Abstract

Compared with conventionally grown thin InGaN wells, thick InGaN wells with digitally grown InN/GaN exhibit superior optical properties. The activation energy (48 meV) of thick InGaN wells (generated by digital InN/GaN growth from temperature-dependent integrated photoluminescence intensity) is larger than the activation energy (25 meV) of conventionally grown thin InGaN wells. Moreover, thick InGaN wells with digitally grown InN/GaN exhibit a smaller σ value (the degree of localization effects) of 19 meV than that of conventionally grown thin InGaN wells (23 meV). Compared with green light-emitting diodes (LEDs) with conventional thin InGaN wells, the improvement in 20-A/cm2 output power for LEDs containing thick InGaN wells with digitally grown InN/GaN is approximately 23%.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGan/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64(13), 1687–1689 (1994).
    [CrossRef]
  2. S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu, and U. H. Liaw, “InGaN-GaN multiquantum-well blue and green light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8(2), 278–283 (2002).
    [CrossRef]
  3. S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen, and J. M. Tsai, “400-nm InGaN-GaN and InGaN-AlGaN multiquantum well light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8(4), 744–748 (2002).
    [CrossRef]
  4. S. Nakamura, N. Senoh, N. Iwasa, and S. I. Nagahama, “High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures,” Jpn. J. Appl. Phys. Part 2 34(7A), L797–L799 (1995).
  5. T. Mukai, S. Nagahama, M. Sano, T. Yanamoto, D. Morita, T. Mitani, Y. Narukawa, S. Yamamoto, I. Niki, M. Yamada, S. Sonobe, S. Shioji, K. Deguchi, T. Naitou, H. Tamaki, Y. Murazaki, and M. Kameshima, “Recent progress of nitride-based light emitting devices,” Phys. Status Solidi A 200(1), 52–57 (2003).
    [CrossRef]
  6. J. K. Kim, T. Gessmann, E. F. Schubert, J. Q. Xi, H. Luo, J. Cho, C. Sone, and Y. Park, “GaInN light-emitting diode with conductive omnidirectional reflector having a low-refractive-index indium-tin oxide layer,” Appl. Phys. Lett. 88(1), 013501 (2006).
    [CrossRef]
  7. Y.-L. Li, E. F. Schubert, J. W. Graff, A. Osinsky, and W. F. Schaff, “Low-resistance ohmic contacts to p-type GaN,” Appl. Phys. Lett. 76(19), 2728–2730 (2000).
    [CrossRef]
  8. M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” IEEE J. Display Technol. 3(2), 160–175 (2007).
    [CrossRef]
  9. J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photonics Rev. 1(4), 307–333 (2007).
    [CrossRef]
  10. X. H. Wu, C. R. Elsass, A. Abare, M. Mack, S. Keller, P. M. Petroff, S. P. DenBaars, J. S. Speck, and S. J. Rosner, “Structural origin of V-defects and correlation with localized excitonic centers in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 72(6), 692–694 (1998).
    [CrossRef]
  11. H. K. Cho, J. Y. Lee, G. M. Yang, and C. S. Kim, “Formation mechanism of V defects in the InGaN/GaN multiple quantum wells grown on GaN layers with low threading dislocation density,” Appl. Phys. Lett. 79(2), 215–217 (2001).
    [CrossRef]
  12. N. Sharma, P. Thomas, D. Tricker, and C. Humphreys, “Chemical mapping and formation of V-defects in InGaN multiple quantum wells,” Appl. Phys. Lett. 77(9), 1274–1277 (2000).
    [CrossRef]
  13. C. J. Sun, M. Zubair Anwar, Q. Chen, J. W. Yang, M. Asif Khan, M. S. Shur, A. D. Bykhovski, Z. Liliental-Weber, C. Kisielowski, M. Smith, J. Y. Lin, and H. X. Xiang, “Quantum shift of band-edge stimulated emission in InGaN–GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 70(22), 2978–2980 (1997).
    [CrossRef]
  14. I. H. Kim, H. S. Park, Y. J. Park, and T. Kim, “Formation of V-shaped pits in InGaN/GaN multiquantum wells and bulk InGaN films,” Appl. Phys. Lett. 73(12), 1634–1636 (1998).
    [CrossRef]
  15. Y. Chen, T. Takeuchi, H. Amano, I. Akasaki, N. Yamada, Y. Kaneko, and S. Y. Wang, “Pit formation in GaInN quantum wells,” Appl. Phys. Lett. 72(6), 710–712 (1998).
    [CrossRef]
  16. S. J. Leem, M. H. Kim, J. Shin, Y. Choi, and J. Jeong, “The effects of In flow during growth interruption on the optical properties of InGaN multiple quantum wells grown by low pressure metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys. Part 2 40(4B), L371–L373 (2001).
  17. M. S. Kumar, J. Y. Park, Y. S. Lee, S. J. Chung, C.-H. Hong, and E.-K. Suh, “Improved internal quantum efficiency of green emitting InGaN/GaN multiple quantum wells by In preflow for InGaN well growth,” Jpn. J. Appl. Phys. 47(2), 839–842 (2008).
    [CrossRef]
  18. H. C. Lin, R. S. Lin, and J. I. Chyi, “Enhancing the quantum efficiency of InGaN green light-emitting diodes by trimethylindium treatment,” Appl. Phys. Lett. 92(16), 161113 (2008).
    [CrossRef]
  19. Y. J. Lee, Y. C. Chen, C. J. Lee, C. M. Cheng, S. W. Chen, and T. C. Lu, “Stable temperature characteristics and suppression of efficiency droop in InGaN Green light-emitting diodes using pre-TMIn flow treatment,” IEEE Photonics Technol. Lett. 22(17), 1279–1281 (2010).
    [CrossRef]
  20. S. W. Feng, C. Y. Tsai, H. C. Wang, H. C. Lin, and J. I. Chyi, “Optical properties of InGaN/GaN multiple quantum wells with trimethylindium treatment during growth interruption,” J. Cryst. Growth 325(1), 41–45 (2011).
    [CrossRef]
  21. J. P. Zhang, E. Kuokstis, Q. Fareed, H. Wang, J. W. Yang, G. Simin, M. Asif Khan, R. Gaska, and M. S. Shur, “Pulsed atomic layer epitaxy of quaternary AlInGaN layers,” Appl. Phys. Lett. 79(7), 925–927 (2001).
    [CrossRef]
  22. S. Choi, H. J. Kim, J.-H. Ryou, and R. D. Dupuis, “Digitally alloyed modulated precursor flow epitaxial growth of AlxGa1−xN layers with AlN and AlyGa1−yN monolayers,” J. Cryst. Growth 311(12), 3252–3256 (2009).
    [CrossRef]
  23. Y. H. Cho, F. Fedler, R. J. Hauenstein, G. H. Park, J. J. Song, S. Keller, U. K. Mishra, and S. P. Denbaars, “High resolution x-ray analysis of pseudomorphic InGaN/GaN multiple quantum wells: Influence of Si doping concentration,” J. Appl. Phys. 85(5), 3006–3008 (1999).
    [CrossRef]
  24. Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).
    [CrossRef]
  25. L. Viña, S. Logothetidis, and M. Cardona, “Temperature dependence of the dielectric function of germanium,” Phys. Rev. B 30(4), 1979–1991 (1984).
    [CrossRef]
  26. P. G. Eliseev, P. Perlin, J. Lee, and M. Osinski, “Blue temperature-induced shift and band-tail emission in InGaN-based light sources,” Appl. Phys. Lett. 71(5), 569–571 (1997).
    [CrossRef]
  27. S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, “Spontaneous emission of localized excitons in InGaN single and multiquantum well structures,” Appl. Phys. Lett. 69(27), 4188–4190 (1996).
    [CrossRef]
  28. Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, S. Fujita, and S. Nakamura, “Role of self-formed InGaN quantum dots for exaction localization in the purple laser diode emitting at 420 nm,” Appl. Phys. Lett. 70(8), 981–983 (1997).
    [CrossRef]
  29. F. B. Naranjo, M. A. Sánchez-García, F. Calle, E. Calleja, B. Jenichen, and K. H. Ploog, “Strong localization in InGaN layers with high In content grown by molecular-beam epitaxy,” Appl. Phys. Lett. 80(2), 231–233 (2002).
    [CrossRef]
  30. M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys. 86(7), 3721–3728 (1999).
    [CrossRef]
  31. E. Monroy, N. Gogneau, F. Enjalbert, F. Fossard, D. Jalabert, E. Bellet-Amalric, L. Si Dang, and B. Daudin, “Molecular-beam epitaxial growth and characterization of quaternary III–nitride compounds,” J. Appl. Phys. 94(5), 3121–3127 (2003).
    [CrossRef]
  32. J. Abell and T. D. Moustakas, “The role of dislocations as nonradiative recombination centers in InGaN quantum wells,” Appl. Phys. Lett. 92(9), 091901 (2008).
    [CrossRef]
  33. G. Chen, M. Craven, A. Kim, A. Munkholm, S. Watanabe, M. Camras, W. Götz, and F. Steranka, “Performance of high-power III-nitride light emitting diodes,” Phys. Status Solidi A 205(5), 1086–1092 (2008).
    [CrossRef]

2011

S. W. Feng, C. Y. Tsai, H. C. Wang, H. C. Lin, and J. I. Chyi, “Optical properties of InGaN/GaN multiple quantum wells with trimethylindium treatment during growth interruption,” J. Cryst. Growth 325(1), 41–45 (2011).
[CrossRef]

2010

Y. J. Lee, Y. C. Chen, C. J. Lee, C. M. Cheng, S. W. Chen, and T. C. Lu, “Stable temperature characteristics and suppression of efficiency droop in InGaN Green light-emitting diodes using pre-TMIn flow treatment,” IEEE Photonics Technol. Lett. 22(17), 1279–1281 (2010).
[CrossRef]

2009

S. Choi, H. J. Kim, J.-H. Ryou, and R. D. Dupuis, “Digitally alloyed modulated precursor flow epitaxial growth of AlxGa1−xN layers with AlN and AlyGa1−yN monolayers,” J. Cryst. Growth 311(12), 3252–3256 (2009).
[CrossRef]

2008

J. Abell and T. D. Moustakas, “The role of dislocations as nonradiative recombination centers in InGaN quantum wells,” Appl. Phys. Lett. 92(9), 091901 (2008).
[CrossRef]

G. Chen, M. Craven, A. Kim, A. Munkholm, S. Watanabe, M. Camras, W. Götz, and F. Steranka, “Performance of high-power III-nitride light emitting diodes,” Phys. Status Solidi A 205(5), 1086–1092 (2008).
[CrossRef]

M. S. Kumar, J. Y. Park, Y. S. Lee, S. J. Chung, C.-H. Hong, and E.-K. Suh, “Improved internal quantum efficiency of green emitting InGaN/GaN multiple quantum wells by In preflow for InGaN well growth,” Jpn. J. Appl. Phys. 47(2), 839–842 (2008).
[CrossRef]

