Abstract

The cooperative electromagnetic interactions between discrete resonators have been widely used to modify the optical properties of metamaterials. Here we propose a general approach for engineering these interactions both in the dipolar approximation and for any higher-order description. Finally we apply this strategy to design broadband absorbers in the visible range from simple n-ary arrays of metallic nanoparticles.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–2013 (2010).
    [CrossRef] [PubMed]
  2. 10. P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljacic, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18, A314–A334 (2010).
    [CrossRef] [PubMed]
  3. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
    [CrossRef] [PubMed]
  4. A. N. Poddubny, P. A. Belov, and Y. S. Kivshar, “Spontaneous radiation of a finite-size dipole in hyperbolic media,” Phys. Rev. A 84, 023807 (2011).
    [CrossRef]
  5. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
    [CrossRef] [PubMed]
  6. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
    [CrossRef] [PubMed]
  7. S. D. Jenkins and J. Ruostekoski, “Metamaterial transparency induced by cooperative electromagnetic interactions,” Phys. Rev. Lett. 111, 147401 (2013).
    [CrossRef] [PubMed]
  8. V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett. 104, 223901 (2010).
    [CrossRef] [PubMed]
  9. P. Ben-Abdallah, R. Messina, S.-A. Biehs, M. Tschikin, K. Joulain, and C. Henkel, “Heat superdiffusion in plasmonic nanostructure networks,” Phys. Rev. Lett. 111, 174301 (2013).
    [CrossRef] [PubMed]
  10. R. Messina, M. Tschikin, S.-A. Biehs, and P. Ben-Abdallah, “Fluctuation-electrodynamic theory and dynamics of heat transfer in systems of multiple dipoles,” Phys. Rev. B 88, 104307 (2013).
    [CrossRef]
  11. E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705 (1973).
    [CrossRef]
  12. B. T. Draine and P. J. Flateau, “Discrete-dipole approximation for periodic targets: theory and tests,” J. Opt. Soc. Am. A. 25, 2693 (2008).
    [CrossRef]
  13. A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
    [CrossRef]
  14. M. S. Tomas, “Green function for multilayers: light scattering in planar cavities,” Phys. Rev. A 51, 2545 (1995).
    [CrossRef] [PubMed]
  15. P. P. Ewald, “Die berechnung optischer und elektrostatischer gitterpotentiale,” Annalen der Physik,  369, 253–287 (1921).
    [CrossRef]
  16. F. Capolino, D. Wilton, and W. Johnson, “Efficient computation of the 2-D Green’s function for 1-D periodic structures using the Ewald method,” IEEE Trans. on Antennas and Propaga. 53, 9 (2005).
    [CrossRef]
  17. E. Castanie, R. Vincent, R. Pierrat, and R. Carminati, “Absorption by an optical dipole antenna in a structured environment,” Int. J. Opt. 2012, 452047 (2012).
    [CrossRef]
  18. P. Ben-Abdallah, S.-A. Biehs, and K. Joulain, “Many-body radiative heat transfer theory,” Phys. Rev. Lett. 107, 114301 (2011).
    [CrossRef] [PubMed]
  19. J. D. Jackson, Classical Electrodynamics, 3rd ed. (John Wiley, 1999).
  20. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley Science, New York, 1998).
    [CrossRef]
  21. A. B. Evlyukhin, C. Reinhardt, U. Zywietz, and B. N. Chichkov, “Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions,” Phys. Rev. B 85, 245411, (2012).
    [CrossRef]
  22. L. Schwartz, Théorie des distributions, Hermann (1951).
  23. B. Stout, J.-C. Auger, and J. Lafait, “A transfer matrix approach to local field calculations in multiple scattering problems,” J. Mod. Opt. 49, 2129–2152 (2002).
    [CrossRef]
  24. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1998).
  25. E. E. Narimanov and A. V. Kildishev, “Optical black hole: broadband omnidirectional ligh absorber,” Appl. Phys. Lett. 95, 041106 (2009).
    [CrossRef]
  26. A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano. Lett. 10, 2574–2579 (2010).
    [CrossRef] [PubMed]
  27. N. P. Sergeant, O. Pincon, M. Agrawal, and P. Peumans, “Design of wide-angle solar selective absorbers using aperiodic metal-dielectric stacks,” Opt. Express 17, 22800–22812 (2009).
    [CrossRef]
  28. J. H. Holland, Adaptation in Natural and Artificial Systems (MIT Press/Bradford Books Edition, Cambridge, MA, 1992).
  29. T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett. 109, 127701 (2012).
    [CrossRef] [PubMed]
  30. J. Drevillon and P. Ben-Abdallah, “Ab initio design of coherent thermal sources,” J. Appl. Phys. 102, 114305 (2007).
    [CrossRef]
  31. L. Landau, E. Lifchitz, and L. Pitaevskii, Electromagnetics of Continuous Media(Pergamon, Oxford, 1984).

