Abstract

The optics of core / shell nanowire solar cells was investigated. The optical wave propagation was studied by finite difference time domain simulations using realistic interface morphologies. The interface morphologies were determined by a 3D surface coverage algorithm, which provides a realistic film formation of amorphous silicon films on zinc oxide nanowire arrays. The influence of the nanowire dimensions on the interface morphology and light trapping was investigated and optimal dimensions of the zinc oxide nanowire were derived.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Kuang, K. H. M. van der Werf, Z. S. Houweling, and R. E. I. Schropp, “Nanorod solar cell with an ultrathin a-Si: H absorber layer,” Appl. Phys. Lett. 98(11), 113111 (2011).
    [CrossRef]
  2. X. Xie, X. Zeng, P. Yang, H. Li, J. Li, X. Zhang, and Q. Wang, “Radial nip structure SiNW-based microcrystalline silicon thin-film solar cells on flexible stainless steel,” Nanoscale Res. Lett. 7(621), 1–6 (2012).
    [PubMed]
  3. W. J. Nam, L. Ji, T. L. Benanti, V. V. Varadan, S. Wagner, Q. Wang, W. Nemeth, D. Neidich, and S. J. Fonash, “Incorporation of a light and carrier collection management nano-element array into superstrate a-Si: H solar cells,” Appl. Phys. Lett. 99(7), 073113 (2011).
    [CrossRef]
  4. M. M. Adachi, M. P. Anantram, and K. S. Karim, “Core-shell silicon nanowire solar cells,” Sci. Rep. 31465 (2013).
  5. M. M. Adachi, M. P. Anantram, and K. S. Karim, “Optical Properties of Crystalline-Amorphous Core-Shell Silicon Nanowires,” Nano Lett. 10(10), 4093–4098 (2010).
    [CrossRef] [PubMed]
  6. M. J. Naughton, K. Kempa, Z. F. Ren, Y. Gao, J. Rybczynski, N. Argenti, W. Gao, Y. Wang, Y. Peng, J. R. Naughton, G. McMahon, T. Paudel, Y. C. Lan, M. J. Burns, A. Shepard, M. Clary, C. Ballif, F.-J. Haug, T. Söderström, O. Cubero, and C. Eminian, “Efficient nanocoax-based solar cells,” Phys. Status Solidi (RRL)- Rapid Res. Lett. 4(7), 181–183 (2010).
  7. J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
    [CrossRef] [PubMed]
  8. E. Garnett and P. Yang, “Light Trapping in Silicon Nanowire Solar Cells,” Nano Lett. 10(3), 1082–1087 (2010).
    [CrossRef] [PubMed]
  9. D. L. Staebler and C. R. Wronski, “Wronski, Reversible conductivity changes in discharge produced amorphous Si,”Appl. Phys. Lett. 31(4), 292 (1977).
  10. O. Lupan, V. M. Guérin, I. M. Tiginyanu, V. V. Ursaki, L. Chow, H. Heinrich, and T. Pauporté, “Well-aligned arrays of vertically oriented ZnO nanowires electrodeposited on ITO-coated glass and their integration in dye sensitized solar cells,” J. Photochem. Photobiol. Chem. 211(1), 65–73 (2010).
    [CrossRef]
  11. J. Joo, B. Y. Chow, M. Prakash, E. S. Boyden, and J. M. Jacobson, “Face-selective electrostatic control of hydrothermal zinc oxide nanowire synthesis,” Nat. Mater. 10(8), 596–601 (2011).
    [CrossRef] [PubMed]
  12. B. Liu and H. C. Zeng, “Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm,” J. Am. Chem. Soc. 125(15), 4430–4431 (2003).
    [CrossRef] [PubMed]
  13. D. J. Rogers, V. E. Sandana, F. H. Teherani, M. Razeghi, and H. J. Drouhin, “Fabrication of nanostructured heterojunction LEDs using self-forming moth eye type arrays of n-ZnOnanocones grown on p-si (111)substrates by pulsed laser deposition,” Proc. SPIE 7217, Zinc Oxide Materials and Devices IV, 721708 (2009).
    [CrossRef]
  14. M. M. Schwarz, T. Richter, R. Pearson, A. Tamang, T. Balster, D. Knipp, and V. Wagner, “Controlled electrodeposition of ZnO nanostructures for enhanced light scattering properties,” J. Appl. Electrochem. 44, 1–8 (2014).
  15. J. D. Plummer, M. D. Deal, and P. B. Griffin, Silicon VLSI Technology Fundamentals, Practice and Modeling (Prentice Hall, 2000), Chap. 5.
  16. R. L. Puurunen, “Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process,” J. Appl. Phys. 97(12), 121301 (2005).
    [CrossRef]
  17. C. C. Tsai, J. C. Knights, G. Chang, and B. Wacker, “Film formation mechanisms in the plasma deposition of hydrogenated amorphous silicon,” J. Appl. Phys. 59(8), 2998–3001 (1986).
    [CrossRef]
  18. R. A. Street, Hydrogenated Amorphous Silicon (Cambridge University, 1991), Chap. 2.
  19. U. Palanchoke, V. Jovanov, H. Kurz, P. Obermeyer, H. Stiebig, and D. Knipp, “Plasmonic effects in amorphous silicon thin film solar cells with metal back contacts,” Opt. Express 20(6), 6340–6347 (2012).
    [CrossRef] [PubMed]
  20. V. Jovanov, X. Xu, S. Shrestha, M. Schulte, J. Hüpkes, M. Zeman, and D. Knipp, “Influence of interface morphologies on amorphous silicon thin film solar cells prepared on randomly textured substrates,” Sol. Energy Mater. Sol. Cells 112, 182–189 (2013).
    [CrossRef]
  21. V. Jovanov, X. Xu, S. Shrestha, M. Schulte, J. Hüpkes, and D. Knipp, “Predicting the interface morphologies of silicon films on arbitrary substrates: application in solar cells,” ACS Appl. Mater. Interfaces 5(15), 7109–7116 (2013).
    [CrossRef] [PubMed]
  22. A. Lin and J. Phillips, “Optimization of random diffraction gratings in thin-film solar cells using genetic algorithms,” Sol. Energy Mater. Sol. Cells 92(12), 1689–1696 (2008).
    [CrossRef]
  23. R. Dewan, I. Vasilev, V. Jovanov, and D. Knipp, “Optical enhancement and losses of pyramid textured thin-film silicon solar cells,” J. Appl. Phys. 110(1), 013101 (2011).
    [CrossRef]
  24. A. Čampa, J. Krč, and M. Topič, “Analysis and optimisation of microcrystalline silicon solar cells with periodic sinusoidal textured interfaces by two-dimensional optical simulations,” J. Appl. Phys. 105(8), 083107 (2009).
    [CrossRef]
  25. S. Fahr, T. Kirchartz, C. Rockstuhl, and F. Lederer, “Approaching the Lambertian limit in randomly textured thin-film solar cells,” Opt. Express 19(S4Suppl 4), A865–A874 (2011).
    [CrossRef] [PubMed]
  26. R. Dewan, J. I. Owen, D. Madzharov, V. Jovanov, J. Hüpkes, and D. Knipp, “Analyzing nanotextured transparent conductive oxides for efficient light trapping in silicon thin film solar cells,” Appl. Phys. Lett. 101(10), 103903 (2012).
    [CrossRef]
  27. A. Tamang, A. Hongsingthong, P. Sichanugrist, V. Jovanov, M. Konagai, and D. Knipp, “Light-Trapping and Interface Morphologies of Amorphous Silicon Solar Cells on Multiscale Surface TexturedSubstrates,” IEEE J. Photovolatics 4(1), 16–21 (2013).
  28. S. Benagli, D. Borrello, E. Vallat-Sauvain, J. Meier, U. Kroll, J. Hoetzel, J. Bailat, J. Steinhauser, M. Marmelo, G. Monteduro, and L. Castens, “High efficiency amorphous silicon devices on LPCVD-ZnO TCO prepared in industrial KAI R&D reactor,” 24th European Photo. Solar Energy Conf., 21–25(2009, September).
  29. M. Zeman, R. A. C. M. M. van Swaaij, J. W. Metselaar, and R. E. I. Schropp, “Optical modeling of a-Si:H solar cells with rough interfaces: Effect of back contact and interface roughness,” J. Appl. Phys. 88(11), 6436–6443 (2000).
    [CrossRef]
  30. C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
    [CrossRef] [PubMed]
  31. B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
    [CrossRef] [PubMed]

2014

M. M. Schwarz, T. Richter, R. Pearson, A. Tamang, T. Balster, D. Knipp, and V. Wagner, “Controlled electrodeposition of ZnO nanostructures for enhanced light scattering properties,” J. Appl. Electrochem. 44, 1–8 (2014).

