Abstract

Post-deposition annealing by ultra-short laser pulses can modify the optical properties of SnO2 thin films by means of thermal processing. Industrial grade SnO2 films exhibited improved optical properties after picosecond laser irradiation, at the expense of a slightly increased sheet resistance [Proc. SPIE 8826, 88260I (2013)]. The figure of merit ϕ = T10 / Rsh was increased up to 59% after laser processing. In this paper we study and discuss the causes of this improvement at the atomic scale, which explain the observed decrease of conductivity as well as the observed changes in the refractive index n and extinction coefficient k. It was concluded that the absorbed laser energy affected the optoelectronic properties preferentially in the top 100-200 nm region of the films by several mechanisms, including the modification of the stoichiometry, a slight desorption of dopant atoms (F), adsorption of hydrogen atoms from the atmosphere and the introduction of laser-induced defects, which affect the strain of the film.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Scorticati, G. R. B. E. Römer, T. Bor, W. Ogieglo, M. Klein Gunnewiek, A. Lenferink, C. Otto, J. Z. P. Skolski, F. Grob, D. F. de Lange, and A. J. Huis in t’ Veld, “Optical and electrical properties of SnO2 thin films after ultra-short pulsed laser annealing,” Proc. SPIE 8826, Laser Material Processing for Solar Energy Devices II, 88260I (2013).
  2. M. Batzill and U. Diebold, “The surface and materials science of tin oxide,” Prog. Surf. Sci. 79(2-4), 47–154 (2005).
    [CrossRef]
  3. R. Gordon, “Criteria for choosing transparent conductors,” MRS Bull. 25(08), 52–57 (2000).
    [CrossRef]
  4. S. F. Tseng, W. T. Hsiao, D. Chiang, K. C. Huang, and C. P. Chou, “Mechanical and optoelectric properties of post-annealed fluorine-doped tin oxide films by ultraviolet laser irradiation,” Appl. Surf. Sci. 257(16), 7204–7209 (2011).
    [CrossRef]
  5. W. Chung, M. O. Thompson, P. Wickboldt, D. Toet, and P. G. Carey, “Room temperature indium tin oxide by XeCl excimer laser annealing for flexible display,” Thin Solid Films 460(1-2), 291–294 (2004).
    [CrossRef]
  6. J. J. Kim, J. Y. Bak, J. H. Lee, H. S. Kim, N. W. Jang, Y. Yun, and W. J. Lee, “Characteristics of laser-annealed ZnO thin film transistors,” Thin Solid Films 518(11), 3022–3025 (2010).
    [CrossRef]
  7. G. Legeay, X. Castel, R. Benzerga, and J. Pinel, “Excimer laser beam/ITO interaction: from laser processing to surface reaction,” Phys. Status Solidi 5(10), 3248–3254 (2008).
    [CrossRef]
  8. C. W. Cheng, C. Y. Lin, W. C. Shen, Y. J. Lee, and J. S. Chen, “Patterning crystalline indium tin oxide by high repetition rate femtosecond laser-induced crystallization,” Thin Solid Films 518(23), 7138–7142 (2010).
    [CrossRef]
  9. M. F. Chen, K. M. Lin, and Y. S. Ho, “Effects of laser-induced recovery process on conductive property of SnO2:F thin film,” Mater. Sci. Eng. B 176(2), 127–131 (2011).
    [CrossRef]
  10. B. D. Ahn, W. H. Jeong, H. S. Shin, D. L. Kim, H. J. Kim, J. K. Jeong, S. H. Choi, and M. K. Han, “Effect of excimer laser annealing on the performance of amorphous indium gallium zinc oxide thin-film transistors,” Electrochem. Sol.- St. Lett. 12, H430–H432 (2009).
  11. J. Chae, L. Jang, and K. Jain, “High-resolution, resistless patterning of indium-tinoxide thin films using excimer laser projection annealing process,” Mater. Lett. 64(8), 948–950 (2010).
    [CrossRef]
  12. G. Haacke, “New figure of merit for transparent conductors,” J. Appl. Phys. 47(9), 4086–4089 (1976).
    [CrossRef]
  13. D. Scorticati, G. R. B. E. Römer, D. F. de Lange, and A. J. Huis in ’t Veld, “Ultra-short-pulsed laser-machined nanogratings of laser-induced periodic surface structures on thin molybdenum layers,” J. Nanophotonics 6(1), 063528 (2012).
  14. S. W. H. Eijt, R. Kind, S. Singh, H. Schut, W. J. Legerstee, R. W. A. Hendrikx, V. L. Svetchnikov, R. J. Westerwaal, and B. Dam, “Positron depth profiling of the structural and electronic structure transformations of hydrogenated Mg-based thin films,” J. Appl. Phys. 105(4), 043514 (2009).
    [CrossRef]
  15. A. Van Veen, H. Schut, J. de Vries, R. A. Hakvoort, and M. R. Ijpma, “Positron beams for solids and surfaces,” AIP Conf. Proc. 218, 171–196 (1990).
  16. A. de Graaf, J. van Deelen, P. Poodt, T. van Mol, K. Spee, F. Grob, and A. Kuypers, “Development of atmospheric pressure CVD processes for high quality transparent conductive oxides,” En. Proc. 2(1), 41–48 (2010).
    [CrossRef]
  17. A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4465 (2003).
    [CrossRef]
  18. J. Bonse, J. M. Wrobel, J. Kruger, and W. Kautek, “Ultrashort-pulse laser ablation of indium phosphide in air,” Appl. Phys., A Mater. Sci. Process. 72(1), 89–94 (2001).
    [CrossRef]
  19. Y. Jee, M. F. Becker, and R. M. Walser, “Laser-induced damage on single-crystal metal surfaces,” J. Opt. Soc. Am. B 5(3), 648–659 (1988).
    [CrossRef]
  20. V. Consonni, G. Rey, H. Roussel, and D. Bellet, “Thickness effects on the texture development of fluorine-doped SnO2 thin films: The role of surface and strain energy,” J. Appl. Phys. 111(3), 033523 (2012).
    [CrossRef]
  21. B. Zhang, Y. Tian, J. X. Zhang, and W. Cai, “Structural, optical, electrical properties and FTIR studies of fluorine doped SnO2 films deposited by spray pyrolysis,” J. Mater. Sci. 46(6), 1884–1889 (2011).
    [CrossRef]
  22. W. M. Hlaing Oo, S. Tabatabaei, M. D. McCluskey, J. B. Varley, A. Janotti, and C. G. Van de Walle, “Hydrogen donors in SnO2 studied by infrared spectroscopy and first-principles calculations,” Phys. Rev. B 82(19), 193201 (2010).
    [CrossRef]
  23. J. R. Vig, “UV/ozone cleaning of surfaces,” J. Vac. Sci. Technol. A 3(3), 1027–1034 (1985).
    [CrossRef]
  24. R. Delhez, Th. H. de Keijser, and E. J. Mittemeijer, “Determination of crystallite size and lattice distortions through X-ray diffraction line profile analysis,” Fresenius Z. Anal. Chem. 312(1), 1–16 (1982).
    [CrossRef]
  25. B. E. Warren, X-Ray Diffraction (Addison Wesley, 1969).
  26. M. Leoni, J. Martinez-Garcia, and P. Scardi, “Dislocation effects in powder diffraction,” J. Appl. Cryst. 40(4), 719–724 (2007).
    [CrossRef]
  27. C. V. Thompson, “Structure evolution during processing of polycrystalline films,” Annu. Rev. Mater. Sci. 30(1), 159–190 (2000).
    [CrossRef]
  28. R. Carel, C. V. Thompson, and H. J. Frost, “Computer simulation of strain energy effects vs. surface and interface energy effects on grain growth in thin films,” Acta Mater. 44(6), 2479–2494 (1996).
    [CrossRef]
  29. J. G. Berryman, “Bounds and self-consistent estimates for elastic constants of random polycrystals with hexagonal, trigonal, and tetragonal symmetries,” J. Mech. Phys. Solids 53(10), 2141–2173 (2005).
    [CrossRef]
  30. V. Consonni, G. Feuillet, and P. Gergaud, “The flow stress in polycrystalline films: Dimensional constraints and strengthening effects,” Acta Mater. 56(20), 6087–6096 (2008).
    [CrossRef]
  31. J. E. Dominguez, L. Fu, and X. Q. Pan, “Effects of crystal defects on the electrical properties in epitaxial tin dioxide thin films,” Appl. Phys. Lett. 81(27), 5168–5170 (2002).
    [CrossRef]
  32. W. Mao, B. Xiong, Y. Liu, and C. He, “Correlation between defects and conductivity of Sb-doped tin oxide thin films,” Appl. Phys. Lett. 103(3), 031915 (2013).
    [CrossRef]
  33. K. Liu, M. Sakurai, and M. Aono, “Controlling Semiconducting and Insulating States of SnO2 Reversibly by Stress and Voltage,” ACS Nano 6(8), 7209–7215 (2012).
    [CrossRef] [PubMed]
  34. N. Laidani, R. Bartali, G. Gottardi, M. Andrele, and P. Cheyssac, “Optical absorption parameters of amorphous carbon films from Forouhi-Bloomer and Tauc-Lorentz models: a comparative study,” J. Phys. Condens. Matter 20(015216), 1–8 (2008).
  35. A. I. Martinez and D. R. Acosta, “Effect of the fluorine content on the structural and electrical properties of SnO2 and ZnO–SnO2 thin films prepared by spray pyrolysis,” Thin Solid Films 483(1-2), 107–113 (2005).
    [CrossRef]
  36. C. Jacoboni, Theory of Electron Transport in Semiconductors, Springer Series in Solid-State Science, Vol. 165 (Springer, 2010).
  37. V. I. Kaydanov, T. J. Coutts, and D. L. Young, Studies of Band Structure and Free-Carrier Scattering in Transparent Conducting Oxides Based on Combined Measurements of Electron Transport Phenomena,” NREL/CP-520–29064 (2000).
  38. A. Oprea, E. Moretton, N. Barsan, W. J. Becker, J. Wollenstein, and U. Weimar, “Conduction model of SnO2 thin films based on conductance and Hall effect measurements,” J. Appl. Phys. 100, 033716 (2006).
    [CrossRef]
  39. H. M. Ng, D. Doppalapudi, T. D. Moustakas, N. G. Weimann, and L. F. Eastman, “The role of dislocation scattering in n-type GaN films,” Appl. Phys. Lett. 73(6), 821–823 (1998).
    [CrossRef]