H. C. Lin, R. S. Lin, and J. I. Chyi, “Enhancing the quantum efficiency of InGaN green light-emitting diodes by trimethylindium treatment,” Appl. Phys. Lett. 92(16), 161113 (2008).
[CrossRef]

2007

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” IEEE J. Display Technol. 3(2), 160–175 (2007).
[CrossRef]

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photonics Rev. 1(4), 307–333 (2007).
[CrossRef]

2006

J. K. Kim, T. Gessmann, E. F. Schubert, J. Q. Xi, H. Luo, J. Cho, C. Sone, and Y. Park, “GaInN light-emitting diode with conductive omnidirectional reflector having a low-refractive-index indium-tin oxide layer,” Appl. Phys. Lett. 88(1), 013501 (2006).
[CrossRef]

2003

T. Mukai, S. Nagahama, M. Sano, T. Yanamoto, D. Morita, T. Mitani, Y. Narukawa, S. Yamamoto, I. Niki, M. Yamada, S. Sonobe, S. Shioji, K. Deguchi, T. Naitou, H. Tamaki, Y. Murazaki, and M. Kameshima, “Recent progress of nitride-based light emitting devices,” Phys. Status Solidi A 200(1), 52–57 (2003).
[CrossRef]

E. Monroy, N. Gogneau, F. Enjalbert, F. Fossard, D. Jalabert, E. Bellet-Amalric, L. Si Dang, and B. Daudin, “Molecular-beam epitaxial growth and characterization of quaternary III–nitride compounds,” J. Appl. Phys. 94(5), 3121–3127 (2003).
[CrossRef]

2002

F. B. Naranjo, M. A. Sánchez-García, F. Calle, E. Calleja, B. Jenichen, and K. H. Ploog, “Strong localization in InGaN layers with high In content grown by molecular-beam epitaxy,” Appl. Phys. Lett. 80(2), 231–233 (2002).
[CrossRef]

S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu, and U. H. Liaw, “InGaN-GaN multiquantum-well blue and green light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8(2), 278–283 (2002).
[CrossRef]

S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen, and J. M. Tsai, “400-nm InGaN-GaN and InGaN-AlGaN multiquantum well light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8(4), 744–748 (2002).
[CrossRef]

2001

S. J. Leem, M. H. Kim, J. Shin, Y. Choi, and J. Jeong, “The effects of In flow during growth interruption on the optical properties of InGaN multiple quantum wells grown by low pressure metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys. Part 2 40(4B), L371–L373 (2001).

H. K. Cho, J. Y. Lee, G. M. Yang, and C. S. Kim, “Formation mechanism of V defects in the InGaN/GaN multiple quantum wells grown on GaN layers with low threading dislocation density,” Appl. Phys. Lett. 79(2), 215–217 (2001).
[CrossRef]

J. P. Zhang, E. Kuokstis, Q. Fareed, H. Wang, J. W. Yang, G. Simin, M. Asif Khan, R. Gaska, and M. S. Shur, “Pulsed atomic layer epitaxy of quaternary AlInGaN layers,” Appl. Phys. Lett. 79(7), 925–927 (2001).
[CrossRef]

2000

N. Sharma, P. Thomas, D. Tricker, and C. Humphreys, “Chemical mapping and formation of V-defects in InGaN multiple quantum wells,” Appl. Phys. Lett. 77(9), 1274–1277 (2000).
[CrossRef]

Y.-L. Li, E. F. Schubert, J. W. Graff, A. Osinsky, and W. F. Schaff, “Low-resistance ohmic contacts to p-type GaN,” Appl. Phys. Lett. 76(19), 2728–2730 (2000).
[CrossRef]

1999

Y. H. Cho, F. Fedler, R. J. Hauenstein, G. H. Park, J. J. Song, S. Keller, U. K. Mishra, and S. P. Denbaars, “High resolution x-ray analysis of pseudomorphic InGaN/GaN multiple quantum wells: Influence of Si doping concentration,” J. Appl. Phys. 85(5), 3006–3008 (1999).
[CrossRef]

M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys. 86(7), 3721–3728 (1999).
[CrossRef]

1998

X. H. Wu, C. R. Elsass, A. Abare, M. Mack, S. Keller, P. M. Petroff, S. P. DenBaars, J. S. Speck, and S. J. Rosner, “Structural origin of V-defects and correlation with localized excitonic centers in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 72(6), 692–694 (1998).
[CrossRef]

I. H. Kim, H. S. Park, Y. J. Park, and T. Kim, “Formation of V-shaped pits in InGaN/GaN multiquantum wells and bulk InGaN films,” Appl. Phys. Lett. 73(12), 1634–1636 (1998).
[CrossRef]

Y. Chen, T. Takeuchi, H. Amano, I. Akasaki, N. Yamada, Y. Kaneko, and S. Y. Wang, “Pit formation in GaInN quantum wells,” Appl. Phys. Lett. 72(6), 710–712 (1998).
[CrossRef]

1997

C. J. Sun, M. Zubair Anwar, Q. Chen, J. W. Yang, M. Asif Khan, M. S. Shur, A. D. Bykhovski, Z. Liliental-Weber, C. Kisielowski, M. Smith, J. Y. Lin, and H. X. Xiang, “Quantum shift of band-edge stimulated emission in InGaN–GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 70(22), 2978–2980 (1997).
[CrossRef]

P. G. Eliseev, P. Perlin, J. Lee, and M. Osinski, “Blue temperature-induced shift and band-tail emission in InGaN-based light sources,” Appl. Phys. Lett. 71(5), 569–571 (1997).
[CrossRef]

Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, S. Fujita, and S. Nakamura, “Role of self-formed InGaN quantum dots for exaction localization in the purple laser diode emitting at 420 nm,” Appl. Phys. Lett. 70(8), 981–983 (1997).
[CrossRef]

1996

S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, “Spontaneous emission of localized excitons in InGaN single and multiquantum well structures,” Appl. Phys. Lett. 69(27), 4188–4190 (1996).
[CrossRef]

1995

S. Nakamura, N. Senoh, N. Iwasa, and S. I. Nagahama, “High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures,” Jpn. J. Appl. Phys. Part 2 34(7A), L797–L799 (1995).

1994

S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGan/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64(13), 1687–1689 (1994).
[CrossRef]

1984

L. Viña, S. Logothetidis, and M. Cardona, “Temperature dependence of the dielectric function of germanium,” Phys. Rev. B 30(4), 1979–1991 (1984).
[CrossRef]

1967

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).
[CrossRef]

Abare, A.

X. H. Wu, C. R. Elsass, A. Abare, M. Mack, S. Keller, P. M. Petroff, S. P. DenBaars, J. S. Speck, and S. J. Rosner, “Structural origin of V-defects and correlation with localized excitonic centers in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 72(6), 692–694 (1998).
[CrossRef]

Abell, J.

J. Abell and T. D. Moustakas, “The role of dislocations as nonradiative recombination centers in InGaN quantum wells,” Appl. Phys. Lett. 92(9), 091901 (2008).
[CrossRef]

Akasaki, I.

Y. Chen, T. Takeuchi, H. Amano, I. Akasaki, N. Yamada, Y. Kaneko, and S. Y. Wang, “Pit formation in GaInN quantum wells,” Appl. Phys. Lett. 72(6), 710–712 (1998).
[CrossRef]

Amano, H.

Y. Chen, T. Takeuchi, H. Amano, I. Akasaki, N. Yamada, Y. Kaneko, and S. Y. Wang, “Pit formation in GaInN quantum wells,” Appl. Phys. Lett. 72(6), 710–712 (1998).
[CrossRef]

Asif Khan, M.

J. P. Zhang, E. Kuokstis, Q. Fareed, H. Wang, J. W. Yang, G. Simin, M. Asif Khan, R. Gaska, and M. S. Shur, “Pulsed atomic layer epitaxy of quaternary AlInGaN layers,” Appl. Phys. Lett. 79(7), 925–927 (2001).
[CrossRef]

C. J. Sun, M. Zubair Anwar, Q. Chen, J. W. Yang, M. Asif Khan, M. S. Shur, A. D. Bykhovski, Z. Liliental-Weber, C. Kisielowski, M. Smith, J. Y. Lin, and H. X. Xiang, “Quantum shift of band-edge stimulated emission in InGaN–GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 70(22), 2978–2980 (1997).
[CrossRef]

Azuhata, T.

S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, “Spontaneous emission of localized excitons in InGaN single and multiquantum well structures,” Appl. Phys. Lett. 69(27), 4188–4190 (1996).
[CrossRef]

Beaumont, B.

M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys. 86(7), 3721–3728 (1999).
[CrossRef]

Bellet-Amalric, E.

E. Monroy, N. Gogneau, F. Enjalbert, F. Fossard, D. Jalabert, E. Bellet-Amalric, L. Si Dang, and B. Daudin, “Molecular-beam epitaxial growth and characterization of quaternary III–nitride compounds,” J. Appl. Phys. 94(5), 3121–3127 (2003).
[CrossRef]

Bykhovski, A. D.

C. J. Sun, M. Zubair Anwar, Q. Chen, J. W. Yang, M. Asif Khan, M. S. Shur, A. D. Bykhovski, Z. Liliental-Weber, C. Kisielowski, M. Smith, J. Y. Lin, and H. X. Xiang, “Quantum shift of band-edge stimulated emission in InGaN–GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 70(22), 2978–2980 (1997).
[CrossRef]

Calle, F.

F. B. Naranjo, M. A. Sánchez-García, F. Calle, E. Calleja, B. Jenichen, and K. H. Ploog, “Strong localization in InGaN layers with high In content grown by molecular-beam epitaxy,” Appl. Phys. Lett. 80(2), 231–233 (2002).
[CrossRef]

Calleja, E.

F. B. Naranjo, M. A. Sánchez-García, F. Calle, E. Calleja, B. Jenichen, and K. H. Ploog, “Strong localization in InGaN layers with high In content grown by molecular-beam epitaxy,” Appl. Phys. Lett. 80(2), 231–233 (2002).
[CrossRef]

Camras, M.

G. Chen, M. Craven, A. Kim, A. Munkholm, S. Watanabe, M. Camras, W. Götz, and F. Steranka, “Performance of high-power III-nitride light emitting diodes,” Phys. Status Solidi A 205(5), 1086–1092 (2008).
[CrossRef]

Cardona, M.

L. Viña, S. Logothetidis, and M. Cardona, “Temperature dependence of the dielectric function of germanium,” Phys. Rev. B 30(4), 1979–1991 (1984).
[CrossRef]

Chang, S. J.