2013

V. Jovanov, X. Xu, S. Shrestha, M. Schulte, J. Hüpkes, M. Zeman, and D. Knipp, “Influence of interface morphologies on amorphous silicon thin film solar cells prepared on randomly textured substrates,” Sol. Energy Mater. Sol. Cells 112, 182–189 (2013).
[CrossRef]

V. Jovanov, X. Xu, S. Shrestha, M. Schulte, J. Hüpkes, and D. Knipp, “Predicting the interface morphologies of silicon films on arbitrary substrates: application in solar cells,” ACS Appl. Mater. Interfaces 5(15), 7109–7116 (2013).
[CrossRef] [PubMed]

M. M. Adachi, M. P. Anantram, and K. S. Karim, “Core-shell silicon nanowire solar cells,” Sci. Rep. 31465 (2013).

A. Tamang, A. Hongsingthong, P. Sichanugrist, V. Jovanov, M. Konagai, and D. Knipp, “Light-Trapping and Interface Morphologies of Amorphous Silicon Solar Cells on Multiscale Surface TexturedSubstrates,” IEEE J. Photovolatics 4(1), 16–21 (2013).

2012

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

R. Dewan, J. I. Owen, D. Madzharov, V. Jovanov, J. Hüpkes, and D. Knipp, “Analyzing nanotextured transparent conductive oxides for efficient light trapping in silicon thin film solar cells,” Appl. Phys. Lett. 101(10), 103903 (2012).
[CrossRef]

U. Palanchoke, V. Jovanov, H. Kurz, P. Obermeyer, H. Stiebig, and D. Knipp, “Plasmonic effects in amorphous silicon thin film solar cells with metal back contacts,” Opt. Express 20(6), 6340–6347 (2012).
[CrossRef] [PubMed]

X. Xie, X. Zeng, P. Yang, H. Li, J. Li, X. Zhang, and Q. Wang, “Radial nip structure SiNW-based microcrystalline silicon thin-film solar cells on flexible stainless steel,” Nanoscale Res. Lett. 7(621), 1–6 (2012).
[PubMed]

2011

W. J. Nam, L. Ji, T. L. Benanti, V. V. Varadan, S. Wagner, Q. Wang, W. Nemeth, D. Neidich, and S. J. Fonash, “Incorporation of a light and carrier collection management nano-element array into superstrate a-Si: H solar cells,” Appl. Phys. Lett. 99(7), 073113 (2011).
[CrossRef]

Y. Kuang, K. H. M. van der Werf, Z. S. Houweling, and R. E. I. Schropp, “Nanorod solar cell with an ultrathin a-Si: H absorber layer,” Appl. Phys. Lett. 98(11), 113111 (2011).
[CrossRef]

J. Joo, B. Y. Chow, M. Prakash, E. S. Boyden, and J. M. Jacobson, “Face-selective electrostatic control of hydrothermal zinc oxide nanowire synthesis,” Nat. Mater. 10(8), 596–601 (2011).
[CrossRef] [PubMed]

S. Fahr, T. Kirchartz, C. Rockstuhl, and F. Lederer, “Approaching the Lambertian limit in randomly textured thin-film solar cells,” Opt. Express 19(S4Suppl 4), A865–A874 (2011).
[CrossRef] [PubMed]

R. Dewan, I. Vasilev, V. Jovanov, and D. Knipp, “Optical enhancement and losses of pyramid textured thin-film silicon solar cells,” J. Appl. Phys. 110(1), 013101 (2011).
[CrossRef]

2010

O. Lupan, V. M. Guérin, I. M. Tiginyanu, V. V. Ursaki, L. Chow, H. Heinrich, and T. Pauporté, “Well-aligned arrays of vertically oriented ZnO nanowires electrodeposited on ITO-coated glass and their integration in dye sensitized solar cells,” J. Photochem. Photobiol. Chem. 211(1), 65–73 (2010).
[CrossRef]

E. Garnett and P. Yang, “Light Trapping in Silicon Nanowire Solar Cells,” Nano Lett. 10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

M. M. Adachi, M. P. Anantram, and K. S. Karim, “Optical Properties of Crystalline-Amorphous Core-Shell Silicon Nanowires,” Nano Lett. 10(10), 4093–4098 (2010).
[CrossRef] [PubMed]

M. J. Naughton, K. Kempa, Z. F. Ren, Y. Gao, J. Rybczynski, N. Argenti, W. Gao, Y. Wang, Y. Peng, J. R. Naughton, G. McMahon, T. Paudel, Y. C. Lan, M. J. Burns, A. Shepard, M. Clary, C. Ballif, F.-J. Haug, T. Söderström, O. Cubero, and C. Eminian, “Efficient nanocoax-based solar cells,” Phys. Status Solidi (RRL)- Rapid Res. Lett. 4(7), 181–183 (2010).

2009

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

A. Čampa, J. Krč, and M. Topič, “Analysis and optimisation of microcrystalline silicon solar cells with periodic sinusoidal textured interfaces by two-dimensional optical simulations,” J. Appl. Phys. 105(8), 083107 (2009).
[CrossRef]

D. J. Rogers, V. E. Sandana, F. H. Teherani, M. Razeghi, and H. J. Drouhin, “Fabrication of nanostructured heterojunction LEDs using self-forming moth eye type arrays of n-ZnOnanocones grown on p-si (111)substrates by pulsed laser deposition,” Proc. SPIE 7217, Zinc Oxide Materials and Devices IV, 721708 (2009).
[CrossRef]

2008

A. Lin and J. Phillips, “Optimization of random diffraction gratings in thin-film solar cells using genetic algorithms,” Sol. Energy Mater. Sol. Cells 92(12), 1689–1696 (2008).
[CrossRef]

2007

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

2005

R. L. Puurunen, “Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process,” J. Appl. Phys. 97(12), 121301 (2005).
[CrossRef]

2003

B. Liu and H. C. Zeng, “Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm,” J. Am. Chem. Soc. 125(15), 4430–4431 (2003).
[CrossRef] [PubMed]

2000

M. Zeman, R. A. C. M. M. van Swaaij, J. W. Metselaar, and R. E. I. Schropp, “Optical modeling of a-Si:H solar cells with rough interfaces: Effect of back contact and interface roughness,” J. Appl. Phys. 88(11), 6436–6443 (2000).
[CrossRef]

1986

C. C. Tsai, J. C. Knights, G. Chang, and B. Wacker, “Film formation mechanisms in the plasma deposition of hydrogenated amorphous silicon,” J. Appl. Phys. 59(8), 2998–3001 (1986).
[CrossRef]

1977

D. L. Staebler and C. R. Wronski, “Wronski, Reversible conductivity changes in discharge produced amorphous Si,”Appl. Phys. Lett. 31(4), 292 (1977).

Adachi, M. M.

M. M. Adachi, M. P. Anantram, and K. S. Karim, “Core-shell silicon nanowire solar cells,” Sci. Rep. 31465 (2013).

M. M. Adachi, M. P. Anantram, and K. S. Karim, “Optical Properties of Crystalline-Amorphous Core-Shell Silicon Nanowires,” Nano Lett. 10(10), 4093–4098 (2010).
[CrossRef] [PubMed]

Alexander, D. T.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Anantram, M. P.

M. M. Adachi, M. P. Anantram, and K. S. Karim, “Core-shell silicon nanowire solar cells,” Sci. Rep. 31465 (2013).

M. M. Adachi, M. P. Anantram, and K. S. Karim, “Optical Properties of Crystalline-Amorphous Core-Shell Silicon Nanowires,” Nano Lett. 10(10), 4093–4098 (2010).
[CrossRef] [PubMed]

Argenti, N.

M. J. Naughton, K. Kempa, Z. F. Ren, Y. Gao, J. Rybczynski, N. Argenti, W. Gao, Y. Wang, Y. Peng, J. R. Naughton, G. McMahon, T. Paudel, Y. C. Lan, M. J. Burns, A. Shepard, M. Clary, C. Ballif, F.-J. Haug, T. Söderström, O. Cubero, and C. Eminian, “Efficient nanocoax-based solar cells,” Phys. Status Solidi (RRL)- Rapid Res. Lett. 4(7), 181–183 (2010).

Ballif, C.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

M. J. Naughton, K. Kempa, Z. F. Ren, Y. Gao, J. Rybczynski, N. Argenti, W. Gao, Y. Wang, Y. Peng, J. R. Naughton, G. McMahon, T. Paudel, Y. C. Lan, M. J. Burns, A. Shepard, M. Clary, C. Ballif, F.-J. Haug, T. Söderström, O. Cubero, and C. Eminian, “Efficient nanocoax-based solar cells,” Phys. Status Solidi (RRL)- Rapid Res. Lett. 4(7), 181–183 (2010).