2013 (1)

W. Mao, B. Xiong, Y. Liu, and C. He, “Correlation between defects and conductivity of Sb-doped tin oxide thin films,” Appl. Phys. Lett. 103(3), 031915 (2013).
[CrossRef]

2012 (3)

K. Liu, M. Sakurai, and M. Aono, “Controlling Semiconducting and Insulating States of SnO2 Reversibly by Stress and Voltage,” ACS Nano 6(8), 7209–7215 (2012).
[CrossRef] [PubMed]

D. Scorticati, G. R. B. E. Römer, D. F. de Lange, and A. J. Huis in ’t Veld, “Ultra-short-pulsed laser-machined nanogratings of laser-induced periodic surface structures on thin molybdenum layers,” J. Nanophotonics 6(1), 063528 (2012).

V. Consonni, G. Rey, H. Roussel, and D. Bellet, “Thickness effects on the texture development of fluorine-doped SnO2 thin films: The role of surface and strain energy,” J. Appl. Phys. 111(3), 033523 (2012).
[CrossRef]

2011 (3)

B. Zhang, Y. Tian, J. X. Zhang, and W. Cai, “Structural, optical, electrical properties and FTIR studies of fluorine doped SnO2 films deposited by spray pyrolysis,” J. Mater. Sci. 46(6), 1884–1889 (2011).
[CrossRef]

S. F. Tseng, W. T. Hsiao, D. Chiang, K. C. Huang, and C. P. Chou, “Mechanical and optoelectric properties of post-annealed fluorine-doped tin oxide films by ultraviolet laser irradiation,” Appl. Surf. Sci. 257(16), 7204–7209 (2011).
[CrossRef]

M. F. Chen, K. M. Lin, and Y. S. Ho, “Effects of laser-induced recovery process on conductive property of SnO2:F thin film,” Mater. Sci. Eng. B 176(2), 127–131 (2011).
[CrossRef]

2010 (5)

J. J. Kim, J. Y. Bak, J. H. Lee, H. S. Kim, N. W. Jang, Y. Yun, and W. J. Lee, “Characteristics of laser-annealed ZnO thin film transistors,” Thin Solid Films 518(11), 3022–3025 (2010).
[CrossRef]

W. M. Hlaing Oo, S. Tabatabaei, M. D. McCluskey, J. B. Varley, A. Janotti, and C. G. Van de Walle, “Hydrogen donors in SnO2 studied by infrared spectroscopy and first-principles calculations,” Phys. Rev. B 82(19), 193201 (2010).
[CrossRef]

J. Chae, L. Jang, and K. Jain, “High-resolution, resistless patterning of indium-tinoxide thin films using excimer laser projection annealing process,” Mater. Lett. 64(8), 948–950 (2010).
[CrossRef]

A. de Graaf, J. van Deelen, P. Poodt, T. van Mol, K. Spee, F. Grob, and A. Kuypers, “Development of atmospheric pressure CVD processes for high quality transparent conductive oxides,” En. Proc. 2(1), 41–48 (2010).
[CrossRef]

C. W. Cheng, C. Y. Lin, W. C. Shen, Y. J. Lee, and J. S. Chen, “Patterning crystalline indium tin oxide by high repetition rate femtosecond laser-induced crystallization,” Thin Solid Films 518(23), 7138–7142 (2010).
[CrossRef]

2009 (2)

S. W. H. Eijt, R. Kind, S. Singh, H. Schut, W. J. Legerstee, R. W. A. Hendrikx, V. L. Svetchnikov, R. J. Westerwaal, and B. Dam, “Positron depth profiling of the structural and electronic structure transformations of hydrogenated Mg-based thin films,” J. Appl. Phys. 105(4), 043514 (2009).
[CrossRef]

B. D. Ahn, W. H. Jeong, H. S. Shin, D. L. Kim, H. J. Kim, J. K. Jeong, S. H. Choi, and M. K. Han, “Effect of excimer laser annealing on the performance of amorphous indium gallium zinc oxide thin-film transistors,” Electrochem. Sol.- St. Lett. 12, H430–H432 (2009).

2008 (3)

G. Legeay, X. Castel, R. Benzerga, and J. Pinel, “Excimer laser beam/ITO interaction: from laser processing to surface reaction,” Phys. Status Solidi 5(10), 3248–3254 (2008).
[CrossRef]

V. Consonni, G. Feuillet, and P. Gergaud, “The flow stress in polycrystalline films: Dimensional constraints and strengthening effects,” Acta Mater. 56(20), 6087–6096 (2008).
[CrossRef]

N. Laidani, R. Bartali, G. Gottardi, M. Andrele, and P. Cheyssac, “Optical absorption parameters of amorphous carbon films from Forouhi-Bloomer and Tauc-Lorentz models: a comparative study,” J. Phys. Condens. Matter 20(015216), 1–8 (2008).

2007 (1)

M. Leoni, J. Martinez-Garcia, and P. Scardi, “Dislocation effects in powder diffraction,” J. Appl. Cryst. 40(4), 719–724 (2007).
[CrossRef]

2006 (1)

A. Oprea, E. Moretton, N. Barsan, W. J. Becker, J. Wollenstein, and U. Weimar, “Conduction model of SnO2 thin films based on conductance and Hall effect measurements,” J. Appl. Phys. 100, 033716 (2006).
[CrossRef]

2005 (3)

A. I. Martinez and D. R. Acosta, “Effect of the fluorine content on the structural and electrical properties of SnO2 and ZnO–SnO2 thin films prepared by spray pyrolysis,” Thin Solid Films 483(1-2), 107–113 (2005).
[CrossRef]

J. G. Berryman, “Bounds and self-consistent estimates for elastic constants of random polycrystals with hexagonal, trigonal, and tetragonal symmetries,” J. Mech. Phys. Solids 53(10), 2141–2173 (2005).
[CrossRef]

M. Batzill and U. Diebold, “The surface and materials science of tin oxide,” Prog. Surf. Sci. 79(2-4), 47–154 (2005).
[CrossRef]

2004 (1)

W. Chung, M. O. Thompson, P. Wickboldt, D. Toet, and P. G. Carey, “Room temperature indium tin oxide by XeCl excimer laser annealing for flexible display,” Thin Solid Films 460(1-2), 291–294 (2004).
[CrossRef]

2003 (1)

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4465 (2003).
[CrossRef]

2002 (1)

J. E. Dominguez, L. Fu, and X. Q. Pan, “Effects of crystal defects on the electrical properties in epitaxial tin dioxide thin films,” Appl. Phys. Lett. 81(27), 5168–5170 (2002).
[CrossRef]

2001 (1)

J. Bonse, J. M. Wrobel, J. Kruger, and W. Kautek, “Ultrashort-pulse laser ablation of indium phosphide in air,” Appl. Phys., A Mater. Sci. Process. 72(1), 89–94 (2001).
[CrossRef]

2000 (2)

C. V. Thompson, “Structure evolution during processing of polycrystalline films,” Annu. Rev. Mater. Sci. 30(1), 159–190 (2000).
[CrossRef]

R. Gordon, “Criteria for choosing transparent conductors,” MRS Bull. 25(08), 52–57 (2000).
[CrossRef]

1998 (1)

H. M. Ng, D. Doppalapudi, T. D. Moustakas, N. G. Weimann, and L. F. Eastman, “The role of dislocation scattering in n-type GaN films,” Appl. Phys. Lett. 73(6), 821–823 (1998).
[CrossRef]

1996 (1)

R. Carel, C. V. Thompson, and H. J. Frost, “Computer simulation of strain energy effects vs. surface and interface energy effects on grain growth in thin films,” Acta Mater. 44(6), 2479–2494 (1996).
[CrossRef]

1990 (1)

A. Van Veen, H. Schut, J. de Vries, R. A. Hakvoort, and M. R. Ijpma, “Positron beams for solids and surfaces,” AIP Conf. Proc. 218, 171–196 (1990).

