Abstract

We demonstrate numerically a 2-D nanostructured design for light trapping in a low band-gap polymer solar cell. Finite element method simulations are used to study the effect of varying nanostructure periodicity, height, and shape on active layer absorption. Maintaining a constant active layer thickness of 100nm we observe an enhancement in solar absorption of almost 40% relative to a planar cell. Improvements of this magnitude enable single-junction, low-band-gap cells to achieve power conversion efficiencies of 11.2% and perform competitively with even state-of-the-art tandem cells. Our design is also shown to significantly outperform tandem cells at off-normal angles of incidence.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. He, C. Zhong, X. Huang, W.-Y. Wong, H. Wu, L. Chen, S. Su, and Y. Cao, “Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill dactor in polymer solar cells,” Adv. Mater. 23(40), 4636–4643 (2011).
    [CrossRef] [PubMed]
  2. X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater. 24(22), 3046–3052 (2012).
    [CrossRef] [PubMed]
  3. Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure,” Nat. Photonics 6(9), 591–595 (2012).
    [CrossRef]
  4. J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, and Y. Yang, “A polymer tandem solar cell with 10.6% power conversion efficiency,” Nat. Commun. 4, 1446 (2013).
    [CrossRef] [PubMed]
  5. S. Nam, J. Han, Y. R. Do, H. Kim, S. Yim, and Y. Kim, “Two-dimensional photonic crystal arrays for polymer:fullerene solar cells,” Nanotechnology 22(46), 465403 (2011).
    [CrossRef] [PubMed]
  6. A. Raman, Z. Yu, and S. Fan, “Dielectric nanostructures for broadband light trapping in organic solar cells,” Opt. Express 19(20), 19015–19026 (2011).
    [CrossRef] [PubMed]
  7. D. H. Wang, J. Seifter, J. H. Park, D.-G. Choi, and A. J. Heeger, “Efficiency increase in flexible bulk heterojunction solar cells with nano-patterned indium zinc oxide anode,” Adv. Energy Mater. 2(11), 1319–1322 (2012).
    [CrossRef]
  8. D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9(7), 2742–2746 (2009).
    [CrossRef] [PubMed]
  9. L. Chen, W. E. I. Sha, and W. C. H. Choy, “Light harvesting improvement of organic solar cells with self-enhanced active layer designs,” Opt. Express 20(7), 8175–8185 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-20-7-8175 .
    [CrossRef] [PubMed]
  10. J. R. Tumbleston, D.-H. Ko, E. T. Samulski, and R. Lopez, “Absorption and quasiguided mode analysis of organic solar cells with photonic crystal photoactive layers,” Opt. Express 17(9), 7670–7681 (2009).
    [CrossRef] [PubMed]
  11. K. S. Nalwa and S. Chaudhary, “Design of light-trapping microscale-textured surfaces for efficient organic solar cells,” Opt. Express 18(5), 5168–5178 (2010).
    [CrossRef] [PubMed]
  12. D. Duché, L. Escoubas, J.-J. Simon, C. Gourgon, C. Masclaux, Ph. Torchio, J. Le Rouzo, and F. Flory, “Photonic crystals for improving light absorption in organic solar cells,” Proc. SPIE 8256, 82561K (2012).
    [CrossRef]
  13. X. H. Li, W. E. I. Sha, W. C. H. Choy, D. D. S. Fung, and F. X. Xie, “Efficient inverted polymer solar cells with directly patterned active layer and silver back grating,” J. Phys. Chem. C 116(12), 7200–7206 (2012).
    [CrossRef]
  14. J. You, X. Li, F. X. Xie, W. E. I. Sha, J. H. W. Kwong, G. Li, W. C. H. Choy, and Y. Yang, “Surface plasmon and scattering-enhanced low-bandgap polymer solar cell by a metal grating back electrode,” Adv. Energy Mater. 2(10), 1203–1207 (2012).
    [CrossRef]
  15. I. Kim, D. S. Jeong, T. S. Lee, W. S. Lee, and K.-S. Lee, “Plasmonic nanograting design for inverted polymer solar cells,” Opt. Express 20(S5), A729–A739 (2012).
    [CrossRef] [PubMed]
  16. X. Li, W. C. H. Choy, X. Ren, J. Xin, P. Lin, and D. C. W. Leung, “Polarization-independent efficiency enhancement of organic solar cells by using 3-dimensional plasmonic electrode,” Appl. Phys. Lett. 102(15), 153304 (2013).
    [CrossRef]
  17. K. Forberich, G. Dennler, M. C. Scharber, K. Hingerl, T. Fromherz, and C. J. Brabec, “Performance improvement of organic solar cells with moth eye anti-reflection coating,” Thin Solid Films 516(20), 7167–7170 (2008).
    [CrossRef]
  18. W.-L. Min, A. P. Betancourt, P. Jiang, and B. Jiang, “Bioinspired broadband antireflection coatings on GaSb,” Appl. Phys. Lett. 92(14), 141109 (2008).
    [CrossRef]
  19. W. C. Luk, K. M. Yeung, K. C. Tam, K. L. Ng, K. C. Kwok, C. Y. Kwong, A. M. C. Ng, and A. B. Djurisic, “Enhanced conversion efficiency of polymeric photovoltaic cell by nanostructured antireflection coating,” Org. Electron. 12(4), 557–561 (2011).
    [CrossRef]
  20. T. Søndergaard, J. Gadegaard, P. K. Kristensen, T. K. Jensen, T. G. Pedersen, and K. Pedersen, “Guidelines for 1D-periodic surface microstructures for antireflective lenses,” Opt. Express 18(25), 26245–26258 (2010).
    [CrossRef] [PubMed]
  21. H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
    [CrossRef]
  22. L. Dou, J. You, J. Yang, C.-C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, “Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer,” Nat. Photonics 6(3), 180–185 (2012).
    [CrossRef]
  23. G. Demésy, F. Zolla, A. Nicolet, M. Commandré, and C. Fossati, “The finite element method as applied to the diffraction by an anisotropic grating,” Opt. Express 15(26), 18089–18102 (2007).
    [CrossRef] [PubMed]
  24. P. Dular, C. Geuzaine, F. Henrotte, and W. Legros, “A general environment for the treatment of discrete problems and its application to the finite element method,” IEEE Trans. Magn. 34(5), 3395–3398 (1998).
    [CrossRef]
  25. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998), Vol. I.
  26. M. F. Al-Kuhaili, S. M. A. Durrani, and E. E. Khawaja, “Effects of preparation conditions and thermocoloration on the optical properties of thin films of molybdenum oxide,” Thin Solid Films 408(1–2), 188–193 (2002).
    [CrossRef]
  27. H. Hoppe, N. S. Sariciftci, and D. Meissner, “Optical constants of conjugated polymer/fullerene based bulk-heterojunction organic solar cells,” Mol. Cryst. Liq. Cryst. 385(1), 113–119 (2002).
    [CrossRef]
  28. J. You, C.-C. Chen, Z. Hong, K. Yoshimura, K. Ohya, R. Xu, S. Ye, J. Gao, G. Li, and Y. Yang, “10.2% power conversion efficiency polymer tandem solar cells consisting of two identical sub-cells,” Adv. Mater. 25(29), 3973–3978 (2013).
    [CrossRef] [PubMed]
  29. A. Naqavi, K. Söderström, F.-J. Haug, V. Paeder, T. Scharf, H. P. Herzig, and C. Ballif, “Understanding of photocurrent enhancement in real thin film solar cells: towards optimal one-dimensional gratings,” Opt. Express 19(1), 128–140 (2011).
    [CrossRef] [PubMed]
  30. S. Eyderman, S. John, and A. Deinega, “Solar light trapping in slanted conical-pore photonic crystals: Beyond statistical ray trapping,” J. Appl. Phys. 113(15), 154315 (2013).
    [CrossRef]
  31. L. J. Guo, “Nanoimprint lithography: methods and material requirements,” Adv. Mater. 19(4), 495–513 (2007).
    [CrossRef]
  32. S. Tawfick, M. De Volder, D. Copic, S. J. Park, C. R. Oliver, E. S. Polsen, M. J. Roberts, and A. J. Hart, “Engineering of micro- and nanostructured surfaces with anisotropic geometries and properties,” Adv. Mater. 24(13), 1628–1674 (2012).
    [CrossRef] [PubMed]
  33. K. S. Nalwa, J.-M. Park, K.-M. Ho, and S. Chaudhary, “On realizing higher efficiency polymer solar cells using a textured substrate platform,” Adv. Mater. 23(1), 112–116 (2011).
    [CrossRef] [PubMed]
  34. S. Biswas, O. Shalev, and M. Shtein, “Thin-film growth and patterning techniques for small molecular organic compounds used in optoelectronic device applications,” Annu. Rev. Chem. Biomol. Eng. 4(1), 289–317 (2013).
    [CrossRef] [PubMed]
  35. A. M. Coclite, R. M. Howden, D. C. Borrelli, C. D. Petruczok, R. Yang, J. L. Yagüe, A. Ugur, N. Chen, S. Lee, W. J. Jo, A. Liu, X. Wang, and K. K. Gleason, “25th anniversary article: Cvd polymers: A new paradigm for surface modification and device fabrication,” Adv. Mater. 25(38), 5392–5423 (2013).
    [CrossRef] [PubMed]
  36. F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007).
    [CrossRef]
  37. Y. Zhou, C. Fuentes-Hernandez, J. W. Shim, T. M. Khan, and B. Kippelen, “High performance polymeric charge recombination layer for organic tandem solar cells,” Energy Environ. Sci. 5(12), 9827–9832 (2012).
    [CrossRef]
  38. L. A. A. Pettersson, S. Ghosh, and O. Inganäs, “Optical anisotropy in thin films of poly(3,4-ethylenedioxythiophene)-poly(4-styrenesulfonate),” Org. Electron. 3(3-4), 143–148 (2002).
    [CrossRef]
  39. H. K. Raut, S. S. Dinachali, A. Y. He, V. A. Ganesh, M. S. M. Saifullah, J. Law, and S. Ramakrishna, “Robust and durable polyhedral oligomeric silsesquioxane-based anti-reflective nanostructures with broadband quasi-omnidirectional properties,” Energy Environ. Sci. 6(6), 1929–1937 (2013).
    [CrossRef]

2013 (7)

J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, and Y. Yang, “A polymer tandem solar cell with 10.6% power conversion efficiency,” Nat. Commun. 4, 1446 (2013).
[CrossRef] [PubMed]

X. Li, W. C. H. Choy, X. Ren, J. Xin, P. Lin, and D. C. W. Leung, “Polarization-independent efficiency enhancement of organic solar cells by using 3-dimensional plasmonic electrode,” Appl. Phys. Lett. 102(15), 153304 (2013).
[CrossRef]

