Abstract

During the past few years there has been a significant interest in spectrum splitting systems to increase the overall efficiency of photovoltaic solar energy systems. However, methods for comparing the performance of spectrum splitting systems and the effects of optical spectral filter design on system performance are not well developed. This paper addresses these two areas. The system conversion efficiency is examined in detail and the role of optical spectral filters with respect to the efficiency is developed. A new metric termed the Improvement over Best Bandgap is defined which expresses the efficiency gain of the spectrum splitting system with respect to a similar system that contains the highest constituent single bandgap photovoltaic cell. This parameter indicates the benefit of using the more complex spectrum splitting system with respect to a single bandgap photovoltaic system. Metrics are also provided to assess the performance of experimental spectral filters in different spectrum splitting configurations. The paper concludes by using the methodology to evaluate spectrum splitting systems with different filter configurations and indicates the overall efficiency improvement that is possible with ideal and experimental designs.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510 (1961).
    [CrossRef]
  2. A. Luque and S. Hegedus, Handbook of Photovoltaic Science, 1st ed. (John Wiley & Sons Ltd., 2003), Chap. 3, 9.
  3. A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
    [CrossRef]
  4. A. G. Imenes and D. R. Mills, “Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: a review,” Sol. Energy Mater. Sol. Cells 84(1-4), 19–69 (2004).
    [CrossRef]
  5. A. Mojiri, R. Taylor, E. Thomsen, and G. Rosengarten, “Spectral beam splitting for efficient conversion of solar energy—A review,” Renew. Sustain. Energy Rev. 28, 654–663 (2013).
    [CrossRef]
  6. M. Yamaguchi, K.-I. Nishimura, T. Sasaki, H. Suzuki, K. Arafune, N. Kojima, Y. Ohsita, Y. Okada, A. Yamamoto, T. Takamoto, and K. Araki, “Novel materials for high-efficiency III–V multi-junction solar cells,” Sol. Energy 82(2), 173–180 (2008).
    [CrossRef]
  7. M. Hamdy, F. Luttmann, and D. Osborn, “Model of a spectrally selective decoupled photovoltaic/thermal concentrating system,” Appl. Energy 30(3), 209–225 (1988).
    [CrossRef]
  8. D. R. Myers and C. Gueymard, “Description and availability of the SMARTS spectral model for photovoltaic applications,” Proc. SPIE 5520, 56–67 (2004).
    [CrossRef]
  9. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 39),” Prog. Photovolt. Res. Appl. 20(1), 12–20 (2012).
    [CrossRef]
  10. A. L. Gray, M. Stan, T. Varghese, A. Korostyshevsky, J. Doman, A. Sandoval, J. Hills, C. Griego, M. Turner, P. Sharps, A. Haas, J. Wilcox, J. Gray, and R. Schwartz, “Multi-terminal dual junction InGaP2/GaAs solar cells for hybrid system,” in Proceedings of IEEE Photovolatic Specialists Conference (Institute of Electrical and Electronics Engineers, San Diego, California, 2008), pp. 1–4.
  11. J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73(14), 1991 (1998).
    [CrossRef]
  12. A. Barnett and X. Wang, “High Efficiency, Spectrum Splitting Solar Cell Assemblies: Design, Measurement and Analysis,” in Imaging and Applied Optics Congress, OSA Technical Digest (CD) (Optical Society of America, 2010), paper SWB1.
    [CrossRef]
  13. J. M. Russo, D. Zhang, M. Gordon, S. D. Vorndran, Y. Wu, and R. K. Kostuk, “Grating-over-lens concentrating photovoltaic spectrum splitting systems with volume holographic optical elements,” Proc. SPIE 8821, 882106 (2013).
    [CrossRef]
  14. L. M. Fraas, J. E. Avery, J. Martin, V. S. Sundaram, G. Girard, V. T. Dinh, T. M. Davenport, J. W. Yerkes, and M. J. O’Neil, “Over 35-percent efficient GaAs/GaSb tandem solar cells,” IEEE Trans. Electron. Dev. 37(2), 443–449 (1990).
    [CrossRef]
  15. T. O. M. Tiedje, E. L. I. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron. Dev. 31(5), 711–716 (1984).
    [CrossRef]
  16. N. Rahimi, A. A. Aragon, O. S. Romero, D. M. Kim, N. B. J. Traynor, T. J. Rotter, G. Balakrishnan, S. D. Mukherjee, and L. F. Lester, “Ohmic contacts to n-type GaSb grown on GaAs by the interfacial misfit dislocation technique,” Proc. SPIE 8620, 86201K (2013).
    [CrossRef]
  17. D. Zhang, M. Gordon, J. M. Russo, S. Vorndran, M. Escarra, H. Atwater, and R. K. Kostuk, “Reflection hologram solar spectrum-splitting filters,” Proc. SPIE 8468, 846807 (2012).
    [CrossRef]