2013 (3)

S. D. Jenkins and J. Ruostekoski, “Metamaterial transparency induced by cooperative electromagnetic interactions,” Phys. Rev. Lett. 111, 147401 (2013).
[CrossRef] [PubMed]

P. Ben-Abdallah, R. Messina, S.-A. Biehs, M. Tschikin, K. Joulain, and C. Henkel, “Heat superdiffusion in plasmonic nanostructure networks,” Phys. Rev. Lett. 111, 174301 (2013).
[CrossRef] [PubMed]

R. Messina, M. Tschikin, S.-A. Biehs, and P. Ben-Abdallah, “Fluctuation-electrodynamic theory and dynamics of heat transfer in systems of multiple dipoles,” Phys. Rev. B 88, 104307 (2013).
[CrossRef]

2012 (3)

E. Castanie, R. Vincent, R. Pierrat, and R. Carminati, “Absorption by an optical dipole antenna in a structured environment,” Int. J. Opt. 2012, 452047 (2012).
[CrossRef]

A. B. Evlyukhin, C. Reinhardt, U. Zywietz, and B. N. Chichkov, “Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions,” Phys. Rev. B 85, 245411, (2012).
[CrossRef]

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett. 109, 127701 (2012).
[CrossRef] [PubMed]

2011 (3)

P. Ben-Abdallah, S.-A. Biehs, and K. Joulain, “Many-body radiative heat transfer theory,” Phys. Rev. Lett. 107, 114301 (2011).
[CrossRef] [PubMed]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[CrossRef] [PubMed]

A. N. Poddubny, P. A. Belov, and Y. S. Kivshar, “Spontaneous radiation of a finite-size dipole in hyperbolic media,” Phys. Rev. A 84, 023807 (2011).
[CrossRef]

2010 (5)

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett. 104, 223901 (2010).
[CrossRef] [PubMed]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[CrossRef]

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano. Lett. 10, 2574–2579 (2010).
[CrossRef] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–2013 (2010).
[CrossRef] [PubMed]

10. P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljacic, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18, A314–A334 (2010).
[CrossRef] [PubMed]

2009 (2)

N. P. Sergeant, O. Pincon, M. Agrawal, and P. Peumans, “Design of wide-angle solar selective absorbers using aperiodic metal-dielectric stacks,” Opt. Express 17, 22800–22812 (2009).
[CrossRef]

E. E. Narimanov and A. V. Kildishev, “Optical black hole: broadband omnidirectional ligh absorber,” Appl. Phys. Lett. 95, 041106 (2009).
[CrossRef]

2008 (2)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

B. T. Draine and P. J. Flateau, “Discrete-dipole approximation for periodic targets: theory and tests,” J. Opt. Soc. Am. A. 25, 2693 (2008).
[CrossRef]

2007 (1)

J. Drevillon and P. Ben-Abdallah, “Ab initio design of coherent thermal sources,” J. Appl. Phys. 102, 114305 (2007).
[CrossRef]

2005 (1)

F. Capolino, D. Wilton, and W. Johnson, “Efficient computation of the 2-D Green’s function for 1-D periodic structures using the Ewald method,” IEEE Trans. on Antennas and Propaga. 53, 9 (2005).
[CrossRef]

2002 (1)

B. Stout, J.-C. Auger, and J. Lafait, “A transfer matrix approach to local field calculations in multiple scattering problems,” J. Mod. Opt. 49, 2129–2152 (2002).
[CrossRef]

1995 (1)

M. S. Tomas, “Green function for multilayers: light scattering in planar cavities,” Phys. Rev. A 51, 2545 (1995).
[CrossRef] [PubMed]

1986 (1)

1973 (1)

E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705 (1973).
[CrossRef]

1921 (1)

P. P. Ewald, “Die berechnung optischer und elektrostatischer gitterpotentiale,” Annalen der Physik,  369, 253–287 (1921).
[CrossRef]

Agrawal, M.