S. Eyderman, S. John, and A. Deinega, “Solar light trapping in slanted conical-pore photonic crystals: Beyond statistical ray trapping,” J. Appl. Phys. 113(15), 154315 (2013).
[CrossRef]

S. Biswas, O. Shalev, and M. Shtein, “Thin-film growth and patterning techniques for small molecular organic compounds used in optoelectronic device applications,” Annu. Rev. Chem. Biomol. Eng. 4(1), 289–317 (2013).
[CrossRef] [PubMed]

A. M. Coclite, R. M. Howden, D. C. Borrelli, C. D. Petruczok, R. Yang, J. L. Yagüe, A. Ugur, N. Chen, S. Lee, W. J. Jo, A. Liu, X. Wang, and K. K. Gleason, “25th anniversary article: Cvd polymers: A new paradigm for surface modification and device fabrication,” Adv. Mater. 25(38), 5392–5423 (2013).
[CrossRef] [PubMed]

H. K. Raut, S. S. Dinachali, A. Y. He, V. A. Ganesh, M. S. M. Saifullah, J. Law, and S. Ramakrishna, “Robust and durable polyhedral oligomeric silsesquioxane-based anti-reflective nanostructures with broadband quasi-omnidirectional properties,” Energy Environ. Sci. 6(6), 1929–1937 (2013).
[CrossRef]

J. You, C.-C. Chen, Z. Hong, K. Yoshimura, K. Ohya, R. Xu, S. Ye, J. Gao, G. Li, and Y. Yang, “10.2% power conversion efficiency polymer tandem solar cells consisting of two identical sub-cells,” Adv. Mater. 25(29), 3973–3978 (2013).
[CrossRef] [PubMed]

2012 (11)

L. Dou, J. You, J. Yang, C.-C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, “Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer,” Nat. Photonics 6(3), 180–185 (2012).
[CrossRef]

Y. Zhou, C. Fuentes-Hernandez, J. W. Shim, T. M. Khan, and B. Kippelen, “High performance polymeric charge recombination layer for organic tandem solar cells,” Energy Environ. Sci. 5(12), 9827–9832 (2012).
[CrossRef]

S. Tawfick, M. De Volder, D. Copic, S. J. Park, C. R. Oliver, E. S. Polsen, M. J. Roberts, and A. J. Hart, “Engineering of micro- and nanostructured surfaces with anisotropic geometries and properties,” Adv. Mater. 24(13), 1628–1674 (2012).
[CrossRef] [PubMed]

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater. 24(22), 3046–3052 (2012).
[CrossRef] [PubMed]

Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure,” Nat. Photonics 6(9), 591–595 (2012).
[CrossRef]

D. H. Wang, J. Seifter, J. H. Park, D.-G. Choi, and A. J. Heeger, “Efficiency increase in flexible bulk heterojunction solar cells with nano-patterned indium zinc oxide anode,” Adv. Energy Mater. 2(11), 1319–1322 (2012).
[CrossRef]

D. Duché, L. Escoubas, J.-J. Simon, C. Gourgon, C. Masclaux, Ph. Torchio, J. Le Rouzo, and F. Flory, “Photonic crystals for improving light absorption in organic solar cells,” Proc. SPIE 8256, 82561K (2012).
[CrossRef]

X. H. Li, W. E. I. Sha, W. C. H. Choy, D. D. S. Fung, and F. X. Xie, “Efficient inverted polymer solar cells with directly patterned active layer and silver back grating,” J. Phys. Chem. C 116(12), 7200–7206 (2012).
[CrossRef]

J. You, X. Li, F. X. Xie, W. E. I. Sha, J. H. W. Kwong, G. Li, W. C. H. Choy, and Y. Yang, “Surface plasmon and scattering-enhanced low-bandgap polymer solar cell by a metal grating back electrode,” Adv. Energy Mater. 2(10), 1203–1207 (2012).
[CrossRef]

L. Chen, W. E. I. Sha, and W. C. H. Choy, “Light harvesting improvement of organic solar cells with self-enhanced active layer designs,” Opt. Express 20(7), 8175–8185 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-20-7-8175 .
[CrossRef] [PubMed]

I. Kim, D. S. Jeong, T. S. Lee, W. S. Lee, and K.-S. Lee, “Plasmonic nanograting design for inverted polymer solar cells,” Opt. Express 20(S5), A729–A739 (2012).
[CrossRef] [PubMed]

2011 (7)

S. Nam, J. Han, Y. R. Do, H. Kim, S. Yim, and Y. Kim, “Two-dimensional photonic crystal arrays for polymer:fullerene solar cells,” Nanotechnology 22(46), 465403 (2011).
[CrossRef] [PubMed]

K. S. Nalwa, J.-M. Park, K.-M. Ho, and S. Chaudhary, “On realizing higher efficiency polymer solar cells using a textured substrate platform,” Adv. Mater. 23(1), 112–116 (2011).
[CrossRef] [PubMed]

Z. He, C. Zhong, X. Huang, W.-Y. Wong, H. Wu, L. Chen, S. Su, and Y. Cao, “Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill dactor in polymer solar cells,” Adv. Mater. 23(40), 4636–4643 (2011).
[CrossRef] [PubMed]

W. C. Luk, K. M. Yeung, K. C. Tam, K. L. Ng, K. C. Kwok, C. Y. Kwong, A. M. C. Ng, and A. B. Djurisic, “Enhanced conversion efficiency of polymeric photovoltaic cell by nanostructured antireflection coating,” Org. Electron. 12(4), 557–561 (2011).
[CrossRef]

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
[CrossRef]

A. Naqavi, K. Söderström, F.-J. Haug, V. Paeder, T. Scharf, H. P. Herzig, and C. Ballif, “Understanding of photocurrent enhancement in real thin film solar cells: towards optimal one-dimensional gratings,” Opt. Express 19(1), 128–140 (2011).
[CrossRef] [PubMed]

A. Raman, Z. Yu, and S. Fan, “Dielectric nanostructures for broadband light trapping in organic solar cells,” Opt. Express 19(20), 19015–19026 (2011).
[CrossRef] [PubMed]

2010 (2)

2009 (2)

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9(7), 2742–2746 (2009).
[CrossRef] [PubMed]

J. R. Tumbleston, D.-H. Ko, E. T. Samulski, and R. Lopez, “Absorption and quasiguided mode analysis of organic solar cells with photonic crystal photoactive layers,” Opt. Express 17(9), 7670–7681 (2009).
[CrossRef] [PubMed]

2008 (2)

K. Forberich, G. Dennler, M. C. Scharber, K. Hingerl, T. Fromherz, and C. J. Brabec, “Performance improvement of organic solar cells with moth eye anti-reflection coating,” Thin Solid Films 516(20), 7167–7170 (2008).
[CrossRef]

W.-L. Min, A. P. Betancourt, P. Jiang, and B. Jiang, “Bioinspired broadband antireflection coatings on GaSb,” Appl. Phys. Lett. 92(14), 141109 (2008).
[CrossRef]

2007 (3)

L. J. Guo, “Nanoimprint lithography: methods and material requirements,” Adv. Mater. 19(4), 495–513 (2007).
[CrossRef]

G. Demésy, F. Zolla, A. Nicolet, M. Commandré, and C. Fossati, “The finite element method as applied to the diffraction by an anisotropic grating,” Opt. Express 15(26), 18089–18102 (2007).
[CrossRef] [PubMed]

F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007).
[CrossRef]

2002 (3)

L. A. A. Pettersson, S. Ghosh, and O. Inganäs, “Optical anisotropy in thin films of poly(3,4-ethylenedioxythiophene)-poly(4-styrenesulfonate),” Org. Electron. 3(3-4), 143–148 (2002).
[CrossRef]

M. F. Al-Kuhaili, S. M. A. Durrani, and E. E. Khawaja, “Effects of preparation conditions and thermocoloration on the optical properties of thin films of molybdenum oxide,” Thin Solid Films 408(1–2), 188–193 (2002).
[CrossRef]

H. Hoppe, N. S. Sariciftci, and D. Meissner, “Optical constants of conjugated polymer/fullerene based bulk-heterojunction organic solar cells,” Mol. Cryst. Liq. Cryst. 385(1), 113–119 (2002).
[CrossRef]

1998 (1)

P. Dular, C. Geuzaine, F. Henrotte, and W. Legros, “A general environment for the treatment of discrete problems and its application to the finite element method,” IEEE Trans. Magn. 34(5), 3395–3398 (1998).
[CrossRef]

Al-Kuhaili, M. F.

M. F. Al-Kuhaili, S. M. A. Durrani, and E. E. Khawaja, “Effects of preparation conditions and thermocoloration on the optical properties of thin films of molybdenum oxide,” Thin Solid Films 408(1–2), 188–193 (2002).
[CrossRef]

Bailly, S.

F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007).
[CrossRef]

Ballif, C.

Betancourt, A. P.

W.-L. Min, A. P. Betancourt, P. Jiang, and B. Jiang, “Bioinspired broadband antireflection coatings on GaSb,” Appl. Phys. Lett. 92(14), 141109 (2008).
[CrossRef]

Biswas, S.

S. Biswas, O. Shalev, and M. Shtein, “Thin-film growth and patterning techniques for small molecular organic compounds used in optoelectronic device applications,” Annu. Rev. Chem. Biomol. Eng. 4(1), 289–317 (2013).
[CrossRef] [PubMed]

Borrelli, D. C.

A. M. Coclite, R. M. Howden, D. C. Borrelli, C. D. Petruczok, R. Yang, J. L. Yagüe, A. Ugur, N. Chen, S. Lee, W. J. Jo, A. Liu, X. Wang, and K. K. Gleason, “25th anniversary article: Cvd polymers: A new paradigm for surface modification and device fabrication,” Adv. Mater. 25(38), 5392–5423 (2013).
[CrossRef] [PubMed]

Brabec, C. J.

K. Forberich, G. Dennler, M. C. Scharber, K. Hingerl, T. Fromherz, and C. J. Brabec, “Performance improvement of organic solar cells with moth eye anti-reflection coating,” Thin Solid Films 516(20), 7167–7170 (2008).
[CrossRef]

Cao, Y.

Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure,” Nat. Photonics 6(9), 591–595 (2012).
[CrossRef]

Z. He, C. Zhong, X. Huang, W.-Y. Wong, H. Wu, L. Chen, S. Su, and Y. Cao, “Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill dactor in polymer solar cells,” Adv. Mater. 23(40), 4636–4643 (2011).
[CrossRef] [PubMed]

Chaudhary, S.