2013 (3)

A. Mojiri, R. Taylor, E. Thomsen, and G. Rosengarten, “Spectral beam splitting for efficient conversion of solar energy—A review,” Renew. Sustain. Energy Rev. 28, 654–663 (2013).
[CrossRef]

J. M. Russo, D. Zhang, M. Gordon, S. D. Vorndran, Y. Wu, and R. K. Kostuk, “Grating-over-lens concentrating photovoltaic spectrum splitting systems with volume holographic optical elements,” Proc. SPIE 8821, 882106 (2013).
[CrossRef]

N. Rahimi, A. A. Aragon, O. S. Romero, D. M. Kim, N. B. J. Traynor, T. J. Rotter, G. Balakrishnan, S. D. Mukherjee, and L. F. Lester, “Ohmic contacts to n-type GaSb grown on GaAs by the interfacial misfit dislocation technique,” Proc. SPIE 8620, 86201K (2013).
[CrossRef]

2012 (2)

D. Zhang, M. Gordon, J. M. Russo, S. Vorndran, M. Escarra, H. Atwater, and R. K. Kostuk, “Reflection hologram solar spectrum-splitting filters,” Proc. SPIE 8468, 846807 (2012).
[CrossRef]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 39),” Prog. Photovolt. Res. Appl. 20(1), 12–20 (2012).
[CrossRef]

2009 (1)

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

2008 (1)

M. Yamaguchi, K.-I. Nishimura, T. Sasaki, H. Suzuki, K. Arafune, N. Kojima, Y. Ohsita, Y. Okada, A. Yamamoto, T. Takamoto, and K. Araki, “Novel materials for high-efficiency III–V multi-junction solar cells,” Sol. Energy 82(2), 173–180 (2008).
[CrossRef]

2004 (2)

A. G. Imenes and D. R. Mills, “Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: a review,” Sol. Energy Mater. Sol. Cells 84(1-4), 19–69 (2004).
[CrossRef]

D. R. Myers and C. Gueymard, “Description and availability of the SMARTS spectral model for photovoltaic applications,” Proc. SPIE 5520, 56–67 (2004).
[CrossRef]

1998 (1)

J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73(14), 1991 (1998).
[CrossRef]

1990 (1)

L. M. Fraas, J. E. Avery, J. Martin, V. S. Sundaram, G. Girard, V. T. Dinh, T. M. Davenport, J. W. Yerkes, and M. J. O’Neil, “Over 35-percent efficient GaAs/GaSb tandem solar cells,” IEEE Trans. Electron. Dev. 37(2), 443–449 (1990).
[CrossRef]

1988 (1)

M. Hamdy, F. Luttmann, and D. Osborn, “Model of a spectrally selective decoupled photovoltaic/thermal concentrating system,” Appl. Energy 30(3), 209–225 (1988).
[CrossRef]

1984 (1)

T. O. M. Tiedje, E. L. I. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron. Dev. 31(5), 711–716 (1984).
[CrossRef]

1961 (1)

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510 (1961).
[CrossRef]

Aiken, D.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

Arafune, K.

M. Yamaguchi, K.-I. Nishimura, T. Sasaki, H. Suzuki, K. Arafune, N. Kojima, Y. Ohsita, Y. Okada, A. Yamamoto, T. Takamoto, and K. Araki, “Novel materials for high-efficiency III–V multi-junction solar cells,” Sol. Energy 82(2), 173–180 (2008).
[CrossRef]

Aragon, A. A.

N. Rahimi, A. A. Aragon, O. S. Romero, D. M. Kim, N. B. J. Traynor, T. J. Rotter, G. Balakrishnan, S. D. Mukherjee, and L. F. Lester, “Ohmic contacts to n-type GaSb grown on GaAs by the interfacial misfit dislocation technique,” Proc. SPIE 8620, 86201K (2013).
[CrossRef]

Araki, K.

M. Yamaguchi, K.-I. Nishimura, T. Sasaki, H. Suzuki, K. Arafune, N. Kojima, Y. Ohsita, Y. Okada, A. Yamamoto, T. Takamoto, and K. Araki, “Novel materials for high-efficiency III–V multi-junction solar cells,” Sol. Energy 82(2), 173–180 (2008).
[CrossRef]

Atwater, H.

D. Zhang, M. Gordon, J. M. Russo, S. Vorndran, M. Escarra, H. Atwater, and R. K. Kostuk, “Reflection hologram solar spectrum-splitting filters,” Proc. SPIE 8468, 846807 (2012).
[CrossRef]

Avery, J. E.

