Watt, T. Wang, and H. Y. Liu, “Improved performance of multilayer InAs/GaAs quantum-dot solar cells using a high-growth-temperature GaAs spacer layer,” J. Appl. Phys. 111(4), 046101 (2012).
[CrossRef]

Wang, T.

F. K. Tutu, I. R. Sellers, M. G. Peinado, C. E. Pastore, S. M. Willis, A. R. Watt, T. Wang, and H. Y. Liu, “Improved performance of multilayer InAs/GaAs quantum-dot solar cells using a high-growth-temperature GaAs spacer layer,” J. Appl. Phys. 111(4), 046101 (2012).
[CrossRef]

Wang, Y. T.

W. S. Liu, Y. T. Wang, W. Y. Qiu, and C. Fang, “Carrier dynamics of a type-II vertically aligned InAs quantum dot structure with a GaAsSb strain-reducing layer,” Appl. Phys. Express 6(8), 085001 (2013).
[CrossRef]

Watt, A.

S. Willis, J. Dimmock, F. Tutu, H. Liu, M. Peinado, H. Assender, A. Watt, and I. Sellers, “Defect mediated extraction in InAs/GaAs quantum dot solar cells,” Sol. Energy Mater. Sol. Cells 102, 142–147 (2012).
[CrossRef]

Watt, A. R.

F. K. Tutu, I. R. Sellers, M. G. Peinado, C. E. Pastore, S. M. Willis, A. R. Watt, T. Wang, and H. Y. Liu, “Improved performance of multilayer InAs/GaAs quantum-dot solar cells using a high-growth-temperature GaAs spacer layer,” J. Appl. Phys. 111(4), 046101 (2012).
[CrossRef]

Willis, S.

S. Willis, J. Dimmock, F. Tutu, H. Liu, M. Peinado, H. Assender, A. Watt, and I. Sellers, “Defect mediated extraction in InAs/GaAs quantum dot solar cells,” Sol. Energy Mater. Sol. Cells 102, 142–147 (2012).
[CrossRef]

Willis, S. M.

F. K. Tutu, I. R. Sellers, M. G. Peinado, C. E. Pastore, S. M. Willis, A. R. Watt, T. Wang, and H. Y. Liu, “Improved performance of multilayer InAs/GaAs quantum-dot solar cells using a high-growth-temperature GaAs spacer layer,” J. Appl. Phys. 111(4), 046101 (2012).
[CrossRef]

Wilson, J.

F. K. Tutu, J. Wu, P. Lam, M. Tang, N. Miyashita, Y. Okada, J. Wilson, R. Allison, and H. Liu, “Antimony mediated growth of high-density InAs quantum dots for photovoltaic cells,” Appl. Phys. Lett. 103(4), 043901 (2013).
[CrossRef]

Wilt, D. M.

S. M. Hubbard, C. D. Cress, C. G. Bailey, R. P. Raffaelle, S. G. Bailey, and D. M. Wilt, “Effect of strain compensation on quantum dot enhanced GaAs solar cells,” Appl. Phys. Lett. 92(12), 123512 (2008).
[CrossRef]

Wu, H. M.

W. S. Liu, H. M. Wu, F. H. Tsao, T. L. Hsu, and J. I. Chyi, “Improving the characteristics of intermediate-band solar cell devices using a vertically aligned InAs/GaAsSb quantum dot structure,” Sol. Energy Mater. Sol. Cells 105, 237–241 (2012).
[CrossRef]

W. S. Liu, H. M. Wu, Y. A. Liao, J. I. Chyi, W. Y. Chen, and T. M. Hsu, “High optical property vertically aligned InAs quantum dot structures with GaAsSb overgrown layers,” J. Cryst. Growth 323(1), 164–166 (2011).
[CrossRef]

Wu, J.