Araghchini, M.

Ashkin, A.

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[CrossRef] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–2013 (2010).
[CrossRef] [PubMed]

Aubry, A.

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano. Lett. 10, 2574–2579 (2010).
[CrossRef] [PubMed]

Auger, J.-C.

B. Stout, J.-C. Auger, and J. Lafait, “A transfer matrix approach to local field calculations in multiple scattering problems,” J. Mod. Opt. 49, 2129–2152 (2002).
[CrossRef]

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[CrossRef] [PubMed]

Belov, P. A.

A. N. Poddubny, P. A. Belov, and Y. S. Kivshar, “Spontaneous radiation of a finite-size dipole in hyperbolic media,” Phys. Rev. A 84, 023807 (2011).
[CrossRef]

Ben-Abdallah, P.

R. Messina, M. Tschikin, S.-A. Biehs, and P. Ben-Abdallah, “Fluctuation-electrodynamic theory and dynamics of heat transfer in systems of multiple dipoles,” Phys. Rev. B 88, 104307 (2013).
[CrossRef]

P. Ben-Abdallah, R. Messina, S.-A. Biehs, M. Tschikin, K. Joulain, and C. Henkel, “Heat superdiffusion in plasmonic nanostructure networks,” Phys. Rev. Lett. 111, 174301 (2013).
[CrossRef] [PubMed]

P. Ben-Abdallah, S.-A. Biehs, and K. Joulain, “Many-body radiative heat transfer theory,” Phys. Rev. Lett. 107, 114301 (2011).
[CrossRef] [PubMed]

J. Drevillon and P. Ben-Abdallah, “Ab initio design of coherent thermal sources,” J. Appl. Phys. 102, 114305 (2007).
[CrossRef]

Bermel, P.

Biehs, S.-A.

R. Messina, M. Tschikin, S.-A. Biehs, and P. Ben-Abdallah, “Fluctuation-electrodynamic theory and dynamics of heat transfer in systems of multiple dipoles,” Phys. Rev. B 88, 104307 (2013).
[CrossRef]

P. Ben-Abdallah, R. Messina, S.-A. Biehs, M. Tschikin, K. Joulain, and C. Henkel, “Heat superdiffusion in plasmonic nanostructure networks,” Phys. Rev. Lett. 111, 174301 (2013).
[CrossRef] [PubMed]

P. Ben-Abdallah, S.-A. Biehs, and K. Joulain, “Many-body radiative heat transfer theory,” Phys. Rev. Lett. 107, 114301 (2011).
[CrossRef] [PubMed]

Bitzer, A.

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett. 104, 223901 (2010).
[CrossRef] [PubMed]

Bjorkholm, J. E.

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley Science, New York, 1998).
[CrossRef]

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[CrossRef] [PubMed]

Capolino, F.

F. Capolino, D. Wilton, and W. Johnson, “Efficient computation of the 2-D Green’s function for 1-D periodic structures using the Ewald method,” IEEE Trans. on Antennas and Propaga. 53, 9 (2005).
[CrossRef]

Carminati, R.

E. Castanie, R. Vincent, R. Pierrat, and R. Carminati, “Absorption by an optical dipole antenna in a structured environment,” Int. J. Opt. 2012, 452047 (2012).
[CrossRef]

Castanie, E.

E. Castanie, R. Vincent, R. Pierrat, and R. Carminati, “Absorption by an optical dipole antenna in a structured environment,” Int. J. Opt. 2012, 452047 (2012).
[CrossRef]

Celanovic, I.

Chan, W.

Chichkov, B. N.

A. B. Evlyukhin, C. Reinhardt, U. Zywietz, and B. N. Chichkov, “Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions,” Phys. Rev. B 85, 245411, (2012).
[CrossRef]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[CrossRef]

Chu, S.

Draine, B. T.

B. T. Draine and P. J. Flateau, “Discrete-dipole approximation for periodic targets: theory and tests,” J. Opt. Soc. Am. A. 25, 2693 (2008).
[CrossRef]

Drevillon, J.

J. Drevillon and P. Ben-Abdallah, “Ab initio design of coherent thermal sources,” J. Appl. Phys. 102, 114305 (2007).
[CrossRef]

Dziedzic, J. M.

Evlyukhin, A. B.