1988 (1)

1985 (1)

J. R. Vig, “UV/ozone cleaning of surfaces,” J. Vac. Sci. Technol. A 3(3), 1027–1034 (1985).
[CrossRef]

1982 (1)

R. Delhez, Th. H. de Keijser, and E. J. Mittemeijer, “Determination of crystallite size and lattice distortions through X-ray diffraction line profile analysis,” Fresenius Z. Anal. Chem. 312(1), 1–16 (1982).
[CrossRef]

1976 (1)

G. Haacke, “New figure of merit for transparent conductors,” J. Appl. Phys. 47(9), 4086–4089 (1976).
[CrossRef]

Acosta, D. R.

A. I. Martinez and D. R. Acosta, “Effect of the fluorine content on the structural and electrical properties of SnO2 and ZnO–SnO2 thin films prepared by spray pyrolysis,” Thin Solid Films 483(1-2), 107–113 (2005).
[CrossRef]

Ahn, B. D.

B. D. Ahn, W. H. Jeong, H. S. Shin, D. L. Kim, H. J. Kim, J. K. Jeong, S. H. Choi, and M. K. Han, “Effect of excimer laser annealing on the performance of amorphous indium gallium zinc oxide thin-film transistors,” Electrochem. Sol.- St. Lett. 12, H430–H432 (2009).

Andrele, M.

N. Laidani, R. Bartali, G. Gottardi, M. Andrele, and P. Cheyssac, “Optical absorption parameters of amorphous carbon films from Forouhi-Bloomer and Tauc-Lorentz models: a comparative study,” J. Phys. Condens. Matter 20(015216), 1–8 (2008).

Aono, M.

K. Liu, M. Sakurai, and M. Aono, “Controlling Semiconducting and Insulating States of SnO2 Reversibly by Stress and Voltage,” ACS Nano 6(8), 7209–7215 (2012).
[CrossRef] [PubMed]

Bak, J. Y.

J. J. Kim, J. Y. Bak, J. H. Lee, H. S. Kim, N. W. Jang, Y. Yun, and W. J. Lee, “Characteristics of laser-annealed ZnO thin film transistors,” Thin Solid Films 518(11), 3022–3025 (2010).
[CrossRef]

Barsan, N.

A. Oprea, E. Moretton, N. Barsan, W. J. Becker, J. Wollenstein, and U. Weimar, “Conduction model of SnO2 thin films based on conductance and Hall effect measurements,” J. Appl. Phys. 100, 033716 (2006).
[CrossRef]

Bartali, R.

N. Laidani, R. Bartali, G. Gottardi, M. Andrele, and P. Cheyssac, “Optical absorption parameters of amorphous carbon films from Forouhi-Bloomer and Tauc-Lorentz models: a comparative study,” J. Phys. Condens. Matter 20(015216), 1–8 (2008).

Batzill, M.

M. Batzill and U. Diebold, “The surface and materials science of tin oxide,” Prog. Surf. Sci. 79(2-4), 47–154 (2005).
[CrossRef]

Becker, M. F.

Becker, W. J.

A. Oprea, E. Moretton, N. Barsan, W. J. Becker, J. Wollenstein, and U. Weimar, “Conduction model of SnO2 thin films based on conductance and Hall effect measurements,” J. Appl. Phys. 100, 033716 (2006).
[CrossRef]

Bellet, D.

V. Consonni, G. Rey, H. Roussel, and D. Bellet, “Thickness effects on the texture development of fluorine-doped SnO2 thin films: The role of surface and strain energy,” J. Appl. Phys. 111(3), 033523 (2012).
[CrossRef]

Benzerga, R.

G. Legeay, X. Castel, R. Benzerga, and J. Pinel, “Excimer laser beam/ITO interaction: from laser processing to surface reaction,” Phys. Status Solidi 5(10), 3248–3254 (2008).
[CrossRef]

Berryman, J. G.

J. G. Berryman, “Bounds and self-consistent estimates for elastic constants of random polycrystals with hexagonal, trigonal, and tetragonal symmetries,” J. Mech. Phys. Solids 53(10), 2141–2173 (2005).
[CrossRef]

Bonse, J.

J. Bonse, J. M. Wrobel, J. Kruger, and W. Kautek, “Ultrashort-pulse laser ablation of indium phosphide in air,” Appl. Phys., A Mater. Sci. Process. 72(1), 89–94 (2001).
[CrossRef]

Borowiec, A.

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4465 (2003).
[CrossRef]

Cai, W.

B. Zhang, Y. Tian, J. X. Zhang, and W. Cai, “Structural, optical, electrical properties and FTIR studies of fluorine doped SnO2 films deposited by spray pyrolysis,” J. Mater. Sci. 46(6), 1884–1889 (2011).
[CrossRef]

Carel, R.

R. Carel, C. V. Thompson, and H. J. Frost, “Computer simulation of strain energy effects vs. surface and interface energy effects on grain growth in thin films,” Acta Mater. 44(6), 2479–2494 (1996).
[CrossRef]

Carey, P. G.

W. Chung, M. O. Thompson, P. Wickboldt, D. Toet, and P. G. Carey, “Room temperature indium tin oxide by XeCl excimer laser annealing for flexible display,” Thin Solid Films 460(1-2), 291–294 (2004).
[CrossRef]

Castel, X.

G. Legeay, X. Castel, R. Benzerga, and J. Pinel, “Excimer laser beam/ITO interaction: from laser processing to surface reaction,” Phys. Status Solidi 5(10), 3248–3254 (2008).
[CrossRef]

Chae, J.

J. Chae, L. Jang, and K. Jain, “High-resolution, resistless patterning of indium-tinoxide thin films using excimer laser projection annealing process,” Mater. Lett. 64(8), 948–950 (2010).
[CrossRef]

Chen, J. S.

C. W. Cheng, C. Y. Lin, W. C. Shen, Y. J. Lee, and J. S. Chen, “Patterning crystalline indium tin oxide by high repetition rate femtosecond laser-induced crystallization,” Thin Solid Films 518(23), 7138–7142 (2010).
[CrossRef]

Chen, M. F.

M. F. Chen, K. M. Lin, and Y. S. Ho, “Effects of laser-induced recovery process on conductive property of SnO2:F thin film,” Mater. Sci. Eng. B 176(2), 127–131 (2011).
[CrossRef]

Cheng, C. W.

C. W. Cheng, C. Y. Lin, W. C. Shen, Y. J. Lee, and J. S. Chen, “Patterning crystalline indium tin oxide by high repetition rate femtosecond laser-induced crystallization,” Thin Solid Films 518(23), 7138–7142 (2010).
[CrossRef]

Cheyssac, P.

N. Laidani, R. Bartali, G. Gottardi, M. Andrele, and P. Cheyssac, “Optical absorption parameters of amorphous carbon films from Forouhi-Bloomer and Tauc-Lorentz models: a comparative study,” J. Phys. Condens. Matter 20(015216), 1–8 (2008).

Chiang, D.

S. F. Tseng, W. T. Hsiao, D. Chiang, K. C. Huang, and C. P. Chou, “Mechanical and optoelectric properties of post-annealed fluorine-doped tin oxide films by ultraviolet laser irradiation,” Appl. Surf. Sci. 257(16), 7204–7209 (2011).
[CrossRef]

Choi, S. H.

B. D. Ahn, W. H. Jeong, H. S. Shin, D. L. Kim, H. J. Kim, J. K. Jeong, S. H. Choi, and M. K. Han, “Effect of excimer laser annealing on the performance of amorphous indium gallium zinc oxide thin-film transistors,” Electrochem. Sol.- St. Lett. 12, H430–H432 (2009).

Chou, C. P.