Balster, T.

M. M. Schwarz, T. Richter, R. Pearson, A. Tamang, T. Balster, D. Knipp, and V. Wagner, “Controlled electrodeposition of ZnO nanostructures for enhanced light scattering properties,” J. Appl. Electrochem. 44, 1–8 (2014).

Battaglia, C.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Benanti, T. L.

W. J. Nam, L. Ji, T. L. Benanti, V. V. Varadan, S. Wagner, Q. Wang, W. Nemeth, D. Neidich, and S. J. Fonash, “Incorporation of a light and carrier collection management nano-element array into superstrate a-Si: H solar cells,” Appl. Phys. Lett. 99(7), 073113 (2011).
[CrossRef]

Boccard, M.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Boyden, E. S.

J. Joo, B. Y. Chow, M. Prakash, E. S. Boyden, and J. M. Jacobson, “Face-selective electrostatic control of hydrothermal zinc oxide nanowire synthesis,” Nat. Mater. 10(8), 596–601 (2011).
[CrossRef] [PubMed]

Burkhard, G. F.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Burns, M. J.

M. J. Naughton, K. Kempa, Z. F. Ren, Y. Gao, J. Rybczynski, N. Argenti, W. Gao, Y. Wang, Y. Peng, J. R. Naughton, G. McMahon, T. Paudel, Y. C. Lan, M. J. Burns, A. Shepard, M. Clary, C. Ballif, F.-J. Haug, T. Söderström, O. Cubero, and C. Eminian, “Efficient nanocoax-based solar cells,” Phys. Status Solidi (RRL)- Rapid Res. Lett. 4(7), 181–183 (2010).

Campa, A.

A. Čampa, J. Krč, and M. Topič, “Analysis and optimisation of microcrystalline silicon solar cells with periodic sinusoidal textured interfaces by two-dimensional optical simulations,” J. Appl. Phys. 105(8), 083107 (2009).
[CrossRef]

Cantoni, M.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Chang, G.

C. C. Tsai, J. C. Knights, G. Chang, and B. Wacker, “Film formation mechanisms in the plasma deposition of hydrogenated amorphous silicon,” J. Appl. Phys. 59(8), 2998–3001 (1986).
[CrossRef]

Charrière, M.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Chow, B. Y.

J. Joo, B. Y. Chow, M. Prakash, E. S. Boyden, and J. M. Jacobson, “Face-selective electrostatic control of hydrothermal zinc oxide nanowire synthesis,” Nat. Mater. 10(8), 596–601 (2011).
[CrossRef] [PubMed]

Chow, L.

O. Lupan, V. M. Guérin, I. M. Tiginyanu, V. V. Ursaki, L. Chow, H. Heinrich, and T. Pauporté, “Well-aligned arrays of vertically oriented ZnO nanowires electrodeposited on ITO-coated glass and their integration in dye sensitized solar cells,” J. Photochem. Photobiol. Chem. 211(1), 65–73 (2010).
[CrossRef]

Clary, M.

M. J. Naughton, K. Kempa, Z. F. Ren, Y. Gao, J. Rybczynski, N. Argenti, W. Gao, Y. Wang, Y. Peng, J. R. Naughton, G. McMahon, T. Paudel, Y. C. Lan, M. J. Burns, A. Shepard, M. Clary, C. Ballif, F.-J. Haug, T. Söderström, O. Cubero, and C. Eminian, “Efficient nanocoax-based solar cells,” Phys. Status Solidi (RRL)- Rapid Res. Lett. 4(7), 181–183 (2010).

Connor, S. T.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Cubero, O.

M. J. Naughton, K. Kempa, Z. F. Ren, Y. Gao, J. Rybczynski, N. Argenti, W. Gao, Y. Wang, Y. Peng, J. R. Naughton, G. McMahon, T. Paudel, Y. C. Lan, M. J. Burns, A. Shepard, M. Clary, C. Ballif, F.-J. Haug, T. Söderström, O. Cubero, and C. Eminian, “Efficient nanocoax-based solar cells,” Phys. Status Solidi (RRL)- Rapid Res. Lett. 4(7), 181–183 (2010).

Cui, Y.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Despeisse, M.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Dewan, R.

R. Dewan, J. I. Owen, D. Madzharov, V. Jovanov, J. Hüpkes, and D. Knipp, “Analyzing nanotextured transparent conductive oxides for efficient light trapping in silicon thin film solar cells,” Appl. Phys. Lett. 101(10), 103903 (2012).
[CrossRef]

R. Dewan, I. Vasilev, V. Jovanov, and D. Knipp, “Optical enhancement and losses of pyramid textured thin-film silicon solar cells,” J. Appl. Phys. 110(1), 013101 (2011).
[CrossRef]

Drouhin, H. J.

D. J. Rogers, V. E. Sandana, F. H. Teherani, M. Razeghi, and H. J. Drouhin, “Fabrication of nanostructured heterojunction LEDs using self-forming moth eye type arrays of n-ZnOnanocones grown on p-si (111)substrates by pulsed laser deposition,” Proc. SPIE 7217, Zinc Oxide Materials and Devices IV, 721708 (2009).
[CrossRef]

Eminian, C.

M. J. Naughton, K. Kempa, Z. F. Ren, Y. Gao, J. Rybczynski, N. Argenti, W. Gao, Y. Wang, Y. Peng, J. R. Naughton, G. McMahon, T. Paudel, Y. C. Lan, M. J. Burns, A. Shepard, M. Clary, C. Ballif, F.-J. Haug, T. Söderström, O. Cubero, and C. Eminian, “Efficient nanocoax-based solar cells,” Phys. Status Solidi (RRL)- Rapid Res. Lett. 4(7), 181–183 (2010).

Escarré, J.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Fahr, S.

Fan, S.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Fang, Y.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Fonash, S. J.

W. J. Nam, L. Ji, T. L. Benanti, V. V. Varadan, S. Wagner, Q. Wang, W. Nemeth, D. Neidich, and S. J. Fonash, “Incorporation of a light and carrier collection management nano-element array into superstrate a-Si: H solar cells,” Appl. Phys. Lett. 99(7), 073113 (2011).
[CrossRef]

Gao, W.

M. J. Naughton, K. Kempa, Z. F. Ren, Y. Gao, J. Rybczynski, N. Argenti, W. Gao, Y. Wang, Y. Peng, J. R. Naughton, G. McMahon, T. Paudel, Y. C. Lan, M. J. Burns, A. Shepard, M. Clary, C. Ballif, F.-J. Haug, T. Söderström, O. Cubero, and C. Eminian, “Efficient nanocoax-based solar cells,” Phys. Status Solidi (RRL)- Rapid Res. Lett. 4(7), 181–183 (2010).

Gao, Y.

M. J. Naughton, K. Kempa, Z. F. Ren, Y. Gao, J. Rybczynski, N. Argenti, W. Gao, Y. Wang, Y. Peng, J. R. Naughton, G. McMahon, T. Paudel, Y. C. Lan, M. J. Burns, A. Shepard, M. Clary, C. Ballif, F.-J. Haug, T. Söderström, O. Cubero, and C. Eminian, “Efficient nanocoax-based solar cells,” Phys. Status Solidi (RRL)- Rapid Res. Lett. 4(7), 181–183 (2010).

Garnett, E.

E. Garnett and P. Yang, “Light Trapping in Silicon Nanowire Solar Cells,” Nano Lett. 10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

Guérin, V. M.

O. Lupan, V. M. Guérin, I. M. Tiginyanu, V. V. Ursaki, L. Chow, H. Heinrich, and T. Pauporté, “Well-aligned arrays of vertically oriented ZnO nanowires electrodeposited on ITO-coated glass and their integration in dye sensitized solar cells,” J. Photochem. Photobiol. Chem. 211(1), 65–73 (2010).
[CrossRef]

Haug, F.-J.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

M. J. Naughton, K. Kempa, Z. F. Ren, Y. Gao, J. Rybczynski, N. Argenti, W. Gao, Y. Wang, Y. Peng, J. R. Naughton, G. McMahon, T. Paudel, Y. C. Lan, M. J. Burns, A. Shepard, M. Clary, C. Ballif, F.-J. Haug, T. Söderström, O. Cubero, and C. Eminian, “Efficient nanocoax-based solar cells,” Phys. Status Solidi (RRL)- Rapid Res. Lett. 4(7), 181–183 (2010).

Heinrich, H.

O. Lupan, V. M. Guérin, I. M. Tiginyanu, V. V. Ursaki, L. Chow, H. Heinrich, and T. Pauporté, “Well-aligned arrays of vertically oriented ZnO nanowires electrodeposited on ITO-coated glass and their integration in dye sensitized solar cells,” J. Photochem. Photobiol. Chem. 211(1), 65–73 (2010).
[CrossRef]

Hongsingthong, A.