A. B. Evlyukhin, C. Reinhardt, U. Zywietz, and B. N. Chichkov, “Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions,” Phys. Rev. B 85, 245411, (2012).
[CrossRef]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[CrossRef]

Ewald, P. P.

P. P. Ewald, “Die berechnung optischer und elektrostatischer gitterpotentiale,” Annalen der Physik,  369, 253–287 (1921).
[CrossRef]

Fedotov, V. A.

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett. 104, 223901 (2010).
[CrossRef] [PubMed]

Feichtner, T.

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett. 109, 127701 (2012).
[CrossRef] [PubMed]

Fernández-Domínguez, A. I.

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano. Lett. 10, 2574–2579 (2010).
[CrossRef] [PubMed]

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[CrossRef] [PubMed]

Flateau, P. J.

B. T. Draine and P. J. Flateau, “Discrete-dipole approximation for periodic targets: theory and tests,” J. Opt. Soc. Am. A. 25, 2693 (2008).
[CrossRef]

Ghebrebrhan, M.

Hamam, R.

Hecht, B.

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett. 109, 127701 (2012).
[CrossRef] [PubMed]

Henkel, C.

P. Ben-Abdallah, R. Messina, S.-A. Biehs, M. Tschikin, K. Joulain, and C. Henkel, “Heat superdiffusion in plasmonic nanostructure networks,” Phys. Rev. Lett. 111, 174301 (2013).
[CrossRef] [PubMed]

Holland, J. H.

J. H. Holland, Adaptation in Natural and Artificial Systems (MIT Press/Bradford Books Edition, Cambridge, MA, 1992).

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley Science, New York, 1998).
[CrossRef]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics, 3rd ed. (John Wiley, 1999).

Jenkins, S. D.

S. D. Jenkins and J. Ruostekoski, “Metamaterial transparency induced by cooperative electromagnetic interactions,” Phys. Rev. Lett. 111, 147401 (2013).
[CrossRef] [PubMed]

Jensen, K. F.

Joannopoulos, J. D.

Johnson, S. G.

Johnson, W.

F. Capolino, D. Wilton, and W. Johnson, “Efficient computation of the 2-D Green’s function for 1-D periodic structures using the Ewald method,” IEEE Trans. on Antennas and Propaga. 53, 9 (2005).
[CrossRef]

Joulain, K.

P. Ben-Abdallah, R. Messina, S.-A. Biehs, M. Tschikin, K. Joulain, and C. Henkel, “Heat superdiffusion in plasmonic nanostructure networks,” Phys. Rev. Lett. 111, 174301 (2013).
[CrossRef] [PubMed]

P. Ben-Abdallah, S.-A. Biehs, and K. Joulain, “Many-body radiative heat transfer theory,” Phys. Rev. Lett. 107, 114301 (2011).
[CrossRef] [PubMed]

Kildishev, A. V.

E. E. Narimanov and A. V. Kildishev, “Optical black hole: broadband omnidirectional ligh absorber,” Appl. Phys. Lett. 95, 041106 (2009).
[CrossRef]

Kiunke, M.

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett. 109, 127701 (2012).
[CrossRef] [PubMed]

Kivshar, Y. S.

A. N. Poddubny, P. A. Belov, and Y. S. Kivshar, “Spontaneous radiation of a finite-size dipole in hyperbolic media,” Phys. Rev. A 84, 023807 (2011).
[CrossRef]

Kuo, P.

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett. 104, 223901 (2010).
[CrossRef] [PubMed]

Lafait, J.

B. Stout, J.-C. Auger, and J. Lafait, “A transfer matrix approach to local field calculations in multiple scattering problems,” J. Mod. Opt. 49, 2129–2152 (2002).
[CrossRef]

Landau, L.

L. Landau, E. Lifchitz, and L. Pitaevskii, Electromagnetics of Continuous Media(Pergamon, Oxford, 1984).

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

Lei, D. Y.

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano. Lett. 10, 2574–2579 (2010).
[CrossRef] [PubMed]

Lifchitz, E.

L. Landau, E. Lifchitz, and L. Pitaevskii, Electromagnetics of Continuous Media(Pergamon, Oxford, 1984).

Luk’yanchuk, B. S.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[CrossRef]

Maier, S. A.

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano. Lett. 10, 2574–2579 (2010).
[CrossRef] [PubMed]

Marton, C. H.

Messina, R.