K. S. Nalwa, J.-M. Park, K.-M. Ho, and S. Chaudhary, “On realizing higher efficiency polymer solar cells using a textured substrate platform,” Adv. Mater. 23(1), 112–116 (2011).
[CrossRef] [PubMed]

K. S. Nalwa and S. Chaudhary, “Design of light-trapping microscale-textured surfaces for efficient organic solar cells,” Opt. Express 18(5), 5168–5178 (2010).
[CrossRef] [PubMed]

Chen, C.-C.

J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, and Y. Yang, “A polymer tandem solar cell with 10.6% power conversion efficiency,” Nat. Commun. 4, 1446 (2013).
[CrossRef] [PubMed]

J. You, C.-C. Chen, Z. Hong, K. Yoshimura, K. Ohya, R. Xu, S. Ye, J. Gao, G. Li, and Y. Yang, “10.2% power conversion efficiency polymer tandem solar cells consisting of two identical sub-cells,” Adv. Mater. 25(29), 3973–3978 (2013).
[CrossRef] [PubMed]

L. Dou, J. You, J. Yang, C.-C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, “Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer,” Nat. Photonics 6(3), 180–185 (2012).
[CrossRef]

Chen, L.

L. Chen, W. E. I. Sha, and W. C. H. Choy, “Light harvesting improvement of organic solar cells with self-enhanced active layer designs,” Opt. Express 20(7), 8175–8185 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-20-7-8175 .
[CrossRef] [PubMed]

Z. He, C. Zhong, X. Huang, W.-Y. Wong, H. Wu, L. Chen, S. Su, and Y. Cao, “Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill dactor in polymer solar cells,” Adv. Mater. 23(40), 4636–4643 (2011).
[CrossRef] [PubMed]

Chen, N.

A. M. Coclite, R. M. Howden, D. C. Borrelli, C. D. Petruczok, R. Yang, J. L. Yagüe, A. Ugur, N. Chen, S. Lee, W. J. Jo, A. Liu, X. Wang, and K. K. Gleason, “25th anniversary article: Cvd polymers: A new paradigm for surface modification and device fabrication,” Adv. Mater. 25(38), 5392–5423 (2013).
[CrossRef] [PubMed]

Choi, D.-G.

D. H. Wang, J. Seifter, J. H. Park, D.-G. Choi, and A. J. Heeger, “Efficiency increase in flexible bulk heterojunction solar cells with nano-patterned indium zinc oxide anode,” Adv. Energy Mater. 2(11), 1319–1322 (2012).
[CrossRef]

Choy, W. C. H.

X. Li, W. C. H. Choy, X. Ren, J. Xin, P. Lin, and D. C. W. Leung, “Polarization-independent efficiency enhancement of organic solar cells by using 3-dimensional plasmonic electrode,” Appl. Phys. Lett. 102(15), 153304 (2013).
[CrossRef]

X. H. Li, W. E. I. Sha, W. C. H. Choy, D. D. S. Fung, and F. X. Xie, “Efficient inverted polymer solar cells with directly patterned active layer and silver back grating,” J. Phys. Chem. C 116(12), 7200–7206 (2012).
[CrossRef]

J. You, X. Li, F. X. Xie, W. E. I. Sha, J. H. W. Kwong, G. Li, W. C. H. Choy, and Y. Yang, “Surface plasmon and scattering-enhanced low-bandgap polymer solar cell by a metal grating back electrode,” Adv. Energy Mater. 2(10), 1203–1207 (2012).
[CrossRef]

L. Chen, W. E. I. Sha, and W. C. H. Choy, “Light harvesting improvement of organic solar cells with self-enhanced active layer designs,” Opt. Express 20(7), 8175–8185 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-20-7-8175 .
[CrossRef] [PubMed]

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater. 24(22), 3046–3052 (2012).
[CrossRef] [PubMed]

Coclite, A. M.

A. M. Coclite, R. M. Howden, D. C. Borrelli, C. D. Petruczok, R. Yang, J. L. Yagüe, A. Ugur, N. Chen, S. Lee, W. J. Jo, A. Liu, X. Wang, and K. K. Gleason, “25th anniversary article: Cvd polymers: A new paradigm for surface modification and device fabrication,” Adv. Mater. 25(38), 5392–5423 (2013).
[CrossRef] [PubMed]

Commandré, M.

Copic, D.

S. Tawfick, M. De Volder, D. Copic, S. J. Park, C. R. Oliver, E. S. Polsen, M. J. Roberts, and A. J. Hart, “Engineering of micro- and nanostructured surfaces with anisotropic geometries and properties,” Adv. Mater. 24(13), 1628–1674 (2012).
[CrossRef] [PubMed]

de Bettignies, R.

F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007).
[CrossRef]

De Volder, M.

S. Tawfick, M. De Volder, D. Copic, S. J. Park, C. R. Oliver, E. S. Polsen, M. J. Roberts, and A. J. Hart, “Engineering of micro- and nanostructured surfaces with anisotropic geometries and properties,” Adv. Mater. 24(13), 1628–1674 (2012).
[CrossRef] [PubMed]

Defranoux, C.

F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007).
[CrossRef]

Deinega, A.

S. Eyderman, S. John, and A. Deinega, “Solar light trapping in slanted conical-pore photonic crystals: Beyond statistical ray trapping,” J. Appl. Phys. 113(15), 154315 (2013).
[CrossRef]

Demésy, G.

Dennler, G.

K. Forberich, G. Dennler, M. C. Scharber, K. Hingerl, T. Fromherz, and C. J. Brabec, “Performance improvement of organic solar cells with moth eye anti-reflection coating,” Thin Solid Films 516(20), 7167–7170 (2008).
[CrossRef]

DeSimone, J. M.

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9(7), 2742–2746 (2009).
[CrossRef] [PubMed]

Dinachali, S. S.

H. K. Raut, S. S. Dinachali, A. Y. He, V. A. Ganesh, M. S. M. Saifullah, J. Law, and S. Ramakrishna, “Robust and durable polyhedral oligomeric silsesquioxane-based anti-reflective nanostructures with broadband quasi-omnidirectional properties,” Energy Environ. Sci. 6(6), 1929–1937 (2013).
[CrossRef]

Ding, B.

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater. 24(22), 3046–3052 (2012).
[CrossRef] [PubMed]

Djurisic, A. B.

W. C. Luk, K. M. Yeung, K. C. Tam, K. L. Ng, K. C. Kwok, C. Y. Kwong, A. M. C. Ng, and A. B. Djurisic, “Enhanced conversion efficiency of polymeric photovoltaic cell by nanostructured antireflection coating,” Org. Electron. 12(4), 557–561 (2011).
[CrossRef]

Do, Y. R.

S. Nam, J. Han, Y. R. Do, H. Kim, S. Yim, and Y. Kim, “Two-dimensional photonic crystal arrays for polymer:fullerene solar cells,” Nanotechnology 22(46), 465403 (2011).
[CrossRef] [PubMed]

Dou, L.

J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, and Y. Yang, “A polymer tandem solar cell with 10.6% power conversion efficiency,” Nat. Commun. 4, 1446 (2013).
[CrossRef] [PubMed]

L. Dou, J. You, J. Yang, C.-C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, “Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer,” Nat. Photonics 6(3), 180–185 (2012).
[CrossRef]

Duché, D.

D. Duché, L. Escoubas, J.-J. Simon, C. Gourgon, C. Masclaux, Ph. Torchio, J. Le Rouzo, and F. Flory, “Photonic crystals for improving light absorption in organic solar cells,” Proc. SPIE 8256, 82561K (2012).
[CrossRef]

Dular, P.

P. Dular, C. Geuzaine, F. Henrotte, and W. Legros, “A general environment for the treatment of discrete problems and its application to the finite element method,” IEEE Trans. Magn. 34(5), 3395–3398 (1998).
[CrossRef]

Durrani, S. M. A.

M. F. Al-Kuhaili, S. M. A. Durrani, and E. E. Khawaja, “Effects of preparation conditions and thermocoloration on the optical properties of thin films of molybdenum oxide,” Thin Solid Films 408(1–2), 188–193 (2002).
[CrossRef]

Emery, K.

J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, and Y. Yang, “A polymer tandem solar cell with 10.6% power conversion efficiency,” Nat. Commun. 4, 1446 (2013).
[CrossRef] [PubMed]

L. Dou, J. You, J. Yang, C.-C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, “Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer,” Nat. Photonics 6(3), 180–185 (2012).
[CrossRef]

Escoubas, L.

D. Duché, L. Escoubas, J.-J. Simon, C. Gourgon, C. Masclaux, Ph. Torchio, J. Le Rouzo, and F. Flory, “Photonic crystals for improving light absorption in organic solar cells,” Proc. SPIE 8256, 82561K (2012).
[CrossRef]

F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007).
[CrossRef]

Eyderman, S.

S. Eyderman, S. John, and A. Deinega, “Solar light trapping in slanted conical-pore photonic crystals: Beyond statistical ray trapping,” J. Appl. Phys. 113(15), 154315 (2013).
[CrossRef]

Fan, S.

Flory, F.

D. Duché, L. Escoubas, J.-J. Simon, C. Gourgon, C. Masclaux, Ph. Torchio, J. Le Rouzo, and F. Flory, “Photonic crystals for improving light absorption in organic solar cells,” Proc. SPIE 8256, 82561K (2012).
[CrossRef]

F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007).
[CrossRef]

Forberich, K.

K. Forberich, G. Dennler, M. C. Scharber, K. Hingerl, T. Fromherz, and C. J. Brabec, “Performance improvement of organic solar cells with moth eye anti-reflection coating,” Thin Solid Films 516(20), 7167–7170 (2008).
[CrossRef]

Fossati, C.

Fromherz, T.

K. Forberich, G. Dennler, M. C. Scharber, K. Hingerl, T. Fromherz, and C. J. Brabec, “Performance improvement of organic solar cells with moth eye anti-reflection coating,” Thin Solid Films 516(20), 7167–7170 (2008).
[CrossRef]

Fuentes-Hernandez, C.

Y. Zhou, C. Fuentes-Hernandez, J. W. Shim, T. M. Khan, and B. Kippelen, “High performance polymeric charge recombination layer for organic tandem solar cells,” Energy Environ. Sci. 5(12), 9827–9832 (2012).
[CrossRef]

Fung, D. D. S.

X. H. Li, W. E. I. Sha, W. C. H. Choy, D. D. S. Fung, and F. X. Xie, “Efficient inverted polymer solar cells with directly patterned active layer and silver back grating,” J. Phys. Chem. C 116(12), 7200–7206 (2012).
[CrossRef]

Gadegaard, J.