A. Tamang, A. Hongsingthong, P. Sichanugrist, V. Jovanov, M. Konagai, and D. Knipp, “Light-Trapping and Interface Morphologies of Amorphous Silicon Solar Cells on Multiscale Surface TexturedSubstrates,” IEEE J. Photovolatics 4(1), 16–21 (2013).

Houweling, Z. S.

Y. Kuang, K. H. M. van der Werf, Z. S. Houweling, and R. E. I. Schropp, “Nanorod solar cell with an ultrathin a-Si: H absorber layer,” Appl. Phys. Lett. 98(11), 113111 (2011).
[CrossRef]

Hsu, C.-M.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Huang, J.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Hüpkes, J.

V. Jovanov, X. Xu, S. Shrestha, M. Schulte, J. Hüpkes, and D. Knipp, “Predicting the interface morphologies of silicon films on arbitrary substrates: application in solar cells,” ACS Appl. Mater. Interfaces 5(15), 7109–7116 (2013).
[CrossRef] [PubMed]

V. Jovanov, X. Xu, S. Shrestha, M. Schulte, J. Hüpkes, M. Zeman, and D. Knipp, “Influence of interface morphologies on amorphous silicon thin film solar cells prepared on randomly textured substrates,” Sol. Energy Mater. Sol. Cells 112, 182–189 (2013).
[CrossRef]

R. Dewan, J. I. Owen, D. Madzharov, V. Jovanov, J. Hüpkes, and D. Knipp, “Analyzing nanotextured transparent conductive oxides for efficient light trapping in silicon thin film solar cells,” Appl. Phys. Lett. 101(10), 103903 (2012).
[CrossRef]

Jacobson, J. M.

J. Joo, B. Y. Chow, M. Prakash, E. S. Boyden, and J. M. Jacobson, “Face-selective electrostatic control of hydrothermal zinc oxide nanowire synthesis,” Nat. Mater. 10(8), 596–601 (2011).
[CrossRef] [PubMed]

Ji, L.

W. J. Nam, L. Ji, T. L. Benanti, V. V. Varadan, S. Wagner, Q. Wang, W. Nemeth, D. Neidich, and S. J. Fonash, “Incorporation of a light and carrier collection management nano-element array into superstrate a-Si: H solar cells,” Appl. Phys. Lett. 99(7), 073113 (2011).
[CrossRef]

Joo, J.

J. Joo, B. Y. Chow, M. Prakash, E. S. Boyden, and J. M. Jacobson, “Face-selective electrostatic control of hydrothermal zinc oxide nanowire synthesis,” Nat. Mater. 10(8), 596–601 (2011).
[CrossRef] [PubMed]

Jovanov, V.

V. Jovanov, X. Xu, S. Shrestha, M. Schulte, J. Hüpkes, M. Zeman, and D. Knipp, “Influence of interface morphologies on amorphous silicon thin film solar cells prepared on randomly textured substrates,” Sol. Energy Mater. Sol. Cells 112, 182–189 (2013).
[CrossRef]

V. Jovanov, X. Xu, S. Shrestha, M. Schulte, J. Hüpkes, and D. Knipp, “Predicting the interface morphologies of silicon films on arbitrary substrates: application in solar cells,” ACS Appl. Mater. Interfaces 5(15), 7109–7116 (2013).
[CrossRef] [PubMed]

A. Tamang, A. Hongsingthong, P. Sichanugrist, V. Jovanov, M. Konagai, and D. Knipp, “Light-Trapping and Interface Morphologies of Amorphous Silicon Solar Cells on Multiscale Surface TexturedSubstrates,” IEEE J. Photovolatics 4(1), 16–21 (2013).

R. Dewan, J. I. Owen, D. Madzharov, V. Jovanov, J. Hüpkes, and D. Knipp, “Analyzing nanotextured transparent conductive oxides for efficient light trapping in silicon thin film solar cells,” Appl. Phys. Lett. 101(10), 103903 (2012).
[CrossRef]

U. Palanchoke, V. Jovanov, H. Kurz, P. Obermeyer, H. Stiebig, and D. Knipp, “Plasmonic effects in amorphous silicon thin film solar cells with metal back contacts,” Opt. Express 20(6), 6340–6347 (2012).
[CrossRef] [PubMed]

R. Dewan, I. Vasilev, V. Jovanov, and D. Knipp, “Optical enhancement and losses of pyramid textured thin-film silicon solar cells,” J. Appl. Phys. 110(1), 013101 (2011).
[CrossRef]

Karim, K. S.

M. M. Adachi, M. P. Anantram, and K. S. Karim, “Core-shell silicon nanowire solar cells,” Sci. Rep. 31465 (2013).

M. M. Adachi, M. P. Anantram, and K. S. Karim, “Optical Properties of Crystalline-Amorphous Core-Shell Silicon Nanowires,” Nano Lett. 10(10), 4093–4098 (2010).
[CrossRef] [PubMed]

Kempa, K.

M. J. Naughton, K. Kempa, Z. F. Ren, Y. Gao, J. Rybczynski, N. Argenti, W. Gao, Y. Wang, Y. Peng, J. R. Naughton, G. McMahon, T. Paudel, Y. C. Lan, M. J. Burns, A. Shepard, M. Clary, C. Ballif, F.-J. Haug, T. Söderström, O. Cubero, and C. Eminian, “Efficient nanocoax-based solar cells,” Phys. Status Solidi (RRL)- Rapid Res. Lett. 4(7), 181–183 (2010).

Kempa, T. J.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Kirchartz, T.

Knights, J. C.

C. C. Tsai, J. C. Knights, G. Chang, and B. Wacker, “Film formation mechanisms in the plasma deposition of hydrogenated amorphous silicon,” J. Appl. Phys. 59(8), 2998–3001 (1986).
[CrossRef]

Knipp, D.

M. M. Schwarz, T. Richter, R. Pearson, A. Tamang, T. Balster, D. Knipp, and V. Wagner, “Controlled electrodeposition of ZnO nanostructures for enhanced light scattering properties,” J. Appl. Electrochem. 44, 1–8 (2014).

V. Jovanov, X. Xu, S. Shrestha, M. Schulte, J. Hüpkes, and D. Knipp, “Predicting the interface morphologies of silicon films on arbitrary substrates: application in solar cells,” ACS Appl. Mater. Interfaces 5(15), 7109–7116 (2013).
[CrossRef] [PubMed]

V. Jovanov, X. Xu, S. Shrestha, M. Schulte, J. Hüpkes, M. Zeman, and D. Knipp, “Influence of interface morphologies on amorphous silicon thin film solar cells prepared on randomly textured substrates,” Sol. Energy Mater. Sol. Cells 112, 182–189 (2013).
[CrossRef]

A. Tamang, A. Hongsingthong, P. Sichanugrist, V. Jovanov, M. Konagai, and D. Knipp, “Light-Trapping and Interface Morphologies of Amorphous Silicon Solar Cells on Multiscale Surface TexturedSubstrates,” IEEE J. Photovolatics 4(1), 16–21 (2013).

U. Palanchoke, V. Jovanov, H. Kurz, P. Obermeyer, H. Stiebig, and D. Knipp, “Plasmonic effects in amorphous silicon thin film solar cells with metal back contacts,” Opt. Express 20(6), 6340–6347 (2012).
[CrossRef] [PubMed]

R. Dewan, J. I. Owen, D. Madzharov, V. Jovanov, J. Hüpkes, and D. Knipp, “Analyzing nanotextured transparent conductive oxides for efficient light trapping in silicon thin film solar cells,” Appl. Phys. Lett. 101(10), 103903 (2012).
[CrossRef]

R. Dewan, I. Vasilev, V. Jovanov, and D. Knipp, “Optical enhancement and losses of pyramid textured thin-film silicon solar cells,” J. Appl. Phys. 110(1), 013101 (2011).
[CrossRef]

Konagai, M.

A. Tamang, A. Hongsingthong, P. Sichanugrist, V. Jovanov, M. Konagai, and D. Knipp, “Light-Trapping and Interface Morphologies of Amorphous Silicon Solar Cells on Multiscale Surface TexturedSubstrates,” IEEE J. Photovolatics 4(1), 16–21 (2013).

Krc, J.

A. Čampa, J. Krč, and M. Topič, “Analysis and optimisation of microcrystalline silicon solar cells with periodic sinusoidal textured interfaces by two-dimensional optical simulations,” J. Appl. Phys. 105(8), 083107 (2009).
[CrossRef]

Kuang, Y.

Y. Kuang, K. H. M. van der Werf, Z. S. Houweling, and R. E. I. Schropp, “Nanorod solar cell with an ultrathin a-Si: H absorber layer,” Appl. Phys. Lett. 98(11), 113111 (2011).
[CrossRef]

Kurz, H.