R. Messina, M. Tschikin, S.-A. Biehs, and P. Ben-Abdallah, “Fluctuation-electrodynamic theory and dynamics of heat transfer in systems of multiple dipoles,” Phys. Rev. B 88, 104307 (2013).
[CrossRef]

P. Ben-Abdallah, R. Messina, S.-A. Biehs, M. Tschikin, K. Joulain, and C. Henkel, “Heat superdiffusion in plasmonic nanostructure networks,” Phys. Rev. Lett. 111, 174301 (2013).
[CrossRef] [PubMed]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

Narimanov, E. E.

E. E. Narimanov and A. V. Kildishev, “Optical black hole: broadband omnidirectional ligh absorber,” Appl. Phys. Lett. 95, 041106 (2009).
[CrossRef]

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1998).

Papasimakis, N.

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett. 104, 223901 (2010).
[CrossRef] [PubMed]

Pendry, J. B.

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano. Lett. 10, 2574–2579 (2010).
[CrossRef] [PubMed]

Pennypacker, C. R.

E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705 (1973).
[CrossRef]

Peumans, P.

Pierrat, R.

E. Castanie, R. Vincent, R. Pierrat, and R. Carminati, “Absorption by an optical dipole antenna in a structured environment,” Int. J. Opt. 2012, 452047 (2012).
[CrossRef]

Pincon, O.

Pitaevskii, L.

L. Landau, E. Lifchitz, and L. Pitaevskii, Electromagnetics of Continuous Media(Pergamon, Oxford, 1984).

Plum, E.

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett. 104, 223901 (2010).
[CrossRef] [PubMed]

Poddubny, A. N.

A. N. Poddubny, P. A. Belov, and Y. S. Kivshar, “Spontaneous radiation of a finite-size dipole in hyperbolic media,” Phys. Rev. A 84, 023807 (2011).
[CrossRef]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–2013 (2010).
[CrossRef] [PubMed]

Purcell, E. M.

E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705 (1973).
[CrossRef]

Reinhardt, C.

A. B. Evlyukhin, C. Reinhardt, U. Zywietz, and B. N. Chichkov, “Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions,” Phys. Rev. B 85, 245411, (2012).
[CrossRef]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[CrossRef]

Ruostekoski, J.

S. D. Jenkins and J. Ruostekoski, “Metamaterial transparency induced by cooperative electromagnetic interactions,” Phys. Rev. Lett. 111, 147401 (2013).
[CrossRef] [PubMed]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

Schwartz, L.

L. Schwartz, Théorie des distributions, Hermann (1951).

Seidel, A.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[CrossRef]

Selig, O.

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett. 109, 127701 (2012).
[CrossRef] [PubMed]

Sergeant, N. P.

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

Soljacic, M.

Sonnefraud, Y.

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano. Lett. 10, 2574–2579 (2010).
[CrossRef] [PubMed]

Stout, B.

B. Stout, J.-C. Auger, and J. Lafait, “A transfer matrix approach to local field calculations in multiple scattering problems,” J. Mod. Opt. 49, 2129–2152 (2002).
[CrossRef]

Tomas, M. S.

M. S. Tomas, “Green function for multilayers: light scattering in planar cavities,” Phys. Rev. A 51, 2545 (1995).
[CrossRef] [PubMed]

Tsai, D. P.

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett. 104, 223901 (2010).
[CrossRef] [PubMed]

Tschikin, M.

P. Ben-Abdallah, R. Messina, S.-A. Biehs, M. Tschikin, K. Joulain, and C. Henkel, “Heat superdiffusion in plasmonic nanostructure networks,” Phys. Rev. Lett. 111, 174301 (2013).
[CrossRef] [PubMed]

R. Messina, M. Tschikin, S.-A. Biehs, and P. Ben-Abdallah, “Fluctuation-electrodynamic theory and dynamics of heat transfer in systems of multiple dipoles,” Phys. Rev. B 88, 104307 (2013).
[CrossRef]

Vincent, R.

E. Castanie, R. Vincent, R. Pierrat, and R. Carminati, “Absorption by an optical dipole antenna in a structured environment,” Int. J. Opt. 2012, 452047 (2012).
[CrossRef]

Walther, M.

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett. 104, 223901 (2010).
[CrossRef] [PubMed]

Wilton, D.