Ganesh, V. A.

H. K. Raut, S. S. Dinachali, A. Y. He, V. A. Ganesh, M. S. M. Saifullah, J. Law, and S. Ramakrishna, “Robust and durable polyhedral oligomeric silsesquioxane-based anti-reflective nanostructures with broadband quasi-omnidirectional properties,” Energy Environ. Sci. 6(6), 1929–1937 (2013).
[CrossRef]

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
[CrossRef]

Gao, J.

J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, and Y. Yang, “A polymer tandem solar cell with 10.6% power conversion efficiency,” Nat. Commun. 4, 1446 (2013).
[CrossRef] [PubMed]

J. You, C.-C. Chen, Z. Hong, K. Yoshimura, K. Ohya, R. Xu, S. Ye, J. Gao, G. Li, and Y. Yang, “10.2% power conversion efficiency polymer tandem solar cells consisting of two identical sub-cells,” Adv. Mater. 25(29), 3973–3978 (2013).
[CrossRef] [PubMed]

Geuzaine, C.

P. Dular, C. Geuzaine, F. Henrotte, and W. Legros, “A general environment for the treatment of discrete problems and its application to the finite element method,” IEEE Trans. Magn. 34(5), 3395–3398 (1998).
[CrossRef]

Ghosh, S.

L. A. A. Pettersson, S. Ghosh, and O. Inganäs, “Optical anisotropy in thin films of poly(3,4-ethylenedioxythiophene)-poly(4-styrenesulfonate),” Org. Electron. 3(3-4), 143–148 (2002).
[CrossRef]

Gleason, K. K.

A. M. Coclite, R. M. Howden, D. C. Borrelli, C. D. Petruczok, R. Yang, J. L. Yagüe, A. Ugur, N. Chen, S. Lee, W. J. Jo, A. Liu, X. Wang, and K. K. Gleason, “25th anniversary article: Cvd polymers: A new paradigm for surface modification and device fabrication,” Adv. Mater. 25(38), 5392–5423 (2013).
[CrossRef] [PubMed]

Gourgon, C.

D. Duché, L. Escoubas, J.-J. Simon, C. Gourgon, C. Masclaux, Ph. Torchio, J. Le Rouzo, and F. Flory, “Photonic crystals for improving light absorption in organic solar cells,” Proc. SPIE 8256, 82561K (2012).
[CrossRef]

Guillerez, S.

F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007).
[CrossRef]

Guo, L. J.

L. J. Guo, “Nanoimprint lithography: methods and material requirements,” Adv. Mater. 19(4), 495–513 (2007).
[CrossRef]

Guo, X.

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater. 24(22), 3046–3052 (2012).
[CrossRef] [PubMed]

Han, J.

S. Nam, J. Han, Y. R. Do, H. Kim, S. Yim, and Y. Kim, “Two-dimensional photonic crystal arrays for polymer:fullerene solar cells,” Nanotechnology 22(46), 465403 (2011).
[CrossRef] [PubMed]

Hart, A. J.

S. Tawfick, M. De Volder, D. Copic, S. J. Park, C. R. Oliver, E. S. Polsen, M. J. Roberts, and A. J. Hart, “Engineering of micro- and nanostructured surfaces with anisotropic geometries and properties,” Adv. Mater. 24(13), 1628–1674 (2012).
[CrossRef] [PubMed]

Haug, F.-J.

He, A. Y.

H. K. Raut, S. S. Dinachali, A. Y. He, V. A. Ganesh, M. S. M. Saifullah, J. Law, and S. Ramakrishna, “Robust and durable polyhedral oligomeric silsesquioxane-based anti-reflective nanostructures with broadband quasi-omnidirectional properties,” Energy Environ. Sci. 6(6), 1929–1937 (2013).
[CrossRef]

He, Y.

L. Dou, J. You, J. Yang, C.-C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, “Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer,” Nat. Photonics 6(3), 180–185 (2012).
[CrossRef]

He, Z.

Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure,” Nat. Photonics 6(9), 591–595 (2012).
[CrossRef]

Z. He, C. Zhong, X. Huang, W.-Y. Wong, H. Wu, L. Chen, S. Su, and Y. Cao, “Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill dactor in polymer solar cells,” Adv. Mater. 23(40), 4636–4643 (2011).
[CrossRef] [PubMed]

Heeger, A. J.

D. H. Wang, J. Seifter, J. H. Park, D.-G. Choi, and A. J. Heeger, “Efficiency increase in flexible bulk heterojunction solar cells with nano-patterned indium zinc oxide anode,” Adv. Energy Mater. 2(11), 1319–1322 (2012).
[CrossRef]

Henrotte, F.

P. Dular, C. Geuzaine, F. Henrotte, and W. Legros, “A general environment for the treatment of discrete problems and its application to the finite element method,” IEEE Trans. Magn. 34(5), 3395–3398 (1998).
[CrossRef]

Herzig, H. P.

Hingerl, K.

K. Forberich, G. Dennler, M. C. Scharber, K. Hingerl, T. Fromherz, and C. J. Brabec, “Performance improvement of organic solar cells with moth eye anti-reflection coating,” Thin Solid Films 516(20), 7167–7170 (2008).
[CrossRef]

Ho, K.-M.

K. S. Nalwa, J.-M. Park, K.-M. Ho, and S. Chaudhary, “On realizing higher efficiency polymer solar cells using a textured substrate platform,” Adv. Mater. 23(1), 112–116 (2011).
[CrossRef] [PubMed]

Hong, Z.

J. You, C.-C. Chen, Z. Hong, K. Yoshimura, K. Ohya, R. Xu, S. Ye, J. Gao, G. Li, and Y. Yang, “10.2% power conversion efficiency polymer tandem solar cells consisting of two identical sub-cells,” Adv. Mater. 25(29), 3973–3978 (2013).
[CrossRef] [PubMed]

Hoppe, H.

H. Hoppe, N. S. Sariciftci, and D. Meissner, “Optical constants of conjugated polymer/fullerene based bulk-heterojunction organic solar cells,” Mol. Cryst. Liq. Cryst. 385(1), 113–119 (2002).
[CrossRef]

Hou, J.

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater. 24(22), 3046–3052 (2012).
[CrossRef] [PubMed]

Howden, R. M.

A. M. Coclite, R. M. Howden, D. C. Borrelli, C. D. Petruczok, R. Yang, J. L. Yagüe, A. Ugur, N. Chen, S. Lee, W. J. Jo, A. Liu, X. Wang, and K. K. Gleason, “25th anniversary article: Cvd polymers: A new paradigm for surface modification and device fabrication,” Adv. Mater. 25(38), 5392–5423 (2013).
[CrossRef] [PubMed]

Huang, X.

Z. He, C. Zhong, X. Huang, W.-Y. Wong, H. Wu, L. Chen, S. Su, and Y. Cao, “Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill dactor in polymer solar cells,” Adv. Mater. 23(40), 4636–4643 (2011).
[CrossRef] [PubMed]

Huo, L.

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater. 24(22), 3046–3052 (2012).
[CrossRef] [PubMed]

Inganäs, O.

L. A. A. Pettersson, S. Ghosh, and O. Inganäs, “Optical anisotropy in thin films of poly(3,4-ethylenedioxythiophene)-poly(4-styrenesulfonate),” Org. Electron. 3(3-4), 143–148 (2002).
[CrossRef]

Jensen, T. K.

Jeong, D. S.

Jiang, B.

W.-L. Min, A. P. Betancourt, P. Jiang, and B. Jiang, “Bioinspired broadband antireflection coatings on GaSb,” Appl. Phys. Lett. 92(14), 141109 (2008).
[CrossRef]

Jiang, P.

W.-L. Min, A. P. Betancourt, P. Jiang, and B. Jiang, “Bioinspired broadband antireflection coatings on GaSb,” Appl. Phys. Lett. 92(14), 141109 (2008).
[CrossRef]

Jo, W. J.

A. M. Coclite, R. M. Howden, D. C. Borrelli, C. D. Petruczok, R. Yang, J. L. Yagüe, A. Ugur, N. Chen, S. Lee, W. J. Jo, A. Liu, X. Wang, and K. K. Gleason, “25th anniversary article: Cvd polymers: A new paradigm for surface modification and device fabrication,” Adv. Mater. 25(38), 5392–5423 (2013).
[CrossRef] [PubMed]

John, S.

S. Eyderman, S. John, and A. Deinega, “Solar light trapping in slanted conical-pore photonic crystals: Beyond statistical ray trapping,” J. Appl. Phys. 113(15), 154315 (2013).
[CrossRef]

Kato, T.

J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, and Y. Yang, “A polymer tandem solar cell with 10.6% power conversion efficiency,” Nat. Commun. 4, 1446 (2013).
[CrossRef] [PubMed]

Khan, T. M.

Y. Zhou, C. Fuentes-Hernandez, J. W. Shim, T. M. Khan, and B. Kippelen, “High performance polymeric charge recombination layer for organic tandem solar cells,” Energy Environ. Sci. 5(12), 9827–9832 (2012).
[CrossRef]

Khawaja, E. E.

M. F. Al-Kuhaili, S. M. A. Durrani, and E. E. Khawaja, “Effects of preparation conditions and thermocoloration on the optical properties of thin films of molybdenum oxide,” Thin Solid Films 408(1–2), 188–193 (2002).
[CrossRef]

Kim, H.

S. Nam, J. Han, Y. R. Do, H. Kim, S. Yim, and Y. Kim, “Two-dimensional photonic crystal arrays for polymer:fullerene solar cells,” Nanotechnology 22(46), 465403 (2011).
[CrossRef] [PubMed]

Kim, I.

Kim, Y.

S. Nam, J. Han, Y. R. Do, H. Kim, S. Yim, and Y. Kim, “Two-dimensional photonic crystal arrays for polymer:fullerene solar cells,” Nanotechnology 22(46), 465403 (2011).
[CrossRef] [PubMed]

Kippelen, B.

Y. Zhou, C. Fuentes-Hernandez, J. W. Shim, T. M. Khan, and B. Kippelen, “High performance polymeric charge recombination layer for organic tandem solar cells,” Energy Environ. Sci. 5(12), 9827–9832 (2012).
[CrossRef]

Ko, D.-H.

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9(7), 2742–2746 (2009).
[CrossRef] [PubMed]

J. R. Tumbleston, D.-H. Ko, E. T. Samulski, and R. Lopez, “Absorption and quasiguided mode analysis of organic solar cells with photonic crystal photoactive layers,” Opt. Express 17(9), 7670–7681 (2009).
[CrossRef] [PubMed]

Kristensen, P. K.