S. F. Tseng, W. T. Hsiao, D. Chiang, K. C. Huang, and C. P. Chou, “Mechanical and optoelectric properties of post-annealed fluorine-doped tin oxide films by ultraviolet laser irradiation,” Appl. Surf. Sci. 257(16), 7204–7209 (2011).
[CrossRef]

Chung, W.

W. Chung, M. O. Thompson, P. Wickboldt, D. Toet, and P. G. Carey, “Room temperature indium tin oxide by XeCl excimer laser annealing for flexible display,” Thin Solid Films 460(1-2), 291–294 (2004).
[CrossRef]

Consonni, V.

V. Consonni, G. Rey, H. Roussel, and D. Bellet, “Thickness effects on the texture development of fluorine-doped SnO2 thin films: The role of surface and strain energy,” J. Appl. Phys. 111(3), 033523 (2012).
[CrossRef]

V. Consonni, G. Feuillet, and P. Gergaud, “The flow stress in polycrystalline films: Dimensional constraints and strengthening effects,” Acta Mater. 56(20), 6087–6096 (2008).
[CrossRef]

Dam, B.

S. W. H. Eijt, R. Kind, S. Singh, H. Schut, W. J. Legerstee, R. W. A. Hendrikx, V. L. Svetchnikov, R. J. Westerwaal, and B. Dam, “Positron depth profiling of the structural and electronic structure transformations of hydrogenated Mg-based thin films,” J. Appl. Phys. 105(4), 043514 (2009).
[CrossRef]

de Graaf, A.

A. de Graaf, J. van Deelen, P. Poodt, T. van Mol, K. Spee, F. Grob, and A. Kuypers, “Development of atmospheric pressure CVD processes for high quality transparent conductive oxides,” En. Proc. 2(1), 41–48 (2010).
[CrossRef]

de Keijser, Th. H.

R. Delhez, Th. H. de Keijser, and E. J. Mittemeijer, “Determination of crystallite size and lattice distortions through X-ray diffraction line profile analysis,” Fresenius Z. Anal. Chem. 312(1), 1–16 (1982).
[CrossRef]

de Lange, D. F.

D. Scorticati, G. R. B. E. Römer, D. F. de Lange, and A. J. Huis in ’t Veld, “Ultra-short-pulsed laser-machined nanogratings of laser-induced periodic surface structures on thin molybdenum layers,” J. Nanophotonics 6(1), 063528 (2012).

de Vries, J.

A. Van Veen, H. Schut, J. de Vries, R. A. Hakvoort, and M. R. Ijpma, “Positron beams for solids and surfaces,” AIP Conf. Proc. 218, 171–196 (1990).

Delhez, R.

R. Delhez, Th. H. de Keijser, and E. J. Mittemeijer, “Determination of crystallite size and lattice distortions through X-ray diffraction line profile analysis,” Fresenius Z. Anal. Chem. 312(1), 1–16 (1982).
[CrossRef]

Diebold, U.

M. Batzill and U. Diebold, “The surface and materials science of tin oxide,” Prog. Surf. Sci. 79(2-4), 47–154 (2005).
[CrossRef]

Dominguez, J. E.

J. E. Dominguez, L. Fu, and X. Q. Pan, “Effects of crystal defects on the electrical properties in epitaxial tin dioxide thin films,” Appl. Phys. Lett. 81(27), 5168–5170 (2002).
[CrossRef]

Doppalapudi, D.

H. M. Ng, D. Doppalapudi, T. D. Moustakas, N. G. Weimann, and L. F. Eastman, “The role of dislocation scattering in n-type GaN films,” Appl. Phys. Lett. 73(6), 821–823 (1998).
[CrossRef]

Eastman, L. F.

H. M. Ng, D. Doppalapudi, T. D. Moustakas, N. G. Weimann, and L. F. Eastman, “The role of dislocation scattering in n-type GaN films,” Appl. Phys. Lett. 73(6), 821–823 (1998).
[CrossRef]

Eijt, S. W. H.

S. W. H. Eijt, R. Kind, S. Singh, H. Schut, W. J. Legerstee, R. W. A. Hendrikx, V. L. Svetchnikov, R. J. Westerwaal, and B. Dam, “Positron depth profiling of the structural and electronic structure transformations of hydrogenated Mg-based thin films,” J. Appl. Phys. 105(4), 043514 (2009).
[CrossRef]

Feuillet, G.

V. Consonni, G. Feuillet, and P. Gergaud, “The flow stress in polycrystalline films: Dimensional constraints and strengthening effects,” Acta Mater. 56(20), 6087–6096 (2008).
[CrossRef]

Frost, H. J.

R. Carel, C. V. Thompson, and H. J. Frost, “Computer simulation of strain energy effects vs. surface and interface energy effects on grain growth in thin films,” Acta Mater. 44(6), 2479–2494 (1996).
[CrossRef]

Fu, L.

J. E. Dominguez, L. Fu, and X. Q. Pan, “Effects of crystal defects on the electrical properties in epitaxial tin dioxide thin films,” Appl. Phys. Lett. 81(27), 5168–5170 (2002).
[CrossRef]

Gergaud, P.

V. Consonni, G. Feuillet, and P. Gergaud, “The flow stress in polycrystalline films: Dimensional constraints and strengthening effects,” Acta Mater. 56(20), 6087–6096 (2008).
[CrossRef]

Gordon, R.

R. Gordon, “Criteria for choosing transparent conductors,” MRS Bull. 25(08), 52–57 (2000).
[CrossRef]

Gottardi, G.

N. Laidani, R. Bartali, G. Gottardi, M. Andrele, and P. Cheyssac, “Optical absorption parameters of amorphous carbon films from Forouhi-Bloomer and Tauc-Lorentz models: a comparative study,” J. Phys. Condens. Matter 20(015216), 1–8 (2008).

Grob, F.

A. de Graaf, J. van Deelen, P. Poodt, T. van Mol, K. Spee, F. Grob, and A. Kuypers, “Development of atmospheric pressure CVD processes for high quality transparent conductive oxides,” En. Proc. 2(1), 41–48 (2010).
[CrossRef]

Haacke, G.

G. Haacke, “New figure of merit for transparent conductors,” J. Appl. Phys. 47(9), 4086–4089 (1976).
[CrossRef]

Hakvoort, R. A.

A. Van Veen, H. Schut, J. de Vries, R. A. Hakvoort, and M. R. Ijpma, “Positron beams for solids and surfaces,” AIP Conf. Proc. 218, 171–196 (1990).

Han, M. K.

B. D. Ahn, W. H. Jeong, H. S. Shin, D. L. Kim, H. J. Kim, J. K. Jeong, S. H. Choi, and M. K. Han, “Effect of excimer laser annealing on the performance of amorphous indium gallium zinc oxide thin-film transistors,” Electrochem. Sol.- St. Lett. 12, H430–H432 (2009).

Haugen, H. K.

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4465 (2003).
[CrossRef]

He, C.

W. Mao, B. Xiong, Y. Liu, and C. He, “Correlation between defects and conductivity of Sb-doped tin oxide thin films,” Appl. Phys. Lett. 103(3), 031915 (2013).
[CrossRef]

Hendrikx, R. W. A.

S. W. H. Eijt, R. Kind, S. Singh, H. Schut, W. J. Legerstee, R. W. A. Hendrikx, V. L. Svetchnikov, R. J. Westerwaal, and B. Dam, “Positron depth profiling of the structural and electronic structure transformations of hydrogenated Mg-based thin films,” J. Appl. Phys. 105(4), 043514 (2009).
[CrossRef]

Hlaing Oo, W. M.

W. M. Hlaing Oo, S. Tabatabaei, M. D. McCluskey, J. B. Varley, A. Janotti, and C. G. Van de Walle, “Hydrogen donors in SnO2 studied by infrared spectroscopy and first-principles calculations,” Phys. Rev. B 82(19), 193201 (2010).
[CrossRef]

Ho, Y. S.

M. F. Chen, K. M. Lin, and Y. S. Ho, “Effects of laser-induced recovery process on conductive property of SnO2:F thin film,” Mater. Sci. Eng. B 176(2), 127–131 (2011).
[CrossRef]

Hsiao, W. T.

S. F. Tseng, W. T. Hsiao, D. Chiang, K. C. Huang, and C. P. Chou, “Mechanical and optoelectric properties of post-annealed fluorine-doped tin oxide films by ultraviolet laser irradiation,” Appl. Surf. Sci. 257(16), 7204–7209 (2011).
[CrossRef]

Huang, K. C.

S. F. Tseng, W. T. Hsiao, D. Chiang, K. C. Huang, and C. P. Chou, “Mechanical and optoelectric properties of post-annealed fluorine-doped tin oxide films by ultraviolet laser irradiation,” Appl. Surf. Sci. 257(16), 7204–7209 (2011).
[CrossRef]

Huis in ’t Veld, A. J.