F. Capolino, D. Wilton, and W. Johnson, “Efficient computation of the 2-D Green’s function for 1-D periodic structures using the Ewald method,” IEEE Trans. on Antennas and Propaga. 53, 9 (2005).
[CrossRef]

Yeng, Y. X.

Zheludev, N. I.

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett. 104, 223901 (2010).
[CrossRef] [PubMed]

Zywietz, U.

A. B. Evlyukhin, C. Reinhardt, U. Zywietz, and B. N. Chichkov, “Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions,” Phys. Rev. B 85, 245411, (2012).
[CrossRef]

Annalen der Physik (1)

P. P. Ewald, “Die berechnung optischer und elektrostatischer gitterpotentiale,” Annalen der Physik,  369, 253–287 (1921).
[CrossRef]

Appl. Phys. Lett. (1)

E. E. Narimanov and A. V. Kildishev, “Optical black hole: broadband omnidirectional ligh absorber,” Appl. Phys. Lett. 95, 041106 (2009).
[CrossRef]

Astrophys. J. (1)

E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705 (1973).
[CrossRef]

IEEE Trans. on Antennas and Propaga. (1)

F. Capolino, D. Wilton, and W. Johnson, “Efficient computation of the 2-D Green’s function for 1-D periodic structures using the Ewald method,” IEEE Trans. on Antennas and Propaga. 53, 9 (2005).
[CrossRef]

Int. J. Opt. (1)

E. Castanie, R. Vincent, R. Pierrat, and R. Carminati, “Absorption by an optical dipole antenna in a structured environment,” Int. J. Opt. 2012, 452047 (2012).
[CrossRef]

J. Appl. Phys. (1)

J. Drevillon and P. Ben-Abdallah, “Ab initio design of coherent thermal sources,” J. Appl. Phys. 102, 114305 (2007).
[CrossRef]

J. Mod. Opt. (1)

B. Stout, J.-C. Auger, and J. Lafait, “A transfer matrix approach to local field calculations in multiple scattering problems,” J. Mod. Opt. 49, 2129–2152 (2002).
[CrossRef]

J. Opt. Soc. Am. A. (1)

B. T. Draine and P. J. Flateau, “Discrete-dipole approximation for periodic targets: theory and tests,” J. Opt. Soc. Am. A. 25, 2693 (2008).
[CrossRef]

Nano. Lett. (1)

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano. Lett. 10, 2574–2579 (2010).
[CrossRef] [PubMed]

Nat. Commun. (1)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[CrossRef] [PubMed]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–2013 (2010).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. A (2)

A. N. Poddubny, P. A. Belov, and Y. S. Kivshar, “Spontaneous radiation of a finite-size dipole in hyperbolic media,” Phys. Rev. A 84, 023807 (2011).
[CrossRef]

M. S. Tomas, “Green function for multilayers: light scattering in planar cavities,” Phys. Rev. A 51, 2545 (1995).
[CrossRef] [PubMed]

Phys. Rev. B (3)

R. Messina, M. Tschikin, S.-A. Biehs, and P. Ben-Abdallah, “Fluctuation-electrodynamic theory and dynamics of heat transfer in systems of multiple dipoles,” Phys. Rev. B 88, 104307 (2013).
[CrossRef]

A. B. Evlyukhin, C. Reinhardt, U. Zywietz, and B. N. Chichkov, “Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions,” Phys. Rev. B 85, 245411, (2012).
[CrossRef]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[CrossRef]

Phys. Rev. Lett. (6)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

S. D. Jenkins and J. Ruostekoski, “Metamaterial transparency induced by cooperative electromagnetic interactions,” Phys. Rev. Lett. 111, 147401 (2013).
[CrossRef] [PubMed]

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett. 104, 223901 (2010).
[CrossRef] [PubMed]

P. Ben-Abdallah, R. Messina, S.-A. Biehs, M. Tschikin, K. Joulain, and C. Henkel, “Heat superdiffusion in plasmonic nanostructure networks,” Phys. Rev. Lett. 111, 174301 (2013).
[CrossRef] [PubMed]

P. Ben-Abdallah, S.-A. Biehs, and K. Joulain, “Many-body radiative heat transfer theory,” Phys. Rev. Lett. 107, 114301 (2011).
[CrossRef] [PubMed]

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett. 109, 127701 (2012).
[CrossRef] [PubMed]

Other (6)

L. Landau, E. Lifchitz, and L. Pitaevskii, Electromagnetics of Continuous Media(Pergamon, Oxford, 1984).

J. H. Holland, Adaptation in Natural and Artificial Systems (MIT Press/Bradford Books Edition, Cambridge, MA, 1992).

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1998).