Kwok, K. C.

W. C. Luk, K. M. Yeung, K. C. Tam, K. L. Ng, K. C. Kwok, C. Y. Kwong, A. M. C. Ng, and A. B. Djurisic, “Enhanced conversion efficiency of polymeric photovoltaic cell by nanostructured antireflection coating,” Org. Electron. 12(4), 557–561 (2011).
[CrossRef]

Kwong, C. Y.

W. C. Luk, K. M. Yeung, K. C. Tam, K. L. Ng, K. C. Kwok, C. Y. Kwong, A. M. C. Ng, and A. B. Djurisic, “Enhanced conversion efficiency of polymeric photovoltaic cell by nanostructured antireflection coating,” Org. Electron. 12(4), 557–561 (2011).
[CrossRef]

Kwong, J. H. W.

J. You, X. Li, F. X. Xie, W. E. I. Sha, J. H. W. Kwong, G. Li, W. C. H. Choy, and Y. Yang, “Surface plasmon and scattering-enhanced low-bandgap polymer solar cell by a metal grating back electrode,” Adv. Energy Mater. 2(10), 1203–1207 (2012).
[CrossRef]

Law, J.

H. K. Raut, S. S. Dinachali, A. Y. He, V. A. Ganesh, M. S. M. Saifullah, J. Law, and S. Ramakrishna, “Robust and durable polyhedral oligomeric silsesquioxane-based anti-reflective nanostructures with broadband quasi-omnidirectional properties,” Energy Environ. Sci. 6(6), 1929–1937 (2013).
[CrossRef]

Le Rouzo, J.

D. Duché, L. Escoubas, J.-J. Simon, C. Gourgon, C. Masclaux, Ph. Torchio, J. Le Rouzo, and F. Flory, “Photonic crystals for improving light absorption in organic solar cells,” Proc. SPIE 8256, 82561K (2012).
[CrossRef]

Lee, K.-S.

Lee, S.

A. M. Coclite, R. M. Howden, D. C. Borrelli, C. D. Petruczok, R. Yang, J. L. Yagüe, A. Ugur, N. Chen, S. Lee, W. J. Jo, A. Liu, X. Wang, and K. K. Gleason, “25th anniversary article: Cvd polymers: A new paradigm for surface modification and device fabrication,” Adv. Mater. 25(38), 5392–5423 (2013).
[CrossRef] [PubMed]

Lee, T. S.

Lee, W. S.

Legros, W.

P. Dular, C. Geuzaine, F. Henrotte, and W. Legros, “A general environment for the treatment of discrete problems and its application to the finite element method,” IEEE Trans. Magn. 34(5), 3395–3398 (1998).
[CrossRef]

Leung, D. C. W.

X. Li, W. C. H. Choy, X. Ren, J. Xin, P. Lin, and D. C. W. Leung, “Polarization-independent efficiency enhancement of organic solar cells by using 3-dimensional plasmonic electrode,” Appl. Phys. Lett. 102(15), 153304 (2013).
[CrossRef]

Li, G.

J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, and Y. Yang, “A polymer tandem solar cell with 10.6% power conversion efficiency,” Nat. Commun. 4, 1446 (2013).
[CrossRef] [PubMed]

J. You, C.-C. Chen, Z. Hong, K. Yoshimura, K. Ohya, R. Xu, S. Ye, J. Gao, G. Li, and Y. Yang, “10.2% power conversion efficiency polymer tandem solar cells consisting of two identical sub-cells,” Adv. Mater. 25(29), 3973–3978 (2013).
[CrossRef] [PubMed]

J. You, X. Li, F. X. Xie, W. E. I. Sha, J. H. W. Kwong, G. Li, W. C. H. Choy, and Y. Yang, “Surface plasmon and scattering-enhanced low-bandgap polymer solar cell by a metal grating back electrode,” Adv. Energy Mater. 2(10), 1203–1207 (2012).
[CrossRef]

L. Dou, J. You, J. Yang, C.-C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, “Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer,” Nat. Photonics 6(3), 180–185 (2012).
[CrossRef]

Li, X.

X. Li, W. C. H. Choy, X. Ren, J. Xin, P. Lin, and D. C. W. Leung, “Polarization-independent efficiency enhancement of organic solar cells by using 3-dimensional plasmonic electrode,” Appl. Phys. Lett. 102(15), 153304 (2013).
[CrossRef]

J. You, X. Li, F. X. Xie, W. E. I. Sha, J. H. W. Kwong, G. Li, W. C. H. Choy, and Y. Yang, “Surface plasmon and scattering-enhanced low-bandgap polymer solar cell by a metal grating back electrode,” Adv. Energy Mater. 2(10), 1203–1207 (2012).
[CrossRef]

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater. 24(22), 3046–3052 (2012).
[CrossRef] [PubMed]

Li, X. H.

X. H. Li, W. E. I. Sha, W. C. H. Choy, D. D. S. Fung, and F. X. Xie, “Efficient inverted polymer solar cells with directly patterned active layer and silver back grating,” J. Phys. Chem. C 116(12), 7200–7206 (2012).
[CrossRef]

Li, Y.

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater. 24(22), 3046–3052 (2012).
[CrossRef] [PubMed]

Lin, P.

X. Li, W. C. H. Choy, X. Ren, J. Xin, P. Lin, and D. C. W. Leung, “Polarization-independent efficiency enhancement of organic solar cells by using 3-dimensional plasmonic electrode,” Appl. Phys. Lett. 102(15), 153304 (2013).
[CrossRef]

Liu, A.

A. M. Coclite, R. M. Howden, D. C. Borrelli, C. D. Petruczok, R. Yang, J. L. Yagüe, A. Ugur, N. Chen, S. Lee, W. J. Jo, A. Liu, X. Wang, and K. K. Gleason, “25th anniversary article: Cvd polymers: A new paradigm for surface modification and device fabrication,” Adv. Mater. 25(38), 5392–5423 (2013).
[CrossRef] [PubMed]

Lopez, R.

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9(7), 2742–2746 (2009).
[CrossRef] [PubMed]

J. R. Tumbleston, D.-H. Ko, E. T. Samulski, and R. Lopez, “Absorption and quasiguided mode analysis of organic solar cells with photonic crystal photoactive layers,” Opt. Express 17(9), 7670–7681 (2009).
[CrossRef] [PubMed]

Luk, W. C.

W. C. Luk, K. M. Yeung, K. C. Tam, K. L. Ng, K. C. Kwok, C. Y. Kwong, A. M. C. Ng, and A. B. Djurisic, “Enhanced conversion efficiency of polymeric photovoltaic cell by nanostructured antireflection coating,” Org. Electron. 12(4), 557–561 (2011).
[CrossRef]

Masclaux, C.

D. Duché, L. Escoubas, J.-J. Simon, C. Gourgon, C. Masclaux, Ph. Torchio, J. Le Rouzo, and F. Flory, “Photonic crystals for improving light absorption in organic solar cells,” Proc. SPIE 8256, 82561K (2012).
[CrossRef]

Meissner, D.

H. Hoppe, N. S. Sariciftci, and D. Meissner, “Optical constants of conjugated polymer/fullerene based bulk-heterojunction organic solar cells,” Mol. Cryst. Liq. Cryst. 385(1), 113–119 (2002).
[CrossRef]

Min, W.-L.

W.-L. Min, A. P. Betancourt, P. Jiang, and B. Jiang, “Bioinspired broadband antireflection coatings on GaSb,” Appl. Phys. Lett. 92(14), 141109 (2008).
[CrossRef]

Monestier, F.

F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007).
[CrossRef]

Moriarty, T.

J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, and Y. Yang, “A polymer tandem solar cell with 10.6% power conversion efficiency,” Nat. Commun. 4, 1446 (2013).
[CrossRef] [PubMed]

L. Dou, J. You, J. Yang, C.-C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, “Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer,” Nat. Photonics 6(3), 180–185 (2012).
[CrossRef]

Murase, S.

L. Dou, J. You, J. Yang, C.-C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, “Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer,” Nat. Photonics 6(3), 180–185 (2012).
[CrossRef]

Nair, A. S.

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
[CrossRef]

Nalwa, K. S.

K. S. Nalwa, J.-M. Park, K.-M. Ho, and S. Chaudhary, “On realizing higher efficiency polymer solar cells using a textured substrate platform,” Adv. Mater. 23(1), 112–116 (2011).
[CrossRef] [PubMed]

K. S. Nalwa and S. Chaudhary, “Design of light-trapping microscale-textured surfaces for efficient organic solar cells,” Opt. Express 18(5), 5168–5178 (2010).
[CrossRef] [PubMed]

Nam, S.

S. Nam, J. Han, Y. R. Do, H. Kim, S. Yim, and Y. Kim, “Two-dimensional photonic crystal arrays for polymer:fullerene solar cells,” Nanotechnology 22(46), 465403 (2011).
[CrossRef] [PubMed]

Naqavi, A.

Ng, A. M. C.

W. C. Luk, K. M. Yeung, K. C. Tam, K. L. Ng, K. C. Kwok, C. Y. Kwong, A. M. C. Ng, and A. B. Djurisic, “Enhanced conversion efficiency of polymeric photovoltaic cell by nanostructured antireflection coating,” Org. Electron. 12(4), 557–561 (2011).
[CrossRef]

Ng, K. L.

W. C. Luk, K. M. Yeung, K. C. Tam, K. L. Ng, K. C. Kwok, C. Y. Kwong, A. M. C. Ng, and A. B. Djurisic, “Enhanced conversion efficiency of polymeric photovoltaic cell by nanostructured antireflection coating,” Org. Electron. 12(4), 557–561 (2011).
[CrossRef]

Nicolet, A.

Ohya, K.

J. You, C.-C. Chen, Z. Hong, K. Yoshimura, K. Ohya, R. Xu, S. Ye, J. Gao, G. Li, and Y. Yang, “10.2% power conversion efficiency polymer tandem solar cells consisting of two identical sub-cells,” Adv. Mater. 25(29), 3973–3978 (2013).
[CrossRef] [PubMed]

J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, and Y. Yang, “A polymer tandem solar cell with 10.6% power conversion efficiency,” Nat. Commun. 4, 1446 (2013).
[CrossRef] [PubMed]

Oliver, C. R.

S. Tawfick, M. De Volder, D. Copic, S. J. Park, C. R. Oliver, E. S. Polsen, M. J. Roberts, and A. J. Hart, “Engineering of micro- and nanostructured surfaces with anisotropic geometries and properties,” Adv. Mater. 24(13), 1628–1674 (2012).
[CrossRef] [PubMed]

Paeder, V.

Park, J. H.