S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu, and U. H. Liaw, “InGaN-GaN multiquantum-well blue and green light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8(2), 278–283 (2002).
[CrossRef]

S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen, and J. M. Tsai, “400-nm InGaN-GaN and InGaN-AlGaN multiquantum well light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8(4), 744–748 (2002).
[CrossRef]

Chen, G.

G. Chen, M. Craven, A. Kim, A. Munkholm, S. Watanabe, M. Camras, W. Götz, and F. Steranka, “Performance of high-power III-nitride light emitting diodes,” Phys. Status Solidi A 205(5), 1086–1092 (2008).
[CrossRef]

Chen, J. F.

S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen, and J. M. Tsai, “400-nm InGaN-GaN and InGaN-AlGaN multiquantum well light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8(4), 744–748 (2002).
[CrossRef]

S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu, and U. H. Liaw, “InGaN-GaN multiquantum-well blue and green light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8(2), 278–283 (2002).
[CrossRef]

Chen, Q.

C. J. Sun, M. Zubair Anwar, Q. Chen, J. W. Yang, M. Asif Khan, M. S. Shur, A. D. Bykhovski, Z. Liliental-Weber, C. Kisielowski, M. Smith, J. Y. Lin, and H. X. Xiang, “Quantum shift of band-edge stimulated emission in InGaN–GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 70(22), 2978–2980 (1997).
[CrossRef]

Chen, S. W.

Y. J. Lee, Y. C. Chen, C. J. Lee, C. M. Cheng, S. W. Chen, and T. C. Lu, “Stable temperature characteristics and suppression of efficiency droop in InGaN Green light-emitting diodes using pre-TMIn flow treatment,” IEEE Photonics Technol. Lett. 22(17), 1279–1281 (2010).
[CrossRef]

Chen, Y.

Y. Chen, T. Takeuchi, H. Amano, I. Akasaki, N. Yamada, Y. Kaneko, and S. Y. Wang, “Pit formation in GaInN quantum wells,” Appl. Phys. Lett. 72(6), 710–712 (1998).
[CrossRef]

Chen, Y. C.

Y. J. Lee, Y. C. Chen, C. J. Lee, C. M. Cheng, S. W. Chen, and T. C. Lu, “Stable temperature characteristics and suppression of efficiency droop in InGaN Green light-emitting diodes using pre-TMIn flow treatment,” IEEE Photonics Technol. Lett. 22(17), 1279–1281 (2010).
[CrossRef]

Cheng, C. M.

Y. J. Lee, Y. C. Chen, C. J. Lee, C. M. Cheng, S. W. Chen, and T. C. Lu, “Stable temperature characteristics and suppression of efficiency droop in InGaN Green light-emitting diodes using pre-TMIn flow treatment,” IEEE Photonics Technol. Lett. 22(17), 1279–1281 (2010).
[CrossRef]

Chichibu, S.

S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, “Spontaneous emission of localized excitons in InGaN single and multiquantum well structures,” Appl. Phys. Lett. 69(27), 4188–4190 (1996).
[CrossRef]

Cho, H. K.

H. K. Cho, J. Y. Lee, G. M. Yang, and C. S. Kim, “Formation mechanism of V defects in the InGaN/GaN multiple quantum wells grown on GaN layers with low threading dislocation density,” Appl. Phys. Lett. 79(2), 215–217 (2001).
[CrossRef]

Cho, J.

J. K. Kim, T. Gessmann, E. F. Schubert, J. Q. Xi, H. Luo, J. Cho, C. Sone, and Y. Park, “GaInN light-emitting diode with conductive omnidirectional reflector having a low-refractive-index indium-tin oxide layer,” Appl. Phys. Lett. 88(1), 013501 (2006).
[CrossRef]

Cho, Y. H.

Y. H. Cho, F. Fedler, R. J. Hauenstein, G. H. Park, J. J. Song, S. Keller, U. K. Mishra, and S. P. Denbaars, “High resolution x-ray analysis of pseudomorphic InGaN/GaN multiple quantum wells: Influence of Si doping concentration,” J. Appl. Phys. 85(5), 3006–3008 (1999).
[CrossRef]

Choi, S.

S. Choi, H. J. Kim, J.-H. Ryou, and R. D. Dupuis, “Digitally alloyed modulated precursor flow epitaxial growth of AlxGa1−xN layers with AlN and AlyGa1−yN monolayers,” J. Cryst. Growth 311(12), 3252–3256 (2009).
[CrossRef]

Choi, Y.

S. J. Leem, M. H. Kim, J. Shin, Y. Choi, and J. Jeong, “The effects of In flow during growth interruption on the optical properties of InGaN multiple quantum wells grown by low pressure metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys. Part 2 40(4B), L371–L373 (2001).

Chung, S. J.

M. S. Kumar, J. Y. Park, Y. S. Lee, S. J. Chung, C.-H. Hong, and E.-K. Suh, “Improved internal quantum efficiency of green emitting InGaN/GaN multiple quantum wells by In preflow for InGaN well growth,” Jpn. J. Appl. Phys. 47(2), 839–842 (2008).
[CrossRef]

Chyi, J. I.

S. W. Feng, C. Y. Tsai, H. C. Wang, H. C. Lin, and J. I. Chyi, “Optical properties of InGaN/GaN multiple quantum wells with trimethylindium treatment during growth interruption,” J. Cryst. Growth 325(1), 41–45 (2011).
[CrossRef]

H. C. Lin, R. S. Lin, and J. I. Chyi, “Enhancing the quantum efficiency of InGaN green light-emitting diodes by trimethylindium treatment,” Appl. Phys. Lett. 92(16), 161113 (2008).
[CrossRef]

Coltrin, M. E.

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photonics Rev. 1(4), 307–333 (2007).
[CrossRef]

Craford, M. G.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” IEEE J. Display Technol. 3(2), 160–175 (2007).
[CrossRef]

Craven, M.

G. Chen, M. Craven, A. Kim, A. Munkholm, S. Watanabe, M. Camras, W. Götz, and F. Steranka, “Performance of high-power III-nitride light emitting diodes,” Phys. Status Solidi A 205(5), 1086–1092 (2008).
[CrossRef]

Crawford, M. H.

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photonics Rev. 1(4), 307–333 (2007).
[CrossRef]

Daudin, B.

E. Monroy, N. Gogneau, F. Enjalbert, F. Fossard, D. Jalabert, E. Bellet-Amalric, L. Si Dang, and B. Daudin, “Molecular-beam epitaxial growth and characterization of quaternary III–nitride compounds,” J. Appl. Phys. 94(5), 3121–3127 (2003).
[CrossRef]

Deguchi, K.

T. Mukai, S. Nagahama, M. Sano, T. Yanamoto, D. Morita, T. Mitani, Y. Narukawa, S. Yamamoto, I. Niki, M. Yamada, S. Sonobe, S. Shioji, K. Deguchi, T. Naitou, H. Tamaki, Y. Murazaki, and M. Kameshima, “Recent progress of nitride-based light emitting devices,” Phys. Status Solidi A 200(1), 52–57 (2003).
[CrossRef]

Denbaars, S. P.

Y. H. Cho, F. Fedler, R. J. Hauenstein, G. H. Park, J. J. Song, S. Keller, U. K. Mishra, and S. P. Denbaars, “High resolution x-ray analysis of pseudomorphic InGaN/GaN multiple quantum wells: Influence of Si doping concentration,” J. Appl. Phys. 85(5), 3006–3008 (1999).
[CrossRef]

X. H. Wu, C. R. Elsass, A. Abare, M. Mack, S. Keller, P. M. Petroff, S. P. DenBaars, J. S. Speck, and S. J. Rosner, “Structural origin of V-defects and correlation with localized excitonic centers in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 72(6), 692–694 (1998).
[CrossRef]

Dupuis, R. D.

S. Choi, H. J. Kim, J.-H. Ryou, and R. D. Dupuis, “Digitally alloyed modulated precursor flow epitaxial growth of AlxGa1−xN layers with AlN and AlyGa1−yN monolayers,” J. Cryst. Growth 311(12), 3252–3256 (2009).
[CrossRef]

Eliseev, P. G.

P. G. Eliseev, P. Perlin, J. Lee, and M. Osinski, “Blue temperature-induced shift and band-tail emission in InGaN-based light sources,” Appl. Phys. Lett. 71(5), 569–571 (1997).
[CrossRef]

Elsass, C. R.

X. H. Wu, C. R. Elsass, A. Abare, M. Mack, S. Keller, P. M. Petroff, S. P. DenBaars, J. S. Speck, and S. J. Rosner, “Structural origin of V-defects and correlation with localized excitonic centers in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 72(6), 692–694 (1998).
[CrossRef]

Enjalbert, F.

E. Monroy, N. Gogneau, F. Enjalbert, F. Fossard, D. Jalabert, E. Bellet-Amalric, L. Si Dang, and B. Daudin, “Molecular-beam epitaxial growth and characterization of quaternary III–nitride compounds,” J. Appl. Phys. 94(5), 3121–3127 (2003).
[CrossRef]

Fareed, Q.

J. P. Zhang, E. Kuokstis, Q. Fareed, H. Wang, J. W. Yang, G. Simin, M. Asif Khan, R. Gaska, and M. S. Shur, “Pulsed atomic layer epitaxy of quaternary AlInGaN layers,” Appl. Phys. Lett. 79(7), 925–927 (2001).
[CrossRef]

Fedler, F.

Y. H. Cho, F. Fedler, R. J. Hauenstein, G. H. Park, J. J. Song, S. Keller, U. K. Mishra, and S. P. Denbaars, “High resolution x-ray analysis of pseudomorphic InGaN/GaN multiple quantum wells: Influence of Si doping concentration,” J. Appl. Phys. 85(5), 3006–3008 (1999).
[CrossRef]

Feng, S. W.

S. W. Feng, C. Y. Tsai, H. C. Wang, H. C. Lin, and J. I. Chyi, “Optical properties of InGaN/GaN multiple quantum wells with trimethylindium treatment during growth interruption,” J. Cryst. Growth 325(1), 41–45 (2011).
[CrossRef]

Fischer, A. J.

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photonics Rev. 1(4), 307–333 (2007).
[CrossRef]

Fossard, F.

E. Monroy, N. Gogneau, F. Enjalbert, F. Fossard, D. Jalabert, E. Bellet-Amalric, L. Si Dang, and B. Daudin, “Molecular-beam epitaxial growth and characterization of quaternary III–nitride compounds,” J. Appl. Phys. 94(5), 3121–3127 (2003).
[CrossRef]

Fujita, S.

Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, S. Fujita, and S. Nakamura, “Role of self-formed InGaN quantum dots for exaction localization in the purple laser diode emitting at 420 nm,” Appl. Phys. Lett. 70(8), 981–983 (1997).
[CrossRef]

Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, S. Fujita, and S. Nakamura, “Role of self-formed InGaN quantum dots for exaction localization in the purple laser diode emitting at 420 nm,” Appl. Phys. Lett. 70(8), 981–983 (1997).
[CrossRef]

Funato, M.

Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, S. Fujita, and S. Nakamura, “Role of self-formed InGaN quantum dots for exaction localization in the purple laser diode emitting at 420 nm,” Appl. Phys. Lett. 70(8), 981–983 (1997).
[CrossRef]

Gaska, R.

J. P. Zhang, E. Kuokstis, Q. Fareed, H. Wang, J. W. Yang, G. Simin, M. Asif Khan, R. Gaska, and M. S. Shur, “Pulsed atomic layer epitaxy of quaternary AlInGaN layers,” Appl. Phys. Lett. 79(7), 925–927 (2001).
[CrossRef]

Gessmann, T.

J. K. Kim, T. Gessmann, E. F. Schubert, J. Q. Xi, H. Luo, J. Cho, C. Sone, and Y. Park, “GaInN light-emitting diode with conductive omnidirectional reflector having a low-refractive-index indium-tin oxide layer,” Appl. Phys. Lett. 88(1), 013501 (2006).
[CrossRef]

Gibart, P.

M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys. 86(7), 3721–3728 (1999).
[CrossRef]

Gogneau, N.

E. Monroy, N. Gogneau, F. Enjalbert, F. Fossard, D. Jalabert, E. Bellet-Amalric, L. Si Dang, and B. Daudin, “Molecular-beam epitaxial growth and characterization of quaternary III–nitride compounds,” J. Appl. Phys. 94(5), 3121–3127 (2003).
[CrossRef]

Götz, W.

G. Chen, M. Craven, A. Kim, A. Munkholm, S. Watanabe, M. Camras, W. Götz, and F. Steranka, “Performance of high-power III-nitride light emitting diodes,” Phys. Status Solidi A 205(5), 1086–1092 (2008).
[CrossRef]

Graff, J. W.

Y.-L. Li, E. F. Schubert, J. W. Graff, A. Osinsky, and W. F. Schaff, “Low-resistance ohmic contacts to p-type GaN,” Appl. Phys. Lett. 76(19), 2728–2730 (2000).
[CrossRef]

Grandjean, N.

M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys. 86(7), 3721–3728 (1999).
[CrossRef]

Harbers, G.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” IEEE J. Display Technol. 3(2), 160–175 (2007).
[CrossRef]

Hauenstein, R. J.

Y. H. Cho, F. Fedler, R. J. Hauenstein, G. H. Park, J. J. Song, S. Keller, U. K. Mishra, and S. P. Denbaars, “High resolution x-ray analysis of pseudomorphic InGaN/GaN multiple quantum wells: Influence of Si doping concentration,” J. Appl. Phys. 85(5), 3006–3008 (1999).
[CrossRef]

Hong, C.-H.

M. S. Kumar, J. Y. Park, Y. S. Lee, S. J. Chung, C.-H. Hong, and E.-K. Suh, “Improved internal quantum efficiency of green emitting InGaN/GaN multiple quantum wells by In preflow for InGaN well growth,” Jpn. J. Appl. Phys. 47(2), 839–842 (2008).
[CrossRef]

Humphreys, C.

N. Sharma, P. Thomas, D. Tricker, and C. Humphreys, “Chemical mapping and formation of V-defects in InGaN multiple quantum wells,” Appl. Phys. Lett. 77(9), 1274–1277 (2000).
[CrossRef]

Iwasa, N.

S. Nakamura, N. Senoh, N. Iwasa, and S. I. Nagahama, “High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures,” Jpn. J. Appl. Phys. Part 2 34(7A), L797–L799 (1995).

Jalabert, D.

E. Monroy, N. Gogneau, F. Enjalbert, F. Fossard, D. Jalabert, E. Bellet-Amalric, L. Si Dang, and B. Daudin, “Molecular-beam epitaxial growth and characterization of quaternary III–nitride compounds,” J. Appl. Phys. 94(5), 3121–3127 (2003).
[CrossRef]

Jenichen, B.

F. B. Naranjo, M. A. Sánchez-García, F. Calle, E. Calleja, B. Jenichen, and K. H. Ploog, “Strong localization in InGaN layers with high In content grown by molecular-beam epitaxy,” Appl. Phys. Lett. 80(2), 231–233 (2002).
[CrossRef]

Jeong, J.

S. J. Leem, M. H. Kim, J. Shin, Y. Choi, and J. Jeong, “The effects of In flow during growth interruption on the optical properties of InGaN multiple quantum wells grown by low pressure metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys. Part 2 40(4B), L371–L373 (2001).

Kameshima, M.

T. Mukai, S. Nagahama, M. Sano, T. Yanamoto, D. Morita, T. Mitani, Y. Narukawa, S. Yamamoto, I. Niki, M. Yamada, S. Sonobe, S. Shioji, K. Deguchi, T. Naitou, H. Tamaki, Y. Murazaki, and M. Kameshima, “Recent progress of nitride-based light emitting devices,” Phys. Status Solidi A 200(1), 52–57 (2003).
[CrossRef]

Kaneko, Y.

Y. Chen, T. Takeuchi, H. Amano, I. Akasaki, N. Yamada, Y. Kaneko, and S. Y. Wang, “Pit formation in GaInN quantum wells,” Appl. Phys. Lett. 72(6), 710–712 (1998).
[CrossRef]

Kawakami, Y.

Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, S. Fujita, and S. Nakamura, “Role of self-formed InGaN quantum dots for exaction localization in the purple laser diode emitting at 420 nm,” Appl. Phys. Lett. 70(8), 981–983 (1997).
[CrossRef]

Keller, S.

Y. H. Cho, F. Fedler, R. J. Hauenstein, G. H. Park, J. J. Song, S. Keller, U. K. Mishra, and S. P. Denbaars, “High resolution x-ray analysis of pseudomorphic InGaN/GaN multiple quantum wells: Influence of Si doping concentration,” J. Appl. Phys. 85(5), 3006–3008 (1999).
[CrossRef]

X. H. Wu, C. R. Elsass, A. Abare, M. Mack, S. Keller, P. M. Petroff, S. P. DenBaars, J. S. Speck, and S. J. Rosner, “Structural origin of V-defects and correlation with localized excitonic centers in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 72(6), 692–694 (1998).
[CrossRef]

Kim, A.

G. Chen, M. Craven, A. Kim, A. Munkholm, S. Watanabe, M. Camras, W. Götz, and F. Steranka, “Performance of high-power III-nitride light emitting diodes,” Phys. Status Solidi A 205(5), 1086–1092 (2008).
[CrossRef]

Kim, C. S.

H. K. Cho, J. Y. Lee, G. M. Yang, and C. S. Kim, “Formation mechanism of V defects in the InGaN/GaN multiple quantum wells grown on GaN layers with low threading dislocation density,” Appl. Phys. Lett. 79(2), 215–217 (2001).
[CrossRef]

Kim, H. J.

S. Choi, H. J. Kim, J.-H. Ryou, and R. D. Dupuis, “Digitally alloyed modulated precursor flow epitaxial growth of AlxGa1−xN layers with AlN and AlyGa1−yN monolayers,” J. Cryst. Growth 311(12), 3252–3256 (2009).
[CrossRef]

Kim, I. H.

I. H. Kim, H. S. Park, Y. J. Park, and T. Kim, “Formation of V-shaped pits in InGaN/GaN multiquantum wells and bulk InGaN films,” Appl. Phys. Lett. 73(12), 1634–1636 (1998).
[CrossRef]

Kim, J. K.

J. K. Kim, T. Gessmann, E. F. Schubert, J. Q. Xi, H. Luo, J. Cho, C. Sone, and Y. Park, “GaInN light-emitting diode with conductive omnidirectional reflector having a low-refractive-index indium-tin oxide layer,” Appl. Phys. Lett. 88(1), 013501 (2006).
[CrossRef]

Kim, M. H.

S. J. Leem, M. H. Kim, J. Shin, Y. Choi, and J. Jeong, “The effects of In flow during growth interruption on the optical properties of InGaN multiple quantum wells grown by low pressure metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys. Part 2 40(4B), L371–L373 (2001).

Kim, T.

I. H. Kim, H. S. Park, Y. J. Park, and T. Kim, “Formation of V-shaped pits in InGaN/GaN multiquantum wells and bulk InGaN films,” Appl. Phys. Lett. 73(12), 1634–1636 (1998).
[CrossRef]

Kisielowski, C.

C. J. Sun, M. Zubair Anwar, Q. Chen, J. W. Yang, M. Asif Khan, M. S. Shur, A. D. Bykhovski, Z. Liliental-Weber, C. Kisielowski, M. Smith, J. Y. Lin, and H. X. Xiang, “Quantum shift of band-edge stimulated emission in InGaN–GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 70(22), 2978–2980 (1997).
[CrossRef]

Krames, M. R.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” IEEE J. Display Technol. 3(2), 160–175 (2007).
[CrossRef]

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photonics Rev. 1(4), 307–333 (2007).
[CrossRef]

Kumar, M. S.

M. S. Kumar, J. Y. Park, Y. S. Lee, S. J. Chung, C.-H. Hong, and E.-K. Suh, “Improved internal quantum efficiency of green emitting InGaN/GaN multiple quantum wells by In preflow for InGaN well growth,” Jpn. J. Appl. Phys. 47(2), 839–842 (2008).
[CrossRef]

Kuo, C. H.

S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen, and J. M. Tsai, “400-nm InGaN-GaN and InGaN-AlGaN multiquantum well light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8(4), 744–748 (2002).
[CrossRef]

Kuokstis, E.

J. P. Zhang, E. Kuokstis, Q. Fareed, H. Wang, J. W. Yang, G. Simin, M. Asif Khan, R. Gaska, and M. S. Shur, “Pulsed atomic layer epitaxy of quaternary AlInGaN layers,” Appl. Phys. Lett. 79(7), 925–927 (2001).
[CrossRef]

Lai, W. C.

S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu, and U. H. Liaw, “InGaN-GaN multiquantum-well blue and green light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8(2), 278–283 (2002).
[CrossRef]

S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen, and J. M. Tsai, “400-nm InGaN-GaN and InGaN-AlGaN multiquantum well light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8(4), 744–748 (2002).
[CrossRef]

Lee, C. J.

Y. J. Lee, Y. C. Chen, C. J. Lee, C. M. Cheng, S. W. Chen, and T. C. Lu, “Stable temperature characteristics and suppression of efficiency droop in InGaN Green light-emitting diodes using pre-TMIn flow treatment,” IEEE Photonics Technol. Lett. 22(17), 1279–1281 (2010).
[CrossRef]

Lee, J.

P. G. Eliseev, P. Perlin, J. Lee, and M. Osinski, “Blue temperature-induced shift and band-tail emission in InGaN-based light sources,” Appl. Phys. Lett. 71(5), 569–571 (1997).
[CrossRef]

Lee, J. Y.