F. K. Tutu, J. Wu, P. Lam, M. Tang, N. Miyashita, Y. Okada, J. Wilson, R. Allison, and H. Liu, “Antimony mediated growth of high-density InAs quantum dots for photovoltaic cells,” Appl. Phys. Lett. 103(4), 043901 (2013).
[CrossRef]

Appl. Phys. Express

W. S. Liu, Y. T. Wang, W. Y. Qiu, and C. Fang, “Carrier dynamics of a type-II vertically aligned InAs quantum dot structure with a GaAsSb strain-reducing layer,” Appl. Phys. Express 6(8), 085001 (2013).
[CrossRef]

Appl. Phys. Lett.

S. Tomic, “Effect of Sb induced type II alignment on dynamical processes in InAs-/GaAs/GaAsSb quantum dots: Implication to solar cell design,” Appl. Phys. Lett. 103(7), 072112 (2013).
[CrossRef]

H. Liu, M. J. Steer, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, P. Navaretti, K. M. Groom, M. Hopkinson, and R. A. Hogg, “Long-wavelength light emission and lasing from InAs/GaAs quantum dots covered by a GaAsSb strain-reducing layer,” Appl. Phys. Lett. 86(14), 143108 (2005).
[CrossRef]

F. K. Tutu, J. Wu, P. Lam, M. Tang, N. Miyashita, Y. Okada, J. Wilson, R. Allison, and H. Liu, “Antimony mediated growth of high-density InAs quantum dots for photovoltaic cells,” Appl. Phys. Lett. 103(4), 043901 (2013).
[CrossRef]

W. H. Chang, Y. A. Liao, W. T. Hsu, M. C. Lee, P. C. Chiu, and J. I. Chyi, “Carrier dynamics of type-II InAs/ GaAs quantum dots covered by a thin GaAsSb layer,” Appl. Phys. Lett. 93(3), 033107 (2008).
[CrossRef]

S. M. Hubbard, C. D. Cress, C. G. Bailey, R. P. Raffaelle, S. G. Bailey, and D. M. Wilt, “Effect of strain compensation on quantum dot enhanced GaAs solar cells,” Appl. Phys. Lett. 92(12), 123512 (2008).
[CrossRef]

G. Jolley, H. Lu, L. Fu, H. Tan, and C. Jagadish, “Electron-hole recombination properties of In0.5Ga0.5As/GaAs quantum dot solar cells and the influence on the open circuit voltage,” Appl. Phys. Lett. 97(12), 123505 (2010).
[CrossRef]

A. Martí, N. López, E. Antolín, E. Cánovas, A. Luque, C. R. Stanley, C. D. Farmer, and P. Díaz, “Emitter degradation in quantum dot intermediate band solar cells,” Appl. Phys. Lett. 90(23), 233510 (2007).
[CrossRef]

H. Liu, I. Sellers, T. Badcock, D. Mowbray, M. Skolnick, K. Groom, M. Gutierrez, M. Hopkinson, J. Ng, J. David, and R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high growth temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[CrossRef]

H. Liu, S. Liew, T. Badcock, D. Mowbray, M. Skolnick, S. Ray, T. Choi, K. Groom, B. Stevens, F. Hasullah, C. Jin, M. Hopkinson, and R. Hogg, “p-doped 1.3 m InAs/GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).

IEEE Trans. Electron. Dev.

A. Luque and A. Marti, “On the partial filling of the intermediate band in IB solar cells,” IEEE Trans. Electron. Dev. 57(6), 1201–1207 (2010).
[CrossRef]

J. Appl. Phys.

F. K. Tutu, I. R. Sellers, M. G. Peinado, C. E. Pastore, S. M. Willis, A. R. Watt, T. Wang, and H. Y. Liu, “Improved performance of multilayer InAs/GaAs quantum-dot solar cells using a high-growth-temperature GaAs spacer layer,” J. Appl. Phys. 111(4), 046101 (2012).
[CrossRef]

K. Ban, W. Hong, S. Bremner, S. Dahal, H. McFelea, and C. Honsberg, “Controllability of the subband occupation of InAs quantum dots on a delta-doped GaAsSb barrier,” J. Appl. Phys. 109(1), 014312 (2011).
[CrossRef]