D. H. Wang, J. Seifter, J. H. Park, D.-G. Choi, and A. J. Heeger, “Efficiency increase in flexible bulk heterojunction solar cells with nano-patterned indium zinc oxide anode,” Adv. Energy Mater. 2(11), 1319–1322 (2012).
[CrossRef]

Park, J.-M.

K. S. Nalwa, J.-M. Park, K.-M. Ho, and S. Chaudhary, “On realizing higher efficiency polymer solar cells using a textured substrate platform,” Adv. Mater. 23(1), 112–116 (2011).
[CrossRef] [PubMed]

Park, S. J.

S. Tawfick, M. De Volder, D. Copic, S. J. Park, C. R. Oliver, E. S. Polsen, M. J. Roberts, and A. J. Hart, “Engineering of micro- and nanostructured surfaces with anisotropic geometries and properties,” Adv. Mater. 24(13), 1628–1674 (2012).
[CrossRef] [PubMed]

Pedersen, K.

Pedersen, T. G.

Petruczok, C. D.

A. M. Coclite, R. M. Howden, D. C. Borrelli, C. D. Petruczok, R. Yang, J. L. Yagüe, A. Ugur, N. Chen, S. Lee, W. J. Jo, A. Liu, X. Wang, and K. K. Gleason, “25th anniversary article: Cvd polymers: A new paradigm for surface modification and device fabrication,” Adv. Mater. 25(38), 5392–5423 (2013).
[CrossRef] [PubMed]

Pettersson, L. A. A.

L. A. A. Pettersson, S. Ghosh, and O. Inganäs, “Optical anisotropy in thin films of poly(3,4-ethylenedioxythiophene)-poly(4-styrenesulfonate),” Org. Electron. 3(3-4), 143–148 (2002).
[CrossRef]

Polsen, E. S.

S. Tawfick, M. De Volder, D. Copic, S. J. Park, C. R. Oliver, E. S. Polsen, M. J. Roberts, and A. J. Hart, “Engineering of micro- and nanostructured surfaces with anisotropic geometries and properties,” Adv. Mater. 24(13), 1628–1674 (2012).
[CrossRef] [PubMed]

Ramakrishna, S.

H. K. Raut, S. S. Dinachali, A. Y. He, V. A. Ganesh, M. S. M. Saifullah, J. Law, and S. Ramakrishna, “Robust and durable polyhedral oligomeric silsesquioxane-based anti-reflective nanostructures with broadband quasi-omnidirectional properties,” Energy Environ. Sci. 6(6), 1929–1937 (2013).
[CrossRef]

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
[CrossRef]

Raman, A.

Raut, H. K.

H. K. Raut, S. S. Dinachali, A. Y. He, V. A. Ganesh, M. S. M. Saifullah, J. Law, and S. Ramakrishna, “Robust and durable polyhedral oligomeric silsesquioxane-based anti-reflective nanostructures with broadband quasi-omnidirectional properties,” Energy Environ. Sci. 6(6), 1929–1937 (2013).
[CrossRef]

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
[CrossRef]

Ren, X.

X. Li, W. C. H. Choy, X. Ren, J. Xin, P. Lin, and D. C. W. Leung, “Polarization-independent efficiency enhancement of organic solar cells by using 3-dimensional plasmonic electrode,” Appl. Phys. Lett. 102(15), 153304 (2013).
[CrossRef]

Roberts, M. J.

S. Tawfick, M. De Volder, D. Copic, S. J. Park, C. R. Oliver, E. S. Polsen, M. J. Roberts, and A. J. Hart, “Engineering of micro- and nanostructured surfaces with anisotropic geometries and properties,” Adv. Mater. 24(13), 1628–1674 (2012).
[CrossRef] [PubMed]

Saifullah, M. S. M.

H. K. Raut, S. S. Dinachali, A. Y. He, V. A. Ganesh, M. S. M. Saifullah, J. Law, and S. Ramakrishna, “Robust and durable polyhedral oligomeric silsesquioxane-based anti-reflective nanostructures with broadband quasi-omnidirectional properties,” Energy Environ. Sci. 6(6), 1929–1937 (2013).
[CrossRef]

Samulski, E. T.

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9(7), 2742–2746 (2009).
[CrossRef] [PubMed]

J. R. Tumbleston, D.-H. Ko, E. T. Samulski, and R. Lopez, “Absorption and quasiguided mode analysis of organic solar cells with photonic crystal photoactive layers,” Opt. Express 17(9), 7670–7681 (2009).
[CrossRef] [PubMed]

Sariciftci, N. S.

H. Hoppe, N. S. Sariciftci, and D. Meissner, “Optical constants of conjugated polymer/fullerene based bulk-heterojunction organic solar cells,” Mol. Cryst. Liq. Cryst. 385(1), 113–119 (2002).
[CrossRef]

Scharber, M. C.

K. Forberich, G. Dennler, M. C. Scharber, K. Hingerl, T. Fromherz, and C. J. Brabec, “Performance improvement of organic solar cells with moth eye anti-reflection coating,” Thin Solid Films 516(20), 7167–7170 (2008).
[CrossRef]

Scharf, T.

Seifter, J.

D. H. Wang, J. Seifter, J. H. Park, D.-G. Choi, and A. J. Heeger, “Efficiency increase in flexible bulk heterojunction solar cells with nano-patterned indium zinc oxide anode,” Adv. Energy Mater. 2(11), 1319–1322 (2012).
[CrossRef]

Sha, W. E. I.

L. Chen, W. E. I. Sha, and W. C. H. Choy, “Light harvesting improvement of organic solar cells with self-enhanced active layer designs,” Opt. Express 20(7), 8175–8185 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-20-7-8175 .
[CrossRef] [PubMed]

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater. 24(22), 3046–3052 (2012).
[CrossRef] [PubMed]

X. H. Li, W. E. I. Sha, W. C. H. Choy, D. D. S. Fung, and F. X. Xie, “Efficient inverted polymer solar cells with directly patterned active layer and silver back grating,” J. Phys. Chem. C 116(12), 7200–7206 (2012).
[CrossRef]

J. You, X. Li, F. X. Xie, W. E. I. Sha, J. H. W. Kwong, G. Li, W. C. H. Choy, and Y. Yang, “Surface plasmon and scattering-enhanced low-bandgap polymer solar cell by a metal grating back electrode,” Adv. Energy Mater. 2(10), 1203–1207 (2012).
[CrossRef]

Shalev, O.

S. Biswas, O. Shalev, and M. Shtein, “Thin-film growth and patterning techniques for small molecular organic compounds used in optoelectronic device applications,” Annu. Rev. Chem. Biomol. Eng. 4(1), 289–317 (2013).
[CrossRef] [PubMed]

Shim, J. W.

Y. Zhou, C. Fuentes-Hernandez, J. W. Shim, T. M. Khan, and B. Kippelen, “High performance polymeric charge recombination layer for organic tandem solar cells,” Energy Environ. Sci. 5(12), 9827–9832 (2012).
[CrossRef]

Shtein, M.

S. Biswas, O. Shalev, and M. Shtein, “Thin-film growth and patterning techniques for small molecular organic compounds used in optoelectronic device applications,” Annu. Rev. Chem. Biomol. Eng. 4(1), 289–317 (2013).
[CrossRef] [PubMed]

Simon, J.-J.

D. Duché, L. Escoubas, J.-J. Simon, C. Gourgon, C. Masclaux, Ph. Torchio, J. Le Rouzo, and F. Flory, “Photonic crystals for improving light absorption in organic solar cells,” Proc. SPIE 8256, 82561K (2012).
[CrossRef]

F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007).
[CrossRef]

Söderström, K.

Søndergaard, T.

Su, S.

Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure,” Nat. Photonics 6(9), 591–595 (2012).
[CrossRef]

Z. He, C. Zhong, X. Huang, W.-Y. Wong, H. Wu, L. Chen, S. Su, and Y. Cao, “Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill dactor in polymer solar cells,” Adv. Mater. 23(40), 4636–4643 (2011).
[CrossRef] [PubMed]

Tam, K. C.

W. C. Luk, K. M. Yeung, K. C. Tam, K. L. Ng, K. C. Kwok, C. Y. Kwong, A. M. C. Ng, and A. B. Djurisic, “Enhanced conversion efficiency of polymeric photovoltaic cell by nanostructured antireflection coating,” Org. Electron. 12(4), 557–561 (2011).
[CrossRef]

Tawfick, S.

S. Tawfick, M. De Volder, D. Copic, S. J. Park, C. R. Oliver, E. S. Polsen, M. J. Roberts, and A. J. Hart, “Engineering of micro- and nanostructured surfaces with anisotropic geometries and properties,” Adv. Mater. 24(13), 1628–1674 (2012).
[CrossRef] [PubMed]

Torchio, P.

F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007).
[CrossRef]

Torchio, Ph.

D. Duché, L. Escoubas, J.-J. Simon, C. Gourgon, C. Masclaux, Ph. Torchio, J. Le Rouzo, and F. Flory, “Photonic crystals for improving light absorption in organic solar cells,” Proc. SPIE 8256, 82561K (2012).
[CrossRef]

Tumbleston, J. R.

J. R. Tumbleston, D.-H. Ko, E. T. Samulski, and R. Lopez, “Absorption and quasiguided mode analysis of organic solar cells with photonic crystal photoactive layers,” Opt. Express 17(9), 7670–7681 (2009).
[CrossRef] [PubMed]

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9(7), 2742–2746 (2009).
[CrossRef] [PubMed]

Ugur, A.

A. M. Coclite, R. M. Howden, D. C. Borrelli, C. D. Petruczok, R. Yang, J. L. Yagüe, A. Ugur, N. Chen, S. Lee, W. J. Jo, A. Liu, X. Wang, and K. K. Gleason, “25th anniversary article: Cvd polymers: A new paradigm for surface modification and device fabrication,” Adv. Mater. 25(38), 5392–5423 (2013).
[CrossRef] [PubMed]

Wang, D. H.

D. H. Wang, J. Seifter, J. H. Park, D.-G. Choi, and A. J. Heeger, “Efficiency increase in flexible bulk heterojunction solar cells with nano-patterned indium zinc oxide anode,” Adv. Energy Mater. 2(11), 1319–1322 (2012).
[CrossRef]

Wang, X.

A. M. Coclite, R. M. Howden, D. C. Borrelli, C. D. Petruczok, R. Yang, J. L. Yagüe, A. Ugur, N. Chen, S. Lee, W. J. Jo, A. Liu, X. Wang, and K. K. Gleason, “25th anniversary article: Cvd polymers: A new paradigm for surface modification and device fabrication,” Adv. Mater. 25(38), 5392–5423 (2013).
[CrossRef] [PubMed]

Williams, S.