L. M. Fraas, J. E. Avery, J. Martin, V. S. Sundaram, G. Girard, V. T. Dinh, T. M. Davenport, J. W. Yerkes, and M. J. O’Neil, “Over 35-percent efficient GaAs/GaSb tandem solar cells,” IEEE Trans. Electron. Dev. 37(2), 443–449 (1990).
[CrossRef]

Balakrishnan, G.

N. Rahimi, A. A. Aragon, O. S. Romero, D. M. Kim, N. B. J. Traynor, T. J. Rotter, G. Balakrishnan, S. D. Mukherjee, and L. F. Lester, “Ohmic contacts to n-type GaSb grown on GaAs by the interfacial misfit dislocation technique,” Proc. SPIE 8620, 86201K (2013).
[CrossRef]

Barnett, A.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

Bortz, J.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

Bowden, S.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

Brooks, B. G.

T. O. M. Tiedje, E. L. I. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron. Dev. 31(5), 711–716 (1984).
[CrossRef]

Buelow, R.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

Carlson, D.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

Christensen, E.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

Cody, G. D.

T. O. M. Tiedje, E. L. I. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron. Dev. 31(5), 711–716 (1984).
[CrossRef]

Davenport, T.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

Davenport, T. M.

L. M. Fraas, J. E. Avery, J. Martin, V. S. Sundaram, G. Girard, V. T. Dinh, T. M. Davenport, J. W. Yerkes, and M. J. O’Neil, “Over 35-percent efficient GaAs/GaSb tandem solar cells,” IEEE Trans. Electron. Dev. 37(2), 443–449 (1990).
[CrossRef]

Dinh, V. T.

L. M. Fraas, J. E. Avery, J. Martin, V. S. Sundaram, G. Girard, V. T. Dinh, T. M. Davenport, J. W. Yerkes, and M. J. O’Neil, “Over 35-percent efficient GaAs/GaSb tandem solar cells,” IEEE Trans. Electron. Dev. 37(2), 443–449 (1990).
[CrossRef]

Doolittle, A.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

Dunlop, E. D.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 39),” Prog. Photovolt. Res. Appl. 20(1), 12–20 (2012).
[CrossRef]

Emery, K.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 39),” Prog. Photovolt. Res. Appl. 20(1), 12–20 (2012).
[CrossRef]

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

Escarra, M.

D. Zhang, M. Gordon, J. M. Russo, S. Vorndran, M. Escarra, H. Atwater, and R. K. Kostuk, “Reflection hologram solar spectrum-splitting filters,” Proc. SPIE 8468, 846807 (2012).
[CrossRef]

Ferguson, I.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

Ferrazza, F.

J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73(14), 1991 (1998).
[CrossRef]

Fraas, L. M.

L. M. Fraas, J. E. Avery, J. Martin, V. S. Sundaram, G. Girard, V. T. Dinh, T. M. Davenport, J. W. Yerkes, and M. J. O’Neil, “Over 35-percent efficient GaAs/GaSb tandem solar cells,” IEEE Trans. Electron. Dev. 37(2), 443–449 (1990).
[CrossRef]

Girard, G.

L. M. Fraas, J. E. Avery, J. Martin, V. S. Sundaram, G. Girard, V. T. Dinh, T. M. Davenport, J. W. Yerkes, and M. J. O’Neil, “Over 35-percent efficient GaAs/GaSb tandem solar cells,” IEEE Trans. Electron. Dev. 37(2), 443–449 (1990).
[CrossRef]

Goossen, K.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

Gordon, M.

J. M. Russo, D. Zhang, M. Gordon, S. D. Vorndran, Y. Wu, and R. K. Kostuk, “Grating-over-lens concentrating photovoltaic spectrum splitting systems with volume holographic optical elements,” Proc. SPIE 8821, 882106 (2013).
[CrossRef]

D. Zhang, M. Gordon, J. M. Russo, S. Vorndran, M. Escarra, H. Atwater, and R. K. Kostuk, “Reflection hologram solar spectrum-splitting filters,” Proc. SPIE 8468, 846807 (2012).
[CrossRef]

Gray, A.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

Gray, J.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

Green, M. A.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 39),” Prog. Photovolt. Res. Appl. 20(1), 12–20 (2012).
[CrossRef]

J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73(14), 1991 (1998).
[CrossRef]

Gueymard, C.

D. R. Myers and C. Gueymard, “Description and availability of the SMARTS spectral model for photovoltaic applications,” Proc. SPIE 5520, 56–67 (2004).
[CrossRef]

Hamdy, M.