Lan, Y. C.

M. J. Naughton, K. Kempa, Z. F. Ren, Y. Gao, J. Rybczynski, N. Argenti, W. Gao, Y. Wang, Y. Peng, J. R. Naughton, G. McMahon, T. Paudel, Y. C. Lan, M. J. Burns, A. Shepard, M. Clary, C. Ballif, F.-J. Haug, T. Söderström, O. Cubero, and C. Eminian, “Efficient nanocoax-based solar cells,” Phys. Status Solidi (RRL)- Rapid Res. Lett. 4(7), 181–183 (2010).

Lederer, F.

Li, H.

X. Xie, X. Zeng, P. Yang, H. Li, J. Li, X. Zhang, and Q. Wang, “Radial nip structure SiNW-based microcrystalline silicon thin-film solar cells on flexible stainless steel,” Nanoscale Res. Lett. 7(621), 1–6 (2012).
[PubMed]

Li, J.

X. Xie, X. Zeng, P. Yang, H. Li, J. Li, X. Zhang, and Q. Wang, “Radial nip structure SiNW-based microcrystalline silicon thin-film solar cells on flexible stainless steel,” Nanoscale Res. Lett. 7(621), 1–6 (2012).
[PubMed]

Lieber, C. M.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Lin, A.

A. Lin and J. Phillips, “Optimization of random diffraction gratings in thin-film solar cells using genetic algorithms,” Sol. Energy Mater. Sol. Cells 92(12), 1689–1696 (2008).
[CrossRef]

Liu, B.

B. Liu and H. C. Zeng, “Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm,” J. Am. Chem. Soc. 125(15), 4430–4431 (2003).
[CrossRef] [PubMed]

Lupan, O.

O. Lupan, V. M. Guérin, I. M. Tiginyanu, V. V. Ursaki, L. Chow, H. Heinrich, and T. Pauporté, “Well-aligned arrays of vertically oriented ZnO nanowires electrodeposited on ITO-coated glass and their integration in dye sensitized solar cells,” J. Photochem. Photobiol. Chem. 211(1), 65–73 (2010).
[CrossRef]

Madzharov, D.

R. Dewan, J. I. Owen, D. Madzharov, V. Jovanov, J. Hüpkes, and D. Knipp, “Analyzing nanotextured transparent conductive oxides for efficient light trapping in silicon thin film solar cells,” Appl. Phys. Lett. 101(10), 103903 (2012).
[CrossRef]

McGehee, M.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

McMahon, G.

M. J. Naughton, K. Kempa, Z. F. Ren, Y. Gao, J. Rybczynski, N. Argenti, W. Gao, Y. Wang, Y. Peng, J. R. Naughton, G. McMahon, T. Paudel, Y. C. Lan, M. J. Burns, A. Shepard, M. Clary, C. Ballif, F.-J. Haug, T. Söderström, O. Cubero, and C. Eminian, “Efficient nanocoax-based solar cells,” Phys. Status Solidi (RRL)- Rapid Res. Lett. 4(7), 181–183 (2010).

Metselaar, J. W.

M. Zeman, R. A. C. M. M. van Swaaij, J. W. Metselaar, and R. E. I. Schropp, “Optical modeling of a-Si:H solar cells with rough interfaces: Effect of back contact and interface roughness,” J. Appl. Phys. 88(11), 6436–6443 (2000).
[CrossRef]

Nam, W. J.

W. J. Nam, L. Ji, T. L. Benanti, V. V. Varadan, S. Wagner, Q. Wang, W. Nemeth, D. Neidich, and S. J. Fonash, “Incorporation of a light and carrier collection management nano-element array into superstrate a-Si: H solar cells,” Appl. Phys. Lett. 99(7), 073113 (2011).
[CrossRef]

Naughton, J. R.

M. J. Naughton, K. Kempa, Z. F. Ren, Y. Gao, J. Rybczynski, N. Argenti, W. Gao, Y. Wang, Y. Peng, J. R. Naughton, G. McMahon, T. Paudel, Y. C. Lan, M. J. Burns, A. Shepard, M. Clary, C. Ballif, F.-J. Haug, T. Söderström, O. Cubero, and C. Eminian, “Efficient nanocoax-based solar cells,” Phys. Status Solidi (RRL)- Rapid Res. Lett. 4(7), 181–183 (2010).

Naughton, M. J.

M. J. Naughton, K. Kempa, Z. F. Ren, Y. Gao, J. Rybczynski, N. Argenti, W. Gao, Y. Wang, Y. Peng, J. R. Naughton, G. McMahon, T. Paudel, Y. C. Lan, M. J. Burns, A. Shepard, M. Clary, C. Ballif, F.-J. Haug, T. Söderström, O. Cubero, and C. Eminian, “Efficient nanocoax-based solar cells,” Phys. Status Solidi (RRL)- Rapid Res. Lett. 4(7), 181–183 (2010).

Neidich, D.

W. J. Nam, L. Ji, T. L. Benanti, V. V. Varadan, S. Wagner, Q. Wang, W. Nemeth, D. Neidich, and S. J. Fonash, “Incorporation of a light and carrier collection management nano-element array into superstrate a-Si: H solar cells,” Appl. Phys. Lett. 99(7), 073113 (2011).
[CrossRef]

Nemeth, W.

W. J. Nam, L. Ji, T. L. Benanti, V. V. Varadan, S. Wagner, Q. Wang, W. Nemeth, D. Neidich, and S. J. Fonash, “Incorporation of a light and carrier collection management nano-element array into superstrate a-Si: H solar cells,” Appl. Phys. Lett. 99(7), 073113 (2011).
[CrossRef]

Obermeyer, P.

Owen, J. I.

R. Dewan, J. I. Owen, D. Madzharov, V. Jovanov, J. Hüpkes, and D. Knipp, “Analyzing nanotextured transparent conductive oxides for efficient light trapping in silicon thin film solar cells,” Appl. Phys. Lett. 101(10), 103903 (2012).
[CrossRef]

Palanchoke, U.

Paudel, T.

M. J. Naughton, K. Kempa, Z. F. Ren, Y. Gao, J. Rybczynski, N. Argenti, W. Gao, Y. Wang, Y. Peng, J. R. Naughton, G. McMahon, T. Paudel, Y. C. Lan, M. J. Burns, A. Shepard, M. Clary, C. Ballif, F.-J. Haug, T. Söderström, O. Cubero, and C. Eminian, “Efficient nanocoax-based solar cells,” Phys. Status Solidi (RRL)- Rapid Res. Lett. 4(7), 181–183 (2010).

Pauporté, T.

O. Lupan, V. M. Guérin, I. M. Tiginyanu, V. V. Ursaki, L. Chow, H. Heinrich, and T. Pauporté, “Well-aligned arrays of vertically oriented ZnO nanowires electrodeposited on ITO-coated glass and their integration in dye sensitized solar cells,” J. Photochem. Photobiol. Chem. 211(1), 65–73 (2010).
[CrossRef]

Pearson, R.

M. M. Schwarz, T. Richter, R. Pearson, A. Tamang, T. Balster, D. Knipp, and V. Wagner, “Controlled electrodeposition of ZnO nanostructures for enhanced light scattering properties,” J. Appl. Electrochem. 44, 1–8 (2014).

Peng, Y.

M. J. Naughton, K. Kempa, Z. F. Ren, Y. Gao, J. Rybczynski, N. Argenti, W. Gao, Y. Wang, Y. Peng, J. R. Naughton, G. McMahon, T. Paudel, Y. C. Lan, M. J. Burns, A. Shepard, M. Clary, C. Ballif, F.-J. Haug, T. Söderström, O. Cubero, and C. Eminian, “Efficient nanocoax-based solar cells,” Phys. Status Solidi (RRL)- Rapid Res. Lett. 4(7), 181–183 (2010).

Phillips, J.

A. Lin and J. Phillips, “Optimization of random diffraction gratings in thin-film solar cells using genetic algorithms,” Sol. Energy Mater. Sol. Cells 92(12), 1689–1696 (2008).
[CrossRef]

Prakash, M.

J. Joo, B. Y. Chow, M. Prakash, E. S. Boyden, and J. M. Jacobson, “Face-selective electrostatic control of hydrothermal zinc oxide nanowire synthesis,” Nat. Mater. 10(8), 596–601 (2011).
[CrossRef] [PubMed]

Puurunen, R. L.

R. L. Puurunen, “Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process,” J. Appl. Phys. 97(12), 121301 (2005).
[CrossRef]

Razeghi, M.