D. Scorticati, G. R. B. E. Römer, D. F. de Lange, and A. J. Huis in ’t Veld, “Ultra-short-pulsed laser-machined nanogratings of laser-induced periodic surface structures on thin molybdenum layers,” J. Nanophotonics 6(1), 063528 (2012).

Ijpma, M. R.

A. Van Veen, H. Schut, J. de Vries, R. A. Hakvoort, and M. R. Ijpma, “Positron beams for solids and surfaces,” AIP Conf. Proc. 218, 171–196 (1990).

Jain, K.

J. Chae, L. Jang, and K. Jain, “High-resolution, resistless patterning of indium-tinoxide thin films using excimer laser projection annealing process,” Mater. Lett. 64(8), 948–950 (2010).
[CrossRef]

Jang, L.

J. Chae, L. Jang, and K. Jain, “High-resolution, resistless patterning of indium-tinoxide thin films using excimer laser projection annealing process,” Mater. Lett. 64(8), 948–950 (2010).
[CrossRef]

Jang, N. W.

J. J. Kim, J. Y. Bak, J. H. Lee, H. S. Kim, N. W. Jang, Y. Yun, and W. J. Lee, “Characteristics of laser-annealed ZnO thin film transistors,” Thin Solid Films 518(11), 3022–3025 (2010).
[CrossRef]

Janotti, A.

W. M. Hlaing Oo, S. Tabatabaei, M. D. McCluskey, J. B. Varley, A. Janotti, and C. G. Van de Walle, “Hydrogen donors in SnO2 studied by infrared spectroscopy and first-principles calculations,” Phys. Rev. B 82(19), 193201 (2010).
[CrossRef]

Jee, Y.

Jeong, J. K.

B. D. Ahn, W. H. Jeong, H. S. Shin, D. L. Kim, H. J. Kim, J. K. Jeong, S. H. Choi, and M. K. Han, “Effect of excimer laser annealing on the performance of amorphous indium gallium zinc oxide thin-film transistors,” Electrochem. Sol.- St. Lett. 12, H430–H432 (2009).

Jeong, W. H.

B. D. Ahn, W. H. Jeong, H. S. Shin, D. L. Kim, H. J. Kim, J. K. Jeong, S. H. Choi, and M. K. Han, “Effect of excimer laser annealing on the performance of amorphous indium gallium zinc oxide thin-film transistors,” Electrochem. Sol.- St. Lett. 12, H430–H432 (2009).

Kautek, W.

J. Bonse, J. M. Wrobel, J. Kruger, and W. Kautek, “Ultrashort-pulse laser ablation of indium phosphide in air,” Appl. Phys., A Mater. Sci. Process. 72(1), 89–94 (2001).
[CrossRef]

Kim, D. L.

B. D. Ahn, W. H. Jeong, H. S. Shin, D. L. Kim, H. J. Kim, J. K. Jeong, S. H. Choi, and M. K. Han, “Effect of excimer laser annealing on the performance of amorphous indium gallium zinc oxide thin-film transistors,” Electrochem. Sol.- St. Lett. 12, H430–H432 (2009).

Kim, H. J.

B. D. Ahn, W. H. Jeong, H. S. Shin, D. L. Kim, H. J. Kim, J. K. Jeong, S. H. Choi, and M. K. Han, “Effect of excimer laser annealing on the performance of amorphous indium gallium zinc oxide thin-film transistors,” Electrochem. Sol.- St. Lett. 12, H430–H432 (2009).

Kim, H. S.

J. J. Kim, J. Y. Bak, J. H. Lee, H. S. Kim, N. W. Jang, Y. Yun, and W. J. Lee, “Characteristics of laser-annealed ZnO thin film transistors,” Thin Solid Films 518(11), 3022–3025 (2010).
[CrossRef]

Kim, J. J.

J. J. Kim, J. Y. Bak, J. H. Lee, H. S. Kim, N. W. Jang, Y. Yun, and W. J. Lee, “Characteristics of laser-annealed ZnO thin film transistors,” Thin Solid Films 518(11), 3022–3025 (2010).
[CrossRef]

Kind, R.

S. W. H. Eijt, R. Kind, S. Singh, H. Schut, W. J. Legerstee, R. W. A. Hendrikx, V. L. Svetchnikov, R. J. Westerwaal, and B. Dam, “Positron depth profiling of the structural and electronic structure transformations of hydrogenated Mg-based thin films,” J. Appl. Phys. 105(4), 043514 (2009).
[CrossRef]

Kruger, J.

J. Bonse, J. M. Wrobel, J. Kruger, and W. Kautek, “Ultrashort-pulse laser ablation of indium phosphide in air,” Appl. Phys., A Mater. Sci. Process. 72(1), 89–94 (2001).
[CrossRef]

Kuypers, A.

A. de Graaf, J. van Deelen, P. Poodt, T. van Mol, K. Spee, F. Grob, and A. Kuypers, “Development of atmospheric pressure CVD processes for high quality transparent conductive oxides,” En. Proc. 2(1), 41–48 (2010).
[CrossRef]

Laidani, N.

N. Laidani, R. Bartali, G. Gottardi, M. Andrele, and P. Cheyssac, “Optical absorption parameters of amorphous carbon films from Forouhi-Bloomer and Tauc-Lorentz models: a comparative study,” J. Phys. Condens. Matter 20(015216), 1–8 (2008).

Lee, J. H.

J. J. Kim, J. Y. Bak, J. H. Lee, H. S. Kim, N. W. Jang, Y. Yun, and W. J. Lee, “Characteristics of laser-annealed ZnO thin film transistors,” Thin Solid Films 518(11), 3022–3025 (2010).
[CrossRef]

Lee, W. J.

J. J. Kim, J. Y. Bak, J. H. Lee, H. S. Kim, N. W. Jang, Y. Yun, and W. J. Lee, “Characteristics of laser-annealed ZnO thin film transistors,” Thin Solid Films 518(11), 3022–3025 (2010).
[CrossRef]

Lee, Y. J.

C. W. Cheng, C. Y. Lin, W. C. Shen, Y. J. Lee, and J. S. Chen, “Patterning crystalline indium tin oxide by high repetition rate femtosecond laser-induced crystallization,” Thin Solid Films 518(23), 7138–7142 (2010).
[CrossRef]

Legeay, G.

G. Legeay, X. Castel, R. Benzerga, and J. Pinel, “Excimer laser beam/ITO interaction: from laser processing to surface reaction,” Phys. Status Solidi 5(10), 3248–3254 (2008).
[CrossRef]

Legerstee, W. J.

S. W. H. Eijt, R. Kind, S. Singh, H. Schut, W. J. Legerstee, R. W. A. Hendrikx, V. L. Svetchnikov, R. J. Westerwaal, and B. Dam, “Positron depth profiling of the structural and electronic structure transformations of hydrogenated Mg-based thin films,” J. Appl. Phys. 105(4), 043514 (2009).
[CrossRef]

Leoni, M.

M. Leoni, J. Martinez-Garcia, and P. Scardi, “Dislocation effects in powder diffraction,” J. Appl. Cryst. 40(4), 719–724 (2007).
[CrossRef]

Lin, C. Y.

C. W. Cheng, C. Y. Lin, W. C. Shen, Y. J. Lee, and J. S. Chen, “Patterning crystalline indium tin oxide by high repetition rate femtosecond laser-induced crystallization,” Thin Solid Films 518(23), 7138–7142 (2010).
[CrossRef]

Lin, K. M.

M. F. Chen, K. M. Lin, and Y. S. Ho, “Effects of laser-induced recovery process on conductive property of SnO2:F thin film,” Mater. Sci. Eng. B 176(2), 127–131 (2011).
[CrossRef]

Liu, K.

K. Liu, M. Sakurai, and M. Aono, “Controlling Semiconducting and Insulating States of SnO2 Reversibly by Stress and Voltage,” ACS Nano 6(8), 7209–7215 (2012).
[CrossRef] [PubMed]

Liu, Y.

W. Mao, B. Xiong, Y. Liu, and C. He, “Correlation between defects and conductivity of Sb-doped tin oxide thin films,” Appl. Phys. Lett. 103(3), 031915 (2013).
[CrossRef]

Mao, W.

W. Mao, B. Xiong, Y. Liu, and C. He, “Correlation between defects and conductivity of Sb-doped tin oxide thin films,” Appl. Phys. Lett. 103(3), 031915 (2013).
[CrossRef]

Martinez, A. I.

A. I. Martinez and D. R. Acosta, “Effect of the fluorine content on the structural and electrical properties of SnO2 and ZnO–SnO2 thin films prepared by spray pyrolysis,” Thin Solid Films 483(1-2), 107–113 (2005).
[CrossRef]

Martinez-Garcia, J.