J. D. Jackson, Classical Electrodynamics, 3rd ed. (John Wiley, 1999).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley Science, New York, 1998).
[CrossRef]

L. Schwartz, Théorie des distributions, Hermann (1951).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Multiple light scattering interactions in a set of subwavelength plasmonic structures embeded in a transparent host material of refractive index nh. In the dipolar approximation each object is replaced by both a dipolar electric moment and a magnetic moment. The external field felt by each object decomposes into (1) the incident field, (2) the field radiated by the other objects and (3) the auto-induced field which comes from the interface after being emitted by the object itself. All dipoles radiate (4) in their surrounding.

Fig. 2
Fig. 2

On the first column, absorption of simple and binary hexagonal lattices made with Ag and Au nanoparticles 30 nm radius immersed at h = 100nm from the surface in a transparent host medium of index nh = 1.5 with respect to the density in particles. On the second column, this absoption is compared with the absorption of single particles without multiple scattering interaction and, on the last column, with the results given by the effective medium theory with the same filling factor.

Fig. 3
Fig. 3

Evolutionary algorithm to optimize a n-ary lattice. (a) A random population of periodic lattices (a physical view of an unit cell is plotted on the left) is randomly generated. (b) The best individus basd on the fitness function are selected as parents for the crossing over. (c) The next generation is created by linear crossing and completed by new individus (d) to keep the total population constant. (e) Mutations are aaplied on a few number of individus (typically 5%) in the current generation.

Fig. 4
Fig. 4

Light absorption spectrum at normal incidence of a binary Au-Ag lattice (red dashed curve) optimized by GA by taking into account all multipolar interactions until the second order (quadrupoles) and of a multilayer based on Au-Ag films of thickness defined with the filling factor in nanoparticles (i.e. effective medium theory). Circles curve shows the result obtained by solving the Maxwell’s equations with a finite element method.

Fig. 5
Fig. 5

Local losses at λ = 550nm in the particles of a gold nanoparticle lattice (a) with the same geometric parameters as in the optimized structure. Losses (ε)|ESG|2 in the single particle lattice are normalized by the maximum loss. In (b) we show the normalized difference (ε)|EDG|2(ε)|ESG|2 of losses inside Au particles in presence and without Ag particles (white regions). Analogously, in (c) and (d) the cooperative effect induces by the presence of Au particles on the dissipation in the Ag particles is shown at λ = 650nm.

Fig. 6
Fig. 6

Impact of disorder on the light absorption spectrum at normal incidence in a binary Au-Ag lattice.The spatial location of particles is randomly perturbated by a displacement of 20nm. The red ciurve corresponds to the spectrum (in polarization TM at nomrla incidence) of the optimized structure and the dotted blue curve is the spectrum of a particular random realization (results in polarization TE, not plotted here are similar). The dashed area shows the maximum and minimm values of absorption spectrum of different random realizations. The histogram shows the discrepancy with the optimal fintess for different realizations of the structure. The red line on the histogram shows the mean error with respect to the number of realizations.The disorder is mimicked by using pseudoperiodic particle array with sufficiently large unit cells.

Equations (31)

Equations on this page are rendered with MathJax. Learn more.