H. K. Cho, J. Y. Lee, G. M. Yang, and C. S. Kim, “Formation mechanism of V defects in the InGaN/GaN multiple quantum wells grown on GaN layers with low threading dislocation density,” Appl. Phys. Lett. 79(2), 215–217 (2001).
[CrossRef]

Lee, Y. J.

Y. J. Lee, Y. C. Chen, C. J. Lee, C. M. Cheng, S. W. Chen, and T. C. Lu, “Stable temperature characteristics and suppression of efficiency droop in InGaN Green light-emitting diodes using pre-TMIn flow treatment,” IEEE Photonics Technol. Lett. 22(17), 1279–1281 (2010).
[CrossRef]

Lee, Y. S.

M. S. Kumar, J. Y. Park, Y. S. Lee, S. J. Chung, C.-H. Hong, and E.-K. Suh, “Improved internal quantum efficiency of green emitting InGaN/GaN multiple quantum wells by In preflow for InGaN well growth,” Jpn. J. Appl. Phys. 47(2), 839–842 (2008).
[CrossRef]

Leem, S. J.

S. J. Leem, M. H. Kim, J. Shin, Y. Choi, and J. Jeong, “The effects of In flow during growth interruption on the optical properties of InGaN multiple quantum wells grown by low pressure metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys. Part 2 40(4B), L371–L373 (2001).

Leroux, M.

M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys. 86(7), 3721–3728 (1999).
[CrossRef]

Li, Y.-L.

Y.-L. Li, E. F. Schubert, J. W. Graff, A. Osinsky, and W. F. Schaff, “Low-resistance ohmic contacts to p-type GaN,” Appl. Phys. Lett. 76(19), 2728–2730 (2000).
[CrossRef]

Liaw, U. H.

S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu, and U. H. Liaw, “InGaN-GaN multiquantum-well blue and green light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8(2), 278–283 (2002).
[CrossRef]

Liliental-Weber, Z.

C. J. Sun, M. Zubair Anwar, Q. Chen, J. W. Yang, M. Asif Khan, M. S. Shur, A. D. Bykhovski, Z. Liliental-Weber, C. Kisielowski, M. Smith, J. Y. Lin, and H. X. Xiang, “Quantum shift of band-edge stimulated emission in InGaN–GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 70(22), 2978–2980 (1997).
[CrossRef]

Lin, H. C.

S. W. Feng, C. Y. Tsai, H. C. Wang, H. C. Lin, and J. I. Chyi, “Optical properties of InGaN/GaN multiple quantum wells with trimethylindium treatment during growth interruption,” J. Cryst. Growth 325(1), 41–45 (2011).
[CrossRef]

H. C. Lin, R. S. Lin, and J. I. Chyi, “Enhancing the quantum efficiency of InGaN green light-emitting diodes by trimethylindium treatment,” Appl. Phys. Lett. 92(16), 161113 (2008).
[CrossRef]

Lin, J. Y.

C. J. Sun, M. Zubair Anwar, Q. Chen, J. W. Yang, M. Asif Khan, M. S. Shur, A. D. Bykhovski, Z. Liliental-Weber, C. Kisielowski, M. Smith, J. Y. Lin, and H. X. Xiang, “Quantum shift of band-edge stimulated emission in InGaN–GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 70(22), 2978–2980 (1997).
[CrossRef]

Lin, R. S.

H. C. Lin, R. S. Lin, and J. I. Chyi, “Enhancing the quantum efficiency of InGaN green light-emitting diodes by trimethylindium treatment,” Appl. Phys. Lett. 92(16), 161113 (2008).
[CrossRef]

Liu, C. H.

S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu, and U. H. Liaw, “InGaN-GaN multiquantum-well blue and green light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8(2), 278–283 (2002).
[CrossRef]

Logothetidis, S.

L. Viña, S. Logothetidis, and M. Cardona, “Temperature dependence of the dielectric function of germanium,” Phys. Rev. B 30(4), 1979–1991 (1984).
[CrossRef]

Lu, T. C.

Y. J. Lee, Y. C. Chen, C. J. Lee, C. M. Cheng, S. W. Chen, and T. C. Lu, “Stable temperature characteristics and suppression of efficiency droop in InGaN Green light-emitting diodes using pre-TMIn flow treatment,” IEEE Photonics Technol. Lett. 22(17), 1279–1281 (2010).
[CrossRef]

Luo, H.

J. K. Kim, T. Gessmann, E. F. Schubert, J. Q. Xi, H. Luo, J. Cho, C. Sone, and Y. Park, “GaInN light-emitting diode with conductive omnidirectional reflector having a low-refractive-index indium-tin oxide layer,” Appl. Phys. Lett. 88(1), 013501 (2006).
[CrossRef]

Mack, M.

X. H. Wu, C. R. Elsass, A. Abare, M. Mack, S. Keller, P. M. Petroff, S. P. DenBaars, J. S. Speck, and S. J. Rosner, “Structural origin of V-defects and correlation with localized excitonic centers in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 72(6), 692–694 (1998).
[CrossRef]

Massies, J.

M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys. 86(7), 3721–3728 (1999).
[CrossRef]

Mishra, U. K.

Y. H. Cho, F. Fedler, R. J. Hauenstein, G. H. Park, J. J. Song, S. Keller, U. K. Mishra, and S. P. Denbaars, “High resolution x-ray analysis of pseudomorphic InGaN/GaN multiple quantum wells: Influence of Si doping concentration,” J. Appl. Phys. 85(5), 3006–3008 (1999).
[CrossRef]

Mitani, T.

T. Mukai, S. Nagahama, M. Sano, T. Yanamoto, D. Morita, T. Mitani, Y. Narukawa, S. Yamamoto, I. Niki, M. Yamada, S. Sonobe, S. Shioji, K. Deguchi, T. Naitou, H. Tamaki, Y. Murazaki, and M. Kameshima, “Recent progress of nitride-based light emitting devices,” Phys. Status Solidi A 200(1), 52–57 (2003).
[CrossRef]

Monroy, E.

E. Monroy, N. Gogneau, F. Enjalbert, F. Fossard, D. Jalabert, E. Bellet-Amalric, L. Si Dang, and B. Daudin, “Molecular-beam epitaxial growth and characterization of quaternary III–nitride compounds,” J. Appl. Phys. 94(5), 3121–3127 (2003).
[CrossRef]

Morita, D.

T. Mukai, S. Nagahama, M. Sano, T. Yanamoto, D. Morita, T. Mitani, Y. Narukawa, S. Yamamoto, I. Niki, M. Yamada, S. Sonobe, S. Shioji, K. Deguchi, T. Naitou, H. Tamaki, Y. Murazaki, and M. Kameshima, “Recent progress of nitride-based light emitting devices,” Phys. Status Solidi A 200(1), 52–57 (2003).
[CrossRef]

Moustakas, T. D.

J. Abell and T. D. Moustakas, “The role of dislocations as nonradiative recombination centers in InGaN quantum wells,” Appl. Phys. Lett. 92(9), 091901 (2008).
[CrossRef]

Mueller, G.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” IEEE J. Display Technol. 3(2), 160–175 (2007).
[CrossRef]

Mueller, G. O.

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photonics Rev. 1(4), 307–333 (2007).
[CrossRef]

Mueller-Mach, R.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” IEEE J. Display Technol. 3(2), 160–175 (2007).
[CrossRef]

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photonics Rev. 1(4), 307–333 (2007).
[CrossRef]

Mukai, T.

T. Mukai, S. Nagahama, M. Sano, T. Yanamoto, D. Morita, T. Mitani, Y. Narukawa, S. Yamamoto, I. Niki, M. Yamada, S. Sonobe, S. Shioji, K. Deguchi, T. Naitou, H. Tamaki, Y. Murazaki, and M. Kameshima, “Recent progress of nitride-based light emitting devices,” Phys. Status Solidi A 200(1), 52–57 (2003).
[CrossRef]

S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGan/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64(13), 1687–1689 (1994).
[CrossRef]

Munkholm, A.

G. Chen, M. Craven, A. Kim, A. Munkholm, S. Watanabe, M. Camras, W. Götz, and F. Steranka, “Performance of high-power III-nitride light emitting diodes,” Phys. Status Solidi A 205(5), 1086–1092 (2008).
[CrossRef]

Murazaki, Y.

T. Mukai, S. Nagahama, M. Sano, T. Yanamoto, D. Morita, T. Mitani, Y. Narukawa, S. Yamamoto, I. Niki, M. Yamada, S. Sonobe, S. Shioji, K. Deguchi, T. Naitou, H. Tamaki, Y. Murazaki, and M. Kameshima, “Recent progress of nitride-based light emitting devices,” Phys. Status Solidi A 200(1), 52–57 (2003).
[CrossRef]

Nagahama, S.

T. Mukai, S. Nagahama, M. Sano, T. Yanamoto, D. Morita, T. Mitani, Y. Narukawa, S. Yamamoto, I. Niki, M. Yamada, S. Sonobe, S. Shioji, K. Deguchi, T. Naitou, H. Tamaki, Y. Murazaki, and M. Kameshima, “Recent progress of nitride-based light emitting devices,” Phys. Status Solidi A 200(1), 52–57 (2003).
[CrossRef]

Nagahama, S. I.

S. Nakamura, N. Senoh, N. Iwasa, and S. I. Nagahama, “High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures,” Jpn. J. Appl. Phys. Part 2 34(7A), L797–L799 (1995).

Naitou, T.

T. Mukai, S. Nagahama, M. Sano, T. Yanamoto, D. Morita, T. Mitani, Y. Narukawa, S. Yamamoto, I. Niki, M. Yamada, S. Sonobe, S. Shioji, K. Deguchi, T. Naitou, H. Tamaki, Y. Murazaki, and M. Kameshima, “Recent progress of nitride-based light emitting devices,” Phys. Status Solidi A 200(1), 52–57 (2003).
[CrossRef]

Nakamura, S.

Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, S. Fujita, and S. Nakamura, “Role of self-formed InGaN quantum dots for exaction localization in the purple laser diode emitting at 420 nm,” Appl. Phys. Lett. 70(8), 981–983 (1997).
[CrossRef]

S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, “Spontaneous emission of localized excitons in InGaN single and multiquantum well structures,” Appl. Phys. Lett. 69(27), 4188–4190 (1996).
[CrossRef]

S. Nakamura, N. Senoh, N. Iwasa, and S. I. Nagahama, “High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures,” Jpn. J. Appl. Phys. Part 2 34(7A), L797–L799 (1995).

S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGan/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64(13), 1687–1689 (1994).
[CrossRef]

Naranjo, F. B.