M. Leoni, J. Martinez-Garcia, and P. Scardi, “Dislocation effects in powder diffraction,” J. Appl. Cryst. 40(4), 719–724 (2007).
[CrossRef]

McCluskey, M. D.

W. M. Hlaing Oo, S. Tabatabaei, M. D. McCluskey, J. B. Varley, A. Janotti, and C. G. Van de Walle, “Hydrogen donors in SnO2 studied by infrared spectroscopy and first-principles calculations,” Phys. Rev. B 82(19), 193201 (2010).
[CrossRef]

Mittemeijer, E. J.

R. Delhez, Th. H. de Keijser, and E. J. Mittemeijer, “Determination of crystallite size and lattice distortions through X-ray diffraction line profile analysis,” Fresenius Z. Anal. Chem. 312(1), 1–16 (1982).
[CrossRef]

Moretton, E.

A. Oprea, E. Moretton, N. Barsan, W. J. Becker, J. Wollenstein, and U. Weimar, “Conduction model of SnO2 thin films based on conductance and Hall effect measurements,” J. Appl. Phys. 100, 033716 (2006).
[CrossRef]

Moustakas, T. D.

H. M. Ng, D. Doppalapudi, T. D. Moustakas, N. G. Weimann, and L. F. Eastman, “The role of dislocation scattering in n-type GaN films,” Appl. Phys. Lett. 73(6), 821–823 (1998).
[CrossRef]

Ng, H. M.

H. M. Ng, D. Doppalapudi, T. D. Moustakas, N. G. Weimann, and L. F. Eastman, “The role of dislocation scattering in n-type GaN films,” Appl. Phys. Lett. 73(6), 821–823 (1998).
[CrossRef]

Oprea, A.

A. Oprea, E. Moretton, N. Barsan, W. J. Becker, J. Wollenstein, and U. Weimar, “Conduction model of SnO2 thin films based on conductance and Hall effect measurements,” J. Appl. Phys. 100, 033716 (2006).
[CrossRef]

Pan, X. Q.

J. E. Dominguez, L. Fu, and X. Q. Pan, “Effects of crystal defects on the electrical properties in epitaxial tin dioxide thin films,” Appl. Phys. Lett. 81(27), 5168–5170 (2002).
[CrossRef]

Pinel, J.

G. Legeay, X. Castel, R. Benzerga, and J. Pinel, “Excimer laser beam/ITO interaction: from laser processing to surface reaction,” Phys. Status Solidi 5(10), 3248–3254 (2008).
[CrossRef]

Poodt, P.

A. de Graaf, J. van Deelen, P. Poodt, T. van Mol, K. Spee, F. Grob, and A. Kuypers, “Development of atmospheric pressure CVD processes for high quality transparent conductive oxides,” En. Proc. 2(1), 41–48 (2010).
[CrossRef]

Rey, G.

V. Consonni, G. Rey, H. Roussel, and D. Bellet, “Thickness effects on the texture development of fluorine-doped SnO2 thin films: The role of surface and strain energy,” J. Appl. Phys. 111(3), 033523 (2012).
[CrossRef]

Römer, G. R. B. E.

D. Scorticati, G. R. B. E. Römer, D. F. de Lange, and A. J. Huis in ’t Veld, “Ultra-short-pulsed laser-machined nanogratings of laser-induced periodic surface structures on thin molybdenum layers,” J. Nanophotonics 6(1), 063528 (2012).

Roussel, H.

V. Consonni, G. Rey, H. Roussel, and D. Bellet, “Thickness effects on the texture development of fluorine-doped SnO2 thin films: The role of surface and strain energy,” J. Appl. Phys. 111(3), 033523 (2012).
[CrossRef]

Sakurai, M.

K. Liu, M. Sakurai, and M. Aono, “Controlling Semiconducting and Insulating States of SnO2 Reversibly by Stress and Voltage,” ACS Nano 6(8), 7209–7215 (2012).
[CrossRef] [PubMed]

Scardi, P.

M. Leoni, J. Martinez-Garcia, and P. Scardi, “Dislocation effects in powder diffraction,” J. Appl. Cryst. 40(4), 719–724 (2007).
[CrossRef]

Schut, H.

S. W. H. Eijt, R. Kind, S. Singh, H. Schut, W. J. Legerstee, R. W. A. Hendrikx, V. L. Svetchnikov, R. J. Westerwaal, and B. Dam, “Positron depth profiling of the structural and electronic structure transformations of hydrogenated Mg-based thin films,” J. Appl. Phys. 105(4), 043514 (2009).
[CrossRef]

A. Van Veen, H. Schut, J. de Vries, R. A. Hakvoort, and M. R. Ijpma, “Positron beams for solids and surfaces,” AIP Conf. Proc. 218, 171–196 (1990).

Scorticati, D.

D. Scorticati, G. R. B. E. Römer, D. F. de Lange, and A. J. Huis in ’t Veld, “Ultra-short-pulsed laser-machined nanogratings of laser-induced periodic surface structures on thin molybdenum layers,” J. Nanophotonics 6(1), 063528 (2012).

Shen, W. C.

C. W. Cheng, C. Y. Lin, W. C. Shen, Y. J. Lee, and J. S. Chen, “Patterning crystalline indium tin oxide by high repetition rate femtosecond laser-induced crystallization,” Thin Solid Films 518(23), 7138–7142 (2010).
[CrossRef]

Shin, H. S.

B. D. Ahn, W. H. Jeong, H. S. Shin, D. L. Kim, H. J. Kim, J. K. Jeong, S. H. Choi, and M. K. Han, “Effect of excimer laser annealing on the performance of amorphous indium gallium zinc oxide thin-film transistors,” Electrochem. Sol.- St. Lett. 12, H430–H432 (2009).

Singh, S.

S. W. H. Eijt, R. Kind, S. Singh, H. Schut, W. J. Legerstee, R. W. A. Hendrikx, V. L. Svetchnikov, R. J. Westerwaal, and B. Dam, “Positron depth profiling of the structural and electronic structure transformations of hydrogenated Mg-based thin films,” J. Appl. Phys. 105(4), 043514 (2009).
[CrossRef]

Spee, K.

A. de Graaf, J. van Deelen, P. Poodt, T. van Mol, K. Spee, F. Grob, and A. Kuypers, “Development of atmospheric pressure CVD processes for high quality transparent conductive oxides,” En. Proc. 2(1), 41–48 (2010).
[CrossRef]

Svetchnikov, V. L.

S. W. H. Eijt, R. Kind, S. Singh, H. Schut, W. J. Legerstee, R. W. A. Hendrikx, V. L. Svetchnikov, R. J. Westerwaal, and B. Dam, “Positron depth profiling of the structural and electronic structure transformations of hydrogenated Mg-based thin films,” J. Appl. Phys. 105(4), 043514 (2009).
[CrossRef]

Tabatabaei, S.

W. M. Hlaing Oo, S. Tabatabaei, M. D. McCluskey, J. B. Varley, A. Janotti, and C. G. Van de Walle, “Hydrogen donors in SnO2 studied by infrared spectroscopy and first-principles calculations,” Phys. Rev. B 82(19), 193201 (2010).
[CrossRef]

Thompson, C. V.

C. V. Thompson, “Structure evolution during processing of polycrystalline films,” Annu. Rev. Mater. Sci. 30(1), 159–190 (2000).
[CrossRef]

R. Carel, C. V. Thompson, and H. J. Frost, “Computer simulation of strain energy effects vs. surface and interface energy effects on grain growth in thin films,” Acta Mater. 44(6), 2479–2494 (1996).
[CrossRef]

Thompson, M. O.

W. Chung, M. O. Thompson, P. Wickboldt, D. Toet, and P. G. Carey, “Room temperature indium tin oxide by XeCl excimer laser annealing for flexible display,” Thin Solid Films 460(1-2), 291–294 (2004).
[CrossRef]

Tian, Y.

B. Zhang, Y. Tian, J. X. Zhang, and W. Cai, “Structural, optical, electrical properties and FTIR studies of fluorine doped SnO2 films deposited by spray pyrolysis,” J. Mater. Sci. 46(6), 1884–1889 (2011).
[CrossRef]

Toet, D.

W. Chung, M. O. Thompson, P. Wickboldt, D. Toet, and P. G. Carey, “Room temperature indium tin oxide by XeCl excimer laser annealing for flexible display,” Thin Solid Films 460(1-2), 291–294 (2004).
[CrossRef]

Tseng, S. F.