A m ext = A m inc i ω B = E , H Γ A B ( Δ 𝔾 m m A B p m ; B + n m 𝔾 m n A B p n ; B ) ,
A ext ( r ) = A inc ( r ) i ω B = E , H Γ A B j 𝔾 A B ( r r j ) p j ; B .
p m ; A = χ A α m ; A A n ext
p m ; A = χ A α m ; A [ A m inc i ω n B = E , H 𝔾 reg A B ( r m , r n ) p n ; B ] .
𝔾 reg A B ( r , r ) = { Γ A B 𝔾 A B ( r , r ) i f r r Γ A B Δ 𝔾 A B ( r , r ) i f r = r .
( p ˜ E p ˜ E ) = 𝒜 1 ( E ˜ H ˜ ) .
= diag ( ε 0 α 1 ; E , ... , ε 0 α n ; E , μ 0 α 1 ; H , ... , μ 0 α n ; H )
𝒜 = ( ( 1 + 𝕌 11 E E ) 𝕌 12 E E 𝕌 1 n E E 𝕌 11 E H 𝕌 1 n E H 𝕌 21 E E ( 1 + 𝕌 n n E E ) 𝕌 n 1 , n E E 𝕌 n 1 E H 𝕌 n n E H 𝕌 n 1 E E 𝕌 n , n 1 E E ( 1 + 𝕍 11 H H ) 𝕍 12 H H 𝕍 1 n H H 𝕍 11 H E 𝕍 1 n H E 𝕍 21 H H 𝕍 n 1 , n H H 𝕍 n 1 H E 𝕍 n n H E 𝕍 n 1 H H 𝕍 n , n 1 H H ( 1 + 𝕍 n n H H ) )
𝕌 l k E A = i ε 0 ε α l ; E j 𝔾 reg E A ( r 0 l , r j k ) e i k / / · ( r j k r 0 l ) ,
𝕍 i k H A = i μ 0 ω α l ; H j 𝔾 reg H A ( r 0 l , r j k ) e i k / / . ( r j k r 0 l ) .
Λ 𝒜 1 = ( Λ E E Λ E H Λ H E Λ H H )
𝒫 m ( ω ) = 1 2 A = E , H V m Re [ j m ; A * ( r , ω ) A ( r , ω ) ] d r .
𝒫 m ( ω ) = ω 2 A = E , H { Im [ p m ; A * ( ω ) A m ext ( ω ) ] ω 3 μ 0 2 p m ; A * Im [ 𝔾 0 A A ( r m , r m ) ] p m ; A } .
α E 1 = k 0 3 n h 6 π ( C E i ) ,
α H 1 = k 0 3 n h 3 6 π ( C H i ) ,
C E = ρ m 2 ρ h 2 ρ m 2 ρ h 2 ( Cos ρ h + ρ h Sin ρ h ) ( Sin ρ m ρ m Cos ρ m ) + ρ m Cos ρ h Cos ρ m + ρ h Sin ρ h Sin ρ m ρ h 2 ρ m 2 ρ m 2 ρ h 2 ( Sin ρ h ρ h Cos ρ h ) ( Sin ρ m ρ m Cos ρ m ) ρ m Sin ρ h Cos ρ m + ρ h Cos ρ h Sin ρ m ,
C H = ρ h 2 Cos ρ h ( Sin ρ m ρ m Cos ρ m ) + ρ m 2 Sin ρ m ( Cos ρ h + ρ h Sin ρ h ) ρ h 2 Sin ρ h ( Sin ρ m ρ m Cos ρ m ) ρ m 2 Sin ρ m ( Sin ρ h ρ h Cos ρ h )
𝒫 m ( ω ) = ω 2 { ε 0 n h ω 3 6 π c 3 Im [ E m ext * ( C E α E , m * α E , m ) E m ext ] + μ 0 n h 3 ω 3 6 π c 3 Im [ H m ext * ( C H α H , m * α H , m ) H m ext ] }
ψ p q ± = ( E p q ± H p q ± )
{ × E p q + = i ω μ H p q + + H p q S × H p q + = i ω ε E p q + + E p q S .
{ E p q S = 0 H p q S = i n h 1 / 2 r . D n m .
{ E p q S = i n h 1 / 2 r . D n m H p q S = 0 .
D n m = i ( 2 k 0 n h ) n n ! 8 π ( 1 ) m ( 2 n + 1 ) ( n m ) ! n ( n + 1 ) ( n + m ) ! × { z ( x + i y ) ( x + i y ) z } ( n + m ) ( x + i y ) ( n ) δ .
A inc ( r ) = p q A inc p q ψ p q + ( r ) + ψ p q ( r ) 2 .
A diff ( r ) = p q A diff p q ψ p q + ( r ) .
{ < ψ p q ± , ψ p q ± > = 4 i δ p q , p q < ψ p q ± ψ p q > 0 .
< ψ p q 1 , ψ p q 2 > = ( E 1 × H 2 E 2 × H 1 ) . n d S .
< ψ p q + , A inc > = ψ p q S ( r ) . A inc ( r ) d r I ψ p q S [ A inc ] .
A inc p q = i 2 I ψ p q S [ A inc ] .
A diff p q = i 2 p q T p q , p q I ψ p q S [ A inc ] ,
A ( λ ) = m Cell 𝒫 m ( λ ) 𝒮 ϕ inc ( λ ) .

Metrics