S. P. Bremner, K.-Y. Ban, N. N. Faleev, C. B. Honsberg, and D. J. Smith, “Impact of stress relaxation in GaAsSb cladding layers on quantum dot creation in InAs/GaAsSb structures grown on GaAs (001),” J. Appl. Phys. 114(10), 103511 (2013).
[CrossRef]

K. Y. Ban, D. Kuciauskas, S. P. Bremner, and C. B. Honsberg, “Observation of band alignment transition in InAs/GaAsSb quantum dots by photoluminescence,” J. Appl. Phys. 111(10), 104302 (2012).
[CrossRef]

H. Liu, I. Sellers, M. Gutierrez, K. Groom, W. Soong, M. Hopkinson, J. David, R. Beanland, T. Badcock, D. Mowbray, and M. Skolnick, “Influences of the spacer layer growth temperature on multilayer InAs/GaAs quantum dot structures,” J. Appl. Phys. 96(4), 1988–1992 (2004).
[CrossRef]

J. Cryst. Growth

W. S. Liu, H. M. Wu, Y. A. Liao, J. I. Chyi, W. Y. Chen, and T. M. Hsu, “High optical property vertically aligned InAs quantum dot structures with GaAsSb overgrown layers,” J. Cryst. Growth 323(1), 164–166 (2011).
[CrossRef]

Phys. Rev. Lett.

A. Luque and A. Martí, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997).
[CrossRef]

Sol. Energy Mater. Sol. Cells

T. Sugaya, Y. Kamikawa, S. Furue, T. Amano, M. Mori, and S. Niki, “Multi-stacked quantum dot solar cells fabricated by intermittent deposition of InGaAs,” Sol. Energy Mater. Sol. Cells 95(1), 163–166 (2011).
[CrossRef]

R. B. Laghumavarapu, B. L. Liang, Z. S. Bittner, T. S. Navruz, S. M. Hubbard, A. Norman, and D. L. Huffaker, “GaSb/InGaAs quantum dot–well hybrid structure active regions in solar cells,” Sol. Energy Mater. Sol. Cells 114, 165–171 (2013).
[CrossRef]

W. S. Liu, H. M. Wu, F. H. Tsao, T. L. Hsu, and J. I. Chyi, “Improving the characteristics of intermediate-band solar cell devices using a vertically aligned InAs/GaAsSb quantum dot structure,” Sol. Energy Mater. Sol. Cells 105, 237–241 (2012).
[CrossRef]

S. Willis, J. Dimmock, F. Tutu, H. Liu, M. Peinado, H. Assender, A. Watt, and I. Sellers, “Defect mediated extraction in InAs/GaAs quantum dot solar cells,” Sol. Energy Mater. Sol. Cells 102, 142–147 (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

AFM images (1 μm x 1 μm) of InAs QDs grown on a GaAs1-xSbx QW with different Sb composition (a) x = 10%, (b) x = 14%, (c) x = 17%, and (d) x = 21%.

Fig. 2
Fig. 2

Integrated photoluminescence spectra of the GaAs/GaAs1-xSbx QW/InAs QDs vs. temperature.

Fig. 3
Fig. 3

Plot showing the shift of photoluminescence (PL) peak energy with increasing a) temperature and b) laser excitation power for GaAs/GaAs1-xSbx QW/InAs QDs.

Fig. 4
Fig. 4

J-V curves for the GaAs/GaAs1-xSbx QW/InAs QDs SCs under one sun AM 1.5G illumination.

Fig. 5
Fig. 5

External quantum efficiency spectra for the GaAs/GaAs1-xSbx QW/ InAs QD solar cells.

Tables (1)

Tables Icon

Table 1 Short-circuit Current Density (JSC), Open-circuit Voltage (VOC), Fill Factor (FF) and Efficiency (η) Values for GaAs/GaAs1-xSbx QW/InAs QD SCs Extracted from Fig. 4

Metrics