S. F. Tseng, W. T. Hsiao, D. Chiang, K. C. Huang, and C. P. Chou, “Mechanical and optoelectric properties of post-annealed fluorine-doped tin oxide films by ultraviolet laser irradiation,” Appl. Surf. Sci. 257(16), 7204–7209 (2011).
[CrossRef]

Van de Walle, C. G.

W. M. Hlaing Oo, S. Tabatabaei, M. D. McCluskey, J. B. Varley, A. Janotti, and C. G. Van de Walle, “Hydrogen donors in SnO2 studied by infrared spectroscopy and first-principles calculations,” Phys. Rev. B 82(19), 193201 (2010).
[CrossRef]

van Deelen, J.

A. de Graaf, J. van Deelen, P. Poodt, T. van Mol, K. Spee, F. Grob, and A. Kuypers, “Development of atmospheric pressure CVD processes for high quality transparent conductive oxides,” En. Proc. 2(1), 41–48 (2010).
[CrossRef]

van Mol, T.

A. de Graaf, J. van Deelen, P. Poodt, T. van Mol, K. Spee, F. Grob, and A. Kuypers, “Development of atmospheric pressure CVD processes for high quality transparent conductive oxides,” En. Proc. 2(1), 41–48 (2010).
[CrossRef]

Van Veen, A.

A. Van Veen, H. Schut, J. de Vries, R. A. Hakvoort, and M. R. Ijpma, “Positron beams for solids and surfaces,” AIP Conf. Proc. 218, 171–196 (1990).

Varley, J. B.

W. M. Hlaing Oo, S. Tabatabaei, M. D. McCluskey, J. B. Varley, A. Janotti, and C. G. Van de Walle, “Hydrogen donors in SnO2 studied by infrared spectroscopy and first-principles calculations,” Phys. Rev. B 82(19), 193201 (2010).
[CrossRef]

Vig, J. R.

J. R. Vig, “UV/ozone cleaning of surfaces,” J. Vac. Sci. Technol. A 3(3), 1027–1034 (1985).
[CrossRef]

Walser, R. M.

Weimann, N. G.

H. M. Ng, D. Doppalapudi, T. D. Moustakas, N. G. Weimann, and L. F. Eastman, “The role of dislocation scattering in n-type GaN films,” Appl. Phys. Lett. 73(6), 821–823 (1998).
[CrossRef]

Weimar, U.

A. Oprea, E. Moretton, N. Barsan, W. J. Becker, J. Wollenstein, and U. Weimar, “Conduction model of SnO2 thin films based on conductance and Hall effect measurements,” J. Appl. Phys. 100, 033716 (2006).
[CrossRef]

Westerwaal, R. J.

S. W. H. Eijt, R. Kind, S. Singh, H. Schut, W. J. Legerstee, R. W. A. Hendrikx, V. L. Svetchnikov, R. J. Westerwaal, and B. Dam, “Positron depth profiling of the structural and electronic structure transformations of hydrogenated Mg-based thin films,” J. Appl. Phys. 105(4), 043514 (2009).
[CrossRef]

Wickboldt, P.

W. Chung, M. O. Thompson, P. Wickboldt, D. Toet, and P. G. Carey, “Room temperature indium tin oxide by XeCl excimer laser annealing for flexible display,” Thin Solid Films 460(1-2), 291–294 (2004).
[CrossRef]

Wollenstein, J.

A. Oprea, E. Moretton, N. Barsan, W. J. Becker, J. Wollenstein, and U. Weimar, “Conduction model of SnO2 thin films based on conductance and Hall effect measurements,” J. Appl. Phys. 100, 033716 (2006).
[CrossRef]

Wrobel, J. M.

J. Bonse, J. M. Wrobel, J. Kruger, and W. Kautek, “Ultrashort-pulse laser ablation of indium phosphide in air,” Appl. Phys., A Mater. Sci. Process. 72(1), 89–94 (2001).
[CrossRef]

Xiong, B.

W. Mao, B. Xiong, Y. Liu, and C. He, “Correlation between defects and conductivity of Sb-doped tin oxide thin films,” Appl. Phys. Lett. 103(3), 031915 (2013).
[CrossRef]

Yun, Y.

J. J. Kim, J. Y. Bak, J. H. Lee, H. S. Kim, N. W. Jang, Y. Yun, and W. J. Lee, “Characteristics of laser-annealed ZnO thin film transistors,” Thin Solid Films 518(11), 3022–3025 (2010).
[CrossRef]

Zhang, B.

B. Zhang, Y. Tian, J. X. Zhang, and W. Cai, “Structural, optical, electrical properties and FTIR studies of fluorine doped SnO2 films deposited by spray pyrolysis,” J. Mater. Sci. 46(6), 1884–1889 (2011).
[CrossRef]

Zhang, J. X.

B. Zhang, Y. Tian, J. X. Zhang, and W. Cai, “Structural, optical, electrical properties and FTIR studies of fluorine doped SnO2 films deposited by spray pyrolysis,” J. Mater. Sci. 46(6), 1884–1889 (2011).
[CrossRef]

ACS Nano (1)

K. Liu, M. Sakurai, and M. Aono, “Controlling Semiconducting and Insulating States of SnO2 Reversibly by Stress and Voltage,” ACS Nano 6(8), 7209–7215 (2012).
[CrossRef] [PubMed]

Acta Mater. (2)

R. Carel, C. V. Thompson, and H. J. Frost, “Computer simulation of strain energy effects vs. surface and interface energy effects on grain growth in thin films,” Acta Mater. 44(6), 2479–2494 (1996).
[CrossRef]

V. Consonni, G. Feuillet, and P. Gergaud, “The flow stress in polycrystalline films: Dimensional constraints and strengthening effects,” Acta Mater. 56(20), 6087–6096 (2008).
[CrossRef]

AIP Conf. Proc. (1)

A. Van Veen, H. Schut, J. de Vries, R. A. Hakvoort, and M. R. Ijpma, “Positron beams for solids and surfaces,” AIP Conf. Proc. 218, 171–196 (1990).

Annu. Rev. Mater. Sci. (1)

C. V. Thompson, “Structure evolution during processing of polycrystalline films,” Annu. Rev. Mater. Sci. 30(1), 159–190 (2000).
[CrossRef]

Appl. Phys. Lett. (4)

J. E. Dominguez, L. Fu, and X. Q. Pan, “Effects of crystal defects on the electrical properties in epitaxial tin dioxide thin films,” Appl. Phys. Lett. 81(27), 5168–5170 (2002).
[CrossRef]

W. Mao, B. Xiong, Y. Liu, and C. He, “Correlation between defects and conductivity of Sb-doped tin oxide thin films,” Appl. Phys. Lett. 103(3), 031915 (2013).
[CrossRef]

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4465 (2003).
[CrossRef]

H. M. Ng, D. Doppalapudi, T. D. Moustakas, N. G. Weimann, and L. F. Eastman, “The role of dislocation scattering in n-type GaN films,” Appl. Phys. Lett. 73(6), 821–823 (1998).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

J. Bonse, J. M. Wrobel, J. Kruger, and W. Kautek, “Ultrashort-pulse laser ablation of indium phosphide in air,” Appl. Phys., A Mater. Sci. Process. 72(1), 89–94 (2001).
[CrossRef]

Appl. Surf. Sci. (1)

S. F. Tseng, W. T. Hsiao, D. Chiang, K. C. Huang, and C. P. Chou, “Mechanical and optoelectric properties of post-annealed fluorine-doped tin oxide films by ultraviolet laser irradiation,” Appl. Surf. Sci. 257(16), 7204–7209 (2011).
[CrossRef]

Electrochem. Sol.- St. Lett. (1)

B. D. Ahn, W. H. Jeong, H. S. Shin, D. L. Kim, H. J. Kim, J. K. Jeong, S. H. Choi, and M. K. Han, “Effect of excimer laser annealing on the performance of amorphous indium gallium zinc oxide thin-film transistors,” Electrochem. Sol.- St. Lett. 12, H430–H432 (2009).