M. Hamdy, F. Luttmann, and D. Osborn, “Model of a spectrally selective decoupled photovoltaic/thermal concentrating system,” Appl. Energy 30(3), 209–225 (1988).
[CrossRef]

Hishikawa, Y.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 39),” Prog. Photovolt. Res. Appl. 20(1), 12–20 (2012).
[CrossRef]

Honsberg, C.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

Imenes, A. G.

A. G. Imenes and D. R. Mills, “Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: a review,” Sol. Energy Mater. Sol. Cells 84(1-4), 19–69 (2004).
[CrossRef]

Jani, O.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

Kazmerski, L.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

Kiamilev, F.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

Kim, D. M.

N. Rahimi, A. A. Aragon, O. S. Romero, D. M. Kim, N. B. J. Traynor, T. J. Rotter, G. Balakrishnan, S. D. Mukherjee, and L. F. Lester, “Ohmic contacts to n-type GaSb grown on GaAs by the interfacial misfit dislocation technique,” Proc. SPIE 8620, 86201K (2013).
[CrossRef]

Kirkpatrick, D.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

Kojima, N.

M. Yamaguchi, K.-I. Nishimura, T. Sasaki, H. Suzuki, K. Arafune, N. Kojima, Y. Ohsita, Y. Okada, A. Yamamoto, T. Takamoto, and K. Araki, “Novel materials for high-efficiency III–V multi-junction solar cells,” Sol. Energy 82(2), 173–180 (2008).
[CrossRef]

Kostuk, R. K.

J. M. Russo, D. Zhang, M. Gordon, S. D. Vorndran, Y. Wu, and R. K. Kostuk, “Grating-over-lens concentrating photovoltaic spectrum splitting systems with volume holographic optical elements,” Proc. SPIE 8821, 882106 (2013).
[CrossRef]

D. Zhang, M. Gordon, J. M. Russo, S. Vorndran, M. Escarra, H. Atwater, and R. K. Kostuk, “Reflection hologram solar spectrum-splitting filters,” Proc. SPIE 8468, 846807 (2012).
[CrossRef]

Kurtz, S.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

Lester, L. F.

N. Rahimi, A. A. Aragon, O. S. Romero, D. M. Kim, N. B. J. Traynor, T. J. Rotter, G. Balakrishnan, S. D. Mukherjee, and L. F. Lester, “Ohmic contacts to n-type GaSb grown on GaAs by the interfacial misfit dislocation technique,” Proc. SPIE 8620, 86201K (2013).
[CrossRef]

Luttmann, F.

M. Hamdy, F. Luttmann, and D. Osborn, “Model of a spectrally selective decoupled photovoltaic/thermal concentrating system,” Appl. Energy 30(3), 209–225 (1988).
[CrossRef]

Martin, J.

L. M. Fraas, J. E. Avery, J. Martin, V. S. Sundaram, G. Girard, V. T. Dinh, T. M. Davenport, J. W. Yerkes, and M. J. O’Neil, “Over 35-percent efficient GaAs/GaSb tandem solar cells,” IEEE Trans. Electron. Dev. 37(2), 443–449 (1990).
[CrossRef]

Mills, D. R.

A. G. Imenes and D. R. Mills, “Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: a review,” Sol. Energy Mater. Sol. Cells 84(1-4), 19–69 (2004).
[CrossRef]

Mojiri, A.

A. Mojiri, R. Taylor, E. Thomsen, and G. Rosengarten, “Spectral beam splitting for efficient conversion of solar energy—A review,” Renew. Sustain. Energy Rev. 28, 654–663 (2013).
[CrossRef]

Moore, D.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

Mukherjee, S. D.

N. Rahimi, A. A. Aragon, O. S. Romero, D. M. Kim, N. B. J. Traynor, T. J. Rotter, G. Balakrishnan, S. D. Mukherjee, and L. F. Lester, “Ohmic contacts to n-type GaSb grown on GaAs by the interfacial misfit dislocation technique,” Proc. SPIE 8620, 86201K (2013).
[CrossRef]

Myers, D. R.

D. R. Myers and C. Gueymard, “Description and availability of the SMARTS spectral model for photovoltaic applications,” Proc. SPIE 5520, 56–67 (2004).
[CrossRef]

Nishimura, K.-I.

M. Yamaguchi, K.-I. Nishimura, T. Sasaki, H. Suzuki, K. Arafune, N. Kojima, Y. Ohsita, Y. Okada, A. Yamamoto, T. Takamoto, and K. Araki, “Novel materials for high-efficiency III–V multi-junction solar cells,” Sol. Energy 82(2), 173–180 (2008).
[CrossRef]

O’Neil, M. J.