F. B. Naranjo, M. A. Sánchez-García, F. Calle, E. Calleja, B. Jenichen, and K. H. Ploog, “Strong localization in InGaN layers with high In content grown by molecular-beam epitaxy,” Appl. Phys. Lett. 80(2), 231–233 (2002).
[CrossRef]

Narukawa, Y.

T. Mukai, S. Nagahama, M. Sano, T. Yanamoto, D. Morita, T. Mitani, Y. Narukawa, S. Yamamoto, I. Niki, M. Yamada, S. Sonobe, S. Shioji, K. Deguchi, T. Naitou, H. Tamaki, Y. Murazaki, and M. Kameshima, “Recent progress of nitride-based light emitting devices,” Phys. Status Solidi A 200(1), 52–57 (2003).
[CrossRef]

Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, S. Fujita, and S. Nakamura, “Role of self-formed InGaN quantum dots for exaction localization in the purple laser diode emitting at 420 nm,” Appl. Phys. Lett. 70(8), 981–983 (1997).
[CrossRef]

Nataf, G.

M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys. 86(7), 3721–3728 (1999).
[CrossRef]

Niki, I.

T. Mukai, S. Nagahama, M. Sano, T. Yanamoto, D. Morita, T. Mitani, Y. Narukawa, S. Yamamoto, I. Niki, M. Yamada, S. Sonobe, S. Shioji, K. Deguchi, T. Naitou, H. Tamaki, Y. Murazaki, and M. Kameshima, “Recent progress of nitride-based light emitting devices,” Phys. Status Solidi A 200(1), 52–57 (2003).
[CrossRef]

Ohno, Y.

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photonics Rev. 1(4), 307–333 (2007).
[CrossRef]

Osinski, M.

P. G. Eliseev, P. Perlin, J. Lee, and M. Osinski, “Blue temperature-induced shift and band-tail emission in InGaN-based light sources,” Appl. Phys. Lett. 71(5), 569–571 (1997).
[CrossRef]

Osinsky, A.

Y.-L. Li, E. F. Schubert, J. W. Graff, A. Osinsky, and W. F. Schaff, “Low-resistance ohmic contacts to p-type GaN,” Appl. Phys. Lett. 76(19), 2728–2730 (2000).
[CrossRef]

Park, G. H.

Y. H. Cho, F. Fedler, R. J. Hauenstein, G. H. Park, J. J. Song, S. Keller, U. K. Mishra, and S. P. Denbaars, “High resolution x-ray analysis of pseudomorphic InGaN/GaN multiple quantum wells: Influence of Si doping concentration,” J. Appl. Phys. 85(5), 3006–3008 (1999).
[CrossRef]

Park, H. S.

I. H. Kim, H. S. Park, Y. J. Park, and T. Kim, “Formation of V-shaped pits in InGaN/GaN multiquantum wells and bulk InGaN films,” Appl. Phys. Lett. 73(12), 1634–1636 (1998).
[CrossRef]

Park, J. Y.

M. S. Kumar, J. Y. Park, Y. S. Lee, S. J. Chung, C.-H. Hong, and E.-K. Suh, “Improved internal quantum efficiency of green emitting InGaN/GaN multiple quantum wells by In preflow for InGaN well growth,” Jpn. J. Appl. Phys. 47(2), 839–842 (2008).
[CrossRef]

Park, Y.

J. K. Kim, T. Gessmann, E. F. Schubert, J. Q. Xi, H. Luo, J. Cho, C. Sone, and Y. Park, “GaInN light-emitting diode with conductive omnidirectional reflector having a low-refractive-index indium-tin oxide layer,” Appl. Phys. Lett. 88(1), 013501 (2006).
[CrossRef]

Park, Y. J.

I. H. Kim, H. S. Park, Y. J. Park, and T. Kim, “Formation of V-shaped pits in InGaN/GaN multiquantum wells and bulk InGaN films,” Appl. Phys. Lett. 73(12), 1634–1636 (1998).
[CrossRef]

Perlin, P.

P. G. Eliseev, P. Perlin, J. Lee, and M. Osinski, “Blue temperature-induced shift and band-tail emission in InGaN-based light sources,” Appl. Phys. Lett. 71(5), 569–571 (1997).
[CrossRef]

Petroff, P. M.

X. H. Wu, C. R. Elsass, A. Abare, M. Mack, S. Keller, P. M. Petroff, S. P. DenBaars, J. S. Speck, and S. J. Rosner, “Structural origin of V-defects and correlation with localized excitonic centers in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 72(6), 692–694 (1998).
[CrossRef]

Phillips, J. M.

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photonics Rev. 1(4), 307–333 (2007).
[CrossRef]

Ploog, K. H.

F. B. Naranjo, M. A. Sánchez-García, F. Calle, E. Calleja, B. Jenichen, and K. H. Ploog, “Strong localization in InGaN layers with high In content grown by molecular-beam epitaxy,” Appl. Phys. Lett. 80(2), 231–233 (2002).
[CrossRef]

Rohwer, L. E. S.

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photonics Rev. 1(4), 307–333 (2007).
[CrossRef]

Rosner, S. J.

X. H. Wu, C. R. Elsass, A. Abare, M. Mack, S. Keller, P. M. Petroff, S. P. DenBaars, J. S. Speck, and S. J. Rosner, “Structural origin of V-defects and correlation with localized excitonic centers in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 72(6), 692–694 (1998).
[CrossRef]

Ryou, J.-H.

S. Choi, H. J. Kim, J.-H. Ryou, and R. D. Dupuis, “Digitally alloyed modulated precursor flow epitaxial growth of AlxGa1−xN layers with AlN and AlyGa1−yN monolayers,” J. Cryst. Growth 311(12), 3252–3256 (2009).
[CrossRef]

Sánchez-García, M. A.

F. B. Naranjo, M. A. Sánchez-García, F. Calle, E. Calleja, B. Jenichen, and K. H. Ploog, “Strong localization in InGaN layers with high In content grown by molecular-beam epitaxy,” Appl. Phys. Lett. 80(2), 231–233 (2002).
[CrossRef]

Sano, M.

T. Mukai, S. Nagahama, M. Sano, T. Yanamoto, D. Morita, T. Mitani, Y. Narukawa, S. Yamamoto, I. Niki, M. Yamada, S. Sonobe, S. Shioji, K. Deguchi, T. Naitou, H. Tamaki, Y. Murazaki, and M. Kameshima, “Recent progress of nitride-based light emitting devices,” Phys. Status Solidi A 200(1), 52–57 (2003).
[CrossRef]

Schaff, W. F.

Y.-L. Li, E. F. Schubert, J. W. Graff, A. Osinsky, and W. F. Schaff, “Low-resistance ohmic contacts to p-type GaN,” Appl. Phys. Lett. 76(19), 2728–2730 (2000).
[CrossRef]

Schubert, E. F.

J. K. Kim, T. Gessmann, E. F. Schubert, J. Q. Xi, H. Luo, J. Cho, C. Sone, and Y. Park, “GaInN light-emitting diode with conductive omnidirectional reflector having a low-refractive-index indium-tin oxide layer,” Appl. Phys. Lett. 88(1), 013501 (2006).
[CrossRef]

Y.-L. Li, E. F. Schubert, J. W. Graff, A. Osinsky, and W. F. Schaff, “Low-resistance ohmic contacts to p-type GaN,” Appl. Phys. Lett. 76(19), 2728–2730 (2000).
[CrossRef]

Semond, F.

M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys. 86(7), 3721–3728 (1999).
[CrossRef]

Senoh, M.

S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGan/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64(13), 1687–1689 (1994).
[CrossRef]

Senoh, N.

S. Nakamura, N. Senoh, N. Iwasa, and S. I. Nagahama, “High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures,” Jpn. J. Appl. Phys. Part 2 34(7A), L797–L799 (1995).

Sharma, N.

N. Sharma, P. Thomas, D. Tricker, and C. Humphreys, “Chemical mapping and formation of V-defects in InGaN multiple quantum wells,” Appl. Phys. Lett. 77(9), 1274–1277 (2000).
[CrossRef]

Shchekin, O. B.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” IEEE J. Display Technol. 3(2), 160–175 (2007).
[CrossRef]

Sheu, J. K.

S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen, and J. M. Tsai, “400-nm InGaN-GaN and InGaN-AlGaN multiquantum well light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8(4), 744–748 (2002).
[CrossRef]

Shin, J.

S. J. Leem, M. H. Kim, J. Shin, Y. Choi, and J. Jeong, “The effects of In flow during growth interruption on the optical properties of InGaN multiple quantum wells grown by low pressure metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys. Part 2 40(4B), L371–L373 (2001).

Shioji, S.

T. Mukai, S. Nagahama, M. Sano, T. Yanamoto, D. Morita, T. Mitani, Y. Narukawa, S. Yamamoto, I. Niki, M. Yamada, S. Sonobe, S. Shioji, K. Deguchi, T. Naitou, H. Tamaki, Y. Murazaki, and M. Kameshima, “Recent progress of nitride-based light emitting devices,” Phys. Status Solidi A 200(1), 52–57 (2003).
[CrossRef]

Shur, M. S.

J. P. Zhang, E. Kuokstis, Q. Fareed, H. Wang, J. W. Yang, G. Simin, M. Asif Khan, R. Gaska, and M. S. Shur, “Pulsed atomic layer epitaxy of quaternary AlInGaN layers,” Appl. Phys. Lett. 79(7), 925–927 (2001).
[CrossRef]

C. J. Sun, M. Zubair Anwar, Q. Chen, J. W. Yang, M. Asif Khan, M. S. Shur, A. D. Bykhovski, Z. Liliental-Weber, C. Kisielowski, M. Smith, J. Y. Lin, and H. X. Xiang, “Quantum shift of band-edge stimulated emission in InGaN–GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 70(22), 2978–2980 (1997).
[CrossRef]

Si Dang, L.

E. Monroy, N. Gogneau, F. Enjalbert, F. Fossard, D. Jalabert, E. Bellet-Amalric, L. Si Dang, and B. Daudin, “Molecular-beam epitaxial growth and characterization of quaternary III–nitride compounds,” J. Appl. Phys. 94(5), 3121–3127 (2003).
[CrossRef]

Simin, G.

J. P. Zhang, E. Kuokstis, Q. Fareed, H. Wang, J. W. Yang, G. Simin, M. Asif Khan, R. Gaska, and M. S. Shur, “Pulsed atomic layer epitaxy of quaternary AlInGaN layers,” Appl. Phys. Lett. 79(7), 925–927 (2001).
[CrossRef]

Simmons, J. A.

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photonics Rev. 1(4), 307–333 (2007).
[CrossRef]

Smith, M.

C. J. Sun, M. Zubair Anwar, Q. Chen, J. W. Yang, M. Asif Khan, M. S. Shur, A. D. Bykhovski, Z. Liliental-Weber, C. Kisielowski, M. Smith, J. Y. Lin, and H. X. Xiang, “Quantum shift of band-edge stimulated emission in InGaN–GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 70(22), 2978–2980 (1997).
[CrossRef]

Sone, C.