D. J. Rogers, V. E. Sandana, F. H. Teherani, M. Razeghi, and H. J. Drouhin, “Fabrication of nanostructured heterojunction LEDs using self-forming moth eye type arrays of n-ZnOnanocones grown on p-si (111)substrates by pulsed laser deposition,” Proc. SPIE 7217, Zinc Oxide Materials and Devices IV, 721708 (2009).
[CrossRef]

Ren, Z. F.

M. J. Naughton, K. Kempa, Z. F. Ren, Y. Gao, J. Rybczynski, N. Argenti, W. Gao, Y. Wang, Y. Peng, J. R. Naughton, G. McMahon, T. Paudel, Y. C. Lan, M. J. Burns, A. Shepard, M. Clary, C. Ballif, F.-J. Haug, T. Söderström, O. Cubero, and C. Eminian, “Efficient nanocoax-based solar cells,” Phys. Status Solidi (RRL)- Rapid Res. Lett. 4(7), 181–183 (2010).

Richter, T.

M. M. Schwarz, T. Richter, R. Pearson, A. Tamang, T. Balster, D. Knipp, and V. Wagner, “Controlled electrodeposition of ZnO nanostructures for enhanced light scattering properties,” J. Appl. Electrochem. 44, 1–8 (2014).

Rockstuhl, C.

Rogers, D. J.

D. J. Rogers, V. E. Sandana, F. H. Teherani, M. Razeghi, and H. J. Drouhin, “Fabrication of nanostructured heterojunction LEDs using self-forming moth eye type arrays of n-ZnOnanocones grown on p-si (111)substrates by pulsed laser deposition,” Proc. SPIE 7217, Zinc Oxide Materials and Devices IV, 721708 (2009).
[CrossRef]

Rybczynski, J.

M. J. Naughton, K. Kempa, Z. F. Ren, Y. Gao, J. Rybczynski, N. Argenti, W. Gao, Y. Wang, Y. Peng, J. R. Naughton, G. McMahon, T. Paudel, Y. C. Lan, M. J. Burns, A. Shepard, M. Clary, C. Ballif, F.-J. Haug, T. Söderström, O. Cubero, and C. Eminian, “Efficient nanocoax-based solar cells,” Phys. Status Solidi (RRL)- Rapid Res. Lett. 4(7), 181–183 (2010).

Sandana, V. E.

D. J. Rogers, V. E. Sandana, F. H. Teherani, M. Razeghi, and H. J. Drouhin, “Fabrication of nanostructured heterojunction LEDs using self-forming moth eye type arrays of n-ZnOnanocones grown on p-si (111)substrates by pulsed laser deposition,” Proc. SPIE 7217, Zinc Oxide Materials and Devices IV, 721708 (2009).
[CrossRef]

Schropp, R. E. I.

Y. Kuang, K. H. M. van der Werf, Z. S. Houweling, and R. E. I. Schropp, “Nanorod solar cell with an ultrathin a-Si: H absorber layer,” Appl. Phys. Lett. 98(11), 113111 (2011).
[CrossRef]

M. Zeman, R. A. C. M. M. van Swaaij, J. W. Metselaar, and R. E. I. Schropp, “Optical modeling of a-Si:H solar cells with rough interfaces: Effect of back contact and interface roughness,” J. Appl. Phys. 88(11), 6436–6443 (2000).
[CrossRef]

Schulte, M.

V. Jovanov, X. Xu, S. Shrestha, M. Schulte, J. Hüpkes, and D. Knipp, “Predicting the interface morphologies of silicon films on arbitrary substrates: application in solar cells,” ACS Appl. Mater. Interfaces 5(15), 7109–7116 (2013).
[CrossRef] [PubMed]

V. Jovanov, X. Xu, S. Shrestha, M. Schulte, J. Hüpkes, M. Zeman, and D. Knipp, “Influence of interface morphologies on amorphous silicon thin film solar cells prepared on randomly textured substrates,” Sol. Energy Mater. Sol. Cells 112, 182–189 (2013).
[CrossRef]

Schwarz, M. M.

M. M. Schwarz, T. Richter, R. Pearson, A. Tamang, T. Balster, D. Knipp, and V. Wagner, “Controlled electrodeposition of ZnO nanostructures for enhanced light scattering properties,” J. Appl. Electrochem. 44, 1–8 (2014).

Shepard, A.

M. J. Naughton, K. Kempa, Z. F. Ren, Y. Gao, J. Rybczynski, N. Argenti, W. Gao, Y. Wang, Y. Peng, J. R. Naughton, G. McMahon, T. Paudel, Y. C. Lan, M. J. Burns, A. Shepard, M. Clary, C. Ballif, F.-J. Haug, T. Söderström, O. Cubero, and C. Eminian, “Efficient nanocoax-based solar cells,” Phys. Status Solidi (RRL)- Rapid Res. Lett. 4(7), 181–183 (2010).

Shrestha, S.

V. Jovanov, X. Xu, S. Shrestha, M. Schulte, J. Hüpkes, M. Zeman, and D. Knipp, “Influence of interface morphologies on amorphous silicon thin film solar cells prepared on randomly textured substrates,” Sol. Energy Mater. Sol. Cells 112, 182–189 (2013).
[CrossRef]

V. Jovanov, X. Xu, S. Shrestha, M. Schulte, J. Hüpkes, and D. Knipp, “Predicting the interface morphologies of silicon films on arbitrary substrates: application in solar cells,” ACS Appl. Mater. Interfaces 5(15), 7109–7116 (2013).
[CrossRef] [PubMed]

Sichanugrist, P.

A. Tamang, A. Hongsingthong, P. Sichanugrist, V. Jovanov, M. Konagai, and D. Knipp, “Light-Trapping and Interface Morphologies of Amorphous Silicon Solar Cells on Multiscale Surface TexturedSubstrates,” IEEE J. Photovolatics 4(1), 16–21 (2013).

Söderström, K.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Söderström, T.

M. J. Naughton, K. Kempa, Z. F. Ren, Y. Gao, J. Rybczynski, N. Argenti, W. Gao, Y. Wang, Y. Peng, J. R. Naughton, G. McMahon, T. Paudel, Y. C. Lan, M. J. Burns, A. Shepard, M. Clary, C. Ballif, F.-J. Haug, T. Söderström, O. Cubero, and C. Eminian, “Efficient nanocoax-based solar cells,” Phys. Status Solidi (RRL)- Rapid Res. Lett. 4(7), 181–183 (2010).

Staebler, D. L.

D. L. Staebler and C. R. Wronski, “Wronski, Reversible conductivity changes in discharge produced amorphous Si,”Appl. Phys. Lett. 31(4), 292 (1977).

Stiebig, H.

Tamang, A.

M. M. Schwarz, T. Richter, R. Pearson, A. Tamang, T. Balster, D. Knipp, and V. Wagner, “Controlled electrodeposition of ZnO nanostructures for enhanced light scattering properties,” J. Appl. Electrochem. 44, 1–8 (2014).

A. Tamang, A. Hongsingthong, P. Sichanugrist, V. Jovanov, M. Konagai, and D. Knipp, “Light-Trapping and Interface Morphologies of Amorphous Silicon Solar Cells on Multiscale Surface TexturedSubstrates,” IEEE J. Photovolatics 4(1), 16–21 (2013).

Teherani, F. H.

D. J. Rogers, V. E. Sandana, F. H. Teherani, M. Razeghi, and H. J. Drouhin, “Fabrication of nanostructured heterojunction LEDs using self-forming moth eye type arrays of n-ZnOnanocones grown on p-si (111)substrates by pulsed laser deposition,” Proc. SPIE 7217, Zinc Oxide Materials and Devices IV, 721708 (2009).
[CrossRef]

Tian, B.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Tiginyanu, I. M.

O. Lupan, V. M. Guérin, I. M. Tiginyanu, V. V. Ursaki, L. Chow, H. Heinrich, and T. Pauporté, “Well-aligned arrays of vertically oriented ZnO nanowires electrodeposited on ITO-coated glass and their integration in dye sensitized solar cells,” J. Photochem. Photobiol. Chem. 211(1), 65–73 (2010).
[CrossRef]

Topic, M.

A. Čampa, J. Krč, and M. Topič, “Analysis and optimisation of microcrystalline silicon solar cells with periodic sinusoidal textured interfaces by two-dimensional optical simulations,” J. Appl. Phys. 105(8), 083107 (2009).
[CrossRef]

Tsai, C. C.

C. C. Tsai, J. C. Knights, G. Chang, and B. Wacker, “Film formation mechanisms in the plasma deposition of hydrogenated amorphous silicon,” J. Appl. Phys. 59(8), 2998–3001 (1986).
[CrossRef]

Ursaki, V. V.

O. Lupan, V. M. Guérin, I. M. Tiginyanu, V. V. Ursaki, L. Chow, H. Heinrich, and T. Pauporté, “Well-aligned arrays of vertically oriented ZnO nanowires electrodeposited on ITO-coated glass and their integration in dye sensitized solar cells,” J. Photochem. Photobiol. Chem. 211(1), 65–73 (2010).
[CrossRef]

van der Werf, K. H. M.