L. M. Fraas, J. E. Avery, J. Martin, V. S. Sundaram, G. Girard, V. T. Dinh, T. M. Davenport, J. W. Yerkes, and M. J. O’Neil, “Over 35-percent efficient GaAs/GaSb tandem solar cells,” IEEE Trans. Electron. Dev. 37(2), 443–449 (1990).
[CrossRef]

Ohsita, Y.

M. Yamaguchi, K.-I. Nishimura, T. Sasaki, H. Suzuki, K. Arafune, N. Kojima, Y. Ohsita, Y. Okada, A. Yamamoto, T. Takamoto, and K. Araki, “Novel materials for high-efficiency III–V multi-junction solar cells,” Sol. Energy 82(2), 173–180 (2008).
[CrossRef]

Okada, Y.

M. Yamaguchi, K.-I. Nishimura, T. Sasaki, H. Suzuki, K. Arafune, N. Kojima, Y. Ohsita, Y. Okada, A. Yamamoto, T. Takamoto, and K. Araki, “Novel materials for high-efficiency III–V multi-junction solar cells,” Sol. Energy 82(2), 173–180 (2008).
[CrossRef]

Osborn, D.

M. Hamdy, F. Luttmann, and D. Osborn, “Model of a spectrally selective decoupled photovoltaic/thermal concentrating system,” Appl. Energy 30(3), 209–225 (1988).
[CrossRef]

Queisser, H. J.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510 (1961).
[CrossRef]

Rahimi, N.

N. Rahimi, A. A. Aragon, O. S. Romero, D. M. Kim, N. B. J. Traynor, T. J. Rotter, G. Balakrishnan, S. D. Mukherjee, and L. F. Lester, “Ohmic contacts to n-type GaSb grown on GaAs by the interfacial misfit dislocation technique,” Proc. SPIE 8620, 86201K (2013).
[CrossRef]

Romero, O. S.

N. Rahimi, A. A. Aragon, O. S. Romero, D. M. Kim, N. B. J. Traynor, T. J. Rotter, G. Balakrishnan, S. D. Mukherjee, and L. F. Lester, “Ohmic contacts to n-type GaSb grown on GaAs by the interfacial misfit dislocation technique,” Proc. SPIE 8620, 86201K (2013).
[CrossRef]

Rosengarten, G.

A. Mojiri, R. Taylor, E. Thomsen, and G. Rosengarten, “Spectral beam splitting for efficient conversion of solar energy—A review,” Renew. Sustain. Energy Rev. 28, 654–663 (2013).
[CrossRef]

Rotter, T. J.

N. Rahimi, A. A. Aragon, O. S. Romero, D. M. Kim, N. B. J. Traynor, T. J. Rotter, G. Balakrishnan, S. D. Mukherjee, and L. F. Lester, “Ohmic contacts to n-type GaSb grown on GaAs by the interfacial misfit dislocation technique,” Proc. SPIE 8620, 86201K (2013).
[CrossRef]

Russo, J. M.

J. M. Russo, D. Zhang, M. Gordon, S. D. Vorndran, Y. Wu, and R. K. Kostuk, “Grating-over-lens concentrating photovoltaic spectrum splitting systems with volume holographic optical elements,” Proc. SPIE 8821, 882106 (2013).
[CrossRef]

D. Zhang, M. Gordon, J. M. Russo, S. Vorndran, M. Escarra, H. Atwater, and R. K. Kostuk, “Reflection hologram solar spectrum-splitting filters,” Proc. SPIE 8468, 846807 (2012).
[CrossRef]

Salzman, D.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

Sasaki, T.

M. Yamaguchi, K.-I. Nishimura, T. Sasaki, H. Suzuki, K. Arafune, N. Kojima, Y. Ohsita, Y. Okada, A. Yamamoto, T. Takamoto, and K. Araki, “Novel materials for high-efficiency III–V multi-junction solar cells,” Sol. Energy 82(2), 173–180 (2008).
[CrossRef]

Schmidt, G.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

Schwartz, R.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

Shatz, N.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

Shockley, W.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510 (1961).
[CrossRef]

Steiner, M.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

Sundaram, V. S.

L. M. Fraas, J. E. Avery, J. Martin, V. S. Sundaram, G. Girard, V. T. Dinh, T. M. Davenport, J. W. Yerkes, and M. J. O’Neil, “Over 35-percent efficient GaAs/GaSb tandem solar cells,” IEEE Trans. Electron. Dev. 37(2), 443–449 (1990).
[CrossRef]

Suzuki, H.