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9(7), 2742–2746 (2009).
[CrossRef] [PubMed]

Wong, W.-Y.

Z. He, C. Zhong, X. Huang, W.-Y. Wong, H. Wu, L. Chen, S. Su, and Y. Cao, “Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill dactor in polymer solar cells,” Adv. Mater. 23(40), 4636–4643 (2011).
[CrossRef] [PubMed]

Wu, H.

Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure,” Nat. Photonics 6(9), 591–595 (2012).
[CrossRef]

Z. He, C. Zhong, X. Huang, W.-Y. Wong, H. Wu, L. Chen, S. Su, and Y. Cao, “Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill dactor in polymer solar cells,” Adv. Mater. 23(40), 4636–4643 (2011).
[CrossRef] [PubMed]

Xie, F.

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater. 24(22), 3046–3052 (2012).
[CrossRef] [PubMed]

Xie, F. X.

J. You, X. Li, F. X. Xie, W. E. I. Sha, J. H. W. Kwong, G. Li, W. C. H. Choy, and Y. Yang, “Surface plasmon and scattering-enhanced low-bandgap polymer solar cell by a metal grating back electrode,” Adv. Energy Mater. 2(10), 1203–1207 (2012).
[CrossRef]

X. H. Li, W. E. I. Sha, W. C. H. Choy, D. D. S. Fung, and F. X. Xie, “Efficient inverted polymer solar cells with directly patterned active layer and silver back grating,” J. Phys. Chem. C 116(12), 7200–7206 (2012).
[CrossRef]

Xin, J.

X. Li, W. C. H. Choy, X. Ren, J. Xin, P. Lin, and D. C. W. Leung, “Polarization-independent efficiency enhancement of organic solar cells by using 3-dimensional plasmonic electrode,” Appl. Phys. Lett. 102(15), 153304 (2013).
[CrossRef]

Xu, M.

Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure,” Nat. Photonics 6(9), 591–595 (2012).
[CrossRef]

Xu, R.

J. You, C.-C. Chen, Z. Hong, K. Yoshimura, K. Ohya, R. Xu, S. Ye, J. Gao, G. Li, and Y. Yang, “10.2% power conversion efficiency polymer tandem solar cells consisting of two identical sub-cells,” Adv. Mater. 25(29), 3973–3978 (2013).
[CrossRef] [PubMed]

Yagüe, J. L.

A. M. Coclite, R. M. Howden, D. C. Borrelli, C. D. Petruczok, R. Yang, J. L. Yagüe, A. Ugur, N. Chen, S. Lee, W. J. Jo, A. Liu, X. Wang, and K. K. Gleason, “25th anniversary article: Cvd polymers: A new paradigm for surface modification and device fabrication,” Adv. Mater. 25(38), 5392–5423 (2013).
[CrossRef] [PubMed]

Yang, J.

L. Dou, J. You, J. Yang, C.-C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, “Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer,” Nat. Photonics 6(3), 180–185 (2012).
[CrossRef]

Yang, R.

A. M. Coclite, R. M. Howden, D. C. Borrelli, C. D. Petruczok, R. Yang, J. L. Yagüe, A. Ugur, N. Chen, S. Lee, W. J. Jo, A. Liu, X. Wang, and K. K. Gleason, “25th anniversary article: Cvd polymers: A new paradigm for surface modification and device fabrication,” Adv. Mater. 25(38), 5392–5423 (2013).
[CrossRef] [PubMed]

Yang, Y.

J. You, C.-C. Chen, Z. Hong, K. Yoshimura, K. Ohya, R. Xu, S. Ye, J. Gao, G. Li, and Y. Yang, “10.2% power conversion efficiency polymer tandem solar cells consisting of two identical sub-cells,” Adv. Mater. 25(29), 3973–3978 (2013).
[CrossRef] [PubMed]

J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, and Y. Yang, “A polymer tandem solar cell with 10.6% power conversion efficiency,” Nat. Commun. 4, 1446 (2013).
[CrossRef] [PubMed]

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater. 24(22), 3046–3052 (2012).
[CrossRef] [PubMed]

L. Dou, J. You, J. Yang, C.-C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, “Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer,” Nat. Photonics 6(3), 180–185 (2012).
[CrossRef]

J. You, X. Li, F. X. Xie, W. E. I. Sha, J. H. W. Kwong, G. Li, W. C. H. Choy, and Y. Yang, “Surface plasmon and scattering-enhanced low-bandgap polymer solar cell by a metal grating back electrode,” Adv. Energy Mater. 2(10), 1203–1207 (2012).
[CrossRef]

Ye, S.

J. You, C.-C. Chen, Z. Hong, K. Yoshimura, K. Ohya, R. Xu, S. Ye, J. Gao, G. Li, and Y. Yang, “10.2% power conversion efficiency polymer tandem solar cells consisting of two identical sub-cells,” Adv. Mater. 25(29), 3973–3978 (2013).
[CrossRef] [PubMed]

Yeung, K. M.

W. C. Luk, K. M. Yeung, K. C. Tam, K. L. Ng, K. C. Kwok, C. Y. Kwong, A. M. C. Ng, and A. B. Djurisic, “Enhanced conversion efficiency of polymeric photovoltaic cell by nanostructured antireflection coating,” Org. Electron. 12(4), 557–561 (2011).
[CrossRef]

Yim, S.

S. Nam, J. Han, Y. R. Do, H. Kim, S. Yim, and Y. Kim, “Two-dimensional photonic crystal arrays for polymer:fullerene solar cells,” Nanotechnology 22(46), 465403 (2011).
[CrossRef] [PubMed]

Yoshimura, K.

J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, and Y. Yang, “A polymer tandem solar cell with 10.6% power conversion efficiency,” Nat. Commun. 4, 1446 (2013).
[CrossRef] [PubMed]

J. You, C.-C. Chen, Z. Hong, K. Yoshimura, K. Ohya, R. Xu, S. Ye, J. Gao, G. Li, and Y. Yang, “10.2% power conversion efficiency polymer tandem solar cells consisting of two identical sub-cells,” Adv. Mater. 25(29), 3973–3978 (2013).
[CrossRef] [PubMed]

You, J.

J. You, C.-C. Chen, Z. Hong, K. Yoshimura, K. Ohya, R. Xu, S. Ye, J. Gao, G. Li, and Y. Yang, “10.2% power conversion efficiency polymer tandem solar cells consisting of two identical sub-cells,” Adv. Mater. 25(29), 3973–3978 (2013).
[CrossRef] [PubMed]

J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, and Y. Yang, “A polymer tandem solar cell with 10.6% power conversion efficiency,” Nat. Commun. 4, 1446 (2013).
[CrossRef] [PubMed]

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater. 24(22), 3046–3052 (2012).
[CrossRef] [PubMed]

L. Dou, J. You, J. Yang, C.-C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, “Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer,” Nat. Photonics 6(3), 180–185 (2012).
[CrossRef]

J. You, X. Li, F. X. Xie, W. E. I. Sha, J. H. W. Kwong, G. Li, W. C. H. Choy, and Y. Yang, “Surface plasmon and scattering-enhanced low-bandgap polymer solar cell by a metal grating back electrode,” Adv. Energy Mater. 2(10), 1203–1207 (2012).
[CrossRef]

Yu, Z.

Zhang, L.

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9(7), 2742–2746 (2009).
[CrossRef] [PubMed]

Zhong, C.

Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure,” Nat. Photonics 6(9), 591–595 (2012).
[CrossRef]

Z. He, C. Zhong, X. Huang, W.-Y. Wong, H. Wu, L. Chen, S. Su, and Y. Cao, “Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill dactor in polymer solar cells,” Adv. Mater. 23(40), 4636–4643 (2011).
[CrossRef] [PubMed]

Zhou, Y.

Y. Zhou, C. Fuentes-Hernandez, J. W. Shim, T. M. Khan, and B. Kippelen, “High performance polymeric charge recombination layer for organic tandem solar cells,” Energy Environ. Sci. 5(12), 9827–9832 (2012).
[CrossRef]

Zolla, F.

Adv. Energy Mater. (2)

D. H. Wang, J. Seifter, J. H. Park, D.-G. Choi, and A. J. Heeger, “Efficiency increase in flexible bulk heterojunction solar cells with nano-patterned indium zinc oxide anode,” Adv. Energy Mater. 2(11), 1319–1322 (2012).
[CrossRef]

J. You, X. Li, F. X. Xie, W. E. I. Sha, J. H. W. Kwong, G. Li, W. C. H. Choy, and Y. Yang, “Surface plasmon and scattering-enhanced low-bandgap polymer solar cell by a metal grating back electrode,” Adv. Energy Mater. 2(10), 1203–1207 (2012).
[CrossRef]

Adv. Mater. (7)

Z. He, C. Zhong, X. Huang, W.-Y. Wong, H. Wu, L. Chen, S. Su, and Y. Cao, “Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill dactor in polymer solar cells,” Adv. Mater. 23(40), 4636–4643 (2011).
[CrossRef] [PubMed]

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater. 24(22), 3046–3052 (2012).
[CrossRef] [PubMed]

J. You, C.-C. Chen, Z. Hong, K. Yoshimura, K. Ohya, R. Xu, S. Ye, J. Gao, G. Li, and Y. Yang, “10.2% power conversion efficiency polymer tandem solar cells consisting of two identical sub-cells,” Adv. Mater. 25(29), 3973–3978 (2013).
[CrossRef] [PubMed]

L. J. Guo, “Nanoimprint lithography: methods and material requirements,” Adv. Mater. 19(4), 495–513 (2007).
[CrossRef]

S. Tawfick, M. De Volder, D. Copic, S. J. Park, C. R. Oliver, E. S. Polsen, M. J. Roberts, and A. J. Hart, “Engineering of micro- and nanostructured surfaces with anisotropic geometries and properties,” Adv. Mater. 24(13), 1628–1674 (2012).
[CrossRef] [PubMed]

K. S. Nalwa, J.-M. Park, K.-M. Ho, and S. Chaudhary, “On realizing higher efficiency polymer solar cells using a textured substrate platform,” Adv. Mater. 23(1), 112–116 (2011).
[CrossRef] [PubMed]

A. M. Coclite, R. M. Howden, D. C. Borrelli, C. D. Petruczok, R. Yang, J. L. Yagüe, A. Ugur, N. Chen, S. Lee, W. J. Jo, A. Liu, X. Wang, and K. K. Gleason, “25th anniversary article: Cvd polymers: A new paradigm for surface modification and device fabrication,” Adv. Mater. 25(38), 5392–5423 (2013).
[CrossRef] [PubMed]