Y. Kuang, K. H. M. van der Werf, Z. S. Houweling, and R. E. I. Schropp, “Nanorod solar cell with an ultrathin a-Si: H absorber layer,” Appl. Phys. Lett. 98(11), 113111 (2011).
[CrossRef]

van Swaaij, R. A. C. M. M.

M. Zeman, R. A. C. M. M. van Swaaij, J. W. Metselaar, and R. E. I. Schropp, “Optical modeling of a-Si:H solar cells with rough interfaces: Effect of back contact and interface roughness,” J. Appl. Phys. 88(11), 6436–6443 (2000).
[CrossRef]

Varadan, V. V.

W. J. Nam, L. Ji, T. L. Benanti, V. V. Varadan, S. Wagner, Q. Wang, W. Nemeth, D. Neidich, and S. J. Fonash, “Incorporation of a light and carrier collection management nano-element array into superstrate a-Si: H solar cells,” Appl. Phys. Lett. 99(7), 073113 (2011).
[CrossRef]

Vasilev, I.

R. Dewan, I. Vasilev, V. Jovanov, and D. Knipp, “Optical enhancement and losses of pyramid textured thin-film silicon solar cells,” J. Appl. Phys. 110(1), 013101 (2011).
[CrossRef]

Wacker, B.

C. C. Tsai, J. C. Knights, G. Chang, and B. Wacker, “Film formation mechanisms in the plasma deposition of hydrogenated amorphous silicon,” J. Appl. Phys. 59(8), 2998–3001 (1986).
[CrossRef]

Wagner, S.

W. J. Nam, L. Ji, T. L. Benanti, V. V. Varadan, S. Wagner, Q. Wang, W. Nemeth, D. Neidich, and S. J. Fonash, “Incorporation of a light and carrier collection management nano-element array into superstrate a-Si: H solar cells,” Appl. Phys. Lett. 99(7), 073113 (2011).
[CrossRef]

Wagner, V.

M. M. Schwarz, T. Richter, R. Pearson, A. Tamang, T. Balster, D. Knipp, and V. Wagner, “Controlled electrodeposition of ZnO nanostructures for enhanced light scattering properties,” J. Appl. Electrochem. 44, 1–8 (2014).

Wang, Q.

X. Xie, X. Zeng, P. Yang, H. Li, J. Li, X. Zhang, and Q. Wang, “Radial nip structure SiNW-based microcrystalline silicon thin-film solar cells on flexible stainless steel,” Nanoscale Res. Lett. 7(621), 1–6 (2012).
[PubMed]

W. J. Nam, L. Ji, T. L. Benanti, V. V. Varadan, S. Wagner, Q. Wang, W. Nemeth, D. Neidich, and S. J. Fonash, “Incorporation of a light and carrier collection management nano-element array into superstrate a-Si: H solar cells,” Appl. Phys. Lett. 99(7), 073113 (2011).
[CrossRef]

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Wang, Y.

M. J. Naughton, K. Kempa, Z. F. Ren, Y. Gao, J. Rybczynski, N. Argenti, W. Gao, Y. Wang, Y. Peng, J. R. Naughton, G. McMahon, T. Paudel, Y. C. Lan, M. J. Burns, A. Shepard, M. Clary, C. Ballif, F.-J. Haug, T. Söderström, O. Cubero, and C. Eminian, “Efficient nanocoax-based solar cells,” Phys. Status Solidi (RRL)- Rapid Res. Lett. 4(7), 181–183 (2010).

Wronski, C. R.

D. L. Staebler and C. R. Wronski, “Wronski, Reversible conductivity changes in discharge produced amorphous Si,”Appl. Phys. Lett. 31(4), 292 (1977).

Xie, X.

X. Xie, X. Zeng, P. Yang, H. Li, J. Li, X. Zhang, and Q. Wang, “Radial nip structure SiNW-based microcrystalline silicon thin-film solar cells on flexible stainless steel,” Nanoscale Res. Lett. 7(621), 1–6 (2012).
[PubMed]

Xu, X.

V. Jovanov, X. Xu, S. Shrestha, M. Schulte, J. Hüpkes, and D. Knipp, “Predicting the interface morphologies of silicon films on arbitrary substrates: application in solar cells,” ACS Appl. Mater. Interfaces 5(15), 7109–7116 (2013).
[CrossRef] [PubMed]

V. Jovanov, X. Xu, S. Shrestha, M. Schulte, J. Hüpkes, M. Zeman, and D. Knipp, “Influence of interface morphologies on amorphous silicon thin film solar cells prepared on randomly textured substrates,” Sol. Energy Mater. Sol. Cells 112, 182–189 (2013).
[CrossRef]

Xu, Y.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Yang, P.

X. Xie, X. Zeng, P. Yang, H. Li, J. Li, X. Zhang, and Q. Wang, “Radial nip structure SiNW-based microcrystalline silicon thin-film solar cells on flexible stainless steel,” Nanoscale Res. Lett. 7(621), 1–6 (2012).
[PubMed]

E. Garnett and P. Yang, “Light Trapping in Silicon Nanowire Solar Cells,” Nano Lett. 10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

Yu, G.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Yu, N.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Yu, Z.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Zeman, M.

V. Jovanov, X. Xu, S. Shrestha, M. Schulte, J. Hüpkes, M. Zeman, and D. Knipp, “Influence of interface morphologies on amorphous silicon thin film solar cells prepared on randomly textured substrates,” Sol. Energy Mater. Sol. Cells 112, 182–189 (2013).
[CrossRef]

M. Zeman, R. A. C. M. M. van Swaaij, J. W. Metselaar, and R. E. I. Schropp, “Optical modeling of a-Si:H solar cells with rough interfaces: Effect of back contact and interface roughness,” J. Appl. Phys. 88(11), 6436–6443 (2000).
[CrossRef]

Zeng, H. C.

B. Liu and H. C. Zeng, “Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm,” J. Am. Chem. Soc. 125(15), 4430–4431 (2003).
[CrossRef] [PubMed]

Zeng, X.

X. Xie, X. Zeng, P. Yang, H. Li, J. Li, X. Zhang, and Q. Wang, “Radial nip structure SiNW-based microcrystalline silicon thin-film solar cells on flexible stainless steel,” Nanoscale Res. Lett. 7(621), 1–6 (2012).
[PubMed]

Zhang, X.

X. Xie, X. Zeng, P. Yang, H. Li, J. Li, X. Zhang, and Q. Wang, “Radial nip structure SiNW-based microcrystalline silicon thin-film solar cells on flexible stainless steel,” Nanoscale Res. Lett. 7(621), 1–6 (2012).
[PubMed]

Zheng, X.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Zhu, J.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

ACS Appl. Mater. Interfaces

V. Jovanov, X. Xu, S. Shrestha, M. Schulte, J. Hüpkes, and D. Knipp, “Predicting the interface morphologies of silicon films on arbitrary substrates: application in solar cells,” ACS Appl. Mater. Interfaces 5(15), 7109–7116 (2013).
[CrossRef] [PubMed]

ACS Nano

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Appl. Phys. Lett.

R. Dewan, J. I. Owen, D. Madzharov, V. Jovanov, J. Hüpkes, and D. Knipp, “Analyzing nanotextured transparent conductive oxides for efficient light trapping in silicon thin film solar cells,” Appl. Phys. Lett. 101(10), 103903 (2012).
[CrossRef]

Y. Kuang, K. H. M. van der Werf, Z. S. Houweling, and R. E. I. Schropp, “Nanorod solar cell with an ultrathin a-Si: H absorber layer,” Appl. Phys. Lett. 98(11), 113111 (2011).
[CrossRef]

W. J. Nam, L. Ji, T. L. Benanti, V. V. Varadan, S. Wagner, Q. Wang, W. Nemeth, D. Neidich, and S. J. Fonash, “Incorporation of a light and carrier collection management nano-element array into superstrate a-Si: H solar cells,” Appl. Phys. Lett. 99(7), 073113 (2011).
[CrossRef]

D. L. Staebler and C. R. Wronski, “Wronski, Reversible conductivity changes in discharge produced amorphous Si,”Appl. Phys. Lett. 31(4), 292 (1977).

IEEE J. Photovolatics

A. Tamang, A. Hongsingthong, P. Sichanugrist, V. Jovanov, M. Konagai, and D. Knipp, “Light-Trapping and Interface Morphologies of Amorphous Silicon Solar Cells on Multiscale Surface TexturedSubstrates,” IEEE J. Photovolatics 4(1), 16–21 (2013).