M. Yamaguchi, K.-I. Nishimura, T. Sasaki, H. Suzuki, K. Arafune, N. Kojima, Y. Ohsita, Y. Okada, A. Yamamoto, T. Takamoto, and K. Araki, “Novel materials for high-efficiency III–V multi-junction solar cells,” Sol. Energy 82(2), 173–180 (2008).
[CrossRef]

Takacs, L.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

Takamoto, T.

M. Yamaguchi, K.-I. Nishimura, T. Sasaki, H. Suzuki, K. Arafune, N. Kojima, Y. Ohsita, Y. Okada, A. Yamamoto, T. Takamoto, and K. Araki, “Novel materials for high-efficiency III–V multi-junction solar cells,” Sol. Energy 82(2), 173–180 (2008).
[CrossRef]

Taylor, R.

A. Mojiri, R. Taylor, E. Thomsen, and G. Rosengarten, “Spectral beam splitting for efficient conversion of solar energy—A review,” Renew. Sustain. Energy Rev. 28, 654–663 (2013).
[CrossRef]

Thomsen, E.

A. Mojiri, R. Taylor, E. Thomsen, and G. Rosengarten, “Spectral beam splitting for efficient conversion of solar energy—A review,” Renew. Sustain. Energy Rev. 28, 654–663 (2013).
[CrossRef]

Tiedje, T. O. M.

T. O. M. Tiedje, E. L. I. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron. Dev. 31(5), 711–716 (1984).
[CrossRef]

Traynor, N. B. J.

N. Rahimi, A. A. Aragon, O. S. Romero, D. M. Kim, N. B. J. Traynor, T. J. Rotter, G. Balakrishnan, S. D. Mukherjee, and L. F. Lester, “Ohmic contacts to n-type GaSb grown on GaAs by the interfacial misfit dislocation technique,” Proc. SPIE 8620, 86201K (2013).
[CrossRef]

Unger, B.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

Vorndran, S.

D. Zhang, M. Gordon, J. M. Russo, S. Vorndran, M. Escarra, H. Atwater, and R. K. Kostuk, “Reflection hologram solar spectrum-splitting filters,” Proc. SPIE 8468, 846807 (2012).
[CrossRef]

Vorndran, S. D.

J. M. Russo, D. Zhang, M. Gordon, S. D. Vorndran, Y. Wu, and R. K. Kostuk, “Grating-over-lens concentrating photovoltaic spectrum splitting systems with volume holographic optical elements,” Proc. SPIE 8821, 882106 (2013).
[CrossRef]

Wang, A.

J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73(14), 1991 (1998).
[CrossRef]

Wanlass, M.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

Warta, W.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 39),” Prog. Photovolt. Res. Appl. 20(1), 12–20 (2012).
[CrossRef]

Wu, Y.

J. M. Russo, D. Zhang, M. Gordon, S. D. Vorndran, Y. Wu, and R. K. Kostuk, “Grating-over-lens concentrating photovoltaic spectrum splitting systems with volume holographic optical elements,” Proc. SPIE 8821, 882106 (2013).
[CrossRef]

Yablonovitch, E. L. I.

T. O. M. Tiedje, E. L. I. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron. Dev. 31(5), 711–716 (1984).
[CrossRef]

Yamaguchi, M.

M. Yamaguchi, K.-I. Nishimura, T. Sasaki, H. Suzuki, K. Arafune, N. Kojima, Y. Ohsita, Y. Okada, A. Yamamoto, T. Takamoto, and K. Araki, “Novel materials for high-efficiency III–V multi-junction solar cells,” Sol. Energy 82(2), 173–180 (2008).
[CrossRef]

Yamamoto, A.

M. Yamaguchi, K.-I. Nishimura, T. Sasaki, H. Suzuki, K. Arafune, N. Kojima, Y. Ohsita, Y. Okada, A. Yamamoto, T. Takamoto, and K. Araki, “Novel materials for high-efficiency III–V multi-junction solar cells,” Sol. Energy 82(2), 173–180 (2008).
[CrossRef]

Yerkes, J. W.

L. M. Fraas, J. E. Avery, J. Martin, V. S. Sundaram, G. Girard, V. T. Dinh, T. M. Davenport, J. W. Yerkes, and M. J. O’Neil, “Over 35-percent efficient GaAs/GaSb tandem solar cells,” IEEE Trans. Electron. Dev. 37(2), 443–449 (1990).
[CrossRef]

Zhang, D.

J. M. Russo, D. Zhang, M. Gordon, S. D. Vorndran, Y. Wu, and R. K. Kostuk, “Grating-over-lens concentrating photovoltaic spectrum splitting systems with volume holographic optical elements,” Proc. SPIE 8821, 882106 (2013).
[CrossRef]

D. Zhang, M. Gordon, J. M. Russo, S. Vorndran, M. Escarra, H. Atwater, and R. K. Kostuk, “Reflection hologram solar spectrum-splitting filters,” Proc. SPIE 8468, 846807 (2012).
[CrossRef]

Zhao, J.