J. K. Kim, T. Gessmann, E. F. Schubert, J. Q. Xi, H. Luo, J. Cho, C. Sone, and Y. Park, “GaInN light-emitting diode with conductive omnidirectional reflector having a low-refractive-index indium-tin oxide layer,” Appl. Phys. Lett. 88(1), 013501 (2006).
[CrossRef]

Song, J. J.

Y. H. Cho, F. Fedler, R. J. Hauenstein, G. H. Park, J. J. Song, S. Keller, U. K. Mishra, and S. P. Denbaars, “High resolution x-ray analysis of pseudomorphic InGaN/GaN multiple quantum wells: Influence of Si doping concentration,” J. Appl. Phys. 85(5), 3006–3008 (1999).
[CrossRef]

Sonobe, S.

T. Mukai, S. Nagahama, M. Sano, T. Yanamoto, D. Morita, T. Mitani, Y. Narukawa, S. Yamamoto, I. Niki, M. Yamada, S. Sonobe, S. Shioji, K. Deguchi, T. Naitou, H. Tamaki, Y. Murazaki, and M. Kameshima, “Recent progress of nitride-based light emitting devices,” Phys. Status Solidi A 200(1), 52–57 (2003).
[CrossRef]

Sota, T.

S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, “Spontaneous emission of localized excitons in InGaN single and multiquantum well structures,” Appl. Phys. Lett. 69(27), 4188–4190 (1996).
[CrossRef]

Speck, J. S.

X. H. Wu, C. R. Elsass, A. Abare, M. Mack, S. Keller, P. M. Petroff, S. P. DenBaars, J. S. Speck, and S. J. Rosner, “Structural origin of V-defects and correlation with localized excitonic centers in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 72(6), 692–694 (1998).
[CrossRef]

Steranka, F.

G. Chen, M. Craven, A. Kim, A. Munkholm, S. Watanabe, M. Camras, W. Götz, and F. Steranka, “Performance of high-power III-nitride light emitting diodes,” Phys. Status Solidi A 205(5), 1086–1092 (2008).
[CrossRef]

Su, Y. K.

S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen, and J. M. Tsai, “400-nm InGaN-GaN and InGaN-AlGaN multiquantum well light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8(4), 744–748 (2002).
[CrossRef]

S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu, and U. H. Liaw, “InGaN-GaN multiquantum-well blue and green light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8(2), 278–283 (2002).
[CrossRef]

Suh, E.-K.

M. S. Kumar, J. Y. Park, Y. S. Lee, S. J. Chung, C.-H. Hong, and E.-K. Suh, “Improved internal quantum efficiency of green emitting InGaN/GaN multiple quantum wells by In preflow for InGaN well growth,” Jpn. J. Appl. Phys. 47(2), 839–842 (2008).
[CrossRef]

Sun, C. J.

C. J. Sun, M. Zubair Anwar, Q. Chen, J. W. Yang, M. Asif Khan, M. S. Shur, A. D. Bykhovski, Z. Liliental-Weber, C. Kisielowski, M. Smith, J. Y. Lin, and H. X. Xiang, “Quantum shift of band-edge stimulated emission in InGaN–GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 70(22), 2978–2980 (1997).
[CrossRef]

Takeuchi, T.

Y. Chen, T. Takeuchi, H. Amano, I. Akasaki, N. Yamada, Y. Kaneko, and S. Y. Wang, “Pit formation in GaInN quantum wells,” Appl. Phys. Lett. 72(6), 710–712 (1998).
[CrossRef]

Tamaki, H.

T. Mukai, S. Nagahama, M. Sano, T. Yanamoto, D. Morita, T. Mitani, Y. Narukawa, S. Yamamoto, I. Niki, M. Yamada, S. Sonobe, S. Shioji, K. Deguchi, T. Naitou, H. Tamaki, Y. Murazaki, and M. Kameshima, “Recent progress of nitride-based light emitting devices,” Phys. Status Solidi A 200(1), 52–57 (2003).
[CrossRef]

Thomas, P.

N. Sharma, P. Thomas, D. Tricker, and C. Humphreys, “Chemical mapping and formation of V-defects in InGaN multiple quantum wells,” Appl. Phys. Lett. 77(9), 1274–1277 (2000).
[CrossRef]

Tricker, D.

N. Sharma, P. Thomas, D. Tricker, and C. Humphreys, “Chemical mapping and formation of V-defects in InGaN multiple quantum wells,” Appl. Phys. Lett. 77(9), 1274–1277 (2000).
[CrossRef]

Tsai, C. Y.

S. W. Feng, C. Y. Tsai, H. C. Wang, H. C. Lin, and J. I. Chyi, “Optical properties of InGaN/GaN multiple quantum wells with trimethylindium treatment during growth interruption,” J. Cryst. Growth 325(1), 41–45 (2011).
[CrossRef]

Tsai, J. M.

S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen, and J. M. Tsai, “400-nm InGaN-GaN and InGaN-AlGaN multiquantum well light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8(4), 744–748 (2002).
[CrossRef]

Tsao, J. Y.

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photonics Rev. 1(4), 307–333 (2007).
[CrossRef]

Varshni, Y. P.

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).
[CrossRef]

Viña, L.

L. Viña, S. Logothetidis, and M. Cardona, “Temperature dependence of the dielectric function of germanium,” Phys. Rev. B 30(4), 1979–1991 (1984).
[CrossRef]

Wang, H.

J. P. Zhang, E. Kuokstis, Q. Fareed, H. Wang, J. W. Yang, G. Simin, M. Asif Khan, R. Gaska, and M. S. Shur, “Pulsed atomic layer epitaxy of quaternary AlInGaN layers,” Appl. Phys. Lett. 79(7), 925–927 (2001).
[CrossRef]

Wang, H. C.

S. W. Feng, C. Y. Tsai, H. C. Wang, H. C. Lin, and J. I. Chyi, “Optical properties of InGaN/GaN multiple quantum wells with trimethylindium treatment during growth interruption,” J. Cryst. Growth 325(1), 41–45 (2011).
[CrossRef]

Wang, S. Y.

Y. Chen, T. Takeuchi, H. Amano, I. Akasaki, N. Yamada, Y. Kaneko, and S. Y. Wang, “Pit formation in GaInN quantum wells,” Appl. Phys. Lett. 72(6), 710–712 (1998).
[CrossRef]

Watanabe, S.

G. Chen, M. Craven, A. Kim, A. Munkholm, S. Watanabe, M. Camras, W. Götz, and F. Steranka, “Performance of high-power III-nitride light emitting diodes,” Phys. Status Solidi A 205(5), 1086–1092 (2008).
[CrossRef]

Wen, T. C.

S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen, and J. M. Tsai, “400-nm InGaN-GaN and InGaN-AlGaN multiquantum well light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8(4), 744–748 (2002).
[CrossRef]

Wu, L. W.

S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen, and J. M. Tsai, “400-nm InGaN-GaN and InGaN-AlGaN multiquantum well light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8(4), 744–748 (2002).
[CrossRef]

Wu, X. H.

X. H. Wu, C. R. Elsass, A. Abare, M. Mack, S. Keller, P. M. Petroff, S. P. DenBaars, J. S. Speck, and S. J. Rosner, “Structural origin of V-defects and correlation with localized excitonic centers in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 72(6), 692–694 (1998).
[CrossRef]

Xi, J. Q.

J. K. Kim, T. Gessmann, E. F. Schubert, J. Q. Xi, H. Luo, J. Cho, C. Sone, and Y. Park, “GaInN light-emitting diode with conductive omnidirectional reflector having a low-refractive-index indium-tin oxide layer,” Appl. Phys. Lett. 88(1), 013501 (2006).
[CrossRef]

Xiang, H. X.

C. J. Sun, M. Zubair Anwar, Q. Chen, J. W. Yang, M. Asif Khan, M. S. Shur, A. D. Bykhovski, Z. Liliental-Weber, C. Kisielowski, M. Smith, J. Y. Lin, and H. X. Xiang, “Quantum shift of band-edge stimulated emission in InGaN–GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 70(22), 2978–2980 (1997).
[CrossRef]

Yamada, M.

T. Mukai, S. Nagahama, M. Sano, T. Yanamoto, D. Morita, T. Mitani, Y. Narukawa, S. Yamamoto, I. Niki, M. Yamada, S. Sonobe, S. Shioji, K. Deguchi, T. Naitou, H. Tamaki, Y. Murazaki, and M. Kameshima, “Recent progress of nitride-based light emitting devices,” Phys. Status Solidi A 200(1), 52–57 (2003).
[CrossRef]

Yamada, N.

Y. Chen, T. Takeuchi, H. Amano, I. Akasaki, N. Yamada, Y. Kaneko, and S. Y. Wang, “Pit formation in GaInN quantum wells,” Appl. Phys. Lett. 72(6), 710–712 (1998).
[CrossRef]

Yamamoto, S.

T. Mukai, S. Nagahama, M. Sano, T. Yanamoto, D. Morita, T. Mitani, Y. Narukawa, S. Yamamoto, I. Niki, M. Yamada, S. Sonobe, S. Shioji, K. Deguchi, T. Naitou, H. Tamaki, Y. Murazaki, and M. Kameshima, “Recent progress of nitride-based light emitting devices,” Phys. Status Solidi A 200(1), 52–57 (2003).
[CrossRef]

Yanamoto, T.

T. Mukai, S. Nagahama, M. Sano, T. Yanamoto, D. Morita, T. Mitani, Y. Narukawa, S. Yamamoto, I. Niki, M. Yamada, S. Sonobe, S. Shioji, K. Deguchi, T. Naitou, H. Tamaki, Y. Murazaki, and M. Kameshima, “Recent progress of nitride-based light emitting devices,” Phys. Status Solidi A 200(1), 52–57 (2003).
[CrossRef]

Yang, G. M.

H. K. Cho, J. Y. Lee, G. M. Yang, and C. S. Kim, “Formation mechanism of V defects in the InGaN/GaN multiple quantum wells grown on GaN layers with low threading dislocation density,” Appl. Phys. Lett. 79(2), 215–217 (2001).
[CrossRef]

Yang, J. W.

J. P. Zhang, E. Kuokstis, Q. Fareed, H. Wang, J. W. Yang, G. Simin, M. Asif Khan, R. Gaska, and M. S. Shur, “Pulsed atomic layer epitaxy of quaternary AlInGaN layers,” Appl. Phys. Lett. 79(7), 925–927 (2001).
[CrossRef]

C. J. Sun, M. Zubair Anwar, Q. Chen, J. W. Yang, M. Asif Khan, M. S. Shur, A. D. Bykhovski, Z. Liliental-Weber, C. Kisielowski, M. Smith, J. Y. Lin, and H. X. Xiang, “Quantum shift of band-edge stimulated emission in InGaN–GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 70(22), 2978–2980 (1997).
[CrossRef]

Zhang, J. P.