J. Am. Chem. Soc.

B. Liu and H. C. Zeng, “Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm,” J. Am. Chem. Soc. 125(15), 4430–4431 (2003).
[CrossRef] [PubMed]

J. Appl. Electrochem.

M. M. Schwarz, T. Richter, R. Pearson, A. Tamang, T. Balster, D. Knipp, and V. Wagner, “Controlled electrodeposition of ZnO nanostructures for enhanced light scattering properties,” J. Appl. Electrochem. 44, 1–8 (2014).

J. Appl. Phys.

R. L. Puurunen, “Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process,” J. Appl. Phys. 97(12), 121301 (2005).
[CrossRef]

C. C. Tsai, J. C. Knights, G. Chang, and B. Wacker, “Film formation mechanisms in the plasma deposition of hydrogenated amorphous silicon,” J. Appl. Phys. 59(8), 2998–3001 (1986).
[CrossRef]

M. Zeman, R. A. C. M. M. van Swaaij, J. W. Metselaar, and R. E. I. Schropp, “Optical modeling of a-Si:H solar cells with rough interfaces: Effect of back contact and interface roughness,” J. Appl. Phys. 88(11), 6436–6443 (2000).
[CrossRef]

R. Dewan, I. Vasilev, V. Jovanov, and D. Knipp, “Optical enhancement and losses of pyramid textured thin-film silicon solar cells,” J. Appl. Phys. 110(1), 013101 (2011).
[CrossRef]

A. Čampa, J. Krč, and M. Topič, “Analysis and optimisation of microcrystalline silicon solar cells with periodic sinusoidal textured interfaces by two-dimensional optical simulations,” J. Appl. Phys. 105(8), 083107 (2009).
[CrossRef]

J. Photochem. Photobiol. Chem.

O. Lupan, V. M. Guérin, I. M. Tiginyanu, V. V. Ursaki, L. Chow, H. Heinrich, and T. Pauporté, “Well-aligned arrays of vertically oriented ZnO nanowires electrodeposited on ITO-coated glass and their integration in dye sensitized solar cells,” J. Photochem. Photobiol. Chem. 211(1), 65–73 (2010).
[CrossRef]

Nano Lett.

M. M. Adachi, M. P. Anantram, and K. S. Karim, “Optical Properties of Crystalline-Amorphous Core-Shell Silicon Nanowires,” Nano Lett. 10(10), 4093–4098 (2010).
[CrossRef] [PubMed]

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

E. Garnett and P. Yang, “Light Trapping in Silicon Nanowire Solar Cells,” Nano Lett. 10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

Nanoscale Res. Lett.

X. Xie, X. Zeng, P. Yang, H. Li, J. Li, X. Zhang, and Q. Wang, “Radial nip structure SiNW-based microcrystalline silicon thin-film solar cells on flexible stainless steel,” Nanoscale Res. Lett. 7(621), 1–6 (2012).
[PubMed]

Nat. Mater.

J. Joo, B. Y. Chow, M. Prakash, E. S. Boyden, and J. M. Jacobson, “Face-selective electrostatic control of hydrothermal zinc oxide nanowire synthesis,” Nat. Mater. 10(8), 596–601 (2011).
[CrossRef] [PubMed]

Nature

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Opt. Express

Phys. Status Solidi (RRL)- Rapid Res. Lett.

M. J. Naughton, K. Kempa, Z. F. Ren, Y. Gao, J. Rybczynski, N. Argenti, W. Gao, Y. Wang, Y. Peng, J. R. Naughton, G. McMahon, T. Paudel, Y. C. Lan, M. J. Burns, A. Shepard, M. Clary, C. Ballif, F.-J. Haug, T. Söderström, O. Cubero, and C. Eminian, “Efficient nanocoax-based solar cells,” Phys. Status Solidi (RRL)- Rapid Res. Lett. 4(7), 181–183 (2010).

Sci. Rep.

M. M. Adachi, M. P. Anantram, and K. S. Karim, “Core-shell silicon nanowire solar cells,” Sci. Rep. 31465 (2013).

Sol. Energy Mater. Sol. Cells

A. Lin and J. Phillips, “Optimization of random diffraction gratings in thin-film solar cells using genetic algorithms,” Sol. Energy Mater. Sol. Cells 92(12), 1689–1696 (2008).
[CrossRef]

V. Jovanov, X. Xu, S. Shrestha, M. Schulte, J. Hüpkes, M. Zeman, and D. Knipp, “Influence of interface morphologies on amorphous silicon thin film solar cells prepared on randomly textured substrates,” Sol. Energy Mater. Sol. Cells 112, 182–189 (2013).
[CrossRef]

Zinc Oxide Materials and Devices

D. J. Rogers, V. E. Sandana, F. H. Teherani, M. Razeghi, and H. J. Drouhin, “Fabrication of nanostructured heterojunction LEDs using self-forming moth eye type arrays of n-ZnOnanocones grown on p-si (111)substrates by pulsed laser deposition,” Proc. SPIE 7217, Zinc Oxide Materials and Devices IV, 721708 (2009).
[CrossRef]

Other

R. A. Street, Hydrogenated Amorphous Silicon (Cambridge University, 1991), Chap. 2.

J. D. Plummer, M. D. Deal, and P. B. Griffin, Silicon VLSI Technology Fundamentals, Practice and Modeling (Prentice Hall, 2000), Chap. 5.

S. Benagli, D. Borrello, E. Vallat-Sauvain, J. Meier, U. Kroll, J. Hoetzel, J. Bailat, J. Steinhauser, M. Marmelo, G. Monteduro, and L. Castens, “High efficiency amorphous silicon devices on LPCVD-ZnO TCO prepared in industrial KAI R&D reactor,” 24th European Photo. Solar Energy Conf., 21–25(2009, September).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

SEM image of substrate solar cell consisting of ~500 nm ZnO NWs grown on an Al-ZnO seed layer with a coating of ~100 nm of a-Si:H. The sketch to the right shows the structure of the coated layers.

Fig. 2
Fig. 2

Film formation (a) in the direction of substrate normal, (b) by 3D surface growth algorithm and (c) by simple geometrical model. For the film formation the metal back contact is used as substrate for the nominal film thickness of d and ZnO nanowire (NW) grows on transparent conductive oxide.

Fig. 3
Fig. 3

Influence of periods (p, 200 nm (a), 360 nm (b), 600 nm (c) and 840 nm (d)) on the interface morphologies, optical thickness and electrical thickness (telec) at nominal p-i-n diode thickness (to, 120 nm), nanowire height (h, 200 nm), diameter of nanowire (d, 120 nm).

Fig. 4
Fig. 4

(a) Schematic cross section of the unit cell of an amorphous silicon thin film solar cell based on ZnO nanowire at 400 nm nanowire height, 600 nm unit cell period, 100 nm i-layer thickness and 120 nm nanowire diameter. Simulated power loss profiles under monochromatic illumination at wavelength of (b) 360 nm, (c) 560 nm and (d) 620 nm for the structure (a).

Fig. 5
Fig. 5

(a) Comparison of quantum efficiencies for solar cells (with and without nanowires (NW)) at different nanowire diameters (d) as a function of wavelength. (b) Comparison of quantum efficiencies for solar cells (with and without nanowires (NW)) at different unit cell periods (p) as a function of wavelength. The parameters of nanowires in (a) are 200 nm nanowire height, 600 nm period and 100 nm i-layer thickness, while those for the nanowires in (b) are 120 nm nanowire diameter, 200 nm nanowire height and 100 nm i-layer thickness. Without nanowire in the solar cells correspond to flat solar cell.

Fig. 6
Fig. 6

(a) Comparison of quantum efficiencies for solar cells with nanowires at different i-layer thicknesses (ti) as a function of wavelength. (b) Comparison of quantum efficiencies for solar cells (with and without nanowires (NW)) at different nanowires height (h) as a function of wavelength. Other parameters of nanowires in (a) are 600 nm unit cell period, 200 nm nanowire height and 120 nm diameter of nanowire, while those for nanowires in (b) are 600 nm unit cell period, 120 nm diameter of nanowire and 100 nm i-layer thickness. Without nanowire solar cell correspond to flat solar cell.

Fig. 7
Fig. 7

(a) Change in optical thickness of i-layer of nanowire solar cell as a function of nanowire height for both realistic interfaces and geometric model and (b) the improved short circuit currents in nanowire solar cell (parameters: 600 nm unit cell period, 120 nm nanowire diameter, 100 nm i-layer thickness and 10 nm n-layer thickness) as a function of nanowire heights. The parameters for flat solar cell are ti = 100 nm (flat) and ti = topt (flat for optical thickness).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

t o p t = 1 p 2 0 p 0 p t ( x , y ) d x d y ,
t opt =( 1+ π×h(d+2× t n + t i p 2 )× t i ,

Metrics