J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73(14), 1991 (1998).
[CrossRef]

Appl. Energy (1)

M. Hamdy, F. Luttmann, and D. Osborn, “Model of a spectrally selective decoupled photovoltaic/thermal concentrating system,” Appl. Energy 30(3), 209–225 (1988).
[CrossRef]

Appl. Phys. Lett. (1)

J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73(14), 1991 (1998).
[CrossRef]

IEEE Trans. Electron. Dev. (2)

L. M. Fraas, J. E. Avery, J. Martin, V. S. Sundaram, G. Girard, V. T. Dinh, T. M. Davenport, J. W. Yerkes, and M. J. O’Neil, “Over 35-percent efficient GaAs/GaSb tandem solar cells,” IEEE Trans. Electron. Dev. 37(2), 443–449 (1990).
[CrossRef]

T. O. M. Tiedje, E. L. I. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron. Dev. 31(5), 711–716 (1984).
[CrossRef]

J. Appl. Phys. (1)

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510 (1961).
[CrossRef]

Proc. SPIE (4)

D. R. Myers and C. Gueymard, “Description and availability of the SMARTS spectral model for photovoltaic applications,” Proc. SPIE 5520, 56–67 (2004).
[CrossRef]

N. Rahimi, A. A. Aragon, O. S. Romero, D. M. Kim, N. B. J. Traynor, T. J. Rotter, G. Balakrishnan, S. D. Mukherjee, and L. F. Lester, “Ohmic contacts to n-type GaSb grown on GaAs by the interfacial misfit dislocation technique,” Proc. SPIE 8620, 86201K (2013).
[CrossRef]

D. Zhang, M. Gordon, J. M. Russo, S. Vorndran, M. Escarra, H. Atwater, and R. K. Kostuk, “Reflection hologram solar spectrum-splitting filters,” Proc. SPIE 8468, 846807 (2012).
[CrossRef]

J. M. Russo, D. Zhang, M. Gordon, S. D. Vorndran, Y. Wu, and R. K. Kostuk, “Grating-over-lens concentrating photovoltaic spectrum splitting systems with volume holographic optical elements,” Proc. SPIE 8821, 882106 (2013).
[CrossRef]

Prog. Photovolt. Res. Appl. (2)

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 39),” Prog. Photovolt. Res. Appl. 20(1), 12–20 (2012).
[CrossRef]

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

Renew. Sustain. Energy Rev. (1)

A. Mojiri, R. Taylor, E. Thomsen, and G. Rosengarten, “Spectral beam splitting for efficient conversion of solar energy—A review,” Renew. Sustain. Energy Rev. 28, 654–663 (2013).
[CrossRef]

Sol. Energy (1)

M. Yamaguchi, K.-I. Nishimura, T. Sasaki, H. Suzuki, K. Arafune, N. Kojima, Y. Ohsita, Y. Okada, A. Yamamoto, T. Takamoto, and K. Araki, “Novel materials for high-efficiency III–V multi-junction solar cells,” Sol. Energy 82(2), 173–180 (2008).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

A. G. Imenes and D. R. Mills, “Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: a review,” Sol. Energy Mater. Sol. Cells 84(1-4), 19–69 (2004).
[CrossRef]

Other (3)

A. Luque and S. Hegedus, Handbook of Photovoltaic Science, 1st ed. (John Wiley & Sons Ltd., 2003), Chap. 3, 9.

A. L. Gray, M. Stan, T. Varghese, A. Korostyshevsky, J. Doman, A. Sandoval, J. Hills, C. Griego, M. Turner, P. Sharps, A. Haas, J. Wilcox, J. Gray, and R. Schwartz, “Multi-terminal dual junction InGaP2/GaAs solar cells for hybrid system,” in Proceedings of IEEE Photovolatic Specialists Conference (Institute of Electrical and Electronics Engineers, San Diego, California, 2008), pp. 1–4.

A. Barnett and X. Wang, “High Efficiency, Spectrum Splitting Solar Cell Assemblies: Design, Measurement and Analysis,” in Imaging and Applied Optics Congress, OSA Technical Digest (CD) (Optical Society of America, 2010), paper SWB1.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Ideal PV cell SCE spectral response with bandgap wavelengths corresponding to four different material systems. The AM1.5 solar reference spectrum is also shown.

Fig. 2
Fig. 2

SCE for InGaP2-Emcore [9,10], GaAs-Alta [9] (maximum SCE at λ = 0.86μm) and Si-PERL [11] (maximum SCE at λ = 1.11μm). An ideal filter for the GaAs-Alta PV cell in a SSS will have a shortwave cutoff of λS = 0.64μm and long wave cutoff of λL = 0.877μm.