J. P. Zhang, E. Kuokstis, Q. Fareed, H. Wang, J. W. Yang, G. Simin, M. Asif Khan, R. Gaska, and M. S. Shur, “Pulsed atomic layer epitaxy of quaternary AlInGaN layers,” Appl. Phys. Lett. 79(7), 925–927 (2001).
[CrossRef]

Zhou, L.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” IEEE J. Display Technol. 3(2), 160–175 (2007).
[CrossRef]

Zubair Anwar, M.

C. J. Sun, M. Zubair Anwar, Q. Chen, J. W. Yang, M. Asif Khan, M. S. Shur, A. D. Bykhovski, Z. Liliental-Weber, C. Kisielowski, M. Smith, J. Y. Lin, and H. X. Xiang, “Quantum shift of band-edge stimulated emission in InGaN–GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 70(22), 2978–2980 (1997).
[CrossRef]

Appl. Phys. Lett.

S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGan/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64(13), 1687–1689 (1994).
[CrossRef]

J. K. Kim, T. Gessmann, E. F. Schubert, J. Q. Xi, H. Luo, J. Cho, C. Sone, and Y. Park, “GaInN light-emitting diode with conductive omnidirectional reflector having a low-refractive-index indium-tin oxide layer,” Appl. Phys. Lett. 88(1), 013501 (2006).
[CrossRef]

Y.-L. Li, E. F. Schubert, J. W. Graff, A. Osinsky, and W. F. Schaff, “Low-resistance ohmic contacts to p-type GaN,” Appl. Phys. Lett. 76(19), 2728–2730 (2000).
[CrossRef]

X. H. Wu, C. R. Elsass, A. Abare, M. Mack, S. Keller, P. M. Petroff, S. P. DenBaars, J. S. Speck, and S. J. Rosner, “Structural origin of V-defects and correlation with localized excitonic centers in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 72(6), 692–694 (1998).
[CrossRef]

H. K. Cho, J. Y. Lee, G. M. Yang, and C. S. Kim, “Formation mechanism of V defects in the InGaN/GaN multiple quantum wells grown on GaN layers with low threading dislocation density,” Appl. Phys. Lett. 79(2), 215–217 (2001).
[CrossRef]

N. Sharma, P. Thomas, D. Tricker, and C. Humphreys, “Chemical mapping and formation of V-defects in InGaN multiple quantum wells,” Appl. Phys. Lett. 77(9), 1274–1277 (2000).
[CrossRef]

C. J. Sun, M. Zubair Anwar, Q. Chen, J. W. Yang, M. Asif Khan, M. S. Shur, A. D. Bykhovski, Z. Liliental-Weber, C. Kisielowski, M. Smith, J. Y. Lin, and H. X. Xiang, “Quantum shift of band-edge stimulated emission in InGaN–GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 70(22), 2978–2980 (1997).
[CrossRef]

I. H. Kim, H. S. Park, Y. J. Park, and T. Kim, “Formation of V-shaped pits in InGaN/GaN multiquantum wells and bulk InGaN films,” Appl. Phys. Lett. 73(12), 1634–1636 (1998).
[CrossRef]

Y. Chen, T. Takeuchi, H. Amano, I. Akasaki, N. Yamada, Y. Kaneko, and S. Y. Wang, “Pit formation in GaInN quantum wells,” Appl. Phys. Lett. 72(6), 710–712 (1998).
[CrossRef]

H. C. Lin, R. S. Lin, and J. I. Chyi, “Enhancing the quantum efficiency of InGaN green light-emitting diodes by trimethylindium treatment,” Appl. Phys. Lett. 92(16), 161113 (2008).
[CrossRef]

J. P. Zhang, E. Kuokstis, Q. Fareed, H. Wang, J. W. Yang, G. Simin, M. Asif Khan, R. Gaska, and M. S. Shur, “Pulsed atomic layer epitaxy of quaternary AlInGaN layers,” Appl. Phys. Lett. 79(7), 925–927 (2001).
[CrossRef]

P. G. Eliseev, P. Perlin, J. Lee, and M. Osinski, “Blue temperature-induced shift and band-tail emission in InGaN-based light sources,” Appl. Phys. Lett. 71(5), 569–571 (1997).
[CrossRef]

S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, “Spontaneous emission of localized excitons in InGaN single and multiquantum well structures,” Appl. Phys. Lett. 69(27), 4188–4190 (1996).
[CrossRef]

Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, S. Fujita, and S. Nakamura, “Role of self-formed InGaN quantum dots for exaction localization in the purple laser diode emitting at 420 nm,” Appl. Phys. Lett. 70(8), 981–983 (1997).
[CrossRef]

F. B. Naranjo, M. A. Sánchez-García, F. Calle, E. Calleja, B. Jenichen, and K. H. Ploog, “Strong localization in InGaN layers with high In content grown by molecular-beam epitaxy,” Appl. Phys. Lett. 80(2), 231–233 (2002).
[CrossRef]

J. Abell and T. D. Moustakas, “The role of dislocations as nonradiative recombination centers in InGaN quantum wells,” Appl. Phys. Lett. 92(9), 091901 (2008).
[CrossRef]

IEEE J. Display Technol.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” IEEE J. Display Technol. 3(2), 160–175 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu, and U. H. Liaw, “InGaN-GaN multiquantum-well blue and green light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8(2), 278–283 (2002).
[CrossRef]

S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen, and J. M. Tsai, “400-nm InGaN-GaN and InGaN-AlGaN multiquantum well light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8(4), 744–748 (2002).
[CrossRef]

IEEE Photonics Technol. Lett.

Y. J. Lee, Y. C. Chen, C. J. Lee, C. M. Cheng, S. W. Chen, and T. C. Lu, “Stable temperature characteristics and suppression of efficiency droop in InGaN Green light-emitting diodes using pre-TMIn flow treatment,” IEEE Photonics Technol. Lett. 22(17), 1279–1281 (2010).
[CrossRef]

J. Appl. Phys.

M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys. 86(7), 3721–3728 (1999).
[CrossRef]

E. Monroy, N. Gogneau, F. Enjalbert, F. Fossard, D. Jalabert, E. Bellet-Amalric, L. Si Dang, and B. Daudin, “Molecular-beam epitaxial growth and characterization of quaternary III–nitride compounds,” J. Appl. Phys. 94(5), 3121–3127 (2003).
[CrossRef]

Y. H. Cho, F. Fedler, R. J. Hauenstein, G. H. Park, J. J. Song, S. Keller, U. K. Mishra, and S. P. Denbaars, “High resolution x-ray analysis of pseudomorphic InGaN/GaN multiple quantum wells: Influence of Si doping concentration,” J. Appl. Phys. 85(5), 3006–3008 (1999).
[CrossRef]

J. Cryst. Growth

S. W. Feng, C. Y. Tsai, H. C. Wang, H. C. Lin, and J. I. Chyi, “Optical properties of InGaN/GaN multiple quantum wells with trimethylindium treatment during growth interruption,” J. Cryst. Growth 325(1), 41–45 (2011).
[CrossRef]

S. Choi, H. J. Kim, J.-H. Ryou, and R. D. Dupuis, “Digitally alloyed modulated precursor flow epitaxial growth of AlxGa1−xN layers with AlN and AlyGa1−yN monolayers,” J. Cryst. Growth 311(12), 3252–3256 (2009).
[CrossRef]

Jpn. J. Appl. Phys.

M. S. Kumar, J. Y. Park, Y. S. Lee, S. J. Chung, C.-H. Hong, and E.-K. Suh, “Improved internal quantum efficiency of green emitting InGaN/GaN multiple quantum wells by In preflow for InGaN well growth,” Jpn. J. Appl. Phys. 47(2), 839–842 (2008).
[CrossRef]

Jpn. J. Appl. Phys. Part 2

S. J. Leem, M. H. Kim, J. Shin, Y. Choi, and J. Jeong, “The effects of In flow during growth interruption on the optical properties of InGaN multiple quantum wells grown by low pressure metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys. Part 2 40(4B), L371–L373 (2001).

S. Nakamura, N. Senoh, N. Iwasa, and S. I. Nagahama, “High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures,” Jpn. J. Appl. Phys. Part 2 34(7A), L797–L799 (1995).

Laser Photonics Rev.

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photonics Rev. 1(4), 307–333 (2007).
[CrossRef]

Phys. Rev. B

L. Viña, S. Logothetidis, and M. Cardona, “Temperature dependence of the dielectric function of germanium,” Phys. Rev. B 30(4), 1979–1991 (1984).
[CrossRef]

Phys. Status Solidi A

G. Chen, M. Craven, A. Kim, A. Munkholm, S. Watanabe, M. Camras, W. Götz, and F. Steranka, “Performance of high-power III-nitride light emitting diodes,” Phys. Status Solidi A 205(5), 1086–1092 (2008).
[CrossRef]

T. Mukai, S. Nagahama, M. Sano, T. Yanamoto, D. Morita, T. Mitani, Y. Narukawa, S. Yamamoto, I. Niki, M. Yamada, S. Sonobe, S. Shioji, K. Deguchi, T. Naitou, H. Tamaki, Y. Murazaki, and M. Kameshima, “Recent progress of nitride-based light emitting devices,” Phys. Status Solidi A 200(1), 52–57 (2003).
[CrossRef]

Physica

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the source-switching sequences of the MQW growth conditions for LEDs (a) I and (b) II. Axis scales are not in proportion.

Fig. 2
Fig. 2

θ-2θ scan X-ray diffraction spectra of LEDs (a) I and (b) II. The satellite peaks are labeled with numbers. The lower curve is the simulation resulting from fitting the XRD data.

Fig. 3
Fig. 3

TEM images of the InGaN/GaN MQWs for LEDs (a) I and (b) II.

Fig. 4
Fig. 4

RT PL spectra of LEDs I and II.

Fig. 5
Fig. 5

PL spectrum peak position and FWHM with respect to temperature for LEDs I and II. The solid lines are fitted to the experimental data points using Eq. (1).

Fig. 6
Fig. 6

Arrhenius plots of the integrated PL intensity at different temperatures for LEDs I and II. For clarity, the curves have been shifted vertically. The solid lines are fitted to the experimental data points using Eq. (2).

Fig. 7
Fig. 7

Light output power and EQE with respect to the injection current density for LEDs I and II.

Fig. 8
Fig. 8

Emission wavelength with respect to injection current density for LEDs I and II.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E = E ( 0 ) α T 2 β + T σ 2 k B T ,
I ( T ) = I ( 0 ) 1 + A 1 exp ( E A 1 k B T ) + A 2 exp ( E A 2 k B T ) ,

Metrics