Annu. Rev. Chem. Biomol. Eng. (1)

S. Biswas, O. Shalev, and M. Shtein, “Thin-film growth and patterning techniques for small molecular organic compounds used in optoelectronic device applications,” Annu. Rev. Chem. Biomol. Eng. 4(1), 289–317 (2013).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

X. Li, W. C. H. Choy, X. Ren, J. Xin, P. Lin, and D. C. W. Leung, “Polarization-independent efficiency enhancement of organic solar cells by using 3-dimensional plasmonic electrode,” Appl. Phys. Lett. 102(15), 153304 (2013).
[CrossRef]

W.-L. Min, A. P. Betancourt, P. Jiang, and B. Jiang, “Bioinspired broadband antireflection coatings on GaSb,” Appl. Phys. Lett. 92(14), 141109 (2008).
[CrossRef]

Energy Environ. Sci. (3)

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
[CrossRef]

Y. Zhou, C. Fuentes-Hernandez, J. W. Shim, T. M. Khan, and B. Kippelen, “High performance polymeric charge recombination layer for organic tandem solar cells,” Energy Environ. Sci. 5(12), 9827–9832 (2012).
[CrossRef]

H. K. Raut, S. S. Dinachali, A. Y. He, V. A. Ganesh, M. S. M. Saifullah, J. Law, and S. Ramakrishna, “Robust and durable polyhedral oligomeric silsesquioxane-based anti-reflective nanostructures with broadband quasi-omnidirectional properties,” Energy Environ. Sci. 6(6), 1929–1937 (2013).
[CrossRef]

IEEE Trans. Magn. (1)

P. Dular, C. Geuzaine, F. Henrotte, and W. Legros, “A general environment for the treatment of discrete problems and its application to the finite element method,” IEEE Trans. Magn. 34(5), 3395–3398 (1998).
[CrossRef]

J. Appl. Phys. (1)

S. Eyderman, S. John, and A. Deinega, “Solar light trapping in slanted conical-pore photonic crystals: Beyond statistical ray trapping,” J. Appl. Phys. 113(15), 154315 (2013).
[CrossRef]

J. Phys. Chem. C (1)

X. H. Li, W. E. I. Sha, W. C. H. Choy, D. D. S. Fung, and F. X. Xie, “Efficient inverted polymer solar cells with directly patterned active layer and silver back grating,” J. Phys. Chem. C 116(12), 7200–7206 (2012).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

H. Hoppe, N. S. Sariciftci, and D. Meissner, “Optical constants of conjugated polymer/fullerene based bulk-heterojunction organic solar cells,” Mol. Cryst. Liq. Cryst. 385(1), 113–119 (2002).
[CrossRef]

Nano Lett. (1)

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9(7), 2742–2746 (2009).
[CrossRef] [PubMed]

Nanotechnology (1)

S. Nam, J. Han, Y. R. Do, H. Kim, S. Yim, and Y. Kim, “Two-dimensional photonic crystal arrays for polymer:fullerene solar cells,” Nanotechnology 22(46), 465403 (2011).
[CrossRef] [PubMed]

Nat. Commun. (1)

J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, and Y. Yang, “A polymer tandem solar cell with 10.6% power conversion efficiency,” Nat. Commun. 4, 1446 (2013).
[CrossRef] [PubMed]

Nat. Photonics (2)

Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure,” Nat. Photonics 6(9), 591–595 (2012).
[CrossRef]

L. Dou, J. You, J. Yang, C.-C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, “Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer,” Nat. Photonics 6(3), 180–185 (2012).
[CrossRef]

Opt. Express (8)

G. Demésy, F. Zolla, A. Nicolet, M. Commandré, and C. Fossati, “The finite element method as applied to the diffraction by an anisotropic grating,” Opt. Express 15(26), 18089–18102 (2007).
[CrossRef] [PubMed]

A. Naqavi, K. Söderström, F.-J. Haug, V. Paeder, T. Scharf, H. P. Herzig, and C. Ballif, “Understanding of photocurrent enhancement in real thin film solar cells: towards optimal one-dimensional gratings,” Opt. Express 19(1), 128–140 (2011).
[CrossRef] [PubMed]

T. Søndergaard, J. Gadegaard, P. K. Kristensen, T. K. Jensen, T. G. Pedersen, and K. Pedersen, “Guidelines for 1D-periodic surface microstructures for antireflective lenses,” Opt. Express 18(25), 26245–26258 (2010).
[CrossRef] [PubMed]

A. Raman, Z. Yu, and S. Fan, “Dielectric nanostructures for broadband light trapping in organic solar cells,” Opt. Express 19(20), 19015–19026 (2011).
[CrossRef] [PubMed]

L. Chen, W. E. I. Sha, and W. C. H. Choy, “Light harvesting improvement of organic solar cells with self-enhanced active layer designs,” Opt. Express 20(7), 8175–8185 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-20-7-8175 .
[CrossRef] [PubMed]

J. R. Tumbleston, D.-H. Ko, E. T. Samulski, and R. Lopez, “Absorption and quasiguided mode analysis of organic solar cells with photonic crystal photoactive layers,” Opt. Express 17(9), 7670–7681 (2009).
[CrossRef] [PubMed]

K. S. Nalwa and S. Chaudhary, “Design of light-trapping microscale-textured surfaces for efficient organic solar cells,” Opt. Express 18(5), 5168–5178 (2010).
[CrossRef] [PubMed]

I. Kim, D. S. Jeong, T. S. Lee, W. S. Lee, and K.-S. Lee, “Plasmonic nanograting design for inverted polymer solar cells,” Opt. Express 20(S5), A729–A739 (2012).
[CrossRef] [PubMed]

Org. Electron. (2)

W. C. Luk, K. M. Yeung, K. C. Tam, K. L. Ng, K. C. Kwok, C. Y. Kwong, A. M. C. Ng, and A. B. Djurisic, “Enhanced conversion efficiency of polymeric photovoltaic cell by nanostructured antireflection coating,” Org. Electron. 12(4), 557–561 (2011).
[CrossRef]

L. A. A. Pettersson, S. Ghosh, and O. Inganäs, “Optical anisotropy in thin films of poly(3,4-ethylenedioxythiophene)-poly(4-styrenesulfonate),” Org. Electron. 3(3-4), 143–148 (2002).
[CrossRef]

Proc. SPIE (1)

D. Duché, L. Escoubas, J.-J. Simon, C. Gourgon, C. Masclaux, Ph. Torchio, J. Le Rouzo, and F. Flory, “Photonic crystals for improving light absorption in organic solar cells,” Proc. SPIE 8256, 82561K (2012).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007).
[CrossRef]

Thin Solid Films (2)

M. F. Al-Kuhaili, S. M. A. Durrani, and E. E. Khawaja, “Effects of preparation conditions and thermocoloration on the optical properties of thin films of molybdenum oxide,” Thin Solid Films 408(1–2), 188–193 (2002).
[CrossRef]

K. Forberich, G. Dennler, M. C. Scharber, K. Hingerl, T. Fromherz, and C. J. Brabec, “Performance improvement of organic solar cells with moth eye anti-reflection coating,” Thin Solid Films 516(20), 7167–7170 (2008).
[CrossRef]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998), Vol. I.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Diagram of the cell structure studied in this work.

Fig. 2
Fig. 2

Calculated values for the imaginary part of the refractive index (k) for PDTP-DFBT:PC71BM. Obtained using absorption data from [28].

Fig. 3
Fig. 3

Map of MAPD as a function of opening width w1 and bottom width w2 of the grating. Triangular-shaped gratings yield the best performance.

Fig. 4
Fig. 4

MAPD for different values of h as a function of the slant factor s. A value of s = 0 corresponds to no slant, and s = 1 corresponds to a fully slanted sawtooth shape. Inset shows grating geometry for h = 1000nm and s = 0.8.

Fig. 5
Fig. 5

(a) Map of MAPD as a function of the grating periodicity a and grating height h. (b) The same data expressed in terms of enhancement in MAPD relative to the reference planar cell. High aspect ratio gratings yield the largest improvement.

Fig. 6
Fig. 6

MAPD for different grating periodicities as a function of equivalent thickness of the active layer. Dashed line shows planar cell MAPD as a function of active layer thickness.

Fig. 7
Fig. 7

Breakdown of energy losses within the cell as a function of wavelength for a = 800nm and h = 1600nm. Active layer absorption for planar reference cell shown as dashed line.

Fig. 8
Fig. 8

Map of electric field intensity |E|2 (normalized to incident intensity) and time-averaged Poynting vector for a cell with a = 800nm and h = 1600nm, for incident wavelengths of a) 600nm and b) 930nm.

Fig. 9
Fig. 9

MAPD as a function of corrugation height hc for ac = a, a/2, a/3 and a/4. Results are shown for (a) a = 600nm, (b) a = 900nm and (c) a = 1200nm. Grating height is fixed at h = 800nm (see Fig. 1).

Fig. 10
Fig. 10

MAPD as a function of angle of incidence for the corrugation periodicities ac = a, a/2, and a/4. Results are shown for grating periodicities of (a) 600nm, (b) 900nm and (c) 1200nm. Grating height is fixed at h = 800nm (see Fig. 1).

Fig. 11
Fig. 11

(a) Enhancement in MAPD relative to planar cell as a function of grating height for select periodicities. Triangular corrugation with ac = a/4 and hc = 700nm is applied at the glass-air interface. (b) Breakdown of energy losses for cell with a = 800nm and h = 1600nm. Dashed line shows active layer absorption for planar reference cell.

Fig. 12
Fig. 12

(a) MAPD for a cell with a conformal Ag layer and air beneath the cell, as a function of Ag layer thickness (a = 800nm, h = 1600nm). (b) Percentage enhancement in MAPD for nanostructured cell (a = 800nm, h = 1600nm) relative to planar cell, as a function of active layer refractive index (n). The imaginary part of the index (k) is recomputed for each value of n using the procedure described in Sec. 2.

Fig. 13
Fig. 13

(a) Relative change in MAPD as a function of angle of incidence for the nanostructured cell (a = 800nm, h = 1600nm) and a high-efficiency planar tandem cell. Data for both subcells of the tandem cell are shown. The lower of the two curves determines overall device performance. (b) Projected power conversion efficiencies for the nanostructured, single-junction planar and tandem planar cells as a function of angle of incidence, based on relative change in MAPD.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

α i ( λ )= A i ω ε 0 ( ε ) | E | 2 dxdy S { E 0 × H 0 * } y ^ dx
J MAPD = 350nm 1000nm eλ hc I( λ ) α act ( λ )dλ

Metrics