Fig. 3
Fig. 3

Band pass spectrum splitting configurations. (a) Band pass filter transmittance and reflectance operation. (b) Cascaded configuration. The width of the input beam is DA however the size of the system must be larger to accommodate non-axial PV cells.

Fig. 4
Fig. 4

Spatial band separation. (a) Transmission diffraction filter showing single diffraction order and zeroth order beams. Spatial band separation using: (b) transmission diffractive filters, (c) reflection diffractive filters with total internal reflection.

Fig. 5
Fig. 5

Dispersive spectrum splitting. (a) A single dispersive filter projects the complete spectrum along a distance corresponding to the entrance aperture on the receiver (PV cell) plane. Wavelength separation only occurs at the edge of the aperture. b) Focusing power is combined with the dispersive element to separate spectral components along the receiver plane that can then be collected by PV cells with different spectral responsivities.

Fig. 6
Fig. 6

Diagram of the aperture overlap function for (left) no focusing, (right) 4X focusing. With increased focusing the shape of the aperture overlap function changes from triangular to rectangular.

Fig. 7
Fig. 7

(Top) SCE of each PV cell is shown with the ideal filter performance transmittance overlaid. (Bottom) The converted spectral power is shown color coded according to the PV cell used for conversion. The single junction efficiency ηk, filtered efficiency η*k and bandgap wavelength λBG are indicated on the graph. The ideal maximum achievable performance with these 4-PV cells is 51.89%.

Fig. 8
Fig. 8

Reported data for InGaP2-Emcore [9,10], GaAs-Alta [9], Si-PERL [11], and GaSb [14,16] PV cells from the literature is used instead of ideal for the analysis with ideal filters. The total ηSSS = 41.65% with an IoBB = 47.78%.

Fig. 9
Fig. 9

SCE analysis of the SSS system in [17] using GaAs-Alta and Si-PERL. At left, the system with an ideal filter and at right with experimental holographic filter data.

Fig. 10
Fig. 10

Grating-lens dispersive SSS using a transmission holographic grating. Although the experimental system uses a broadband grating, dominated by in-band losses (non-optimized grating).

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

η k = P OUTPV P INoptical = J SC V OC FF P INoptical
P INoptical = E IN ( λ )dλ
J SC = E AM1.5 ( λ )SR( λ )dλ = q hc λ E AM1.5 ( λ )EQE( λ ) dλ,
η k = 1 P AM1.5 E AM1.5 ( λ )SR( λ ) V OC FFdλ = 1 P AM1.5 E AM1.5 ( λ )SCE( λ )dλ ,
η k * = 1 P AM1.5 T( λ ) E AM1.5 ( λ )SC E k ( λ )dλ
η SSS = 1 K η k *
η S S S η P V η o e ,
IoBB= η SSS MAX[ η 1 , η 2 η 2 ] 1
O= IoBB IoB B Ideal
O filterloss =1O
η SSS = 1 P AM1.5 E AM1.5 ( λ )[ SC E 1 ( λ )+ T 1 ( λ )SC E 2 ( λ )+ T 1 ( λ ) T 2 ( λ )SC E 3 ( λ ) ]dλ = 1 P AM1.5 E AM1.5 ( λ )[ SC E 1 ( λ )+ k=1 K ( SC E k+1 ( λ ) i=1 k T i ( λ ) ) ]dλ
T i ( λ )=( 1SC E i ( λ ) )u( λ λ B G i )
η S S S = 1 P A M 1.5 E A M 1.5 ( λ ) [ S C E 1 ( λ ) R 1 ( λ ) + j = 2 K 1 ( S C E j ( λ ) R j ( λ ) i = 1 j 1 T i ( λ ) ) + S C E K ( λ ) i = 1 M T i ( λ ) ] d λ
T i ( λ ) = 1 R i ( λ ) .
η SSS = 1 P AM1.5 E AM1.5 ( λ )[ SC E 1 ( λ )[ T 1 ( λ )+( 1 T 2 ( λ ) ) ]+ SC E 2 ( λ )[ T 2 ( λ )+( 1 T 1 ( λ ) ) ] ]dλ
D F = d θ d λ .
η SSS = 1 P AM1.5 E AM1.5 ( λ )[ SC E 1 ( λ ) τ 1 ( λ )T( λ )+ SC E 2 ( λ ) τ 2 ( λ )T( λ )+ ]dλ = 1 P AM1.5 E AM1.5 ( λ )[ k=1 K SC E k τ k ( λ )T( λ ) ]dλ

Metrics