En. Proc. (1)

A. de Graaf, J. van Deelen, P. Poodt, T. van Mol, K. Spee, F. Grob, and A. Kuypers, “Development of atmospheric pressure CVD processes for high quality transparent conductive oxides,” En. Proc. 2(1), 41–48 (2010).
[CrossRef]

Fresenius Z. Anal. Chem. (1)

R. Delhez, Th. H. de Keijser, and E. J. Mittemeijer, “Determination of crystallite size and lattice distortions through X-ray diffraction line profile analysis,” Fresenius Z. Anal. Chem. 312(1), 1–16 (1982).
[CrossRef]

J. Appl. Cryst. (1)

M. Leoni, J. Martinez-Garcia, and P. Scardi, “Dislocation effects in powder diffraction,” J. Appl. Cryst. 40(4), 719–724 (2007).
[CrossRef]

J. Appl. Phys. (4)

S. W. H. Eijt, R. Kind, S. Singh, H. Schut, W. J. Legerstee, R. W. A. Hendrikx, V. L. Svetchnikov, R. J. Westerwaal, and B. Dam, “Positron depth profiling of the structural and electronic structure transformations of hydrogenated Mg-based thin films,” J. Appl. Phys. 105(4), 043514 (2009).
[CrossRef]

G. Haacke, “New figure of merit for transparent conductors,” J. Appl. Phys. 47(9), 4086–4089 (1976).
[CrossRef]

V. Consonni, G. Rey, H. Roussel, and D. Bellet, “Thickness effects on the texture development of fluorine-doped SnO2 thin films: The role of surface and strain energy,” J. Appl. Phys. 111(3), 033523 (2012).
[CrossRef]

A. Oprea, E. Moretton, N. Barsan, W. J. Becker, J. Wollenstein, and U. Weimar, “Conduction model of SnO2 thin films based on conductance and Hall effect measurements,” J. Appl. Phys. 100, 033716 (2006).
[CrossRef]

J. Mater. Sci. (1)

B. Zhang, Y. Tian, J. X. Zhang, and W. Cai, “Structural, optical, electrical properties and FTIR studies of fluorine doped SnO2 films deposited by spray pyrolysis,” J. Mater. Sci. 46(6), 1884–1889 (2011).
[CrossRef]

J. Mech. Phys. Solids (1)

J. G. Berryman, “Bounds and self-consistent estimates for elastic constants of random polycrystals with hexagonal, trigonal, and tetragonal symmetries,” J. Mech. Phys. Solids 53(10), 2141–2173 (2005).
[CrossRef]

J. Nanophotonics (1)

D. Scorticati, G. R. B. E. Römer, D. F. de Lange, and A. J. Huis in ’t Veld, “Ultra-short-pulsed laser-machined nanogratings of laser-induced periodic surface structures on thin molybdenum layers,” J. Nanophotonics 6(1), 063528 (2012).

J. Opt. Soc. Am. B (1)

J. Phys. Condens. Matter (1)

N. Laidani, R. Bartali, G. Gottardi, M. Andrele, and P. Cheyssac, “Optical absorption parameters of amorphous carbon films from Forouhi-Bloomer and Tauc-Lorentz models: a comparative study,” J. Phys. Condens. Matter 20(015216), 1–8 (2008).

J. Vac. Sci. Technol. A (1)

J. R. Vig, “UV/ozone cleaning of surfaces,” J. Vac. Sci. Technol. A 3(3), 1027–1034 (1985).
[CrossRef]

Mater. Lett. (1)

J. Chae, L. Jang, and K. Jain, “High-resolution, resistless patterning of indium-tinoxide thin films using excimer laser projection annealing process,” Mater. Lett. 64(8), 948–950 (2010).
[CrossRef]

Mater. Sci. Eng. B (1)

M. F. Chen, K. M. Lin, and Y. S. Ho, “Effects of laser-induced recovery process on conductive property of SnO2:F thin film,” Mater. Sci. Eng. B 176(2), 127–131 (2011).
[CrossRef]

MRS Bull. (1)

R. Gordon, “Criteria for choosing transparent conductors,” MRS Bull. 25(08), 52–57 (2000).
[CrossRef]

Phys. Rev. B (1)

W. M. Hlaing Oo, S. Tabatabaei, M. D. McCluskey, J. B. Varley, A. Janotti, and C. G. Van de Walle, “Hydrogen donors in SnO2 studied by infrared spectroscopy and first-principles calculations,” Phys. Rev. B 82(19), 193201 (2010).
[CrossRef]

Phys. Status Solidi (1)

G. Legeay, X. Castel, R. Benzerga, and J. Pinel, “Excimer laser beam/ITO interaction: from laser processing to surface reaction,” Phys. Status Solidi 5(10), 3248–3254 (2008).
[CrossRef]

Prog. Surf. Sci. (1)

M. Batzill and U. Diebold, “The surface and materials science of tin oxide,” Prog. Surf. Sci. 79(2-4), 47–154 (2005).
[CrossRef]

Thin Solid Films (4)

W. Chung, M. O. Thompson, P. Wickboldt, D. Toet, and P. G. Carey, “Room temperature indium tin oxide by XeCl excimer laser annealing for flexible display,” Thin Solid Films 460(1-2), 291–294 (2004).
[CrossRef]

J. J. Kim, J. Y. Bak, J. H. Lee, H. S. Kim, N. W. Jang, Y. Yun, and W. J. Lee, “Characteristics of laser-annealed ZnO thin film transistors,” Thin Solid Films 518(11), 3022–3025 (2010).
[CrossRef]

C. W. Cheng, C. Y. Lin, W. C. Shen, Y. J. Lee, and J. S. Chen, “Patterning crystalline indium tin oxide by high repetition rate femtosecond laser-induced crystallization,” Thin Solid Films 518(23), 7138–7142 (2010).
[CrossRef]

A. I. Martinez and D. R. Acosta, “Effect of the fluorine content on the structural and electrical properties of SnO2 and ZnO–SnO2 thin films prepared by spray pyrolysis,” Thin Solid Films 483(1-2), 107–113 (2005).
[CrossRef]

Other (4)

C. Jacoboni, Theory of Electron Transport in Semiconductors, Springer Series in Solid-State Science, Vol. 165 (Springer, 2010).

V. I. Kaydanov, T. J. Coutts, and D. L. Young, Studies of Band Structure and Free-Carrier Scattering in Transparent Conducting Oxides Based on Combined Measurements of Electron Transport Phenomena,” NREL/CP-520–29064 (2000).

B. E. Warren, X-Ray Diffraction (Addison Wesley, 1969).

D. Scorticati, G. R. B. E. Römer, T. Bor, W. Ogieglo, M. Klein Gunnewiek, A. Lenferink, C. Otto, J. Z. P. Skolski, F. Grob, D. F. de Lange, and A. J. Huis in t’ Veld, “Optical and electrical properties of SnO2 thin films after ultra-short pulsed laser annealing,” Proc. SPIE 8826, Laser Material Processing for Solar Energy Devices II, 88260I (2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

AFM measurements of the three samples. (a) as-deposited SnO2, (b) SnO2 treated at low laser fluence and (c) at high laser fluence.

Fig. 2
Fig. 2

SEM images of the three samples. (a) and (b) show as-deposited SnO2 surface at different magnifications. (c) and (d) show SnO2 treated at low laser fluence sample at different magnifications. (e) and (f) show SnO2 treated at high laser fluence sample at different magnifications.

Fig. 3
Fig. 3

Cross section of SEM images of (a) as-deposited SnO2, (b) SnO2 treated at high laser fluence causing surface melting and the LIPSSs depicted in Figs. 2(e) and (f).

Fig. 4
Fig. 4

(a) and (b): Bright field TEM images of as-deposited SnO2 at two different magnifications. (d) and (e): Bright field TEM images of the sample treated with high laser fluence at two different magnifications. Pictures (c) and (f) show the electron diffraction pattern recorded near the interfaces, respectively corresponding to the as-deposited and high fluence samples.

Fig. 5
Fig. 5

O/Sn ratio from XPS measurements for the as-deposited SnO2 and the sample treated at high fluence.

Fig. 6
Fig. 6

TOF-SIMS results showing the concentrations of different impurities as a function of depth.

Fig. 7
Fig. 7

Williamson Hall plot of the integral breadth versus the reciprocal lattice spacing for various SnO2 reflections. The intercepts of the extrapolation of the line through the integral breadths of the {110} and {220} determine the size contribution to the broadening for the different samples.

Fig. 8
Fig. 8

a) Doppler S-parameter and b) W-parameter as a function of the average positron implantation depth profiles for as-deposited (circles), low fluence laser treated (triangles) and high-fluence laser treated (crosses) SnO2:F films. Lines represent the fits obtained using VEPFIT.

Fig. 9
Fig. 9

Measured optical transmittance for the three samples, reproduced from [1].

Tables (1)

Tables Icon

Table 1 From left to right: (i) Measured electrical properties of the as deposited (AD), low fluence (LF) and high fluence (HF) samples, (ii) Integrated counts of F, H and C from SIMS measurements of signals relative to different impurities found in the three samples, (iii) optical average transmittance T and reflectance R in the wavelength range from 400 to 1100 nm from previous investigation [1] and (iv) figure of merit ϕ [1]. Carrier density ne and electron mobility μe were measured by Hall technique (considering less than 5% instrumental error on the values), while sheet resistance Rsh was measured also by 4 point probe technique [1]. Percentile quantities in parenthesis in the carrier density, electron mobility and figure of merit columns show the relative shifts from the as-deposited layer.

Metrics